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The role of particle shape in self-assembly processes is a double-edged sword. On the one hand, particle

shape and particle elongation are often considered the most fundamental determinants of soft matter structure

formation. On the other hand, structure formation is often highly sensitive to details of shape. Here we address

the question of particle shape sensitivity for the self-assembly of hard pear-shaped particles, by studying two

models for this system: a) the pear hard Gaussian overlap (PHGO) and b) hard pears of revolution (HPR)

model. Hard pear-shaped particles, given by the PHGO model, are known to form a bicontinuous gyroid phase

spontaneously. However, this model does not replicate an additive object perfectly and, hence, varies slightly in

shape from a ”true” pear-shape. Therefore, we investigate in the first part of this series the stability of the gyroid

phase in pear-shaped particle systems. We show based on the HPR phase diagram that the gyroid phase does

not form in pears with such ”true” hard pear-shaped potential. Moreover, we acquire first indications from the
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2

HPR and PHGO pair-correlation functions that the formation of the gyroid is probably attributed to the small

non-additive properties of the PHGO potential.

In colloidal and soft matter science, the influence of

particle shape on the geometry of self-assembled meso-

structures and, hence, on their physical properties is well

documented. To some approximation, colloids behave as

hard particles that are subject to thermal Brownian motion.

Similar to objects with hard-core potentials, they interact

largely by volume exclusion effects, which are defined by

their outline, and otherwise feel no energetic repulsion or

attraction. The effect of shape is demonstrated, for instance,

in dense collections of elongated nano- or microrods, which

spontaneously develop a preferential particle direction and,

consequently, introduce a distinguished global orientation,

known as the nematic director [1, 2]. Furthermore, it has been

reported that the morphology of platonic and other polyhedral

colloids can be used as a tool to create complex crystalline

arrangements [3–9]. Hence, the manipulation of particle

shapes is an auspicious mechanism to design self-assembled

materials. However, the relationship between the shape of the

constituent particles and the adopted self-assembled structure

is not straightforward. While particle shape is beyond doubt

an important determinant of structure formation, only a

handful of quantifiable shape parameters could be related

to long-ranged order directly. In colloidal self-assembly

it is generally accepted that nematic order only occurs in

∗Philipp.Schoenhoefer@fau.de

†G.Schroeder-Turk@murdoch.edu.au

particles that are sufficiently elongated, indicated by the

aspect ratio between the length and width of the particle

[1, 6, 10–12]. Similarly, it has been shown that close-packed

structures, like those based on the γ-brass lattice, require

particles with a high isoperimetric quotient, which indicates

the ratio between the particle’s volume and its surface area [6].

In this article we focus on a related aspect, namely shape

sensitivity upon self-assembly, which aggravates the predic-

tion of collective behaviour in multi-particle systems by just

the outline of the single constituents even further. Even if

morphological parameters are identified necessary for the

formation of certain mesostructures, the stability of these

assemblies tend to be sensitive towards small changes in

shape. The sensitivity to details of shape is presumably most

clearly observed in hard-core systems. These systems are by

design reduced to the shape of the inherent particles, which

is defined by the hard interaction potentials. Already intro-

ducing a small degree of polydispersity into simple systems

like the hard sphere fluid [? ], can destabilise the crystalline

into an amorphous phase for high densities [13]. Similarly

in other hard particle mixtures, where depletion attractions

between hard colloidal particles are induced by a solvent

of surrounding small depletants, entropic forces are highly

affected by the shape of colloids [14–20] (for a more in-depth

discussion about depletion see part 2 of this series [21]).

The significant influence of shape becomes also apparent
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by comparing the phase behaviour of hard spherocylinders

[1] and hard ellipsoids [2] obtained by simulations. Even

though the shapes of the individual particles seem similar, the

smectic phase is only assembled by spherocylinders and not

by ellipsoids.

Those observations are in accordance with other hard

particle systems, which have been studied by investigating

the intermediate stages of interpolations between two shapes.

It has been shown, for example, that in systems of hard cubes,

rounded edges have a significant influence on the cubical

ordering of the crystalline phase [4, 22–24]. In addition to

these superballs also various families of truncated polyhedra

[5–9], elongated and twisted triangular prisms [25], discs

with adjustable thickness [26] and very recently also dimpled

spheres with various dimple sizes [27] have been studied.

Here, it has been indicated that especially more complex

particle arrangements are stable within a narrow window of

shapes which makes them even more prone to small shape

changes.

Cubic structures based on triply periodic minimal surfaces

are amongst the most complex representatives of such phases,

which have been observed within the field of colloidal

self-assembly. For instance, computational simulations of

hard pear-shaped particles, reminiscent of tapered ellipsoids,

indicate the spontaneous formation of highly symmetric

liquid crystal phases, like the cubic and bicontinuous Ia3̄d

double gyroid [28, 29] or the Pn3̄m double diamond phase

(upon addition of a hard sphere solvent) [30]. Here, the shape

of the used hard-core potential, called pear hard Gaussian

overlap (PHGO) potential, is best illustrated by a pear shape,

which is described by two Bézier curves [31] (see FIG. 1 for

the outline of a pear-shaped particle). The Bézier curves fea-

ture the two main morphological traits of the pear shape; the

aspect ratio k between height and width of the colloid and the

tapering angle θk or the tapering parameter kθ, which encode

the angle between the tangents at the waist of the outline

of the pear-shape (see also FIG. 1). However, the effective

shape of the PHGO model is just a close approximation and

not a perfect fit to the Bézier description. Therefore, the

shape represented by the PHGO potential can be interpreted

as a slight distortion of the perfect Bézier pear. For a more

detailed description of the shape and the PHGO potential we

refer to Ref. [29, 31].

Up to this point, the influence of the distinctions between

the PHGO model and the ”true” Bézier pear-shape has

not been studied in detail, a fortiori, as for the ellipsoidal

counterparts (the hard Gaussian overlap (HGO) ellipsoids

and the hard ellipsoids of revolution (HER) ) small differ-

ences between the two models are known [32]. The phase

transitions between the isotropic and orientationally ordered

liquid crystal phases do not match perfectly for both ellipsoid

models as the HGO interaction profile promotes the alignment

of particles by a greater margin. Consequently, the phase

transition of the HGO ellipsoids occurs for lower densities

than for HER ellipsoids. Nevertheless, the distinct transition
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density does not change the characteristics of the observed

phase behaviour significantly. Both models exhibit a similar

nematic phase in between the isotropic and solid state without

the HGO ellipsoids adding more complex phases. Thus,

the two types of ellipsoids are qualitatively equivalent and

their small differences in particle-shape are of only marginal

consequences. However, the double gyroid phase is a much

more complex structure than the “simple” nematic.

