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Abstract. Sensitivity analysis of atmospheric models is
necessary to identify the processes that lead to uncertainty
in model predictions, to help understand model diversity
through comparison of driving processes, and to prioritise
research. Assessing the effect of parameter uncertainty in
complex models is challenging and often limited by CPU
constraints. Here we present a cost-effective application
of variance-based sensitivity analysis to quantify the sensi-
tivity of a 3-D global aerosol model to uncertain parame-
ters. A Gaussian process emulator is used to estimate the
model output across multi-dimensional parameter space, us-
ing information from a small number of model runs at points
chosen using a Latin hypercube space-filling design. Gaus-
sian process emulation is a Bayesian approach that uses in-
formation from the model runs along with some prior as-
sumptions about the model behaviour to predict model out-
put everywhere in the uncertainty space. We use the Gaus-
sian process emulator to calculate the percentage of expected
output variance explained by uncertainty in global aerosol
model parameters and their interactions. To demonstrate the
technique, we show examples of cloud condensation nuclei
(CCN) sensitivity to 8 model parameters in polluted and re-
mote marine environments as a function of altitude. In the
polluted environment 95 % of the variance of CCN concen-
tration is described by uncertainty in the 8 parameters (ex-
cluding their interaction effects) and is dominated by the
uncertainty in the sulphur emissions, which explains 80 %
of the variance. However, in the remote region parameter
interaction effects become important, accounting for up to
40 % of the total variance. Some parameters are shown to
have a negligible individual effect but a substantial interac-
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tion effect. Such sensitivities would not be detected in the
commonly used single parameter perturbation experiments,
which would therefore underpredict total uncertainty. Gaus-
sian process emulation is shown to be an efficient and useful
technique for quantifying parameter sensitivity in complex
global atmospheric models.

1 Introduction

Aerosols have an important but very uncertain impact on
climate (Forster et al., 2007). The uncertainty has many
sources, but inter-model differences, as well as uncertain-
ties and limitations in the driving aerosol processes, are key
factors. Until recently, climate models used simple repre-
sentations of aerosol, which were based mostly on just parti-
cle mass. But the recognition that simplification of physical
processes limits model predictive capability has led to the
development of more complex “second generation” aerosol
microphysics schemes that are intended to enhance model re-
alism and improve the reliability of predictions (Binkowski
and Shankar, 1995; Jacobson, 1997; Whitby and McMurry,
1997; Ackermann et al., 1998; Ghan et al., 2001; Adams and
Seinfeld, 2002; Lauer et al., 2005; Liu et al., 2005; Stier et al.,
2005; Spracklen et al., 2005a; Debry et al., 2007; Spracklen
et al., 2008). Model realism has undoubtedly improved,
but the diversity in model aerosol radiative forcing estimates
has remained high in successive IPCC assessments (Schimel
et al., 1996; Penner et al., 2001; Forster et al., 2007).

There are three reasons why an understanding of model
sensitivity to uncertain inputs is important. Firstly, we need
to attribute the uncertainty in model predictions to vari-
ous processes and the poorly constrained model parame-
ters that describe these processes. At present, most of our
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understanding about model uncertainty derives from the di-
versity of predictions of several structurally different models
(Textor et al., 2006, 2007; Meehl et al., 2007). The computa-
tional demands of complex global atmospheric models mean
that the sources of uncertainty at the process level have not
been rigorously quantified. Secondly, the sensitivity analy-
sis of individual models will help to quantify how much di-
versity is due to different parameter settings and how much
is due to differences in model formulation and complexity.
The third reason is that sensitivity analysis can guide future
model development. It is recognised that aerosol models in-
clude only a fraction of the important processes, and that the
models need to develop further in the future. We therefore
need procedures to assess the necessary level of model com-
plexity objectively. At present, our limited understanding of
the main sources of model uncertainty means that it is dif-
ficult to justify an increase in aerosol model complexity in
favour of deploying computational resources to better effect
in other parts of climate models.

The most commonly used sensitivity analysis approach
used in complex global atmospheric models is single pa-
rameter perturbation or one-at-a-time (OAT) tests. The OAT
test quantifies the departure of the model output from some
baseline case to a perturbation in a single model input. We
have used that approach previously in our own global aerosol
model (Spracklen et al., 2005b). The OAT approach is ap-
pealing because it always calculates the change in the model
away from a well known baseline calculated using “default”
parameters. However, there are two significant disadvantages
of OAT tests: firstly, the fraction of parameter space sampled
quickly tends to zero as the number of model inputs increases
(Saltelli and Annonia, 2010). Secondly, the approach ignores
interactions between parameters (for example, whether sen-
sitivity to aerosol nucleation varies as emissions change); es-
sentially all sensitivity information is calculated at one point
in parameter space. For these reasons, it is well recognised
in policy applications that the OAT approach is inadequate
(Gaber et al., 2009).

Other methods of sensitivity analysis have been developed
that cover the space of the uncertain parameters and their
interactions. For example, factorial analysis (Fisher, 1926)
uses a more effective experimental design than OAT because
it is based on setting the different parameters (or factors) to
several values and testing all possible combinations of the
different parameter values. However, the number of experi-
ments required grows rapidly with the number of parameters
examined; for example, when testing only the highest and
lowest plausible value for each ofk parameters there will
be 2k experiments necessary. Factorial designs provide in-
formation about parameter interactions, but the number of
experiments quickly becomes prohibitive for complex atmo-
spheric models.

The Met Office Hadley Centre quantifying uncertainty in
model predictions (QUMP) project has resulted in several
sensitivity studies undertaken using climate models attempt-

ing to improve on the OAT approach (Murphy et al., 2004).
Sensitivity analysis experiments with a single model are of-
ten referred to as perturbed physics ensembles (PPEs) and
a good review of those carried out in the Hadley Centre
can be found inCollins et al. (2010). Another important
PPE study called climateprediction.net used the home com-
puters of many users to repeatedly run the Hadley Centre
HadCM3 climate model with different parameter settings.
The climateprediction.net ensemble was used inAckerley
et al.(2009) to study the climate responses to changes in at-
mospheric aerosol, albeit with a simpler aerosol scheme than
we use here. InSanderson et al.(2008) an emulator was used
together with the many climateprediction.net runs to carry
out sensitivity analysis. The number of ensembles produced
by climateprediction.net is seldom possible in practice. PPEs
have been carried out with other climate models including
Niehörster et al.(2006) andAnnan et al.(2005). Yokohata
et al.(2010) compared two different climate models using the
information from the PPE studies on each model.Rougier
et al. (2009) discussed the idea of emulating the climate
model so that every point in the output space is estimated
in order to carry out an uncertainty analysis where the un-
certainty in the model output due to the uncertain inputs is
quantified.

The first uncertainty analysis of the aerosol indirect effect
was carried out byPan et al.(1997). They used the proba-
bilistic collocation method to produce an approximation to
their computer model in order to make uncertainty analysis
feasible.Liu et al. (2007) isolated the uncertainty in global
aerosol models due to meteorology by running the same
model with different meteorological datasets. More recently,
Haerter et al.(2009) studied the parametric uncertainty in
aerosol indirect radiative forcing based on 7 cloud-related pa-
rameters with the ECHAM5 model using both OAT tests and
multi-parameter perturbation tests. A Latin hypercube de-
sign was used to define multiple parameter perturbation ex-
periments which are compared to single perturbation experi-
ments to identify the interaction effects.Vignati et al.(2010)
used two models to assess parameter uncertainty. They com-
pared a simple bulk model and a more detailed chemistry
transport model to look at the effect of the wet deposition pa-
rameters on black carbon.Lohmann and Ferrachat(2010) ex-
amined the parametric uncertainty effects on the climate by
systematically varying 4 cloud parameters at specified values
following a factorial design with 168 model runs.

Here we introduce the use of variance-based sensitivity
analysis (Saltelli et al., 2000) to understand the sensitivity
of a global aerosol model at the process level. The aim of
the sensitivity analysis is to quantify the relative contribution
of different model parameters and their interactions to the
overall uncertainty in the model prediction. Two measures
of sensitivity are computed for each model input (Saltelli
et al., 2000): the “main effect” measures the reduction in
the output variance when the model input can be learnt ex-
actly, and the “total effect” measures the remaining variance
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in the model output when everything except the input un-
der investigation is learnt. The total effect sensitivity com-
pared to the main effect sensitivity gives an indication of
how each input interacts with others, which can then be fur-
ther investigated. Variance-based methods require complete
specification of the model output throughout the space of the
parameter uncertainty. In many applications (Saltelli et al.,
2000) these outputs are generated in a Monte Carlo simu-
lation using a very large number (usually many thousands)
of model runs. Here we use Gaussian process emulation,
which generates the same level of information required by
variance-based sensitivity analysis but requires considerably
fewer model runs than Monte Carlo (see Sect.2).

