Sheffield Hallam University

fsQCA in Management research

MOSTAFIZ, Md Imtiaz <http://orcid.org/0000-0002-4362-4521>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/26928/

This document is the Presentation

Citation:

MOSTAFIZ, Md Imtiaz (2020). fsQCA in Management research. In: Business, Law and Management at the Post-Pandemic Era: An International e-Conference, Malaysia, 11 Jul 2020 - 11 Aug 2020. Taylor's University. [Conference or Workshop Item]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

fsQCA in Management Research

Dr Md Imtiaz Mostafiz Sheffield Business School Sheffield Hallam University United Kingdom

What is *fsQCA*

- $f(p) = \int_0^\infty e^{-pt} f(t) dt$
- fsQCA (fuzzy-set qualitative comparative analysis) is a statistical technique for investigating complex configurations of constructs (Ragin, 2009).

• It performs a systematic cross-case analysis that models relations among variables in pertaining to set membership and identifies configurations that reflect the *sufficient conditions* for an outcome of interest.

fsQCA cont.

- $f(p) = \int_0^\infty e^{-pt} f(t) dt,$
- Organizational phenomena are complex; the conventional reductionist analytical strategy results in lost information and critical strategic determinants to performance to be omitted due to reductionist symmetrical analysis (Drazin et al., 1985).
- Multiple regression analysis and structural equation modeling adopt symmetric thinking typical of net effects estimation approaches.
- Reductionist and bivariate models overlook the assumptions of *equifinality* and underestimate the effects of small changes which challenge organizational phenomena (Fiss, 2007).

What is equifinality?

- Equifinality assumes that multiple paths to a desired outcome may co-exist and not the one and only model (Fiss, 2007).
- These paths reflect one of fsQCA's principles and merits compared to symmetric quantitative approaches.
- fsQCA can identify several equifinal combinations of conditions that are sufficient to produce a given outcome of interest (Chang & Cheng, 2014).

 $f(p) = \int_0^\infty e^{-pt} f(t) dt$

Theoretical grounding

- $f(p) = \int_0^\infty e^{-pt} f(t) dt,$
- Configuration theory embraces equifinality (Drazin & V an de Ven, 1985).

• It richly describes organizations, revealing their complex, gestalt, and systematic nature as well as avoiding "excessive aggregation " and "aiding prediction" of important outcomes such as firm performance (Miller, 1987, p. 686)

Assumptions of *fsQCA*

 $f(p) = \int_0^\infty e^{-pt} f(t) dt$

- 1. Comparative study
- 2. Presence of asymmetrical relationships

What is Asymmetrical relationships?

- Symmetrical relationship: When X variable changes then it will symmetrically effect Y.
- Asymmetrical relationship: when a substantial numbers of cases display relationships that are contrary to the main effect of an antecedent on an outcome variable (Woodside, 2014).
- To identify asymmetrical relationships, a cross-tabulation could be performed.

Sample of cross-tabulation analysis and f(t) at

Construct / Quintile			1	Total	Effect size			
-		1	2	3	4	5	count	
	1	0	4	0	1	0	5	
	2	5	9	3	0	3	20	
Foreign business knowledge	3	2	14	25	30	4	75	0.116
	4	0	6	4	26	3	39	
	5	0	0	3	16	20	39	
Total count		7	33	35	73	30	178	
	1	1	0	2	0	0	3	_
	2	6	11	5	7	1	30	
Foreign institutional knowledge	3	0	20	23	31	9	83	0.152
5	4	0	1	4	12	0	17	
	5	0	1	1	23	20	45	
Total count		7	33	35	73	30	178	
	1	0	2	1	2	2	7	_
	2	5	6	3	4	1	19	
Internationalisation knowledge	3	2	17	14	21	8	62	0.104
	4	0	7	15	39	10	71	
	5	0	1	2	7	9	19	
Total count		7	33	35	73	30	178	
	1	0	2	1	0	0	3	_
	2	5	5	3	1	1	15	
Opportunity exploration capability	3	2	22	25	16	7	72	0.118
	4	0	4	6	43	2	55	
	5	0	0	0	13	20	33	
Total count		7	33	35	73	30	178	
	1	0	2	0	1	1	4	_
	2	2	4	5	6	5	22	
Opportunity exploitation capability	3	4	18	7	26	7	62	0.184
	4	1	9	22	38	15	85	
	5	0	0	1	2	2	5	
Total count		7	33	35	73	30	178	

Sheffield Hallam University AACSB

Performing fsQCA

- Calibrate the original data to fuzzy membership score ranging from 0.00 to 1.00; where the non-membership score represents 5%, cross-over anchors are 50%, and the full-membership score represents 95% of the value
- This process could be carried out by using *fsQCA* 3 software