It seems plausible that higher complexity leads to an

increased response and that especially the self-assembly of

configurations like the double gyroid is more sensitive to

the interaction of the particles. Hence, we focus in part 1 of

this series on the phase behaviour of a more accurate, but

computationally much more expensive Bézier pear model. In

that case the hard potential is based on triangulated meshes

of the pear-surface, which we address as the hard pears of

revolution (HPR) model. Here, the contact is determined

by testing for overlap between the triangulated surfaces

and, hence, coincides with the Bézier description arbitrarily

accurately.

In the following, we first detail the specific shape differ-

ences between the two pear-shaped particle models in Sec. I.

Afterwards we analyse the effect of these distinctions by

calculating the phase diagram of the HPR model numerically

and comparing it to the phase behaviour of PHGO particles

in Sec. II. Here we show that the gyroid phase, which can

be interpreted as a warped bilayer phase, is not universal

for tapered pear particles and that the special features of the

PHGO contact function promote the formation of otherwise

unfavourable bilayer-configurations. Subsequently in Sec. III,

we analyse the local environment of the pear-shaped particles

within the different phases. In combination with our results

from part 2, where we observe the depletion behaviour be-

tween pear-shaped particles within a hard sphere solvent [21],

this study sheds light on the different mesoscopic behaviour

between the PHGO and HPR model from a microscopic

perspective.

I. MICROSCOPIC DIFFERENCES BETWEEN HARD

PEARS OF REVOLUTION AND PEAR HARD GAUSSIAN

OVERLAP PARTICLES

In FIG. 1 the contact profiles of PHGO and HPR particles

with aspect ratio k = 3 and tapering parameter kθ = 3 are com-

pared. The contact profile is determined by the interface of

the excluded volume given by the contact function

σ(ri j,ui,u j) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if particle i and j do not overlap,

1, if particle i and j overlap

(1)

with the relative distance ri j between the reference particle

i and a secondary particle j and their orientation vectors

ui and u j. It becomes apparent that the two models show

considerable differences for relative angles φ = arccos(ui⋅u j)
between 50○ and 130○. In this regime the PHGO profile often

overestimates the overlap, which leads to gaps between the
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φ=84○ φ=72○ φ=60○ φ=48○

φ=36○ φ=24○ φ=12○ φ=0○
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σw

θk

h
a0
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a3

b0

b1 b2

b3

FIG. 1: Top: The contact profiles according to the PHGO model ( ) and the HPR model ( ) for identical pear-shaped particles with
k = h

σw
= 3 and kθ = (2 tan( θk

2 ))
−1
= 3 at different angles between the molecules φ = arccos(ui⋅u j) in the xz-plane. The surrounding pears

are positioned in contact according to the PHGO model. The arrows showcase the different contact between blunt (red) and pointy (blue) ends
depending on φ. Bottom: The maximal overlap volume Voverlap between two PHGO particles with different tapering parameters kθ when in
contact. The volume is given in comparison to the volume of the Bézier pear Vpear. The marks ai and bi are the control points of the Bézier
curves which are used to fit the pear shape.

particles. This, however, is inherited from a similar error between the HGO and HER (hard ellipsoids of revolution)    
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potential of the ellipsoid [32]. For small angles an addi-

tional effect occurs. At around 30○ the PHGO profile also

occasionally underestimates the contact distance, in other

words the distance of closest approach, σ compared to the

Bézier shape such that the colloidal particles overlap with

their blunt ends when represented by Bézier pears. The gap

size and the overlap volume (see FIG. 1) are higher for more

asymmetrical pears, such that the PHGO approximation is

worse for Bézier-pears with larger taper.

In the following, we will use the term self-non-additivity to

describe this combination between over- and underestimation

of the contact distance and this special angle dependency of

the contact distance. Conventionally, hard-core interactions

are labelled additive, if in a mixture the distance of closest

approach σAB between species A and B can be logically

deduced from the contact distance between particles of the

same type by the additive constraint: σAB = 0.5(σAA + σBB).

If this rule does not hold, the mixture is referred to as

non-additive [33–37]. This concept is illustrated in FIG. 2a.

A similar effect, however, also occurs in the mono-disperse

PHGO particle system. This becomes apparent by explaining

the choice of the prefix “self” in self-non-additivity which is

illustrated by analysing the contact distance between the blunt

ends of the pear-shaped particles in FIG. 1 and explained

additionally in FIG. 2b. For certain relative angles, the blunt

ends overlap (φ = 36○), whereas for other angles their contact

coincides with the Bézier description (φ = 144○; indicated

by red arrows in FIG. 1). Similar behaviour is observed for

the contact between the thin ends (gaps at φ = 108○ and no

gap at φ = 156○; indicated by blue arrows in FIG. 1). Hence,

the PHGO model represents the hard interactions between

two Bézier pear-shaped object depending on their relative

angle differently well. Alternatively, differently orientated

pears can be interpreted as distinct hard particle species with

non-additive interactions as the contact at φ = 36○ can not be

deduced additively form the contact at φ = 144○ (see FIG. 2b).

Moreover, the described angular dependency of the contact

function implies that a true physical hard shape cannot copy

the PHGO model [? ].

Evidently, the self-non-additivity of the PHGO model is

a specific form of an orientation- and distance-dependent

interaction potential. The interaction remains, for all relative

orientations of the particles, a hard-core interaction where the

particles experience no interaction until the point of contact.

