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We consider depletion e� ects of a pear-shaped colloidal particle in a hard-sphere solvent, for two di� erent

model realisations of the pear-shaped colloidal particle. The two models are the pear hard Gaussian overlap

(PHGO) particles and the hard pears of revolution (HPR). The motivation for this study is to provide a micro-

scopic understanding for the substantially di� erent mesoscopic self-assembly properties of these pear-shaped

colloids, in dense suspensions, that have been reported in the previous studies. This is done by determining

their di� ering depletion attractions via MC simulations of PHGO and HPR particles in a pool of hard spheres

and comparing them with excluded volume calculations of numerically obtained ideal con�gurations on the

microscopic level. While the HPR model behaves as predicted by the analysis of excluded volumes, the PHGO

model showcases a preference for splay between neighbouring particles, which can be attributed to the special

non-additive characteristics of the PHGO contact function. Lastly, we propose a potentially experimentally real-
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2

isable pear-shaped particle model, the non-additive hard pear of revolution (NAHPR) model, which is based on

the HPR model but also features non-additive traits similar to those of PHGO particles to mimic their depletion

behaviour.

This is the second article in a series [1] that addresses

equilibrium self-assembly process, where by self-organisation

relatively simple, non-spherical hard-core particles spon-

taneously adopt complex three-dimensionally ordered

mesoscopic structures. On the one hand, particle shape is the

sole parameter that tunes structure formation in this process

and many simple shape characteristics (such as particle

elongation) have been identi�ed as determinants of structure

formation [2–9]. On the other hand, the self-assembly often

depends in a drastic, non-linear way on details of the particle

shape. Even though some shape features of particles can be

related to speci�c global order [10–12] these correlations are

often a rule of thumb and speci�c multi-particle behaviours

can hardly be targeted in this straight-forward fashion. Small

changes to the shape can have major repercussions for the

structure formation.

In recent years, various reverse-engineering approaches

successfully circumvented this issue and opened the door

to design self-assembled materials more precisely [13–15].

Speci�cally in purely entropic systems, where the potentials

are reduced to hard-core interactions and, therefore, the shape

of the colloids, an iterative technique calleddigital alchemy

made it possible to create speci�c polyhedral building blocks

‡ Philipp.Schoenhoefer@fau.de
†G.Schroeder-Turk@murdoch.edu.au

for the formation of targeted structures [16, 17]. Despite this

remarkable achievement, those kind of strategies can still

not pinpoint concrete relations between microscopic particle

features and mesoscopic order.

Hence, the question which particle properties are necessary

and which are su� cient for speci�c structure formation

remains unanswered. To highlight the complexity of this

question, this paper addresses this questionin terms of

pear-shaped particle self-assembly through a depletion study

of the interactions between pear-shaped particle pairs in a

solvent of hard spheres.

Pear-shaped colloids, or rather their contact function, have

been modelled using the self-non-addivitive pear hard Gaus-

sian overlap (PHGO) model and the hard pears of revolution

(HPR) model. For the de�nition of the pear-shape, which

is described by the aspect ratiok and the degree of tapering

k� and based on a pair of Bézier curves, and an in-depth

discussion about the di� erences in the contact functions of

both models we refer to part 1 [1]. Here and in other earlier

studies we showed that, in the PHGO approximation [18],

pear-shaped particles spontaneously form cubic, bicontinuous

phases, like the double gyroid [19, 20] or, when diluted with

a small amount of hard-sphere solvent, the double diamond

[21]. Even though PHGO particles are best illustrated by

   
 T

hi
s 

is
 th

e 
au

th
or

’s
 p

ee
r 

re
vi

ew
ed

, a
cc

ep
te

d 
m

an
us

cr
ip

t. 
H

ow
ev

er
, t

he
 o

nl
in

e 
ve

rs
io

n 
of

 r
ec

or
d 

w
ill

 b
e 

di
ffe

re
nt

 fr
om

 th
is

 
ve

rs
io

n 
on

ce
 it

 h
as

 b
ee

n 
co

py
ed

ite
d 

an
d 

ty
pe

se
t. 

P
LE

A
S

E
 C

IT
E

 T
H

IS
 A

R
T

IC
LE

 A
S

 D
O

I:
10

.1
06

3/
5.

00
07

28
7



3

a Bézier pear-shape, the computational PHGO model does

not represent hard interactions between those Bézier objects

perfectly. In particular, PHGO pear-shaped particles partially

overestimate or underestimate the inter-particle distance

compared to the B́ezier curve representation, which leads

to small overlaps and gaps depending on relative particle

orientations [? ]. These “non-additivities”, despite being

small, a� ect the phase behaviour of the pears and have

previously been – incorrectly – believed not to be important

for the self-assembly processes [19, 20]. Even though the

di� erence between the PHGO and the HPR model, the latter

representing the B́ezier shape more accurately at the expense

of being computationally substantially more expensive, is

small (see in-depth discussion about the di� erences in the

contact function in part 1), the �rst part of this study shows

that the gyroid phase is not formed by HPR particles [1],

but did not provide a reason for the system's failure to form

cubic structures. This is what this second article sets out to do.

In part 2 we show that also the excluded volume interac-

tions of pears in a solvent of hard spheres are impacted by

these distinctions. This depletion behaviour enables us to

explain some of the di� erences between the PHGO and HPR

self-assembly behaviour of the pure systems, without solvent

which were discussed in part 1 of this series [1].

Depletion forces, which arise from the osmotic pressure on

neighbouring colloids by the surrounding small depletants,

lead to e� ective short range-attraction [22–26] or repulsion

[27–30] between colloidal particles. Already 70 years

ago, these depletion forces has been predicted as a purely

entropically driven e� ect similar to the entropic self-assembly

of colloids into liquid crystal phases. More speci�cally,

Asakura and Oosawa [22, 23] argued that, as the free energy

of the system is predominantly governed by the degrees of

freedom of the solvent particles, the minimisation of free

energy induces the colloids to arrange in the most compact

arrangement such that their excluded volume, which can not

be penetrated by the solvent, is minimised (see FIG. 1). Since

then depletion forces of spherical particles have been studied

extensively both in theory for di� erent solvent models, like

the penetrable hard spheres model [31, 32] polymers based on

the ideal chain-model [33, 34], hard-core spheres [25, 26, 29],

hard-core rods [35–37], or hard-core disks [38, 39], and also

experimentally [40–51].