 $f(p) = \int_0^\infty e^{-pt} f(t) dt$

Data Calibration process

- 1. Put variable name:
- 2. Select calibrate option from right-hand-side.
- 3. X represents original value
- 4. n1 is full-membership (0.95)
 ; n2 is cross-over point (0.5
 0) and n3 reflects non-mem bership is (0.05).

colibrato/x p1 = 2	n2)	
calibrate(x,n1,n2	,n3)	
FoCT		ahc/v)
KmaACOCT	T	abs(x)
KMAppiCT		acosh(x)
KmShrCT	1	acion(x)
KmBrotCT	%	asin(x)
CoAdCT	~	asini(x)
SaAdCT	Š	atanh(x)
PertCT	5-	calibrate(x n1 n2 n3)
FO	-	chrt(x)
Kmac	<=	ceil(x)
Kmap	==	cos(x)
Kmsh	!=	cosh(x)
Kmpro	(dualcal(x.n1.n2.n3.n4)
Cos	j,	exp(x)
Sal	88	floor(x)
Per	11	fuzzvand(x,)
		fuzzypot(x)

 $f(p) = \int_0^\infty e^{-pt} f(t) dt$

Calibrated score

 $p(p) = \int_0^\infty e^{-pt} f(t) dt$

EO	Kmac	Kmap	Kmsh	Kmpro	Cos	Sal	Per
0.05	0.05	0.05	0.2	0.19	0.05	0.21	0.05
0.05	0.05	0.05	0.2	0.19	0.64	0.84	0.05
0.05	0.05	0.36	0.05	0.53	0.26	0.21	0.24
0.05	0.05	0.36	0.2	0.05	0.26	0.21	0.05
0.05	0.05	0.36	0.2	0.19	0.26	0.21	0.05
0.05	0.42	0.05	0.2	0.05	0.26	0.21	0.05
0.05	0.42	0.36	0.05	0.05	0.26	0.05	0.05
0.18	0.05	0.05	0.2	0.19	0.05	0.21	0.05
0.18	0.05	0.05	0.2	0.53	0.26	0.57	0.05
0.18	0.05	0.36	0.05	0.05	0.26	0.21	0.05
0.18	0.05	0.36	0.05	0.19	0.05	0.21	0.24
0.18	0.05	0.36	0.05	0.19	0.26	0.21	0.05
0.18	0.42	0.05	0.05	0.05	0.26	0.05	0.05
0.18	0.42	0.05	0.2	0.05	0.05	0.21	0.24
0.18	0.42	0.05	0.2	0.19	0.05	0.95	0.05

Truth table algorithm

 $f(p) = \int_0^\infty e^{-pt} f(t) dt$

variables KMAppICT KmShrCT KmProtCT CoAdCT	Set Set Negat	ed	outcome Per causal conditio	ns
SaAdCT PertCT EO Kmac Kmap Kmsh Kmpro Cos Sal	Add			
Show solution ca	ases in output	EoCT		٥
		(a	• •	

Truth table algorithm

 $f(p) = \int_0^\infty e^{-pt} f(t) dt$

Delete curre	ent row to	last row			Edit Ti	uth Table						
Delete first r	row to curi	rent row	Kmsh	Kmpro	Cos	Sal	numb	er v	Per	raw consist.	PRI consist.	SYM consist
Delete and o	code	۵ ۳D	0	0	0	0	15	(10%)		0.597801	0.101951	0.10195
Start Dictati	on	fn fn	0	0	0	0	15	(20%)		0.757036	0.2042	0.20420
Emoji & Sym	nbols	^∺Space 1	1	1	1	1	14	(30%)		0.971608	0.928238	0.92823
1	0	0	1	1	0	0	8	(35%)		0.931349	0.537218	0.53721
1	0	0	0	0	0	1	7	(40%)		0.812104	0.289984	0.28998
1	0	1	1	1	0	0	6	(44%)		0.89811	0.291969	0.29197
1	0	0	1	1	0	1	6	(48%)		0.906159	0.466666	0.46666
0	0	0	0	0	1	1	6	(52%)		0.792631	0.363158	0.363158
1	1	0	1	1	1	1	6	(56%)		0.965111	0.872111	0.87211
1	1	1	1	1	0	0	5	(60%)		0.897506	0.390836	0.3994
1	1	1	1	1	1	0	5	(63%)		0.966837	0.86219	0.931297
1	1	0	1	1	0	1	5	(67%)		0.929754	0.627078	0.627079
1	0	0	0	0	1	1	5	(70%)		0.872977	0.471427	0.471429
1	0	0	1	1	1	1	4	(73%)		0.945619	0.711998	0.71200
1	0	1	1	1	0	1	3	(75%)		0.949835	0.637449	0.63745
1	1	1	1	1	0	1	3	(77%)		0.945714	0.70235	0.74104
1	0	1	1	1	1	1	3	(79%)		0.968297	0.837912	0.83791
1	1	0	1	1	0	0	2	(80%)		0.940712	0.584617	0.58461
0	0	1	1	1	0	0	2	(82%)		0.867483	0.233037	0.23303
1	0	0	0	0	1	0	2	(83%)		0.86283	0.339491	0.339492
1	0	0	0	1	0	1	2	(84%)		0.890695	0.38843	0.3884
1	0	1	0	1	0	1	2	(86%)		0.933828	0.488987	0.48898
	Reset			Cancel			Sn	ecify Analy	sis		Standard A	nalvses