II. PHASE HEHAVIOUR OF HARD PEARS OF

REVOLUTION AND PEAR HARD GAUSSIAN OVERLAP

PARTICLES

The key result of this paper is the computation of the

phase diagram of HPR particles and its comparison to the

phase behaviour of pears as approximated by the PHGO

model. Whereas PHGO particles were found to form com-

plex phases (including smectic and gyroid), these phases are

absent in the phase diagram of hard pears of revolution (HPR).
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(a) (b)

σAA

σBB

σAB = 0.5(σAA +σBB)bi-disperse additive disks

σAB ≠ 0.5(σAA +σBB)bi-disperse non-additive disks

σ144○
σ36○

self-additive pears

σ36○

self-non-additive pears

FIG. 2: a) The concept of an additive and non-additive mixture of disc species A and B. In the additive mixture the interspecies contact distance
σAB can be calculated from the contact between disks of the same species σAA and σBB by an additive rule. In the non-additive case this rule
does not hold. b) The concept of self-additive and self-non-additive system by the example of pear-shaped particles. The contact between
different parts of self-additive pears at a certain relative angle (i.e φ = 36○) and distance can be deduced logically from the contact between the
same particles at a different angle (i.e φ = 144○). In self-non-additive systems the contact distance between parts of the particles vary and do
not follow an overall shape.

A. Phase behaviour of pear hard Gaussian overlap (PHGO)

particles

To highlight the sensitivity of the special collective be-

haviour of PHGO pears in terms of particle shape, the phase

diagram of the PHGO pear-shaped particle model, which has

been obtained in [29], is revisited and put into perspective in

the following. In this previous paper a complete phase dia-

gram of PHGO particles with aspect ratio k = 3 is calculated

(see also the recreated phase diagram in FIG. 3). Depending

on the tapering parameter, the phase diagram can be separated

into three regimes. Two parts, containing pears with high

(kθ < 2.3) and intermediate tapering (2.3 < kθ < 4.5), are

characterised by the formation of bilayer-phases, namely

the bilayer smectic and the gyroid configuration. The third

fraction (kθ > 4.5) of the phase diagram involves nearly

ellipsoidal particles which generate monolayer states like

nematic and monolayer smectic.

B. Phase behaviour of hard pears of revolution (HPR)

The slight shape change of the pear particles are realised

by changing the model to describe pear particle interactions

from the PHGO to the HPR representation. The calculated

phase diagram is based on NVT Monte Carlo simulations

with N = 400 and N = 1600 monodisperse HPR particles
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2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
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Isotropic

Gyroid

Nematic

Smectic
Smectic

SolidSmSolidSm SolidG

compression/decompression ↕

PHGO model
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2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.50

0.55

0.60

Isotropic

Nematic

compression/decompression ↕

HPR model

tapering parameter kθ

gl
ob

al
de
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ity

ρ
g

FIG. 3: Top: Phase diagram of hard PHGO pear-shaped particles with k = 3.0 obtained by compression (from isotropic) and decompression
at fixed tapering parameter kθ for systems of 3040 particles in a cubic simulation box. Grey regions between the isotropic and ordered
phases indicate parameter values for which phase hysteresis is observed between compression and decompression sequences. The phase
diagram is adopted from Ref. [29]. Bottom: Phase diagram of hard HPR particles with k = 3.0 obtained by compression (from isotropic) and
decompression at fixed tapering parameter kθ for systems of 400 and 1600 particles in a cubic simulation box. Grey shaded regions indicate
configurations which showcase a high degree of local orientational order and basic features, which could lead to bilayer formations according
to their pair-correlation functions (see FIG. 8). However, this should not be seen as a separate phase from the isotropic state. The schematics
above both graphs indicate the cross-sectional shape of the particles associated with each kθ value.

interacting via a hard-core potential. The boundary conditions

of the cuboidal simulation box are set as periodic in all three

directions. The tapering parameter kθ lies between 2.0 and

5.0 which corresponds to tapering angles between 28.1○ and

11.4○. The MC translation step and the rotation step are

initially set as ∆q,max = 0.015σw and ∆u,max = 0.015σw [?
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0.45 0.50 0.55 0.60
0.0
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global density ρ
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kθ = 3.8
kθ = 4.0
kθ = 4.5
kθ = 5.0

FIG. 4: The nematic order parameter P2 during the compression of HPR particle systems with N = 400 for different tapering parameters kθ.

], respectively, but have been adjusted in an equilibration

phase to maintain acceptance rates of roughly 50% for the

displacement attempts.

Every simulation starts from an initially crystalline ar-

rangement of particles at very low density (ρg = 0.1), which

is then compressed to the global density ρg = 0.44 where all

systems are obtained in the isotropic phase. Subsequently,

the systems are slowly compressed further (see symbols in

FIG. 3). For each data point of the sequence, the assembly is

equilibrated for 2⋅106 MC steps and afterwards analysed for

1.8⋅107 step, where snapshots are taken after every 10000th

step. At very high densities ρg = 0.63, the mean squared

displacement of the individual pears indicates trapped par-

ticles. Those particles hardly diffuse within the simulation

box during simulation runs. This could be an indicator of a

solid state. However, our simple Metropolis MC method is

not sufficient to access this region reliably. Thus, solid phases

are not drawn in the phase diagram. Afterwards, expansion

sequences are performed in an equivalent, but reverse, manner

from each ρg = 0.63 state. The resultant phase diagram is

shown in FIG. 3.

Already at first sight, the HPR phase diagram differs

starkly from the phase diagram of PHGO particles. It

becomes apparent that the remarkable division into three

different regimes in terms of shape is absent. Independent of

tapering all particles feature a similar phase behaviour. For

low densities, the particles adopt the expected isotropic phase.

However, during the compression, the pear-shaped particles

begin to globally align with the director of the system and

eventually transition into a nematic state (see nematic order

parameter in FIG. 4).