The aim of this paper is to demonstrate the potential of
the emulation approach applied to a complex global aerosol
model. We use the Global Model of Aerosol Processes,
GLOMAP (Spracklen et al., 2005a; Mann et al., 2010) and
follow a previous sensitivity study using the OAT technique
(Spracklen et al., 2005b). The model predicts a wide range
of aerosol properties relevant to climate and air quality. Here
we focus on cloud condensation nuclei (CCN), which is the
subset of aerosol particles that can form cloud drops. The
concentration of CCN is a key quantity in the prediction
of the very uncertain aerosol indirect effect. It is also a
quantity where an understanding of model uncertainty will
greatly benefit the analysis of newly compiled global datasets
(Spracklen et al., 2011).

This paper is set out as follows. In Sect.2 emulation is
introduced and compared with other approaches. In Sect.3
we describe the global aerosol model and specify the uncer-
tain parameters. In Sect.4 the application of the sensitivity
analysis on the global aerosol model using emulation is pre-
sented.

2 Emulation of the global aerosol model GLOMAP

The basic procedure for an emulation study is shown in
Fig. 1. No screening or formal elicitation is carried out as
part of the initial study.

2.1 Why is emulation necessary?

Emulation is the process by which the computer model is re-
placed by a statistical surrogate model that can be run more
efficiently. The global aerosol model used here is a complex
computer code so it is practically impossible to explore the
entire parameter uncertainty space.Haerter et al.(2009) and
Lohmann and Ferrachat(2010) study various combinations
of parameter values but the amount of information generated
is not sufficient for a full variance-based analysis. When a
simple computer model with very short run time is available
emulation is redundant since the actual computer model can
be used to provide output throughout the parameter uncer-
tainty space; this is a Monte Carlo simulation.

1.
for

study.

Choose model
parameters

Section 3.2

2. out
parameters if too

many.

Screen

Not in this study

3.
parameter

uncertainties
from experts.

Elicit

Not in this study

4. the
experiment,

including
validation

Design

.

Section 2.3 and 2.4

5.

, including
validation runs.

Run
computer

model

6.Collect model
output for
emulation.
Section 3.2

7. Run
using design and

model output.

emulator

Section 2.2

8. the
emulator

comparing
emulator

prediction and
model outputs.

Validate

Section 4.1

8a.
design to
improve
emulator
predictive
capability.

Revise

Not in this study

Validated emulator

Emulator not valid

9. Collect
emulator
results.

Section 4.2

10. Quantify
variance and

parameter
sensitivities.

Fig. 1. The basic procedure to follow in an emulation study.

O’Hagan (2006) compares Monte Carlo and emulation
techniques in the sensitivity analysis of computer models.
A comprehensive variance-based sensitivity analysis may re-
quire millions of model runs, and even for a model that takes
just one second to run just one million runs takes 11.5 days
of continuous CPU time. With a complex computer code
such as a global aerosol model a Monte Carlo simulation
is not feasible. The aim of the emulator is to estimate the
output of the model at a large number of untried parame-
ter combinations so that variance-based sensitivity analysis
(Saltelli et al., 2000) becomes feasible. In this work the
Gaussian process is used for emulation (O’Hagan, 2006), but
other emulation methods are available and have been applied
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(a)

(b)

Fig. 2. (a)Five known points from some unknown functionf (x).
These five points are used to train the emulator.(b) 600 realisations
(green lines) from a one-dimensional emulator based on the five
points in(a). The mean of the emulator (dashed) is used to estimate
the true curve (the solid red line) and the spread of the realisations
gives visual indication of the emulator uncertainty. The histograms
inset show the posterior Gaussian distribution at two points on the
curve shown by the arrows, one point is near the training data so the
Gaussian distribution is much narrower (the blue histogram).

to climate and ocean models (Sanderson et al., 2008; Gold-
stein and Rougier, 2006). The mathematics behind the Gaus-
sian process emulator is explained in AppendixA1 and in
Sect.2.2 the emulator is described with a one-dimensional
toy example followed in Sects.2.3and2.4by a discussion of
the design of the model runs used to inform and validate the
emulator.

2.2 The Gaussian process emulator

The application of the Gaussian process to understanding
parametric uncertainty in global models is quite new, so
we start by explaining the mechanism by which the emula-
tor becomes an estimator for the global model. The Gaus-
sian process is illustrated by a simple example of emulating
with just one parameter, which can be viewed as a form of
non-parametric curve fitting. Figure2 shows such a func-
tion f (x), for which we know the solution at five “training
points”. Here the five points have been drawn from the true

curve shown in red, but in reality the points would be gener-
ated through simulations of the complex model.

The Bayesian paradigm is used to combine prior beliefs
about model behaviour with results from some model runs
to produce a posterior distribution for the model which is
then used to estimate the model output across the parameter
space, and to quantify the uncertainty and carry out sensitiv-
ity analysis. In this work the prior is the Gaussian process.
The Gaussian process is a statistical model that exploits the
theory of conditional probability to estimate model output
throughout the input uncertainty space using some known
model output. Using conditional probability allows prob-
abilistic statements to be made about model output and so
uncertainty can be quantified. The Gaussian process repre-
sents a smooth function (here the global aerosol model out-
put versus parameter value) such that each unknown output
point has a normal distribution and any collection of outputs
has a multivariate normal distribution. The functional form
of the model is not assumed and so it is a non-parametric
method. The posterior distribution is also a Gaussian pro-
cess (the functional analogue of the conditional multivariate
normal distribution) conditioned on the training data (model
runs). The result is a posterior mean function and a posterior
covariance function from which the model output can be esti-
mated and all the sensitivity measures can be derived analyti-
cally. The uncertainty from using the emulator for sensitivity
analysis rather than the simulator can also be derived analyt-
ically. The green curves in Fig.2 show different estimates of
the aerosol model based on the posterior Gaussian process,
and the red dashed curve shows the mean function estimated
by the emulator. The mean curve is used to carry out the pa-
rameter sensitivity analysis while the spread of green curves
indicates the uncertainty in using the emulator rather than
the simulator. Figure3 shows the same curve but with five
badly spaced training points. Here the uncertainty outside the
range of the known points is so large that the mean cannot be
used to estimate the true curve with any confidence. This ex-
ample highlights the importance of using sufficient and well
distributed training data.

The Gaussian process has the desirable properties that the
curve fits through the known points (each of the green lines
passes exactly through all five training points) and a measure
of uncertainty is calculated for every estimated point. In two-
dimensions the Gaussian process would fit a surface with un-
certainty calculated for each estimated point in both dimen-
sions. The same is true in higher dimensions, so the Gaussian
process can be used to build an emulator with any number of
input variables given a suitable number of model runs. More
mathematical descriptions of the Gaussian process emulator
can be found in AppendixA1 and inSacks et al.(1989), Cur-
rin et al. (1991), O’Hagan(1994), Neal (1999) andSantner
et al. (2003). A discussion of different specifications of the
prior beliefs can be found inOakley (1999). A tutorial on
Gaussian process emulation for non-mathematicians can be
found inO’Hagan(2006).

Atmos. Chem. Phys., 11, 12253–12273, 2011 www.atmos-chem-phys.net/11/12253/2011/



L. A. Lee et al.: Emulation for sensitivity analysis of a global aerosol model 12257

−3 −2 −1 0 1 2 3

4
6

8
10

12

x

f(
x)

Fig. 3. 600 realisations from a one-dimensional emulator of the
same curve in Fig.2 but trained by five poorly spaced points. The
uncertainty outside the training data is so great that the mean can
not be considered representative of the true curve. Extrapolation
should be avoided where possible.

The Gaussian process has been used to carry out uncer-
tainty analysis (Haylock and O’Hagan, 1996; O’Hagan and
Haylock, 1997; Oakley and O’Hagan, 2002) including meth-
ods for estimating the percentiles of the output uncertainty
distribution.Oakley and O’Hagan(2004) extend their previ-
ous work to include sensitivity analysis in order to apportion
the uncertainty in the output to the inputs and their interac-
tions. The effect of the individual inputs and their interac-
tions on the output is found by integrating the posterior mul-
tivariate mean with respect to various subsets of inputs and
the expected variances are found similarly. The details of the
integrations and the formulas involved in performing the sen-
sitivity analysis can be found inOakley and O’Hagan(2004).
Morris et al.(2008) show a practical application of Gaussian
process emulation for sensitivity analysis using a radiative
transfer model.