Performing fsQCA

 $p(p) = \int_0^\infty e^{-pt} f(t) dt$

0	KmAcq	KmApl	KmSha	Kmpro	number	Perf	raw consist. 🔻
0	1	0	1	1	3	1	0.990596
0	1	1	1	1	24	1	0.98442
1	1	0	1	1	1	1	0.978312
0	1		Intermed	iate Solution		1	0.974403
1	1		Should c	ontribute to Pe	rf when cause is:	1	0.972275
1	1	Causal Conditio	ns: Present	Absent	Present or Absent	1	0.968551
0	0	EO	\bigcirc	\bigcirc	0	1	0 964655
0	1	KmAcq	\bigcirc	\bigcirc	0	1	0.962808
0		KmApl	0	0	0		0.902008
0	1	KmSha	0	0	0	1	0.9626
1	1	Kmpro	\bigcirc	0	•	1	0.960519
1	0					1	0.959333
0	1					1	0.956276
1	1			Ca	ncel OK	1	0.944015
0	0	•	•		-	1	0.928153
1	1	0	0	0	4	1	0.910815
0	0	0	1	0	8	1	0.896789
1	0	1	1	0	1	1	0.870525
1	٥	1	1	٥	1	1	0.870525

fsQCA results

- $f(p) = \int_0^\infty e^{-pt} f(t) dt,$
- Three different outputs as complex solutions, parsimonious solutions and intermediate solutions are produced by the standard analysis.

• The most acknowledged solution in management research is the intermediate solution, as it has the superiority over parsimo nious and complex solutions (Cheng et al., 2013; Hervas-Olive r, Sempere-Ripoll, & Arribas, 2015).

fsQCA results

 $f(p) = \int_0^\infty e^{-pt} f(t) dt$

	Path	FBK	FIK	IK	OExC	OEC	Raw	Unique	Consistency	Solution	Solution
							coverage	coverage		coverage	consistency
Young firms	la	٠	•		•		0.418495	0.043696	0.941428	0.825031	0.764683
(n=178)	2a	•	0	0	0	0	0.327974	0.027881	0.851836		
Mature firms	1b	0	•	•	0	•	0.415412	0.0691722	0.970661		
(n=194)	2b	0		0	•	0	0.305142	0.0076386	0.817973	0.849855	0.72854
	3b	•	0	0	•	•	0.365175	0.0088377	0.899738		

Legends: FBK: foreign business knowledge, FIK: foreign institutional knowledge, IK: internationalisation knowledge, <u>OExC</u>: opportunity exploration capability, OEC: opportunity exploitation capability. ••' represent full membership; •o' represent partial membership, and 'blank' represent null membership

Framework and differences $f(x) = \int_0^\infty e^{-pt} f(t) dt$

MOSTAFIZ ET AL.

FIGURE 1 Conceptual framework

Sheffield Hallam University AACSB

-WILEY 3

fsQCA framework

 $\infty e^{-pt} f(t) dt$

Figure 1 Configurational paths for young firms

· represents partial membership and □ represents full membership

Legends: FBK: foreign business knowledge, FIK: foreign institutional knowledge,

IK: internationalisation knowledge,

QExC: opportunity exploration capability, OEC: opportunity exploitation capability.

Figure 2 Configurational paths for mature firms

C represents partial membership and represents full membership

Legends: FBK: foreign business knowledge, FIK: foreign institutional knowledge,

IK: internationalisation knowledge,

QExC: opportunity exploration capability, OEC: opportunity exploitation capability.

Limitations of fsQCA

 $f(p) = \int_0^\infty e^{-pt} f(t) dt,$

- Generalizability issue
- Sufficiency not necessity

• To mitigate the limitation of necessity, we should perform necessary condition analysis.

Thank you