Also at direct visual comparison between the HPR and

PHGO assemblies the major distinctions become apparent

(see characteristic configurations pictured in FIG. 5). Next

to the absence of gyroid phases and of the global alignment

into one preferred directions, the HPR particles even lack of

any indications of bilayer formation. Neither do they display

interdigitated zig-zag patterns of anti-parallelly aligned pears,

nor is it feasible to detect layers or channel domains via
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Cluster Blunt end Nematic

0 0.2 0.4 0.6 0.8 1∣n⋅ui∣

PHGO:

Gyroid
kθ = 3.8
ρg = 0.58

HPR:

Nematic
kθ = 3.0
ρg = 0.58

FIG. 5: Representative configurations of 3040 PHGO pear-shaped particles in the gyroid phase (first row: k = 3, kθ = 3.8, ρg = 0.60) and 1600
HPR particles forming the nematic phase (second row: k = 3, kθ = 3.0, ρg = 0.58). The structures are illustrated in the cluster representation
(first column) and the blunt end representation (second column) where the colors indicate the cluster affiliation. In the third column the particles
are additionally colored according to their relative orientation to the director n.

distance clustering of their blunt ends for any given tapering

parameter. By contrast the influence of the tapering parameter

kθ is manifested in a shift of the transition density from the

isotropic to the nematic phase. A greater head-tail asymmetry

of the pear shape induces destabilisation of the nematic order

such that the transition occurs for larger densities. Also note

that the hysteresis effects are marginal compared to those

observed in the process of constructing FIG. 3. Consequently,

the hysteresis is not drawn in this phase diagram. Moreover,

the transition line coincides with previous observations of

the isotropic-nematic transition for prolate ellipsoids with

k = 3 and kθ→∞ (ρin = 0.541 [2, 38]). As the nematic phase

arches over all values of kθ it becomes evident that HPR pears

seem to be unable to form bilayer-structures via self-assembly.

The computational complexity of the overlap calculations

for HPR imply that our results are based on fewer and

shorter simulation runs. While the question of equilibration

is a more persistent one than for PHGO, there are clear

indications that the HPR behaviour described above is a

close representative of the equilibrium behaviour: Firstly,

we have been unsuccessful in obtaining an equilibrated
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bilayer configuration even when the HPR systems are initially

prepared as an artificial smectic or gyroid arrangement. Here

the pre-constructed structures destabilise and transition into

nematic configurations upon equilibration. Secondly, during

our simulations the HPR pears hardly show any sign of

precursors of bilayer formation. This, however, is a typical

initial step in the isotropic phase of PHGO particles before

entering the bilayer states [29]. The precursors appear as

small randomly oriented clusters which are unjoined such

that they do not form long-ranged structures. Only HPR

particles within the grey area in FIG. 3 hint towards some

of the characteristics of such bilayer precursors, which is

discussed in more detail below.

III. PAIR CORRELATION FUNCTIONS

Overall, we can draw the conclusion that the small dif-

ferences between the PHGO and HPR model have major

repercussions on the pears’ ability to collectively form bilayer

phases. To give an explanation for the drastic change in

phase behaviour, we investigate the local surrounding of the

different phases by calculating the lateral g⊥ and longitudinal

g∥ pair-correlation functions. As the local behaviour is

intimately linked with global phase behaviour, this analysis,

next to our studies on the depletion behaviour of the two

pear-shaped particle models in part 2 [21], sheds light on the

propensity of PHGO articles to form gyroid structures from a

microscopic point of view. Here we concentrate not only on

the density distribution in lateral and longitudinal direction of

the pears, but also the polar and nematic weighted correlation

functions. Before we apply these tools to the PHGO and

HPR systems, however, we first describe the definition of

g(r), as a basis for our extended definition of g⊥ and g∥ below.

A. Technical definition of pair correlation functions

One of the best established observables to characterise the

translational order of particle systems are the pair correlation

function g(r), also known as the radial distribution function,

which bears valuable information about the positional corre-

lations between the particles. Based on the number density

distribution function the radial distribution function is written

as

g(r) = 1
NρN

⟨∑
i
∑
j≠i
δ(r − ri j)⟩ (2)

with the global number density

ρN = N
V
. (3)

To calculate g(r) numerically in our simulations, the mean

number of particles δN(r) found within a small distance in-

terval [r, r + δr] from another particle is determined by

δN(r) = ρNg(r)Vshell(r) (4)

with Vshell(r) being the volume of the thin spherical shell of

thickness δr whose inner boundary is a sphere of radius r. By

approximating Vshell(r) = Vsph(r + δr) − Vsph(r) ≈ 4πr2δr +
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O(δr2) and rearranging Eq. (4), we obtain

g(r) = 1
ρN

δN(r)
4πr2δr

. (5)

This can be interpreted as a formula to generate the radial

distribution function by a normalised histogram [? ] The

concept is pictured in FIG. 6a.

In the analysis of liquid crystals it is often advantageous

not to determine the radial distribution as described above,

but to separate the distance between two molecules into

a longitudinal and a lateral part, particularly for smectic

phases. Due to their anisotropic features, the order parallel

to the director is different from the order perpendicular to

the director. By calculating g∥(n ⋅ r) and g⊥(√r2 − (n ⋅ r)2)
the information is separated for the two directions. The

former characterises the smectic layering of the system,

whereas the latter is a measure of translational order within

the layers. However, this approach has the disadvantage

that global orientational order is needed. Lipid systems

adopting a bicontinuous surface geometry, exhibit no overall

global orientational order as they form pronouncedly curved

bilayers. Nevertheless, locally neighbouring lipids are clearly

orientationally correlated such that a lateral and longitudinal

distribution function on a local scale seems to be more effec-

tive. Thus, we replace the director with the orientation of the

liquid crystal at the origin ui. In this way, we can guarantee to

detect both curved bilayer ordering but also smectic layering

as ui ≈ n [? ]. The longitudinal and lateral distance are

defined by r∥ = ui ⋅ r and r⊥ = √
r2 − r∥2, respectively [? ].

To compute the longitudinal distribution function g∥(r∥)
and lateral distribution function g⊥(r⊥) we use a similar his-

togram approach like in Eq. (5). For simplifying the normali-

sation of the histograms they are calculated within a cylinder.

This implies that only particles which lie within a cylinder

with radius Rcyl and height Hcyl centered at the position of

particle i are considered. The cylinder, furthermore, shares

the same rotational symmetry axis as the very particle i (see

FIG. 6b). The dimensions of the encapsulating cylinder have

to be chosen such that either only neighbouring pears of the

same bilayer Hcyl = k ⋅ σw or one zig-zag motif Rcyl = 1.2σw

are enclosed by the cylinder. The probability to find a particle

at longitudinal distance r∥ within a circular disk of thickness

δr∥ and volume Vdisc = πR2
cylδr

∥ bounded by the cylinder is

given by

g∥(r∥) = 1
ρN

δN∥(r∥)
πR2

cylδr
∥ . (6)

δN∥(r∥) is the mean number of particles within the disc.