Here we used readily available software, the Gaussian Em-
ulation Machine for Sensitivity Analysis,http://ctcd.group.
shef.ac.uk/gem.html. GEM-SA produces the main effect and
total effect sensitivity measures for each input variable and
the relationship between the model output and each of the
uncertain parameters can be plotted. The spread of the lines
in the plots produced compared to the range covered on the
y-axis gives an indication of the emulator uncertainty com-
pared to the effect of the parametric uncertainty. The first-
order interaction sensitivity measures can be requested and
their relationship with the model output plotted.Kennedy
et al. (2008) use GEM-SA for sensitivity analysis of a dy-
namic vegetation model.

Experiment number

Fig. 4. Upper: the design used here. Lower: the design used in
Spracklen (2005).

2.2.1 Important assumptions for the Gaussian process
emulator for sensitivity analysis

There are two important assumptions relating to the use of
the Gaussian process emulator for sensitivity analysis. These
are:

The computer model is smooth and continuous with re-
spect to its inputsThe increased efficiency of the emulator
over the computer model is based upon being able to use the
information from a few runs to predict the output at untried
points. This information comes from the output covariance
between pairs of points and depends on the distance between
the two points. When the output is smooth and continuous
with respect to the inputs there is higher correlation between
points, allowing a lower uncertainty in predictions far from
the training points. If the computer model is not smooth then
the increased efficiency is lost since too many runs would be
required to build the emulator. The smoothness assumption
is tested using validation data.

Separately identifiable emulator inputsThe emulator in-
puts (the model parameters under investigation) should be
separately identifiable. The identifiability of the inputs may
not be known before the emulator is built but when there is
some prior knowledge of an identifiability issue between pa-
rameters then only one or some function of them should be
varied. Using separately identifiable inputs also keeps the
necessary model runs to a minimum.

www.atmos-chem-phys.net/11/12253/2011/ Atmos. Chem. Phys., 11, 12253–12273, 2011
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2.3 Designing to inform the emulator

To minimise the required number of model runs, it is impor-
tant that the model runs generate information about as much
of the uncertainty space as possible. The design of such ex-
periments has been, and continues to be, a huge area of sta-
tistical research (Sacks et al., 1989; Bates et al., 1995).

Here we use a maximin Latin hypercube (McKay et al.,
1979) to fill the uncertainty space of the parameters, which
has been shown to be the best design for Gaussian process
emulation (Jones and Johnson, 2009). The maximin Latin
hypercube is based on the Latin square, a common example
of which is the sudoku puzzle, which consists of nine overly-
ing Latin squares; that is there is precisely one of each num-
ber in each row and column. The maximin Latin square max-
imises the minimum distance between points in the square in
order to ensure optimum space filling. The maximin Latin
hypercube has the same properties as the Latin square but in
higher dimensions.

The number of points in the Latin hypercube used here is
10 times the number of parameters investigated, as recom-
mended byLoeppky et al.(2009). The maximin Latin hy-
percube can be augmented with further points if diagnostics
suggest there are not enough runs to build a suitably accu-
rate emulator. In this analysis there are 8 uncertain parame-
ters and therefore we configure 80 initial model runs with the
parameter values based on Latin hypercube sampling in the
same ranges as inSpracklen et al.(2005b). The space filling
properties of the 80 runs used here are shown in Fig.4 next
to the OAT design used inSpracklen et al.(2005b).

2.4 Designing to validate the emulator

It cannot be guaranteed that the design used to build the em-
ulator is sufficient to describe the model behaviour at the un-
tried points. The emulator is therefore validated using further
runs of the model. For the validation design we follow the
recommendations ofBastos and O’Hagan(2009) and set the
number of additional runs equal to three times the number
of parameters studied. A third of these runs are deliberately
close to some of the points in the original design and two-
thirds are placed further away, chosen by a separate Latin
hypercube design. Choosing specific runs to validate the
emulator helps to identify specific failures with the statisti-
cal assumptions used to build the emulator. When the 95 %
probability bound is constructed around the emulator predic-
tion it should contain the GLOMAP prediction for 95 % of
the validation points. In this experiment there are 24 valida-
tion runs, 8 of which have input settings close to those in the
original 80 GLOMAP runs. The validation of the emulator
is shown in Sect.4.

3 The global aerosol model GLOMAP

3.1 Aerosol model description

The GLObal Model of Aerosol Processes (GLOMAP)
(Spracklen et al., 2005a; Mann et al., 2010) is an aerosol mi-
crophysics module simulating the evolution of the size dis-
tribution and composition of a population of aerosol parti-
cles via processes such as new particle formation, coagu-
lation, gas-to-particle transfer and cloud processing. The
original version of the model (Spracklen et al., 2005a)
uses a bin-resolved aerosol dynamics approach (GLOMAP-
bin) but more recently a computationally cheaper version
has been developed which uses modal aerosol dynam-
ics called GLOMAP-mode (Mann et al., 2010). Both
GLOMAP-bin and GLOMAP-mode are implemented within
the TOMCAT global 3-D offline chemistry transport model
(Stockwell and Chipperfield, 1996; Chipperfield, 2006) and
GLOMAP-mode is also implemented within the HadGEM-
UKCA composition-climate model (Morgenstern et al.,
2009). We use GLOMAP-mode (from here on referred to as
GLOMAP), which represents the aerosol by a particle num-
ber concentration and several component masses in a series
of log-normal modes. These modes are split between two
distributions (hydrophillic and hydrophobic) and four aerosol
size categories (nucleation, Aitken, accummulation, coarse).
The component mass and number concentrations of the log-
normal modes are prognostic variables on the model grid, but
the geometric standard deviation is fixed. The modal struc-
ture is similar to that used byStier et al.(2005) andPringle
et al.(2010).

The model is run with the same setup as described in detail
by Mann et al.(2010). It includes the treatment of sea spray,
black carbon, organic carbon and dust and has been shown to
compare well to ground based observations of aerosol mass
and number (Mann et al., 2010; Spracklen et al., 2010). The
model resolution is 2.81× 2.81◦ with 31 vertical levels. The
outputs are requested monthly for all model levels across the
globe and daily at the surface. An OAT parameter uncertainty
study was carried out in GLOMAP-bin bySpracklen et al.
(2005b). As well as the difference in aerosol dynamics, the
modal GLOMAP version used in this present study differs
from that used inSpracklen et al.(2005b) in two important
ways: (i) Spracklen et al.(2005b) used a single-component
version with only sulphate and sea-salt aerosol, and (ii) the
models are separated by five years of model development (in
particular emissions have been updated and boundary layer
nucleation has been implemented (Spracklen et al., 2006;
Merikanto et al., 2009)). Nevertheless, the model treatment
of the core microphysical processes has remained similar.
For detailed information on the GLOMAP-bin model used
in Spracklen et al.(2005b) seeSpracklen et al.(2005a).

At the resolution used here GLOMAP-mode takes about
5200 s to run per month on 32 cores on the HECTOR XT4
supercomputer and requires a spin-up period of at least 3
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months. The perturbations are then applied with all model
runs having identical initial conditions. After the perturba-
tion, a further spin-up of 2 months is then carried out for
each model run to ensure the perturbations take effect and the
model output is assessed over the month after that. To carry
out 80 model runs with which to train the emulator therefore
takes 1 263 600 s on 32 cores, or nearly 15× 32 core-days.

3.2 GLOMAP parameter uncertainties

3.2.1 Choice of model output and region

The GLOMAP model simulates the global distribution of
many aerosol properties describing particle mass, number
concentration, size distribution, chemical composition, etc.
Each build of the emulator calculates the relationship be-
tween the parameter values and one of these many outputs in
one grid cell or, with appropriate aggregation, over a larger
domain of the model. Emulation of the output averaged over
multiple grid points (not done here) needs to take into ac-
count whether the chosen output depends on the parameters
in a similar way, which could be identified using cluster anal-
ysis, for example. Here, we focus on the sensitivity of sim-
ulated concentration of cloud condensation nuclei (CCN) at
two representative locations; one polluted centred over Lon-
don (UK, 51.0◦ N, 0.0◦ E) and one remote centred over the
Pacific Ocean (4.2◦ S, 165.9◦ E). The emulation is carried out
for June 2000 using monthly mean model output.