The study of depletion e� ects between two pear-shaped

particles in a solvent of hard spheres can also help under-

stand the collective self-assembly mechanisms behind the

one-component pear particle system. In all liquid crystal

phases, obtained for the PHGO system so far [19–21], the

arrangement of each pear is highly a� ected by a multitude of

next nearest neighbours. This elaborate interplay of particles

coupled with the aspherical pear-shape, which features a

signi�cant degree of complexity, makes a more detailed

analysis of the direct in�uence between adjacent particles in

one-component systems impracticable. Hence, we reduce

the complexity of our simulations and shift our focus to
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FIG. 1: The concept of depletion is sketched by the example of two hard-core spherical colloids (left), three hard-core spherical colloids
(centre) and two hard-core pear-shaped colloids (right) dissolved in a liquid of smaller hard spheres (indicated in light blue). The system is
driven mainly by the entropy of the solvent particles and maximises the free energy by minimising the excluded volume of the bigger colloidal
particles. The excluded volume ( ) cannot be penetrated by the depletant due to the presence of the colloid. Thus, the larger objects pack
together such that their excluded volumes maximally overlap (indicated in orange) and more space is provided for the depletants. Overall this
mechanism can be interpreted as an e� ective, entropically driven attraction between the colloids.

the depletion systems which encapsulate the fundamental

features of pure two-particle interactions.

This article is structured as follows: We �rst identify the

optimal arrangement of pears in terms of minimal collec-

tive excluded volume using numerical tools in Sec. I. Next

(Sec. II) we perform MC simulations of two large pear-shaped

particles within a solution of smaller hard spheres; This is

done for both the PHGO and HPR particle models to compare

the computational results with the previous predictions of the

ideal excluded volume, obtained by the numerical technique.

These allow us to pinpoint the speci�c di� erences between

the two models more e� ciently. We show that the PHGO

particles favour the formation of bilayer phases (including

the bilayer smectic and gyroid phases) in contrast to the

HPR particles. Finally in Sec. III, we demonstrate a possible

mechanism by which bilayer phases could be stabilised in

monodisperse systems based on the HPR interactions by

introducing non-additivity to the contact function based on

the non-additive hard pear-shaped particle (NAHPR) model.

I. EXCLUDED VOLUME OF TWO PEAR-SHAPED

PARTICLES

Similar to other self-assembly processes, the shape of

the molecules/colloids naturally impacts how a pair of two

colloidal particles in a solvent eventually arranges under

the in�uence of depletion. On changing colloids from

simple spheres to objects with more complicated shapes, the
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excluded volume does not only depend on the separation

but also the relative orientation of the particles (see FIG. 1).

Consequently, depletion induces orientational rearrangement

of the particles in addition to the entropic attraction.For

instance, it has been shown that by adding dimples to one

of the spheres the other colloid preferentially attaches to

these concavities [52, 53]. This “lock-and-key” mechanism

can be used as a tool to control the depletion of particles.

Another sort of directionality can be introduced by creating

elongated colloids. At a wall, hard prolate ellipsoids [54, 55]

and spherocylinders [56] align with their long axis along

the �at interface due to depletion. Moreover, it is known

theoretically [57, 58] and from experiments [59, 60] that

rod-like colloids self-assemble into clusters with nematic

order when non-absorbing polymers are added. Excluded

volume mechanisms provide access to rich phase behaviours

for various mixtures of hard aspherical particles and depletant

particles [57, 61–66], including fascinating e� ects like deple-

tion induced shape-selective separation in colloidal mixtures

by the addition of non-adsorbing polymers [67–70].

To predict the most compact and ideal con�guration in

terms of depletion of two B́ezier pear-shaped particles in

a solvent we �rst present some geometric calculations for

excluded volumes, obtained by computational geometry

of static con�gurations (not from simulations). The used

computational algorithm which calculates the excluded

volumes of the pear-shaped particles is explained in App. A.

For rotationally symmetric particles like pears de�ned by

Bézier-curves, three degrees of freedom have to be consid-

ered in addition to the particle separation to de�ne a speci�c

constellation between two pears. Two of these degrees of

freedom relate to the relative orientations of the particles

u and v. The last one relates to the �exibility to select the

contact pointpc on the surface of one colloid, in the case

where the two particles are touching and, so, their separation

is 0. The choices ofu, v and pc, automatically determine

the contact point on the surface of the other object (see

FIG. 2a+b). Theoretically, we are able to sweep the whole

con�gurational space of the two-pear-depletion-problem and

identify the con�guration with the largest excluded volume

overlap. Therefore, we apply our sampling algorithm to pears

with aspect ratiok� 3 and tapering angle� k� 15X, which lie

well within the gyroid phase for the PHGO model [20] but

does not form cubic phases for the HPR-model.

The presented three-dimensional excluded volume problem

can be narrowed down to its two-dimensional counterpart. In

more mathematical terms, we only consider arrangements of

pears where the orientation vectors of the two pearsu andv

and their relative position vectorR are linearly dependent.

Only these positions need to be considered in order to �nd

the ideal placement of a pair of pears. Any expansions of

the excluded volume in the form of dilatations into the third

dimension (like those indicated in FIG. 9) can be prevented

by restricting the particles to a plane. This guess is con�rmed

by computation of the excluded volume for di� erent relative

orientations with a �xed contact pointpc of one of the pears
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u
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FIG. 2: The excluded volume of two pear-shaped particles withk� 3, � k� 15X andrdepl� 0:31� w in relation to the relative orientation of the pears
on the unit sphere. The algorithm to calculate the excluded volumes is described in App. A. The contact pointpc is �xed for the reference pear
and chosen such that the con�guration with the global minimum can be adopted. In the centre (c), the orientation of the free pearv is given
in spherical coordinates dependent on the orientation of the reference pearu and the direction towardspc uÙ

1 . On the right, the unit sphere
is viewed from the top (d), bottom (e) and side (f) perspective. On the left (a)+(b) two exemplary con�gurations are shown. The locations of
their corresponding orientationsv1 andv2 on the unit sphere are indicated.

as plotted in FIG. 2c. Here, the pear with constantpc acts

as a reference (see FIG. 2a+b) such thatv can be written in

spherical coordinates with respect to the frame de�ned byu

and pc. The azimuthal angle� � 0 of the spherical coordinate

system is de�ned by the direction from the contact pointpc

to the centre of the reference pear. For all the tested values

of pc, the extremal values inVexcl, and hence both its global

maximum and minimum, are attained by linearly dependent

con�gurations, that is where the polar angle ofv is either� � 0

or � � � .