Analogously, probability to find a particle at lateral distance

r⊥ within a cylindrical shell of thickness δr⊥ and volume

Vdisc ≈ 2πrδr∥Hcyl is defined as

g⊥(r⊥) = 1
ρN

δN⊥(r⊥)
2πHcylr⊥δr⊥ . (7)

Here δN⊥(r⊥) is the mean number of particles within the

cylindrical shell. The notion of both distribution functions is

depicted in FIG. 6b+c.
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radial

×

×
×

r

dr

(a) Vshell

longitudinal

×

××

2Rcyl

r∥

dr∥
Vdisc

(b)

lateral

×

××

×

r⊥r⊥
dr⊥ dr⊥

VcylHcyl

(c)

FIG. 6: Schematics of the radial (a), longitudinal (b) and lateral distribution function (c). The figures show cross sections through the sampling
space. The gray areas represent shells which bin the space around the center pear-shaped particle and are used to create the corresponding
histogram. The shells are spherical (a), discal (b) and cylindrical (c).

The different distribution functions provide the possibility

to study the local orientational ordering in a much more de-

tailed way as well. Here, the number density in Eq. (2) can be

weighted by a factor which includes the relative orientations

of the pear particles. With this take on g(r) we can define

a polar radial distribution function gP1 weighted by the first

Legendre polynomial P1(ui ⋅ u j) = cos(ui ⋅ u j)

gP1(r) = 1
NδN(r) ⟨∑

i
∑
j≠i

cos(ui ⋅ u j)δ(r − ri j)⟩ . (8)

For the nematic radial distribution function gP2 the second

Legendre polynom P2(ui⋅u j) = 1
2(3 cos2(ui ⋅ u j) − 1) is used

as weighting factor, such that

gP2(r) = 1
NδN(r) ⟨∑

i
∑
j≠i

1
2
(3 cos2(ui ⋅ u j) − 1)δ(r − ri j)⟩ .

(9)

Both the polar and nematic distribution function are scaled

by the mean number of particles at distance r to easier relate

the values to polar and nematic order parameters. This means

that gP1(r) and gP2(r) determine how strongly two particles

separated by a distance r are orientationally correlated [? ].

In a similar vein also lateral and longitudinal variants of the

distributions are defined.

B. Pair correlation functions of PHGO systems

The lateral and longitudinal pair correlation functions are

first applied to various PHGO systems which represent the dif-

ferent phases in the phase diagram shown in FIG. 3. The local

properties to form bilayers have a clear signature in the form

of the different longitudinal pair-correlation functions g∥(z)
of PHGO particles (see FIG. 7 left). In case of the smectic

bilayer phase, all three plots (a-c) indicate multiple distinct

peaks suggesting both long ranged transitional, polar and ne-

matic order in the longitudinal direction but also a piling of

multiple sheets of pear-shaped particles. Moreover, the bi-

furcation of peaks in FIG. 7a, for instance the pair of peaks

indicated by ∎ and ☀, implies an organisation into stacks of

interdigitated bilayers rather than monolayers. Here, the ar-

rangement into parallel leaflets (∎, ⧫, ▼), where the polar or-
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FIG. 7: The longitudinal pair-correlation function g∥(r∥) (left column) and the lateral pair-correlation function g⊥(r⊥) (right column) of the
smectic bilayer (kθ = 2.2,ρg = 0.57), the gyroid (kθ = 3.8,ρg = 0.56), the nematic (kθ = 5.4,ρg = 0.56) and the smectic monolayer phase
(kθ = 5.4,ρg = 0.585). The pair-correlation functions are additionally weighted by the polar order parameter P1 (second row) and the nematic
order parameter P2 (third row).

der parameter P1 locally exhibits positive values, and antipar-

allel leaflets of the bilayers (☀, ▲), where P1 changes sign,

can be identified. This propensity to obtain local polar order

is also observed in pear-sphere-mixtures dominated by small

hard spheres, where the PHGO particles align due to deple-

tion attractions (see part 2 of this series [21]). The leaflets are
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also affirmed by the g∥P2
(z) profile of this phase in the form of

small dips at each maximum. Also the lateral pair-correlations

indicate the smectic bilayer phase (see FIG. 7 right). Firstly,

the weighted functions show that the particles are aligned for

large lateral distances suggesting that the layers are flat. Sec-

ondly, a small peak (∎) before the main peak is observable in

FIG. 7d+f, which can be assigned to the immediate antiparal-

lel and parallel neighbours of the reference pears in the same

bilayer, respectively.

Analogously the pair correlation functions belonging to

gyroid forming PHGO particle systems prove that single

particles arrange within interdigitating curved bilayers. The

characteristics of the distance distributions are locally similar

to those observed in the flat bilayer-smectic phase of strongly

tapered pears. The bifurcation of peaks (a) and the clear

bump at the location of the secondary minor maximum for

small r⊥ in the bilayer smectic phase (d) coincide with the

architecture of interdigitated bilayers. Yet, both of these plots

also point to considerable differences on a larger length scale.

The correlations are less distinct and diminish faster in the

longitudinal and lateral direction which can be explained

by the inherent curvature of the minimal surface structure.

The influence of the warped bilayers is reflected even more

in the characteristics of the weighted pair correlation func-

tions. Firstly, the polar order vanishes in (b+e) for large

distances and is less periodic. Secondly the nematic order

in (c) oscillates around 0 and, like the plot in (f), eventually

approaches this very value for r∥ → ∞. This means that the

stacks of bilayers do not lie parallel to each other anymore

and also that largely separated particles within the same

leaflet are likely to be differently oriented.