CCN are the subset of the aerosol particles that activate to
form cloud droplets at a given supersaturation (here 0.2 %).
They play a pivotal role in the interaction of aerosols and
clouds. Prediction of CCN within a global model has only re-
cently become possible with the development of microphys-
ical models, and the processes and model parameterisations
controlling their abundance and distribution remain uncer-
tain.

3.2.2 Choice of model parameters

Spracklen et al.(2005b) examined the sensitivity of global
mean condensation nuclei (CN) and CCN concentrations to 8
model parameters. The parameters include factors that scale
the precursor emissions as well as microphysical process pa-
rameters. The parameters are briefly described below, and a
full description of their handling in GLOMAP-mode is given
in Mann et al.(2010). The chosen parameters may not be
generic to all models and may also not represent the optimum
selection, but our aim is to illustrate the method following a
previous OAT approach. No formal elicitation is carried out
as part of this study. Some uncertainty ranges here are differ-
ent to those inSpracklen et al.(2005b) where the uncertainty
is thought to be better understood compared to five years ago.

– X1: oxidation activation diameter(OX DIAM) In
GLOMAP the aqueous phase oxidation activation diam-
eter defines the diameter above which aerosol particles

activate into cloud droplets in stratiform clouds. Droplet
formation is an important process in the global CCN
budget because it enables SO2 oxidation chemistry to
grow the activated aerosol particles through addition of
sulphate mass. The activation diameter varies greatly
between clouds and regions depending on the particle
size distribution, chemistry and updraught speed but
is given a constant global value in these simulations.
The sensitivity of CCN to all these processes could be
investigated separately, but followingSpracklen et al.
(2005b) we quantify the sensitivity of CCN to the un-
certainty in the aqueous phase oxidation activation di-
ameter in the range (0.04, 0.125) µm.

– X2: mass accommodation coefficient(ACC COEF)
In GLOMAP the mass accommodation coefficient de-
fines the probability that a molecule of H2SO4 becomes
bound to an aerosol particle upon collision. Changes
in the accommodation coefficient affect particle growth
rates as well as the amount of H2SO4 available for nu-
cleation, which are important (but sometimes compet-
ing) processes in the production of CCN (Woodhouse
et al., 2008). This is one of the interaction effects that
may be highlighted through the sensitivity analysis. The
uncertainty in the accommodation coefficient is set in
the range (0.02, 1.00).

– X3: H2SO4 nucleation threshold(NUC THRESH) In
the Kulmala et al.(1998) mechanism the formation of
new particles through binary nucleation occurs only
when the atmospheric H2SO4 concentration is greater
than a defined threshold value. Reducing the nucleation
threshold causes more frequent nucleation and higher
aerosol concentrations. The uncertainty in the H2SO4
nucleation threshold is set in the range (0.25, 4)× the
baseline value.

– X4: nucleation critical cluster size(NUCRIT SIZE)
The nucleation critical cluster size defines the smallest
size above which a cluster of H2SO4 molecules is stable.
Smaller critical cluster sizes take longer to grow and so
are subject to coagulational scavenging for a longer pe-
riod of time. The uncertainty in the nucleation critical
cluster is set in the range (50, 100) molecules.

– X5: particulate emissions associated with anthro-
pogenicSO2 (SO2 PART) This parameter defines the
fraction of the total sulphur emissions in a grid box
emitted as particulate sulphate (rather than SO2). The
large grid scale of the model means particle formation
in power plant plumes cannot be resolved, so a frac-
tion of the anthropogenic SO2 in global models is of-
ten emitted directly as particles (Adams and Seinfeld,
2003). The uncertainty in the particulate emissions of
anthropogenic SO2 is set in the range (0, 5) % of an-
thropogenic SO2.
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– X6: cloud nucleation scavenging diameter
(SCAV DIAM) The nucleation scavenging diame-
ter defines the diameter of aerosol particles above
which they form cloud drops that subsequently
undergo efficient collision-coalescence to produce
raindrops, and are therefore wet scavenged. In reality
SCAV DIAM ought to be related to the aqueous
activation diameter. However, global models do not
currently resolve the in-cloud raindrop formation
processes, so there are likely to be many additional
uncertainties in the scavenging diameter than in the
activation diameter alone. In GLOMAP we therefore
treat the activation diameter and scavenging diameter
as independent parameters with their own uncertainties.
The uncertainty in the cloud scavenging activation
diameter is set in the range (0.08, 0.25) µm.

– X7: sulphur emissions(SO2 EMS) Emissions invento-
ries used to drive global models are known to be highly
uncertain, although uncertainties are smaller in areas
with more information. The uncertainty in the AERO-
COM emissions used here (Dentener et al., 2006) is be-
lieved to be no more that 30 %, so the uncertainty range
here is (70, 130) % of the baseline emissions and is con-
sidered to be the same everywhere in this study.

X8: sea spray emissions(SSEMS) GLOMAP uses the
sea spray function ofGong (2003). Under clean ma-
rine conditions sea spray particles may dominate the ac-
cumulation mode and hence contribute significantly to
CCN. Uncertainty in the sea spray emissions have been
reviewed byde Leeuw et al.(2011). Here we set an un-
certainty in the particle flux in the range (0.1, 10) times
the baseline value and apply it uniformly over the ocean.

The uncertainty distributions of the parameters are assumed
to be uniform (giving equal weight to any point in a bounded
range of uncertainty). The experimental design depends pri-
marily on the range of uncertainty given to individual param-
eters rather than the specific uncertainty distribution, and the
same models runs can be used to perform sensitivity analysis
if the uncertainty distribution on any parameter is changed.
The robustness of the statistical assumptions can therefore be
tested by building emulators based on different input uncer-
tainty distributions as shown inRougier and Sexton(2007).
In contrast, Monte Carlo methods require completely new
experimental designs and thus further model runs when the
distribution is changed. The range of the uncertainty given
to the parameters however should remain the same to avoid
extrapolation beyond the training data.

(a)

(b)

Fig. 5. GLOMAP estimates of June 2000 surface CCN concentra-
tions in (a) London and(b) the Pacific Ocean versus emulator pre-
dictions of June 2000 surface CCN with 95 % probability (2σ ) lim-
its. The uncertainty here represents the emulator uncertainty rather
than uncertainty due to the parameters. The red points are those
from the experimental design that were purposely placed close to
the original training data.

4 The application of Gaussian process emulation for
sensitivity analysis of GLOMAP

4.1 Evaluation of the emulator

Figure5 shows the evaluation of the emulator at the polluted
and remote marine sites. With the emulator the variance (and
hence uncertainty) due to emulation versus the simulator can
be calculated, so it is possible to construct 95 % probability
bounds for the emulator predictions, which are shown as the
error bars in Fig.5. The 95 % probability bounds around the
validation points should cover the GLOMAP simulations for
95 % of the validation points.
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Fig. 6. June 2000 CCN concentrations for London versus the sul-
phur emissions parameter values in the 80 original GLOMAP runs
(red) and the new GLOMAP runs where all parameters were set low
(green). The numbers show the experiment number in each of the
designs: original and low.

The 8 validation points placed close to the training data
(shown in red) have small 95 % confidence intervals that
cover the GLOMAP simulations showing that the emulator is
estimating well close to the training data. With the exception
of one, the other 16 emulated points have 95 % confidence
intervals that cover the GLOMAP simulations showing the
emulator is estimating well even at points far away from the
training data.

Normally, one outlying point would not indicate that the
emulator is invalid, but in Fig.5a (the London grid box)
the 95 % confidence interval is very small considering the
distance of the point from the GLOMAP simulated value.
We therefore investigated more closely the model predictions
corresponding to this point. The outlying point in Fig.5a is
shown to have high CCN in the original GLOMAP simula-
tion and it is necessary to evaluate the realism of this model
prediction by comparison with observations. The outlying
point corresponds to all the parameters set to their lowest val-
ues. The high CCN concentrations are surprising because a
low value of some parameters (especially SO2EMS) should
favour low CCN. To explore both the model and the emu-
lator behaviour when all parameters are set low a further 8
GLOMAP runs were performed with all parameter values in
the bottom 5 % of the parameter range, defined using Latin
hypercube sampling. Figure6 shows the relationship be-
tween CCN and SO2EMS in London from all 88 GLOMAP
simulations. As expected CCN concentrations generally in-
crease with SO2EMS, but the additional 8 simulations be-
have differently. Figure6 shows that the model is behaving
oddly in this region of the parameter space, the emulator can-
not capture this behaviour.
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Fig. 7. A bar chart displaying the parameter sensitivities in(a) the
polluted grid cell and(b) the remote grid cell. The red bars show the
main effect sensitivities and the green bars show how much each pa-
rameter interacts with the others to contribute to the CCN variance.