To reduce the con�gurational space even further, we utilise

another argument about the symmetry of the system. The con-

tact, which leads to the maximal or minimal excluded vol-

ume, has to be at the same point on both pear surfaces as the

choice of the reference pear is arbitrary. Otherwise, the sys-

tem would have two solutions with the same relative orienta-

tions, which is not possible for convex particles. Overall this

leaves us with a sampling domain which, in practice, only de-

pends on one degree of freedom, namely on the sharedpc. By

adding the constraint of linearly dependent orientations with

� � 0~� � � the polar angle,� is restricted to at most two pos-

sible orientations. The excluded volume calculations for the

“roll” and “slide” sampling of the di� erent contact pointspc

are plotted in FIG. 3.

ˆ Roll route: The particles start from an antiparallel con-

�guration, when the pears touch with their blunt ends,

pass through a parallel alignment next to each other and
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7

eventually end up antiparallel again where their pointy

ends meet. This sampling can be interpreted as one pear

being rolled over the other.

ˆ Slide route: During the “slide” sampling the pears are

perfectly antiparallel for allpc which resembles a slide

of one pear along the surface of the other.

Hence, the duality of� is covered by those two computational

pathways. The contactpc is given by the angle� betweenu

and the normal vector into the pear atpc.

Interestingly, the di� erent paths reveal two distinct relative

con�gurations with the same contact pointpc� p̃c , which

both can be associated with the global minimum of the

excluded volumeVexcl. In one solution the pears are placed

side-by-side and oriented perfectly antiparallel towards one

another:u�v� � 1 (see FIG. 3). The minimum, however, does

not occur for � � �
2 when the pears are at the same height.

The particles are rather shifted towards their blunt ends by

a small distance. The second ideal con�guration exists due

to the broken inversion symmetry of the pear-shape and is

found when the two pears point roughly in the same general

direction (see FIG. 3). However, here the colloids are not

perfectly aligned but slightly tilted towards each other. This

tilt also becomes apparent by looking at the excluded volume

plot of di� erent orientations at ˜pc in FIG. 2d-f. The top,

bottom and especially side view of the unit-sphere clearly

show that the minimum at the northern hemisphere is shifted

away from the north pole. The tilt can be related directly to

tapering angle of� k� 15X . Hence,� k also de�nes the shift in

the antiparallel domain, as both optimal con�gurations are

attained for ˜pc.

Furthermore, the computations show that con�gurations,

where the blunt ends touch (� @�
2 in FIG. 3), tend to be often

more favourable than arrangements where the pears come to-

gether with their pointy ends (� A�
2). Also in FIG. 2c a similar

observation can be made. If the particle is oriented away from

the reference pear and comes in contact with the blunt end,

the excluded volume is smaller than if the pear points directly

towards p̃c. This general behaviour indicates that during

the rearrangement of inversion asymmetric particles from a

con�guration where the colloids are separated to one where

they are in contact due to depletion interactions, the colloids

are likely to �rst approach each other with their bigger

ends before eventually equilibrating into the most compact

formation. Note that an indication of this blunt-end-attraction

can be seen in the gyroid-phase self-assembly [1] where the

blunt ends form the network-like domains of the bicontinuous

cubic phase [19–21]. This indicates that also the hard HPR

pears have a tendency to cluster with their blunt ends.

II. MONTE CARLO SIMULATIONS OF DEPLETION

EFFECTS OF PEAR-SHAPED PARTICLES

Having determined the geometrically most favourable

con�guration of pairs of pear-shaped particles in regards

to their excluded volume, we compare the computational

predictions to results obtained by Monte Carlo simulations.
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FIG. 3: The excluded volume of two pear-shaped particles withk� 3, � k� 15X andrdepl� 0:31� w along the “rol” (blue) and “slide” (red) route,
where the particles share the same contact point pc, in terms of the angle� between the orientation of the pears and the normal direction into the
pear atpc . The algorithm to calculate the excluded volumes is described in App. A and both sampling pathways are sketched above. The plots
show a minimum of the same value which can be identi�ed as the global minimum of the system. The corresponding optimal con�gurations
are highlighted in the small coloured boxes.

Our goal is to replicate the behaviour of pear-shaped colloids

due to depletion and, moreover, to study if the pears indeed

prefer the states calculated in Sec. I. Therefore, we apply

simple Metropolis Monte Carlo methods below. A typical

procedure to calculate the depletion forces between various

particles is usually the “acceptance” approach where the

free energies between two di� erent con�guration states are

compared [55, 71–73]. This procedure has been advanced

using Wang-Landau Monte Carlo approaches [74–77]. Also,

a hybrid of simulation and density functional theory (DFT)

has been suggested [78]. Those approaches are, however,

very complicated for the pear shape (in case of the hybrid

approach) or very time ine� cient, as for every con�guration

state a separate MC run has to be performed in the acceptance

approach. Combining these issues with the already compu-

tationally demanding overlap check between two meshes for

the HPR particles and hard spheres, the mentioned techniques

are all impracticable.

Density functional theory, where Roth introduced a

so-called “insertion approach” [26, 56, 79], is also hardly

applicable to our study, as are other approaches [28, 29, 80] [?

]. All of those theoretical approaches only cover a set of par-

ticles with simple shapes. Even though a density functional

for hard pear-shaped particles representing the HPR model

has been derived [81], the di� culty of this approach is further

heightened by that fact that it would also require development

of a functional of orientational-dependent contact functions

like for PHGO particles as well.

In general, we are not necessarily interested in the speci�c

free energy-calculations of the di� erent states but merely

   
 T

hi
s 

is
 th

e 
au

th
or

’s
 p

ee
r 

re
vi

ew
ed

, a
cc

ep
te

d 
m

an
us

cr
ip

t. 
H

ow
ev

er
, t

he
 o

nl
in

e 
ve

rs
io

n 
of

 r
ec

or
d 

w
ill

 b
e 

di
ffe

re
nt

 fr
om

 th
is

 
ve

rs
io

n 
on

ce
 it

 h
as

 b
ee

n 
co

py
ed

ite
d 

an
d 

ty
pe

se
t. 

