

Structure and Magnetism of the Rh4+-containing perovskite oxides La0.5Sr0.5Mn0.5Rh0.5O3 and La0.5Sr0.5Fe0.5Rh0.5O3

HASANLI, Nijat, SCRIMSHIRE, Alex, BINGHAM, Paul http://orcid.org/0000-0001-6017-0798, PALGRAVE, Robert and HAYWARD, Michael

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/26857/

This document is the Supplemental Material

Citation:

HASANLI, Nijat, SCRIMSHIRE, Alex, BINGHAM, Paul, PALGRAVE, Robert and HAYWARD, Michael (2020). Structure and Magnetism of the Rh4+-containing perovskite oxides La0.5Sr0.5Mn0.5Rh0.5O3 and La0.5Sr0.5Fe0.5Rh0.5O3. Dalton Transactions: an international journal of inorganic chemistry, 49, 11346-11353. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Structure and Magnetism of the Rh^{4+} -containing perovskite oxides $La_{0.5}Sr_{0.5}Mn_{0.5}Rh_{0.5}O_3$ and $La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O_3$

Nijat Hasanli, Alex Scrimshire, Paul A. Bingham, Robert G. Palgrave and Michael A. Hayward*

Supporting Information

Table of Contents

1. ⁵⁷Fe Mössbauer Spectra of La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O₃

Figure S1. 57 Fe Mössbauer spectrum collected from La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O₃ at room temperature. Fit with one doublet fixed at CS = 0 and one free to refine.

Table S1. Parameters extracted fit to 57 Fe Mössbauer spectrum collected from La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O₃ in which one doublet is fixed at CS = 0 and one is free to refine ($\chi^2 = 0.694$).

2. Fe 2P and Mn 2P spectra of La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O₃ La_{0.5}Sr_{0.5}Mn_{0.5}Rh_{0.5}O₃.

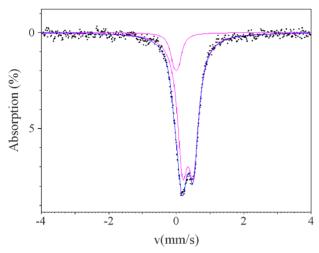

Figure S2. Fe 2P spectrum of La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O₃.

Figure S3. Mn 2P spectrum of La_{0.5}Sr_{0.5}Mn_{0.5}Rh_{0.5}O₃.

3. Magnetic behaviour of La_{0.5}Sr_{0.5}Mn_{0.5}Rh_{0.5}O₃.

Figure S3. Expanded plot of magnetisation-field isotherm collected from La_{0.5}Sr_{0.5}Mn_{0.5}Rh_{0.5}O₃ at 5 K, showing the coercive field of the material is 190 Oe.

1. ⁵⁷Fe Mössbauer Spectra of La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O₃

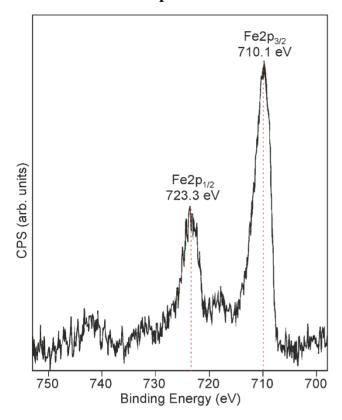


Figure S1. ⁵⁷Fe Mössbauer spectrum collected from $La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O_3$ at room temperature. Fit with one doublet fixed at CS=0 and one free to refine.

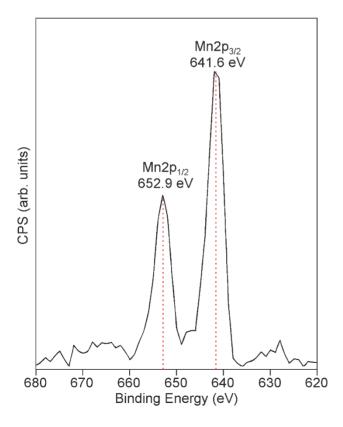

Doublet	CS	Δ	HWHM	Site population
	(mm/s)	(mm/s)	(mm/s)	(%)
1	0.351(6)	0.323(7)	0.189(6)	88(2)
2	0	0.136(36)	0.132(29)	12(2)

Table S1. Parameters extracted fit to 57 Fe Mössbauer spectrum collected from La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O₃ in which doublet 2 is fixed at CS = 0 and one is free to refine ($\chi^2 = 0.694$).

2. Fe 2P and Mn 2P spectra of $La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O_3$ $La_{0.5}Sr_{0.5}Mn_{0.5}Rh_{0.5}O_3$.

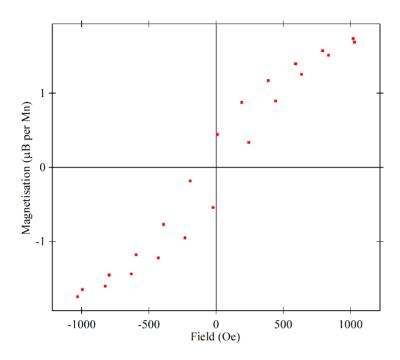


Figure S2. Fe 2P spectrum of $La_{0.5}Sr_{0.5}Fe_{0.5}Rh_{0.5}O_3$.

Figure S3. Mn 2P spectrum of La_{0.5}Sr_{0.5}Mn_{0.5}Rh_{0.5}O₃.

3. Magnetic behaviour of $La_{0.5}Sr_{0.5}Mn_{0.5}Rh_{0.5}O_3$.

Figure S3. Expanded plot of magnetisation-field isotherm collected from La_{0.5}Sr_{0.5}Mn_{0.5}Rh_{0.5}O₃ at 5 K, showing the coercive field of the material is 190 Oe.