There are two reasons to reject points from this tiny corner
of parameter space. Firstly, the global aerosol fields show
that total particle concentrations lie well outside observed
ranges (Spracklen et al., 2010). Secondly, the behaviour of
the aerosol system appears to be unphysical and not con-
sistent with observed behaviour. The high CCN concentra-
tions are created by extremely high number concentrations
of nucleation mode aerosol, which grow mainly by coagu-
lation to CCN sizes. Rapid nucleation throughout the atmo-
sphere is sustained by a low vapour condensation sink (low
particle surface areas) caused by efficient aerosol scaveng-
ing (low SCAV DIAM) and a low nucleation threshold (low
NUC THRESH). In this environment, lower sulphur emis-
sions act to exacerbate the low condensation sink more than
they reduce the nucleation rate, so nucleation is enhanced
further.
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This trial emulation of a complex global aerosol model
shows how odd behaviour can occur in very small fractions
of the entire parameter space sampled by the space-filling
design. In future applications, such behaviour needs to be
detected by evaluating multiple diagnostics against observa-
tions and by studying the various microphysical budgets. It
is possible to build the emulator with the original design and
to remove implausible regions of the joint probability space
(calibration) before carrying out the sensitivity analysis but
this will be a topic of further research and will not be part
of this paper. The robustness of the emulator results in this
study and the leverage of the outlier in the corner of the pa-
rameter space are tested by building the emulator without
training point one and comparing to the original emulator.
The two emulators show similar results so in this study the
point is included.

Figure5b shows the emulator performance for the Pacific
grid cell. It can be seen that one point in the validation de-
sign is not well predicted by the emulator. This point is not
the same one that was highlighted in the London validation
procedure since that has already been removed from the plot.
The outlier in Fig.5b is not an extreme outlier, there is noth-
ing unusual about the GLOMAP simulation, and 95 % of all
the points cover the GLOMAP simulations in their 95 % con-
fidence interval, so the emulator is considered valid.

4.2 Sensitivity analysis

4.2.1 Variance contributions at the surface

The CCN concentration at the surface for London (in June
2000) is estimated by the emulator to be 647 cm−3 with
an emulator standard deviation of 2.1 cm−3. Uncertainty in
the 8 parameters leads to an estimated standard deviation
of 106 cm−3 around the expected CCN concentration. A
strength of the emulator is that it predicts not only the CCN
value and the parametric uncertainty, but also the 95 % prob-
ability bounds as a measure of the “confidence” of the emu-
lated prediction. The small emulator standard deviation here
along with the successful validation in Fig.5a shows that
using the emulator has had a very small effect on the accu-
racy with which the parameter sensitivities are estimated and
hence we have an accurate emulator.

The sensitivity analysis partitions the variance due to the 8
parameters into the variance due to each parameter and their
interactions. The results are summarised in Table1. The
main effect varianceis the percentage of the total variance
due to the perturbation of each parameter individually (this
is the variance captured by the OAT tests) and thetotal effect
variance is the percentage of the total variance calculated
due to the main effect plus the interaction between differ-
ent parameters. In London, 95 % of the variance due to the
8 parameters is described by the main effect variance terms
and there are only weak interactions between the uncertain
parameters (only a further 3 % of the variance in CCN is de-

scribed by the first-order interaction effects and the remain-
ing 2 % by higher order interactions). The interaction vari-
ance contributions and the total variance contributions are
also added together from the 8 parameters in the table. The
total variance contributions will typically not add to 100 %
because the variance contributions are shared between pa-
rameters in the presence of interactions, the further it is away
from 100 % gives a quick indication of the interaction effects.
In Table1 the summed total effect variance is 107 % showing
that the interaction effects are small.

The parameter sensitivities are plotted in Fig.7 where the
main effects and interactions can be seen clearly. The rela-
tionship between CCN concentration and each parameter are
plotted in Fig.8. Figure7a shows the parameter sensitivities
and Fig.8a shows the CCN versus parameter relationships
in the London grid box. There is a clear positive linear rela-
tionship between the sulphur emissions (SO2EMS) and the
estimated CCN. There is also a negative correlation between
the oxidation activation diameter (OXDIAM) and CCN and
a positive correlation between the particulate sulphur emis-
sions (SO2PART) and CCN, but these are not very strong
relationships compared to that with sulphur emissions, and
the other parameters show little variation with CCN. Over-
all, the emulator predicts that 79 % of the variance in June
2000 surface-level CCN is due to the uncertainty in the sul-
phur emissions, 8 % is due to the uncertainty in the oxidation
activation diameter, and 4 % due to the uncertainty in partic-
ulate sulphur emissions. The green sections in Fig.7a are
relatively small compared to the red sections showing that
the main effects are most important in the London grid cell.

The estimated CCN concentration at the surface of the re-
mote marine site in the Pacific is 57 cm−3, with an emulator
standard deviation of 0.5 cm−3 and a parametric standard de-
viation of 14 cm−3. The sensitivity results are summarised
in Table2 and plotted in Fig.7b. The total effect sensitiv-
ities indicate much stronger interaction between the model
parameters than at the polluted site, shown by the fact that
the summed total effect is 126 %. The interactions between
the model parameters are also shown clearly by the green
regions in Fig.7b. Overall, 80 % of the variance is due to
the individual parameters and 20 % due to the interactions.
The interaction effects are separated by parameter. For ex-
ample, the total effect of the oxidation activation diameter
is 87 % compared to its main effect of 70 %, and the total
effect of the nucleation scavenging diameter is 12 % com-
pared to its main effect of only 2 %. The main effect rela-
tionships between the parameters and CCN concentration for
the Pacific grid box can be seen in Fig.8b where the dom-
inance of oxidation activation diameter is clear. Figure8b
shows that non-linear relationships between the parameters
and CCN concentration can be captured by the emulator. The
first order interaction between the oxidation activation diam-
eter and nucleation scavenging diameter is the most impor-
tant of the interaction effects and accounts for 6 % of the to-
tal variance in CCN concentration. The joint effect of the
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Fig. 8. The relationship between the CCN concentration and each of the parameters listed in Section 3 for

a) London grid cell and b) Pacific grid cell. In each case the thickness ofthe line represents the emulator

uncertainty whilst the spread on they axis represents the uncertainty due to the uncertainty in the parameter.

Each plot here is based on all other parameters being fixed. It is shownthat uncertainty in sulphur emissions

dominates uncertainty in CCN concentration.
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Fig. 8. The relationship between the CCN concentration and each of the parameters listed in Sect.3 for (a) London grid cell and(b) Pacific
grid cell. In each case the thickness of the line represents the emulator uncertainty whilst the spread on the y axis represents the uncertainty
due to the uncertainty in the parameter. Each plot here is based on all other parameters being fixed. It is shown that uncertainty in sulphur
emissions dominates uncertainty in CCN concentration.

oxidation activation diameter and nucleation scavenging di-
ameter is shown in Fig.9. The CCN concentration is more
sensitive to the nucleation scavenging diameter when the oxi-
dation activation diameter is between 0.06 and 0.1 µm and the
stronger relationship can be seen when oxidation diameter is
0.074 µm in Fig.9. A possible explanation for the increased
sensitivity to nucleation scavenging is that the size and num-

ber of CCN available are optimised for wet deposition when
the oxidation diameter is in the range of 0.06 and 0.1 µm.
Emulator uncertainty is increased outside of the oxidation
diameter range of 0.06 and 0.1 µm which can be seen by the
spread of the lines showing the relationship between CCN
concentration and nucleation scavenging diameter for given
oxidation diameter in Fig.9.
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Table 1. Model parameters and their effect on the variance of CCN concentration at the surface in a polluted grid cell covering London (UK).