P
LE

A
S

E
 C

IT
E

 T
H

IS
 A

R
T

IC
LE

 A
S

 D
O

I:
10

.1
06

3/
5.

00
07

28
7



9

want to clarify the distinctions between the HPR and PHGO

models. Therefore, the question of depletion is tackled by

applying Monte-Carlo simulations in the following, straight-

forward fashion.

A. Depletion interactions between HPR particles

Monte Carlo simulations are performed on systems with

Npear� 2 hard-core pear-shaped particles within a solvent,

which is represented by a large numberNsph� 1498 of sur-

rounding smaller hard spheres, within a cubic box with peri-

odic boundary conditions in all three dimensions. The aspect

ratio k� 3 and tapering parameter� k� 15X of the pear-shaped

particles are chosen to enable straightforward comparison be-

tween the simulation results with the calculations of FIG. 2.

For the same reason the sphere radii of the solventrdepl is set

to 0:31� w, which corresponds to the volume ratio between the

spheres and pearsv� Vdepl

Vpear
� 0:08. An acceptance rate of roughly

50 % has been achieved by setting the maximal translation

� q;max� 0:085� w and the maximal orientational displacement

� u;max� 0:085� w per step. Use of a large number of depletants

ensures that the simulations are not a� ected by the bound-

ary conditions and the system can indeed be interpreted as

two pear-shaped colloids surrounded by a hard sphere solvent.

Furthermore, the sphere size is small enough to see depletion

interactions between the particles occurring at higher densi-

ties. All sets are performed in theNVT-ensemble starting from

di� erent diluted initial states at

� g �
Npear� Vpear� Nsph � Vsph

Vbox
� 0:1: (1)

After a sequence of compressions to the �nal density

� g� 0:45 the system is studied for 5:0�106 steps. This density

turned out to be su� ciently high to observe considerable

entropic forces between the pear-shaped colloids and low

enough to prevent crystallisation in the surrounding hard

sphere liquid.

We �rst simulate HPR pears in a hard sphere �uid, where

the overlap of two particles is determined by checking for

intersections of two meshes representing the surfaces of

the pears [82, 83]. For every simulation run, the entropic

depletion attraction between the pear-particles is determined

when the colloids are in each other's vicinity, which means

that their excluded volumes overlap. More precisely, the

particles stay together for a considerable number of MC steps

(see FIG. 4), which leads to the conclusion that the system

indeed favours the particles coming in contact. However,

the entropic attraction seems to be short range and rather

weak. This can be seen in FIG. 4, where, during a typical

MC simulation run, the particles repeatedly separate prior

to reaching a seemingly steady state where they remain

in contact [? ]. Nevertheless, the preferred sampling of

close pear arrangements is a strong indication for depletion

interactions.

Even though the particles are a� ected by the presence of
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FIG. 4: Representative progressions of the separationR of two pear-shaped particles (red: HPR, blue: PHGO, orange: NAHPR.) surrounded
by 1498 hard spheres, acting as a solvent during the Monte-Carlo simulations. The simulations are performed at a global density of� g� 0:45.
All models show an e� ective attraction into the zone of in�uence, where the excluded volumes of the pears can be considered overlapping,
induced by depletion e� ects. The shaded area approximates this zone of in�uence – where they are outside of this region, they cannot be
considered in contact.

the second colloid, the determination of the relative arrange-

ments of the colloid pair presents some di� culties. The main

issue which has to be overcome is poor statistics. As we are

studying a two-particle problem, it is hardly feasible to gather

enough data for a detailed combined analysis of the possible

states due to computational time constraints. Therefore, we

decouple the degrees of freedom and only investigate one

relative parameter at a time. In FIG. 5a the relative polar angle

between two close HPR particles is plotted. For these plots,

only con�gurations are considered if the excluded volumes

overlap. This ensures that the sampled relative orientations

are actually in�uenced by the close distance between the

particles. The relative angle� between the orientation vectors

of the pearsu andv is split into two domains to characterise

the orientational states further. For positive angles, the pears

point away from each other such that their blunt ends are

in contact. A negative angle indicates that the pears face

towards one another and that their pointy ends are closer

together. In the following, we will refer to these two domains

“V”-con�gurations (� A0) and “A”-con�guration (� @0).

The histogram of the relative pear orientations shows

two distinct peaks which match perfectly with the ideal

con�gurations predicted in FIG. 2c and FIG. 3. The �rst

preferred orientation is measured at� � � 0:26� � 15X, and

hence categorised as an A-con�guration. This relative angle

corresponds directly to the parallel solution for minimal

excluded volume as it coincides with the tapering angle

� k� 15X. The con�guration can also be extracted from the

simulations directly (see a snapshot in FIG. 5I). The second

peak at� � � � � � 180X is identi�ed as a single characteristic

orientation due to the duality of the A- and V-con�guration

for coŝ � • � � 1. Moreover, this orientation also coincides

with the predictions as it �ts the second solution of the

excluded volume calculations, where the particles are aligned

anti-parallel and adjacent to each other. A snapshot from the

MC simulation of this particular con�guration is depicted in

FIG. 5II.
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FIG. 5: The relative orientation (a & b) and lateral distance distribution (c & d) of two HPR/PHGO particles surrounded by 1498 hard spheres,
acting as a solvent at global density� g� 0:45, on the left. The particle parameters are set tok� 3, � k� 15X andrdepl� 0:31� w (

Vdepl
Vpear

� 0:08). Only
pair-con�gurations are considered if the pear-shaped particles are close to each other such that the excluded volumes overlap. Positive angles
� indicate V-con�gurations (blunt ends together), whereas negative� values describe A-con�gurations (pointy ends together). On the bottom,
typical arrangements of the HPR (I+II) and PHGO (III-IV) depletion systems, extracted from both type of simulations, are shown. The left
snapshot (dashed line, (I)) corresponds to the indicated peak in (a) and coincides with the parallel solution for maximal excluded volume
overlap. The centre left con�guration (dash-dotted line, (II)) contributes to the second peak of (a) and matches the anti-parallel solution in
terms of minimised excluded volume. The centre right snapshot (dotted line, (III)) shows a V-con�guration, which corresponds to the indicated
peak in (b). This con�guration does not coincide with the parallel solution for maximal excluded volume overlap of Bézier pears. The right
con�guration (dash-dotted line, (IV)) contributes to the second peak in (b) and matches the anti-parallel solution in terms of minimised
excluded volume.