Also the pair-correlation functions of the nematic and

monolayer smectic give valuable information about the

importance of the mentioned signatures of the different

g(r)s for bilayer assembly. Although both translational

and orientational order is still present, the correlations are

weaker than for bilayer arrangements. Furthermore, the

plots not only differ quantitatively but also qualitatively. On

the one hand, the division into two maxima per peak for

g∥(r∥) in FIG. 7a vanishes. On the other hand, the small

secondary peak which was contributed to the opposite leaflet

of a bilayer also disappears for small r⊥ in g⊥(r⊥) (see ∎ in

FIG. 7d). Both of these phenomena can be explained by the

lack of inversion asymmetry. In this regime, the particles

are not tapered enough to interdigitate into a neighbouring

sheet and rather form a separate monolayer. Moreover, the

weak taper causes the polarity within a sheet to be less

pronounced (indicated by the overall small peaks in the P1

profiles) as in the bilayer smectic phase, such that antiparallel

particles can be found within the same leaflet more often

(high peak at ☀ in FIG. 7d). This also causes the profile of

the nematic and monolayer smectic phases in FIG. 7c to be

more homogeneous at a high mean nematic value.
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FIG. 8: The longitudinal pair-correlation function g∥(r∥) (left column) and the lateral pair-correlation function g⊥(r⊥) (right column) of the
isotropic (kθ = 2.0:ρg = 0.58 and kθ = 3.5:ρg = 0.55) and nematic (kθ = 2.0:ρg = 0.6 and kθ = 3.5:ρg = 0.58) in systems of N = 400 HPR particle.
The pair-correlation functions are additionally weighted by the polar order parameter P1 (second row) and the nematic order parameter P2

(third row).

C. Pair correlation functions of HPR systems

Based on these observations gained from the PHGO

particles, we can deduce the lack of bilayer phases in the

HPR phase diagram, by an analysis of these phases’ local

behaviour. The profiles of the pair correlation functions in

the nematic and the isotropic phase close to the transition line

(see FIG. 8) exhibit both similarities and differences to the

liquid crystal phases of the PHGO pear systems in FIG. 7.

The lateral pair-correlation functions g⊥(r⊥) of the nematic

phases of both pear models, for example, produce similar

plots, also comparable to the monolayer smectic of the PHGO

model. The characteristic minor peak before the first major

peak (see ◻ in FIG. 8d), however, which have been attributed
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to interdigitating bilayer arrangements, is not present. Only

for pears close to kθ = 2.0 this peak is implied by a bump.

Also the profiles of g⊥P2
(r⊥) are akin (even if the alignment is

not as strong) to the not-bilayer forming liquid crystal phases

of the weakly tapered PHGO pears. The most significant

difference in terms of lateral correlation, however, is in the

polarity of the neighbouring particles in FIG. 8e. For HPR

pears the nearest neighbours show basically no preference of

parallel or anti-parallel orientation. The high degree of local

polar order for PHGO pears is at best vaguely reflected and

largest for kθ < 2.5.

The plots of the longitudinal pair correlations g∥(r∥)
shown in FIG. 8 left, however, also indicate why the particles

are not arranged within a bilayer formation and rather create

nematic phases. The most noticeable one is the missing

peak (◻ in FIG. 8a) at r∥ = 0 in the nematic and monolayer

smectic phase. This signifies that this particular correlation is

crucial for the formation of bilayer phases as it corresponds

to particles sitting side by side to another. All other peaks

(☆,△,◊) can be attributed to their counterparts in the g∥(r∥)-

signature of the nematic/smectic phases of the PHGO pears,

but seem to be closer together. Furthermore, the weighted

functions indicate that the reference pears barely influence

the polar preference of their neighbour’s orientation, not even

longitudinal direction. On a similar note, the local nematic

order indicated by the minor peaks, even though obviously

present, is not as pronounced and long ranged in this model,

not to mention the double peaks, which can be observed for

all liquid crystal phases in FIG. 7, but are not noticeable here.

Despite these distinctions, similarities can be determined

as well. For once, the pears tend to aggregate preferentially

at the blunt ends (r∥ < 0) rather than the pointy end (r∥ > 0)

of other particles. This leads to the assumption that in

principle the mechanism which brings the pears together

with their blunt ends to form clusters also exists in the

HPR model. Unfortunately, the impact of this mechanism

is not strong enough to indeed induce the self-assembly of

bigger clusters (see cluster representation in FIG. 5). More

intriguing, however, is the observation that for highly tapered

particles kθ < 2.5 the peaks of g∥(r∥) (☆1,☆2 and △1,△2)

and g⊥P2
(r⊥) (◻,☆) widen considerably or even split into

two. This can be already observed in the isotropic phase

close to the phase transition. The area within the system

which showcases these indications of bifurcation is shaded

in the phase diagram. Thus, some of the basic conditions

for bilayer formation are also met at least for highly tapered

HPR particles. Nevertheless, without additional features to

the contact function, those effects are too weak to produce a

more complex phase behaviour than nematic.

In this paper, we focused exclusively on pear-shaped par-

ticles with a specific aspect ratio of k = 3. While possible,

it is unlikely that a different choice of k for the HPR would

have yielded a different phase behaviour, for the following

reasons. Firstly, by increasing the aspect ratio, the maximum

adjustable taper of convex pear-shaped particle decreases. As
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we have shown that higher taper implies higher local order,

we can rule out the existence of the gyroid phase in HPR sys-

tems for k ≥ 3. Secondly, less elongated hard particles usually

lose their ability to create global orientational order (rule of

thumb k < 2.75 [1, 2]) and form isotropic configurations in-

stead. Therefore, the window of aspect ratios, which comes

into consideration, seems too small to increase the local po-

lar order in FIG. 8b+e to values, which are needed to achieve

bilayering comparable to PHGO systems.

IV. CONCLUSION AND OUTLOOK

The overarching theme of this paper concerned the stability

of the gyroid phase with respect to particle shape, particularly

the difference in phase behaviour between HPR and PHGO

particles. It hence fits closely with the broader topic of how

self-assembly (in particular in hard core systems) is sensitive

to the details of the particle shape [4–9, 22–27]. In particular,

we compared two hard pear-shaped particle models on the

microscopic scale and their abilities to form the double

gyroid spontaneously globally. One is the pear hard Gaussian

overlap (PHGO) particle, which closely approximates a

pear-shape but also features self-non-additive properties. The

other model represents the exact pear shape perfectly and is

called hard pear of revolution (HPR) model.