Expected CCN = 647 cm−3 Emulator st. dev,σemulator= 2.1 cm−3 Parametric st. dev,σparametric= 106 cm−3

Number Parameter Range
Main effect
variance
contribution (%)

Parameter inter-
action variance
contribution (%)

Total effect
variance
contribution (%)

X1 Oxidation activation diameter 0.04–0.125 µm 8.2 1.3 9.5
X2 Mass accommodation coefficient 0.02–1.0 1.5 1.2 2.7
X3 H2SO4 nucleation threshold 0.25–4.0×baseline 0.5 0.4 0.9
X4 Nucleation critical cluster size 50–100 molec 0.0 0.4 0.4
X5 Sulphate particulate emissions 0–5 % of SO2 4.0 2.0 6.1
X6 Cloud nucleation scavenging diameter 0.08–0.25 µm 0.9 1.3 2.2
X7 Sulphur emissions 70–130 % baseline79.1 3.0 82.1
X8 Sea spray emissions 0.1–10×baseline 0.5 3.0 3.5
– All 8 parameters – 94.7 12.7 107.4
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Fig. 9. The joint effect of oxidation activation diameter and nucleation scavenging diameter in the Pacific Ocean

grid cell. For four different values of oxidation activation diameter the effect of nucleation scavenging is shown.

The sensitivity of CCN concentration to nucleation scavenging is shown to bediffer (by the shape of the line)

when oxidation activation diameter changes. The emulator is less certain in itsnucleation scavenging estimate

given a high oxidation diameter, clear from the spread of the lines.
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Fig. 9. The joint effect of oxidation activation diameter and nucleation scavenging diameter in the Pacific Ocean grid cell. For four different
values of oxidation activation diameter the effect of nucleation scavenging is shown. The sensitivity of CCN concentration to nucleation
scavenging is shown to differ (by the shape of the line) when oxidation activation diameter changes. The emulator is less certain in its
nucleation scavenging estimate given a high oxidation diameter, as indicated by the spread of the lines.

4.2.2 Vertical profile of variance contributions

The vertical profile of CCN concentration and the associated
variance contributions are shown in Fig.10. Figure10a and c
show that the absolute CCN concentration and the paramet-
ric uncertainty (measured by the 95 % confidence intervals)
decrease with altitude in the London grid box but that the
parametric uncertainty remains relatively high with altitude
in the Pacific grid box. The CCN sensitivity to each uncertain

model parameter (Fig.10b and d) is calculated using separate
emulators for each model level. The solid lines in Fig.10b
and d show the main effect of the different parameters and
the corresponding dashed lines show the total effect of each
parameter.
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Fig. 10. Emulator estimated CCN concentration (solid line) and its 95% confidence interval due to uncertainty

in the model parameters (dotted line) in a) London and c) the Pacific Oceanas estimated by the emulator at

26 model levels. The results from the 26 emulators are shown as circles but have been linearly interpolated

to show the vertical profile. The variance contribution (%) or sensitivity ofeach parameter is shown in b) for

London and d) for the Pacific Ocean. The solid lines show the main effectsensitivity and the dashed lines show

the total effect sensitivity. The shaded background shows the total uncertainty explained by the main effects of

each parameter; this is the maximum uncertainty that could be measured using one-at-a-time tests.
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Fig. 10. Emulator estimated CCN concentration (solid line) and its 95 % confidence interval due to uncertainty in the model parameters
(dotted line) in(a) London and(c) the Pacific Ocean as estimated by the emulator at 26 model levels. The results from the 26 emulators
are shown as circles but have been linearly interpolated to show the vertical profile. The variance contribution (%) or sensitivity of each
parameter is shown in(b) for London and(d) for the Pacific Ocean. The solid lines show the main effect sensitivity and the dashed lines
show the total effect sensitivity. The shaded background shows the total uncertainty explained by the main effects of each parameter; this is
the maximum uncertainty that could be measured using one-at-a-time tests.

Table 2. Model parameters and their effect on the variance of CCN concentration at the surface in a remote grid cell over the Pacific Ocean.

Expected CCN = 57 cm−3 Emulator st. dev,σemulator= 0.5 cm−3 Parametric st. dev,σparametric= 14 cm−3

Number Parameter Range
Main effect
variance
contribution (%)

Parameter inter-
action variance
contribution (%)

Total effect
variance
contribution (%)

X1 Oxidation activation diameter 0.04–0.125 µm 70.2 17.0 87.2
X2 Mass accommodation coefficient 0.02–1.0 1.7 0.8 2.5
X3 H2SO4 nucleation threshold 0.25–4.0×baseline 2.5 1.0 3.5
X4 Nucleation critical cluster size 50–100 molec 0.1 1.2 1.3
X5 Sulphate particulate emissions 0–5 % of SO2 0.3 5.1 5.4
X6 Cloud nucleation scavenging diameter 0.08–0.25 µm 1.8 10.5 12.3
X7 Sulphur emissions 70–130 % baseline0.4 5.6 6.0
X8 Sea spray emissions 0.1–10×baseline 3.0 8.2 11.2
− All 8 parameters – 80.0 46.2 126.2

In the London grid cell the sulphur emissions are the dom-
inant source of uncertainty in the CCN near the surface, but
higher in the atmosphere the uncertainty in the model param-
eters becomes more important. Between 1 and 3 km altitude
the uncertainty in the oxidation activation diameter explains
most of the variance in CCN concentration, which is consis-
tent with the altitude of low-level clouds. From 3 to 6 km

the uncertainty in the accommodation coefficient contributes
most of the variance in the CCN concentration and from 6 km
to 12 km the uncertainty in the nucleation scavenging diam-
eter is the dominant source of CCN variance. However, as
at the surface, most of the variance at higher altitudes is ex-
plained by the individual parameters, with interactions be-
tween parameters accounting for no more than 20 % of the
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total uncertainty. Above 12 km at this location the interac-
tion effects become more important; however, as shown in
Fig. 10a both the CCN and its variance are very low and and
so the interactions are not investigated further here.

It is clear that to improve the estimate of the June 2000
CCN concentration near the surface in London it is most
important to reduce the uncertainty in the sulphur emissions
used to force GLOMAP. Since the uncertainty near the sur-
face is very strongly dependent on emissions rather than
processes, models might be expected to be in closer agree-
ment over more polluted regions when the same emissions
databases are used. To improve the estimates of CCN higher
in the atmosphere it is most important to reduce the uncer-
tainty in the model process parameters.

Figure 10c shows the estimated CCN concentration and
its 95 % confidence interval due to the uncertain parameters
through the vertical profile for the Pacific Ocean location. In
general, the CCN concentration decreases through the verti-
cal profile as does its uncertainty. In Fig.10d CCN concen-
tration can be seen to be most sensitive to the oxidation acti-
vation diameter throughout the atmosphere. However, inter-
actions between the model parameters become increasingly
important in the free and upper troposphere. From about
4 km upwards, only about 60 % of the total variance is ex-
plained by main effects. The interaction of the scavenging di-
ameter and the sea spray emission flux with other parameters
dominate the mid-tropospheric CCN variance. The strong
interaction effects of these two parameters means that they
exert an indirect control on CCN concentration in the remote
marine free troposphere. This interaction effect is plausible
since nucleation is an important source of CCN in this part
of the atmosphere (Merikanto et al., 2009), and the nucle-
ation rate is strongly affected by the surface area of existing
particles, which itself is affected by large sea spray particles
and by the particles removed by precipitation. These interac-
tion effects could not be quantified using the traditional OAT
tests, thus the total effect of scavenging and sea spray on the
CCN uncertainty would be significantly underestimated.

5 Discussion and future work

We have presented a statistically rigorous but computation-
ally efficient approach to quantifying the parametric uncer-
tainty of a complex global aerosol model. The approach is
equally applicable to other models that require long compu-
tation times. The combination of a good parameter sampling
design (here, Latin hypercube) and Gaussian process emu-
lation enables the results from a relatively small number of
model simulations to be used to perform a full variance-based
sensitivity analysis, which would otherwise require many
thousands of models runs in a Monte Carlo-type approach.
Through variance decomposition the variance-based sensi-
tivity analysis calculates the contribution of each uncertain
parameter to the overall prediction uncertainty. However, the

advantage of our approach over the widely used one-at-a-
time tests is that it also enables the interactions between all
combinations of parameters to be calculated, and the para-
metric uncertainty refers to the entire parameter space, rather
than being restricted to one point (the baseline model) de-
fined by “default” parameters. As such, the variance-based
approach produces a more realistic estimate of uncertainty
and provides more useful information to the model devel-
oper.

We have shown that the emulator approach is very well
suited to a complex global aerosol model. With an appro-
priate experimental design and number of model runs, the
uncertainty in using the emulator instead of the global model
is very small compared to the parametric uncertainty of the
model itself. The number of model simulations required to
train the emulator rises linearly with the number of parame-
ters. Thus, for a very large number of uncertain parameters
the approach will become much more efficient (and compre-
hensive in its coverage of parameter space) than widely used
factorial designs.