The observations are corroborated by the lateral distance

distributions between two particles when in contact. FIG. 5c

highlights that the neighbouring pears are not distributed

around the centre point of the reference particles. The distri-

bution is rather slightly shifted towards the pointy end. The

inversion asymmetric shape of the HPR particle consequently

introduces a move of the optimal contact point above the
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centre-point. Hence, the HPR particles behave precisely as

expected according to Sec. I and according to the solutions of

the ideal con�gurations to maximise the available space for

the hard spheres.

B. Depletion interactions between PHGO particles

The depletion MC simulations are repeated with the same

parameters except that the HPR contact function is replaced

with the hard PHGO potential to approximate the particle

overlap [18].

The �rst distinction between the PHGO and HPR system

becomes apparent during the MC sampling already. By

tracking the distances between both particles for every MC

step in FIG. 4 the depletion attraction between two PHGO

pears seems to be much stronger than in the equivalent

HPR case. This can be explained by the development of the

separation once the two PHGO pears are close together. After

the pears pass a sequence of arbitrary displacements and

eventually approach each other, the touching con�guration

stays stable for a signi�cantly longer time (see FIG. 4). This

is in contrast to the un-couplings of the HPR particles where

very short-lived periods in close con�gurations alternate with

lengthier periods of separation and subsequent recombination.

The repeated attachment/detachment of the pear colloids in

the HPR model indicates that the depletion attraction is com-

parable to thermal energies, that is, it is of the order ofkBT.

The greater propensity of the PHGO pear colloids to remain

in contact (rather than to detach again) is a clear indication

that the depletion e� ects are stronger for PHGO particles

than for HPR particles. The increased strength of the entropic

force, however, can be related to the contact function of the

PHGO pear. Presuming the particles are in the optimal state,

an attempted translational step and especially an attempted

rotational step is much more strongly penalised for PHGO

than for HPR particles. This is manifested in the contact

distance of roughly perpendicular arrangements (see Fig. 1

of part 1 [1]). Here, the pear size is overestimated, and a

particle pair is accounted as overlapping even though they are

not in contact according to the Bézier-curve depiction. The

e� ect is comparable to the PHGO pears and HGO ellipsoids

[84] entering orientationally ordered phases at slightly lower

densities than their true hard-particle equivalents. The depth

of the e� ective potential does not necessarily indicate that the

two models di� er qualitatively, but suggests that the depletion

is more guided towards the equilibrium states.

The relative orientation distribution between two PHGO

particles in close contact is plotted in FIG. 5b. Two distinct

peaks emerge similar to the equivalent HPR system. The

smaller peak is found at� � � � which again corresponds

to an antiparallel con�guration. Therefore, the orientation

distribution suggests that the PHGO pear model reproduces

the antiparallel solution su� ciently. In this domain, the HPR

and PHGO di� er the least from each other, such that it is

quite intuitive that in the anti-parallel case both models share

the same solution. Additionally, we �nd many con�gurations
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as depicted in FIG. 5IV, which contribute to the pronounced

peak at� � � � and coincide with the ideal solution to a

su� cient degree. By focusing on the second larger peak,

however, we observe two major di� erences compared to

the HPR system. Firstly the peak is signi�cantly more

intense. This indicates that for PHGO particles the parallel

con�guration is more bene�cial than the antiparallel solution.

This is explained by the ability of PHGO particles to come

close together than HPR particles when parallelly aligned.

By changing the relative angle between the pear-shaped

particles, the overlap tends to be underestimated by the

PHGO model which consequently leads to a lower excluded

volume. Thus, the duality of the ideal con�guration is broken

by the particular angle dependence of the PHGO contact

function and weighted to the bene�t of parallel arrangements.

This observation is in accordance to the pair correlation

functions of the monodisperse pear-shaped particle systems,

obtained in the �rst part [1]. Also these plots indicated a

pronounced polar alignment between neighbouring PHGO

particles reminiscent of a bilayer architecture of the gyroid

structure but which is not exhibited by HPR particles.

The second di� erence is the position of the peak, which

is shifted from� � � 15X to a positive value close to� � 20X.

Hence, the particles adopt slight V-con�gurations rather

than the A-con�gurations seen for HPRs. To clarify the

reason behind this transition we take a closer look at those

V-con�gurations which can be obtained from the simulations

directly. A representative pair is portrayed in FIG. 5III. It

becomes apparent that the pears slightly overlap.[? ] Further-

more, the underlying underestimation of the PHGO-contact

function enables the pear-shaped particles to occupy space,

which by design cannot be reached by hard spheres and

would also be prohibited for HPR particles. This e� ect is

known as pairwisenon-additivityand is well studied for hard

binary sphere mixtures [85–89], which successfully model

the behaviour of binary alloys [90, 91] or organic mixtures

[92, 93].

The V-con�gurations also can be associated with a special

kind of non-additivity e� ect between two PHGO pears,

which we calledself-non-additivityin the �rst part [1] of

this series. Due to the self-non-additivity between the blunt

ends of PHGO particles, the excluded volume is decreased

instead of simple alignment by an alternative route, namely

by increasing the overlap of the two particles. For pears

with k� 3 and� k� 15X the maximal overlap according to the

Bézier shape occurs roughly at an angle of� overlap� 30X. This

is considerably higher than the measured angle between the

pears in the V-con�guration observed in the simulations.

However, we can argue that the adopted angle results from

the intricate interplay of reducing excluded volume via

overlap and alignment and the sphere radius of the solvent.