Therefore, we revisited the phase behaviour of PHGO

particles and additionally generated a phase diagram based

on particles interacting according to strict hard-core HPR

interactions. In contrast to the rich phase diagram of PHGO

particles containing nematic and monolayer smectic, but

also both bilayer smectic and bilayer gyroid structures, we

observed in the HPR systems only a rudimentary phase

behaviour. More precisely, the HPR systems form nematic

liquid crystal phases for all particle shapes analysed (i.e. all

kθ), where more highly tapered particles visibly destabilise

the nematic order and push the transition to higher densities.

However, both the gyroid and the bilayer smectic phase,

characteristic for the phase behaviour of PHGO particles,

vanish.

According to these observations the small differences in the

contact function between the PHGO and HPR model, which

can easily, but mistakenly, be considered negligible, have a

major impact on the self-assembly of pear-shaped particles.

Even though most features of a pear (like aspect ratio and

tapering parameter) are present in both models, the PHGO

particles have to offer additional morphological properties,

to which the stability of the gyroid phase is ascribed. This

is also supported by the fact that only the nematic phase is

obtained which also have been found for PHGO pears with

small tapering angles. In this regime of large kθ the two

pear models differ the least in terms of contact functions.

Hence, their collective behaviours are very similar. All these

results lead to the assumption that the formation of bilayer

structures, including the double gyroid phase, is due to the

special orientation dependency of the PHGO contact function.

Especially the self-non-additive features in reference to the

pear shape seem to magnify the spontaneous placement of
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pears side to side. This mechanism would naturally lead to

sheets, which then interdigitate due to the pointy ends of

the individual particles. Not only the HPR model and our

depletion studies in part 2 [21] hint towards the validity of this

hypothesis, also other models which lack self-non-additive

features but look similar to pears are known to fail assembling

into bilayer configuration. Neither hard multisphere particles,

like snowman [39] or asymmetric dumbbell particles [40],

nor conical colloids [41] show any propensity to form the

gyroid.

Despite the differences in phase behaviour, the self-

assembly of some HPR particles with small kθ close to the

phase transition showcases also interesting properties, which

were attributed as necessary precursors to the formation of

bilayers. Therefore, it is conceivable that the HPR particles

might be able to form similar phases like the PHGO pears,

if we, for instance, add suitable changes to the pear-shape or

introduce non-additivity to the HPR contact function. These

particle modifications also have the potential to be utilised

as a regulating mechanism to control the coupling strength

between the blunt ends. This might allow us to create a model

for pear-shaped particles, based on those indicated by the

grey-striped area in FIG. 3, with an intermediate degree of

blunt end aggregation. A first attempt to conceptualise such

a pear-shaped particle model is made in part 2 of this series

[21]. In general, these particles could potentially form phases

with a short-range order, sufficient to display a bicontinuous

network, but also displays with disorder over larger length

scales. Those disordered cubic phases are known as L3

sponge phases [42] and are formed typically in lipid-water

mixtures by swelling the cubic phases due to the presence of

additives [43–51].

The formation of gyroid structures in pear-shaped PHGO

particle systems remains a fascinating finding. This is partic-

ularly so because of the mechanism of creating a propensity

for the formation of interdigitated “smectic-like” warped

bilayers. While particle shape clearly plays a crucial role in

this, this paper has highlighted the subtleties, namely that

the effect vanishes for the additive hard pear HPR model.

This, in turn, brings us back to the opening statement that the

particle shape is a double-edged sword. Surely, the “coarse”

(or first order) characterisation of the particles as pear-shaped

is critical for the process. Yet, pear-shaped appearance is

not sufficient to ensure the effect occurs, as the lack of the

gyroid in the HPR phase diagram demonstrates. It appears

as first-order shape characteristics are a necessary condition

for some structure phase formation but not a sufficient criteria.

As a closing note, we want to mention here that it is dif-

ficult to judge which of the two pear models represents the

interactions of pear-shaped particles, which might be synthe-

sised in the future, better. For example, it is well established

that colloids in experimental systems are never truly hard and

the interparticle potential always inherits some degree of soft-

ness [52–55]. Therefore, the potentials we used here – both

the PHGO and the HPR potentials – have to be considered
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as approximations of a real pear-shaped colloid. This be-

comes even more important as recent studies show that the

introduction of already a small degree of softness can influ-

ence the stability of crystalline phases [56]. Additionally,

pear-shaped particles have not been synthesised yet. In prin-

ciple, many different strategies to produce nanoparticles with

aspherical shapes have been developed like methods via tem-

plates [57–59], particle swelling and phase separation [60–

62], seeded emulsion polymerisation [63–66], controlled de-

formation of spherical colloids [67–69], particle confinement

[70] or lithography [71–73]. However, many of these tech-

niques are still limited in either their customizability of the

particle shape, rely on colloids as a basic shape or cannot be

mass-produced easily. Furthermore, it is difficult to draw prac-

tical knowledge from the formation of other bilayer forming

systems prominent in nature and chemistry. It has been shown

earlier that the collective mechanism of PHGO particles to

form bilayers via interdigitation is fundamentally different to

the one observed in amphiphilic lipidic or polymeric systems

and based on the shape change of individual molecules [29].

All these difficulties seem to be exacerbated by the big con-

trast of the two phase diagrams in FIG. 3, which highlights

that in both experiments and simulations even small nuances

of the interaction profiles of molecules have to be taken into

account to predict the right phase behaviour. Also the compos-

ite sphere method, where complexly shaped particles are mod-

elled from multiple sphere constituents, are known to faces is-

sues with inaccuracies due to the degraded smoothness of the

particle surface [74–76].
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[76] D. Höhner, S. Wirtz, H. Kruggel-Emden, and V. Scherer. Com-

parison of the multi-sphere and polyhedral approach to simulate

non-spherical particles within the discrete element method: In-

fluence on temporal force evolution for multiple contacts. Pow-

der Technol., 208(3):643–656, 2011.

[77] The standard deviation of the diameter distribution has to be

σd ⪆ 0.08d̄ with the mean diameter d̄

[78] Additional overlap rules (like adding non-additive features to

the blunt ends) are required to imitate the interactions between

PHGO particles with physical hard shapes.

[79] The parameter σw indicates the width of the pear-shaped parti-

cles.

[80] Note that the “normalisation” factor in this case indicates that

g(r) converges towards 1 for large distances: limr→∞ g(r) = 1.