The primary aim of this paper was to present and test the
method for carrying out a sensitivity analysis on a global
aerosol model. The next step is to include a more com-
prehensive study of the model parameters, including for ex-
ample carbonaceous emissions, size distributions, bound-
ary layer particle formation, secondary organic aerosols, all
of which are thought to be important for CCN concentra-
tions (Spracklen et al., 2006, 2008; Merikanto et al., 2009;
Spracklen et al., 2011). In the next experiment more ef-
fort will be taken to elicit parameter uncertainty distribu-
tions from experts rather than simply assigning uncertainty
ranges. Another advantage of this approach is that the un-
certainty distribution of the inputs can be changed in the em-
ulator without more model runs, which is not possible with
the Monte Carlo approach. It is also possible to investigate
further model diagnostics without any more experiments pro-
vided the emulator is validated.

The results here show that the uncertainty in the CCN con-
centration due to the model parameters as measured by vari-
ance contributions is dependent on the location and altitude.
Uncertainty in emissions dominates over the model parame-
ters close to emission sources, but process parameters domi-
nate in the remote region we examined. For the 8 parameters
we examined, we also found that their main effects (diag-
nosed in one-at-a-time tests) dominated the overall variance
close to sources. However, in the remote location interac-
tions between parameters become very important, meaning
that the overall model uncertainty would be underestimated
in one-at-a-time tests.

Little has been discussed in this paper about the statisti-
cal assumptions behind the Gaussian process emulator and
in particular how to deal with failure of the emulator valida-
tion. The work here was shown to be robust to the statistical
assumptions by changing the assumptions and carrying out
the same sensitivity analysis with little change in the results.
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A more comprehensive study with additional model parame-
ters may be more sensitive to the statistical assumptions. In
particular, it might be expected that the parameter space lead-
ing to unrealistic output will be larger and irregularly shaped
(some combinations of parameter values might be unrealistic
despite their marginal uncertainties being reasonable) requir-
ing a more sophisticated method of specifying the joint distri-
bution of the input parameters. The emulation is still possible
with a more sophisticated joint distribution but the software
will need to be advanced to carry out the sensitivity analysis
with this new joint distribution since in GEM-SA the joint
distribution is a regular shape based on the marginal uncer-
tainty distributions. The basic idea is to remove the area of
the parameter space that contains unrealistic parameter value
combinations.

A future direction is multivariate emulation which may be
useful to help reduce prediction uncertainty in different as-
pects of aerosol modelling. It may be used to build an emula-
tor for multiple outputs to describe specific aspects of global
aerosol distribution determined by multiple model outputs,
or to describe the vertical or regional distribution of aerosol
by allowing structure between model output in neighbouring
grid boxes. Our current work has not allowed for structure
between model outputs but we have instead built univariate
emulators of individual model outputs. Given the nature of
the global aerosol model we would be in an ideal position to
compare the univariate emulation study we have completed
so far with the multivariate emulation.

The next step in reducing the uncertainty in the global
model will be to compare the results more comprehensively
to observation data, i.e. calibration. Calibration is used to
reduce the uncertainty in the model parameters and thus im-
prove knowledge about them. The study here shows which
parameters efforts should be focussed on to improve the
model prediction of CCN concentration. The sensitive pa-
rameters can be improved using lab experiments or observa-
tions when available. The same methods described here can
be carried out by any modelling group to quantify the un-
certainty in a number of global aerosol models (though these
methods are not restricted to aerosol models). The sensitive
processes can then be compared in the different models im-
proving our understanding of, and perhaps reducing, model
diversity. The implications of the different model structures
on the model predictions will be better understood when the
uncertainty of each model and its sources is quantified.

Appendix A

Mathematical description of Gaussian process
emulation

The June 2000 CCN concentration in a single grid box is
defined byY . In fact Y can be any model quantity of inter-
est. A capital letter is used since the CCN concentration is

unknown. The model parameters are defined byX and are
uncertain. The GLOMAP model is some function of the pa-
rameters that leads to an estimate of the CCN concentration
defined byY = f (X). The GLOMAP modelf is unknown
in the sense that it is so complicated the outputY is unknown
until the model is run on a computer. In this materialx refers
to the values set for each of the 8 unknown parameters in any
single GLOMAP run so here is actually a vector of length 8.
Once GLOMAP has been run with inputsx we have a real-
isation defined asy = f (x) yielding model outputy. In this
papery is the monthly mean CCN concentration in a defined
grid cell.

The unknown functionf is approximated byf̂ using the
Gaussian process emulator. The aim of the emulator is to
produce an accurate approximation for the GLOMAP func-
tion f using the minimum number of model runs. The sensi-
tivity of the outputY to the uncertain inputsX is quantified
by sensitivity analysis using the emulator. The emulator is
required since the model is too CPU intensive to carry out
the number of runs needed to perform a full sensitivity anal-
ysis using GLOMAP itself.

First, we describe the application of the Gaussian process
to produce an emulator for GLOMAP and then the use of the
emulator to carry out sensitivity analysis is shown. The work
in this Appendix is based onOakley and O’Hagan(2004).

A1 The Gaussian process emulator

The Gaussian process emulator produces a probability distri-
bution for the GLOMAP modelf as a function of the model
parameters. The distribution is used to estimate CCN con-
centrations predicted by GLOMAP and quantify the uncer-
tainty around this estimate. We used the GEM-SA software
(Kennedy, 2004) to build the emulator but it is important to
understand the choices that can be made in the software and
also its limitations.

The emulator is “built” by combining some runs of the
model (the training data) and some beliefs about the model
behaviour using the Bayesian paradigm. The key assump-
tion is that the model behaves smoothly so that each run of
the model gives information about the model output at neigh-
bouring parameter settings. The beliefs about the model be-
haviour are formulated using the Gaussian process, the prior
distribution forf at given values ofx. The Gaussian process
is the functional analogue of the normal distribution so is
described in terms of a mean function and a covariance func-
tion. The Gaussian process prior is updated with the training
data to produce a posterior distribution, which is therefore
a conditional Gaussian process (conditioned on the model
data). The mean function is used to estimate GLOMAP
and the covariance function used to calculate the uncertainty
around this mean function. The mean and covariance func-
tion for the prior Gaussian process need to be specified.
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The mean function in the Gaussian process prior is given
by

E{f (x)|β} =h(x)T β, (A1)

whereh(·) is a vector of regression functions with unknown
coefficientsβ. The mean function is expressed in terms of
the expectation (or expected value) since it is technically the
population mean of a random variable and often estimated by
the sample mean. Theβ parameters are hyperparameters and
themselves have a prior distribution, discussed below. The
mean is conditional onβ because these have to be calculated
in order to work out the prior mean function. In GEM-SA the
vectorh(·) can represent a constant mean or a simple linear
regression function of the inputsx on outputy and hence
h(·) = 1 or h(·) = (1,xT ). For this paper both choices for
the mean function were compared with little difference. The
results shown in the paper used the simple linear regression
mean function.

The covariance function specifies the covariance in the
output given any pair of parameter settingsx andx′ and is
defined by

cov{f (x),f (x′)|σ 2
} = σ 2c(x,x′), (A2)

wherec(x,x′) is the correlation function andσ 2 is another
hyperparameter. As withβ, σ 2 is given a prior distribu-
tion, discussed below. The correlation functionc(x,x′) de-
creases as the distance betweenx andx′ increases, is equal
to 1 whenx = x′ and ensures that the covariance matrix is
positive semidefinite, i.e. invertible. The correlation function
usually takes one of a number of specified forms to ensure a
valid covariance function. In this paper the Gaussian corre-
lation form is used, defined by

c(x,x′) = exp{−(x −x′)T R(x −x′)}, (A3)

whereR is a diagonal matrix with elements diag(ri) whereri
is a hyperparameter describing the smoothness of the func-
tion with respect to parameteri.

The hyperparametersβ are given a multivariate normal
distribution (a conjugate prior ensuring that the Gaussian
process remains the posterior distribution onceβ are inte-
grated out). The hyperparameterσ 2 is given the inverse
gamma distribution. The prior distributions for the hyper-
parametersβ andσ 2 are specified such that the joint distri-
bution of the two is the weak normal inverse gamma distribu-
tion p(β,σ 2) ∝ σ 2 so that the prior variance for the function
f is infinite. The result is that no real information about
GLOMAP is given by the prior distributions on the hyperpa-
rameters so thatβ andσ 2 are calculated using the training
data. The hyperparametersr are also given weak prior distri-
butions (the weak uniform distribution) and calculated from
the training data. The choice of prior distributions in this
study are standard uninformative priors for the hyperparam-
eters.