For small volume ratios the overlap is more dominant and

the V-arrangement more favourable, whereas for large ratios

the contribution of the overlap becomes negligible and the

aligned A-con�guration will be adopted.
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(b)(a)
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z

x

HPR PHGO-based overlap
equivalent self-non-additive shape NAHPR

FIG. 6: Possible design of a “prickly” pear-shaped colloid which copies the properties of the PHGO and NAHPR model. The self-non-
additivity is modelled by a region of spikes (blue) which is pervious for spikes of other pear-shaped colloids but not for their hard body (black).
(b) The procedure to obtain the second mesh in the NAHPR model which determined the overlap between the blunt ends of two pears with
k� 3 and� k� 15X. First, two pears are placed symmetrically at an angle� � 30X such that the pears are exactly in contact according to the PHGO
contact function. The distance is decreased by� 0:035� w also to compensate the contact overestimation for A-con�gurations. Afterwards, the
overlap is cut from the initial contour (dashed) such that a concavity occurs (dotted line). The equivalent non-additive contour is obtained from
its convex hull (dash-dotted). This procedure is repeated for di� erent angles between� � 30X� 10X. The �nal contour (solid line) is the basis of
the solid of revolution from which the mesh is generated.

To complete the comparison between the HPR and PHGO

particles, we investigate the lateral distance of the PHGO

pears to its fellow pear in close contact in FIG. 5d. Compared

to FIG. 5c the distribution is much narrower and shifted to-

wards the blunt end which leads the impression that the HPR

particles have more freedom to explore con�guration space

whereas the PHGO pears are more restricted in terms of �uc-

tuations from the ideal con�guration. The emergence of the

shifted peaks can again be attributed to the non-additive char-

acteristics of the PHGO model. Furthermore, the two maxima

at lateral distancez� � 0:17 andz� 0:70 indicate the existence

of two di� erent contact points. One is associated with the V

position (z@0), the other peak can be identi�ed as the contact

for the antiparallel solutionzA0.

III. THE NAHPR MODEL

In the �rst paper of this series, we have discussed aspects

of whether the HPR or the PHGO model is closer to po-

tential experimentally synthetised colloidal particles [20].

As we came to the conclusion that this question cannot be

resolved conclusively, we now pursue a di� erent question

in this section. Namely, we analyse some concepts of how

a non-additive pear-shaped particle with a contact function

of the PHGO particle would need to be designed, if non-

additivity is indeed enough to stabilise the V-con�guration

and, more precisely, how the HPR contact pro�le would

need to be modi�ed to obtain the key characteristics of the

PHGO contact function. Therefore, we propose an approach

by which non-additive features could be introduced to the

mesh-description of HPR particles as well.
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FIG. 7: The concept of the overlap determination for the NAHPR model. The pear consists of an inner contour (solid line, non-additive part)
and an outer contour (dotted line, similar to the HPR model). If the pears coms together with their blunt ends (left) the particles are considered
in contact if their inner contours touch. Otherwise (centre) the outer contours determine the overlap. The interactions with hard spheres are
also according to the outer contour (right).

To mimic the behaviour of PHGO particles non-additive

features have to be added to the blunt ends of the pear

particles. Using this approach we have speci�cally tried

to engineer an HPR potential which favours the formation

of V-con�gurations due to depletion interactions. One

idea is to introduce a “prickly” pear-shaped colloid. Here

non-additivity is modelled by a region of spikes, which is

pervious by thorns of other colloids, leading to an e� ective

“overlap” of the pear shapes, but cannot be penetrated by

their hard bodies (see FIG. 6a). Here, we have to consider

that the spikes should not be too dense, which would prevent

the full penetration of spikes or causes the particles to wedge.

On the downside, if the spikes are distributed only sparsely,

also the hard body can enter the non-additive region. Never-

theless, it seems feasible that we can e� ectively replicate the

self-non-additive properties of the PHGO model by colloids

with spikes in appropriate distances and optimised angles of

the thorns.

To avoid optimising the prickly pear-shaped colloids

in terms of spike distance and angle, we describe in our

simulations the semi-penetrable region of the colloid by

a second mesh in addition to that used for calculating the

HPR interactions. This mesh which describes the interaction

between two blunt ends is based on the distance of two

PHGO particles with the largest overlap. As mentioned this

occurs for� overlap� 30X. However, the distance is decreased

even further by� 0:035� w to additionally compensate for the

contact overestimation for A-con�gurations which otherwise

would not be considered. The contour of the non-additive

shape is created by introducing a �at line between the two

points where both B́ezier curves meet (see FIG. 6b). Taking

this new contour as a basis, we repeat the procedure for

di� erent angles� � 30X� 10X to allow some �exibility of the

adopted orientations. Afterwards, a triangulated mesh of

the solid of revolution of the resulting contour is generated.

The mesh is implemented within the MC algorithm such that

in most arrangements only the blunt ends of the pears are

allowed to overlap according to the Bézier shape. However,

the particles interact via the non-additive mesh exclusively

when the particles come together with their blunt ends.
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FIG. 8: The relative orientation (a) and lateral distance distribution (b) of two non-additive HPR particles surrounded by 1498 hard spheres,
acting as a solvent at global density� g� 0:45, on the left. The particle parameter are set tok� 3, � k� 15X andrdepl� 0:31� w (

Vdepl
Vpear

� 0:08). Only pair-
con�gurations are considered if the pear-shaped particles are close to each other and the excluded volumes overlap. Positive angles� indicate
V-con�gurations (blunt ends together). Negative� values describe A-con�gurations (pointy ends together). This is also indicated above the
plot. On the right two typical arrangements, extracted from the simulations, are shown. The top snapshot (dotted line, (c)) corresponds to the
indicated peak and shows the engineered V-con�guration. The bottom con�guration (dash-dotted line, (d)) is a defect of the non-additive mesh
and contributes next to the anti-parallel solution also to the second indicated peak.

Otherwise, the overlap is determined by the regular mesh

describing the pear surface (see FIG. 7). Furthermore, the

pear-sphere interactions stay unmodi�ed such that the hard

solvent still experiences the HPR pear. We will refer to this

model as the non-additive hard pears of revolution (NAHPR)

model. In experiments, the underlying contact function might

be realised by preparing pear colloids with a rougher surface

at the pointy than at the blunt ends or through some other

surface functionalisation. By using di� erent roughness, the

strength between di� erent parts of a colloid can be controlled,

and therefore an e� ective entropic attraction between speci�c

moieties of the colloid can be introduced [94, 95].