[81] This only applies to the smectic-A phase. For other smectic

phases it is still more convenient to use the director as a ref-

erence.

[82] Note here, that r∥ can become negative. For pear-shaped par-

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
07

28
6



25

ticles, positive longitudinal distances correspond to a distance

in the direction of the thin narrow end while negative distances

have to be assigned to particles which are placed in the direction

of the thick blunt end.

[83] Note that the functions do not contain information about the

likeliness of such configurations occurring.
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 1

0.1
06

3/5
.00

07
28

6



φ=180○ φ=168○ φ=156○ φ=144○

φ=132○ φ=120○ φ=108○ φ=96○

φ=84○ φ=72○ φ=60○ φ=48○

φ=36○ φ=24○ φ=12○ φ=0○

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.00

0.02

0.04

tapering parameter kθ

ov
er

la
pp

in
g

vo
lu

m
e

V
ov

er
la

p
[V

pe
ar
]

• •

••

• •

• •

σw

θk

h
a0

a1 a2

a3

b0

b1 b2

b3



(a) (b)

σAA

σBB

σAB = 0.5(σAA +σBB)

bi-disperse additive disks

σAB ≠ 0.5(σAA +σBB)

bi-disperse non-additive disks

σ144○

σ36○

self-additive pears

σ36○

self-non-additive pears



2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.45

0.50

0.55

0.60

0.65

Isotropic

Gyroid

Nematic

Smectic
Smectic

SolidSmSolidSm SolidG

compression/decompression ↕

PHGO model

tapering parameter kθ

gl
ob

al
de

ns
ity

ρ
g



2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.50

0.55

0.60

Isotropic

Nematic

compression/decompression ↕

HPR model

tapering parameter kθ

gl
ob

al
de

ns
ity

ρ
g



0.45 0.50 0.55 0.60
0.0

0.2

0.4

0.6

0.8

global density ρ

ne
m

at
ic

or
de

rp
ar

am
et

er
P

2 kθ = 2.0
kθ = 2.1
kθ = 2.2
kθ = 2.4
kθ = 2.6
kθ = 2.8
kθ = 3.0

0.45 0.50 0.55 0.60
global density ρ

kθ = 3.2
kθ = 3.4
kθ = 3.6
kθ = 3.8
kθ = 4.0
kθ = 4.5
kθ = 5.0



Cluster Blunt end Nematic

0 0.2 0.4 0.6 0.8 1
∣n⋅ui∣

PHGO:

Gyroid
kθ = 3.8
ρg = 0.58

HPR:

Nematic
kθ = 3.0
ρg = 0.58



radial

×

×

×

r

dr

(a) Vshell

longitudinal

×

××

2Rcyl

r∥

dr∥

Vdisc

(b)

lateral

×

×

×

×

r⊥r⊥

dr⊥ dr⊥

VcylHcyl

(c)



r∥

ideal bilayer smectic

∎

∎

▼
▼
▼

☀
☀

▲
▲

⧫
⧫
⧫

r⊥r⊥

ideal bilayer smectic

⧫

▲

☀

∎∎

☀

▲

⧫

Longitudinal Lateral

−10 −5 0 5 10
0.0

0.5

1.0

1.5

2.0
∎ ▼
☀▲⧫

r∥ [σw]

pa
ir

co
rr

el
at

io
n
g
∥
(r∥

) (a)

0 1 2 3 4 5 6

0.5

1.0

1.5

2.0

∎

☀

▲ ⧫

r⊥ [σw]
pa

ir
co

rr
el

at
io

n
g
⊥
(r⊥

) (d)

−10 −5 0 5 10

−1.0

0.0

1.0 ∎ ▼

☀▲

⧫

r∥ [σw]

w
ei

gh
te

d
pa

ir
co

rr
.g
∥ P

1
(r∥

)

(b)

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

∎

☀

▲

⧫

r⊥ [σw]

w
ei

gh
te

d
pa

ir
co

rr
.g
⊥ P

1
(r⊥

)
(e)

−10 −5 0 5 10

0.0

0.5

1.0 ∎ ▼☀▲⧫

r∥ [σw]

w
ei

gh
te

d
pa

ir
co

rr
.g
∥ P

2
(r∥

)

(c)

0 1 2 3 4 5 6

0.0

0.5

1.0 ∎ ☀ ▲ ⧫

r⊥ [σw]

w
ei

gh
te

d
pa

ir
co

rr
.g
⊥ P

2
(r⊥

)

Bilayer Smectic Gyroid Nematic Monolayer Smectic

(f)



Longitudinal Lateral

−4 −2 0 2 4
0.8

1.0

1.2
◻ ☆1☆2

△1△2
◊ +0.15+0.15

r∥ [σw]

pa
ir

co
rr

el
at

io
n
g
∥
(
r∥

) (a)

0 1 2 3 4 5
0.2

0.6

1.0

1.4

1.8

◻

☆

◊

r⊥ [σw]

pa
ir

co
rr

el
at

io
n
g
⊥
(
r⊥

) (d)

−4 −2 0 2 4

−0.2

0.0

0.2

☆1☆2

△1

△2

r∥ [σw]

w
ei

gh
te

d
pa

ir
co

rr
.g
∥ P

1
(
r∥

)

(b)

0 1 2 3 4 5

−0.2

0.0

0.2

◻

☆

r⊥ [σw]

w
ei

gh
te

d
pa

ir
co

rr
.g
⊥ P

1
(
r⊥

)

(e)

−4 −2 0 2 4
−0.2

0.0

0.2

0.4

0.6 ☆1☆2△1△2
◊

r∥ [σw]

w
ei

gh
te

d
pa

ir
co

rr
.g
∥ P

2
(
r∥

)

(c)

0 1 2 3 4 5
−0.2

0.0

0.2

0.4

0.6 ◻
☆

◊

r⊥ [σw]

w
ei

gh
te

d
pa

ir
co

rr
.g
⊥ P

2
(
r⊥

)

Isotropic kθ=3.5 Nematic kθ=3.5 Isotropic kθ=2.0 Nematic kθ=2.0

(f)


	Manuscript File
	1
	2
	3a
	3b
	4
	5
	6
	7
	8