After implementing the non-additive contact function, the

depletion MC simulations are again repeated with the same

parameters. Both FIG. 4 and FIG. 8 reveal that many of

the features of the PHGO model have been adopted by the

NAHPR model. By investigating the separation during the

MC simulation in FIG. 4 it becomes apparent that the deple-

tion interaction increases. Even though the PHGO particles

show slightly weaker attraction, the NAHPR particles remain

in the zone of in�uence similarly as soon as they are within
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their vicinities. More interesting, however, is the orientation

distribution for NAHPR particles in contact (see FIG. 8a).

The non-additivity at the blunt ends indeed stabilises the

desired V-con�gurations creating a dominant peak at around

� � 20X. Nevertheless, by taking a close look, a small peak

at the A-con�gurations can be observed as well. This leads

to the conclusion that two minima for the excluded volume

can be obtained within the parallel con�gurations. The global

one is attributed to the V-con�guration and the non-additivity,

the second minor one can be ascribed to the A-position and

the parallel alignment of the pears according to their tapering

parameter.

The NAHPR model can also reproduce roughly the lateral

distance distribution of the PHGO particle. Even though the

distribution in FIG. 8b is broader than the one in FIG. 5b,

most of the contact points are located underneath the centre

point of the pear-shaped particle as well. However, the

NAHPR model still does not reproduce all feature of the

PHGO particles. For instance, some of the simulations

end up in con�gurations which contribute to the preferred

antiparallel alignment but do not coincide with the prediction.

Although the predicted anti-parallel arrangement, where thin

and blunt ends of the pear-shaped particles are next to each

other, is still the dominant con�guration, the non-additivity

allows the particles also to overlap with the blunt ends in an

antiparallel con�guration (S-con�guration, see FIG. 8d) and

also introduces in the antiparallel case a secondary minimum.

IV. CONCLUSION AND OUTLOOK

In this article, we have studied depletion e� ects on pear-

shaped particles due to a solvent of hard spheres. To this end,

we have investigated the depletion interactions of a pair of

pear-shaped particles surrounded by a hard sphere solvent.

In the course of this study, we �rst determined the optimal

pear con�gurations in terms of minimised total excluded

volume based on the B́ezier curves to predict the equilibrated

particle formation. Using numerical calculation techniques,

we identi�ed two con�gurations that both correspond to two

global minima; a parallel and an antiparallel solution, which

both share the same contact point on the pear surface. Both

con�gurations could be related directly to the taper of the

particle. Afterwards, the predicted states could be obtained in

Monte Carlo simulations of two HPR pear particles dissolved

in a hard sphere solvent. However, the depletion attraction is

weaker for the chosen parameters.

In comparison, the PHGO pear particles revealed di� er-

ences to the predictions in Sec. I. Even though the antiparallel

con�guration was also reproduced for PHGO pears, the

parallel solution was found to be more dominant and shifted

from an A- to a V-con�guration with a di� erent contact

point. We argue that the V-con�guration is stabilised by

the PHGO contact function which underestimates the pear

contact distance slightly and causes overlaps according to the

Bézier representation. Moreover, it has been shown that the

depletion attraction between two PHGO particles is much

stronger than between HPR particles.
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The discrepancies in the depletion behaviour also give

improved insight into why the PHGO model has a propensity

to forming interdigitated bilayer phases and why such bilay-

ers are absent in the phase diagram of HPR particles. It is

more than likely that speci�c details of the relative positions

between neighbouring pear-shaped particles are varied due

to the enhanced complexity of the excluded volume e� ects

in one-component assemblies. Nevertheless, based also on

the pair correlation functions in part 1 we can reason that

the non-interdigitating quality of the arrangements would

not change and hence, general statements about the local

formations can be made. Especially three contributions to the

stabilisation mechanisms of bilayer con�gurations [20] are

identi�ed.

1. By breaking the duality of the optimal con�gurations

(parallel and anti-parallel), the systems introduce a lo-

cal polar order. In the PHGO model, this leads to a

dominant formation of parallel alignments between ad-

jacent pears. Hence, the system is guided towards the

formation of sheets, which are a prerequisite of inter-

digitated bilayers.

2. The interdigitation is enhanced by the preferred parallel

order into V- rather than A-con�gurations. It is quite in-

tuitive to imagine that sheets, which consist of an array

of V-aligned pears, interlock analogous to a zip mecha-

nism in an “zig-zag”-pattern and subsequently develop

bilayers.

3. The greater �uctuations of the contact point in HPR sys-

tems hinder a targeted alignment of particles. This con-

sequently leads to an increased susceptibility for defects

within the bilayers, and a weaker correlation of trans-

lational order as those observed in typical smectics let

alone gyroid or lamellar phases.

Based on these three factors we introduced an additional

model, the non-additive hard per-shaped particle (NAHPR)

model, which combines similar overlap rules as for hard pears

of revolution with non-additive properties of PHGO particles.

In a nutshell, the NAHPR particles can recreate some of the

features of the PHGO contact function, like the formation

of V-con�gurations, the enhanced depletion attraction or

the shift of the contact point towards the blunt ends. At the

same time some other features like the symmetry breaking

into heavily favoured anti-parallel con�guration could not

be resolved by the modi�ed model yet. Unfortunately we

could not determine if the NAHPR particles indeed do form

bilayer phases, due to the very time-consuming calculations

of the contact function and, hence, major equilibration issues.

However, the introduction of non-additivity between blunt

ends seems to be a pivotal factor to enable bilayer formation.

The present issues might be resolved by further alternations

of the NAHPR interactions. One solution might be to add

additional angle dependence to the non-additivity, such that

blunt ends are only able to overlap if the particles are pointing

roughly in the same direction. This would probably diminish

the formation of S-con�gurations. This, however, is in

contrast with the original idea of prickly pear-shaped colloids,

   
 T

hi
s 

is
 th

e 
au

th
or

’s
 p

ee
r 

re
vi

ew
ed

, a
cc

ep
te

d 
m

an
us

cr
ip

t. 
H

ow
ev

er
, t

he
 o

nl
in

e 
ve

rs
io

n 
of

 r
ec

or
d 

w
ill

 b
e 

di
ffe

re
nt

 fr
om

 th
is

 
ve

rs
io

n 
on

ce
 it

 h
as

 b
ee

n 
co

py
ed

ite
d 

an
d 

ty
pe

se
t. 

P
LE

A
S

E
 C

IT
E

 T
H

IS
 A

R
T

IC
LE

 A
S

 D
O

I:
10

.1
06

3/
5.

00
07

28
7



19

where this asymmetry seems hardly achievable. Another

approach might be to replace the rounded pear surface with a

partially �at surface. This would allow us to control not only

the non-additivity attraction but also the depletion attraction

via alignment by introducing more or less curvature to the

surfaces.

As a �nal note of this paper series, we have to mention the

importance of detail in self-assembly processes of complex

structures again. Not only have we shown in the �rst part,

based on the presence and absence of the gyroid phase in

the PHGO and HPR model, respectively, that already small

variations in particle shape can alter the phase behaviour of

colloids drastically. We also shed light on the formation of

bilayer-like gyroid structures in this paper. The depletion

interactions reported here indicate that the bilayers are a result

of a delicate interplay between the taper of the pear-shape and

the self-non-additive features of the PHGO contact function.

Therefore we argue that solely particle asymmetry is not

su� cient but, in addition to self-non-additivity, necessary to

create gyroid-like con�gurations.
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Appendix A: Sampling algorithm

This appendix describes the sampling algorithm to deter-

mine the most compact arrangement between two pear-shaped

particles. The most important steps are both sketched in

FIG. 9 and itemised below:

1. In the �rst step, an initial arrangement of two pear-

shaped particles is chosen. We only consider arrange-

ments where the two pears are in contact, as those con-

�gurations provide the minimal excluded volume for

convex particles in terms of separation.

2. Afterwards, the surfaces of the particles are triangulated

to create two separate meshes (B1 andB2) representing
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Step 1+2:

Surface meshes

B2

B1

Step 3:

Parallel surface construction

Bœ
2

Bœ
1

Step 4:
Excluded volume merging

Vexcl

FIG. 9: The main steps of the algorithm to predict the ideal two pear-shaped particle arrangement in terms of excluded volume. In the �rst
and second step (left) a con�guration is chosen, and the surface meshes B1 and B2 of the pear-shaped particles are created. In the third step
(centre) the individual excluded volumes of the pearsBœ

1 andBœ
2 are created by constructing the parallel surface ofB1 andB2. Afterwards,

(right) the two meshes are merged and the total excluded volumeVexcl is computed. The steps are repeated until enough con�gurations are
sampled.

the pear shape.

3. In the next step, the parallel surfaces of the triangula-

tions are generated. The vertices pt of the triangulations

are translated in normal directionn̂ by rdepl.

fÕ;rdepl � B � Bœ

fÕ;rdeplˆ pt• � pt � rdepl � n̂ˆ pt• :

(A1)

The resulting new meshesBœ
1ˆ rdepl• andBœ

2ˆ rdepl• corre-

spond to the interface separating the impenetrable and

available space of virtual hard spheres with radiusrdepl

caused by the �rst and second pear, respectively.

4. Subsequently,Bœ
1ˆ rdepl• andBœ

2ˆ rdepl• are merged to cal-

culate the collective excluded volume de�ned by

Vexcl̂ rdepl• � Bœ
1ˆ rdepl• 8 Bœ

2ˆ rdepl• : (A2)

5. Another con�guration, which has not been observed

yet, is chosen and the algorithm returns to step 2. This

procedure is repeated until the con�guration space is

sampled su� ciently densely.

In this article this algorithm is applied to pears with as-

pect ratiok� 3 and tapering parameter� k� 15X. Moreover,

we userdepl� 0:31� w , which corresponds to spheres with

Vsph� 0:08�Vpear to create the data for FIG. 2 and FIG. 3. The

computations are performed using the ”Boolean operator” of

the 3D animation software tool Houdini [96] for creating in-

tersections between mesh-representations of two pear-shaped

particles.
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Turk. Double diamond phase in pear-shaped nanoparticle

systems with hard sphere solvent.J. Phys. D: Appl. Phys.,

   
 T

hi
s 

is
 th

e 
au

th
or

’s
 p

ee
r 

re
vi

ew
ed

, a
cc

ep
te

d 
m

an
us

cr
ip

t. 
H

ow
ev

er
, t

he
 o

nl
in

e 
ve

rs
io

n 
of

 r
ec

or
d 

w
ill

 b
e 

di
ffe

re
nt

 fr
om

 th
is

 
ve

rs
io

n 
on

ce
 it

 h
as

 b
ee

n 
co

py
ed

ite
d 

an
d 

ty
pe

se
t. 

P
LE

A
S

E
 C

IT
E

 T
H

IS
 A

R
T

IC
LE

 A
S

 D
O

I:
10

.1
06

3/
5.

00
07

28
7



22

51(46):464003, 2018.

[22] S. Asakura and F. Oosawa. On interaction between two bodies

immersed in a solution of macromolecules.J. Chem. Phys.,

22(7):1255–1256, 1954.

[23] S. Asakura and F. Oosawa. Interaction between particles

suspended in solutions of macromolecules.J. Polym. Sci.,

33(126):183–192, 1958.

[24] A. Vrij. Polymers at interfaces and the interactions in colloidal

dispersions.Pure Appl. Chem., 48(4):471–483, 1976.

[25] Y. Mao, M. E. Cates, and H. N. W. Lekkerkerker. Depletion

force in colloidal systems.Phys. A, 222(1-4):10–24, 1995.

[26] R. Roth, R. Evans, and S. Dietrich. Depletion potential in

hard-sphere mixtures: Theory and applications.Phys. Rev. E,

62(4):5360, 2000.

[27] X. L. Chu, A. D. Nikolov, and D. T. Wasan. E� ects of particle

size and polydispersity on the depletion and structural forces

in colloidal dispersions.Langmuir, 12(21):5004–5010, 1996.

[28] T. Biben, P. Bladon, and D. Frenkel. Depletion e� ects

in binary hard-sphere �uids. J. Phys. Condens. Matter,

8(50):10799, 1996.

[29] R. Dickman, P. Attard, and V. Simonian. Entropic forces in

binary hard sphere mixtures: Theory and simulation.J. Chem.

Phys., 107(1):205–213, 1997.
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