The GLOMAP model is run to produce the 80 sets of train-
ing data. The runs are designed using Latin hypercube sam-
pling in 8 dimensions to ensure that the space of the joint
input uncertainty, defined byχ , is well represented. In this
paper we are studying CCN concentration so the calculated
June 2000 CCN is taken from each run to define the training
data{y1 = f (x1),y2 = f (x2),...,y80 = f (x80)}. The Gaus-
sian process is such that any subset of points on the function
can be described by the joint multivariate normal distribution
with the mean and covariance function specified as above.
Using this multivariate distribution for the training data the
hyperparameters are calculated. When there is specific in-
formation about the model behaviour this can be included
through more sophisticated specifications of the hyperparam-
eters; in this work there is no specific information about the
hyperparameters and so they are calcuated using the training
data via GEM-SA.

The posterior Student t-process (the Gaussian process with
estimated variance) is a result of conditioning the prior Gaus-
sian process on the training data. The posterior mean func-
tion is

m∗(x) = h(x)T β̂ + t(x)T A−1(y −Hβ̂), (A4)

and the posterior covariance function is

σ̂ 2c(x,x′)∗ = σ̂ 2( c(x,x′)− t(x)T A−1t(x′)+(h(x)T (A5)

−t(x)T A−1H)(HT A−1H)−1( h(x′)T − t(x′)T A−1H )T ),

where

yT
= (f (x1),...,f (xn)), (A6)

HT
= (h(x1),...,h(xn)), (A7)

A =


1 c(x1,x2) ··· c(x1,xn)

c(x2,x1) 1
...

...
. . .

c(xn,x1) ··· 1

, (A8)

t(x)T = (c(x,x1),...,c(x,xn)), (A9)

β̂ = (HT A−1H)−1HT A−1y (A10)

and

σ̂ 2
=

yT (A−1
−A−1H(HT A−1H)−1HT A−1)y

n−q −2
. (A11)

In this experimentn = 80 is the number of training runs and
q = 9 is the number of coefficients in the mean function, i.e.
the number of parameters plus one. The derivation of the
posterior formulae can be found inO’Hagan(1994).

Any other pointx in the function can be estimated with a
measure of uncertainty using the above formulae. The whole
function and properties of it, such as the variance, can also
be estimated from the above formulae for further inference.
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A2 Sensitivity analysis

In this work a probabilistic sensitivity analysis is carried
out. The term probabilistic implies that the uncertainty in
the model parameters is described formally by a probability
distribution. That is the uncertainty in the true parameter val-
uesX is described by some probability distributionG. The
uncertainty inY due toG(X) is quantified and in particular
the sources of uncertainty inY from the different elements
of X (the different parameters) are identified. In practice the
probability distributionGi of the different parametersXi is
specified and then characterised by the joint distributionG.
In GEM-SA the parameter distributionsGi are limited to uni-
form or normal. Different distributions forGi can be used if
the distribution can be transformed to uniform or normal but
care must be taken in the interpretation of the results. The
emulator software has to be developed further if different
probability distributions forGi are essential. The distribu-
tion Gi of Xi can be formally elicited from experts but in
this paper the uniform distribution has been used given the
parameter ranges inSpracklen et al.(2005b) based on expert
advice.

There are two sets of sensitivity results used in this work.
The main sensitivity results are the variance-based sensitivity
indices but the relationship between the parameters and the
output based on conditional expectations are plotted to help
interpret the effect on the output from each input and their
interactions. The two sets of sensitivity results are described
here.

Using the variance to assess uncertainty in the presence
of independent model parameters means that variance de-
composition can be used to assess the relative importance
of each model parameter and its interactions (Cox, 1982)
which is important in identifying the major sources of uncer-
tainty in modelling studies. GEM-SA reports two measures
of sensitivity for each parameter based on the variance: the
main effect sensitivity and the total effect sensitivity (Saltelli
et al., 2000). GEM-SA uses variance decomposition to cal-
culate the sensitivities as a percentage of the total variance
explained.

Not considering the use of the emulator here, the main ef-
fect variance is

Vi = var{E(Y |Xi)} = var{zi(Xi)}, (A12)

the expected amount by which the uncertainty is reduced if
the true value ofXi was learnt. The total effect variance is

VT i = var(Y )−var{E(Y |X−i)}, (A13)

the expected amount of uncertainty left after everything ex-
cept forXi is learnt (−i represents all parameters excepti).
The sensitivities for each parameter are compared by divid-
ing these variances by the total variance of the outputY giv-
ing the main effect and total effect sensitivities,Si andST i .
The total effect sensitivity compared to the main effect sen-
sitivity is used to highlight interactions between parameteri

and other parameters. The first-order interaction sensitivities
are also calculated in GEM-SA using

Vi,j = var{E(Y |Xi,j )} = var{zi(Xi) (A14)

+zi(Xj )+zi,j (Xi,j )}.

The higher order interactions follow similarly but are not cal-
culated in GEM-SA.

When emulation is used to calculate the sensitivities we
are in fact finding the expected sensitivitiesE∗(Vi) and
E∗(VT i). This is done by integrating formulae based on
Eqs. (A4) and (A5) over different subsets of the parameters
and is detailed inOakley and O’Hagan(2004). The uncer-
tainty in the sensitivity measures (i.e.V ∗(Vi)) are not cal-
culated. With an accurate emulator the uncertainty in the
sensitivity measures is assumed to be small.

The variance-based methods quantify the relative sensitiv-
ity of the model outputY to each of the uncertain parameters
Xi but they do not give any indication of how the output
is actually responding to each of the input parameters. The
response of the outputY to each inputxi is plotted in GEM-
SA to visualise the effect of the individual parameters. The
first-order interaction can also be plotted. This is possible by
decomposing the outputy into main effects and interactions

y = f (x) = E(Y )+6d
i=1zi(xi)+6i<jzi,j (xi,j ) (A15)

+...+z1,2,.....p(x),

for p independent parameters. The main effect given the
above decomposition is

zi(xi) = E(Y |xi)−E(Y ) (A16)

and the first-order interaction is

zi,j = E(Y |xi,j )−zi(xi)−zj (xj )−E(Y ). (A17)

The values required to draw these plots are calculated using
the emulator.

The main effects and first-order interactions are calculated
in GEM-SA by finding the conditional expectations of the
outputY given each of the parameters and the subsets of each
pair of parameters. In general, the main effect of parameteri

is calculated using the conditional expected value ofY ,

E(Y |xi) =

∫
χ−i

f (x)dG−i|i(x−i |xi), (A18)

and the unconditional expected value ofY ,

E(Y ) =

∫
χ

f (x)dG. (A19)

That is the function (GLOMAP) is integrated over the joint
distribution of all other parameters−i. Again, because we
are using the emulator, we are actually calculating the ex-
pected values of the main effects and interactions instead.
We therefore find the posterior conditional mean of the out-
put Y defined here asE∗

{E(Y |xp)} whereE∗ denotes the
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use of the emulator. When Monte Carlo sampling is possi-
ble E(Y |xp) can be derived directly. The specific formulae
used to derive the main effect and interactions can be found
in Oakley and O’Hagan(2004).

A particular and important consequence of the above for-
mulae is that the emulator can be used to calculate the pos-
terior mean and variance of the expected outputY given the
uncertainty in all model parameters. When Eq. (A18) is in-
tegrated over alli the posterior mean of the expected output
E∗(E(Y )) is found; this is equivalent to integrating the pos-
terior mean in Eq. (A4) over all parameters and is the ex-
pected CCN taking into account uncertainty in the 8 model
parameters. The posterior variance of the expected output is
calculated by integrating the posterior covariance in Eq. (A5)
over the joint distributionG of all parameters and is used to
measure the uncertainty around the mean due to emulation.
Integrating the posterior covariance over the different param-
eter uncertainty distributions allows the emulator uncertainty
around the conditional expected values of the output to be
calculated. The emulator uncertainty around the model out-
put is shown in Fig.2 by the spread of the green curves. The
posterior variance around the output varianceV ∗(Var(Y )),
the uncertainty in the variance due to the uncertain parame-
ters) is not calculated but is assumed to be small if the em-
ulator is shown to be accurate. The parameter uncertainty
E∗(Var(Y )) is calculated and from this we have calculated
the standard deviation. In practice because the expectation
of the variance has been found it is not trivial to calculate
the expected standard deviation. Jensen’s Inequality (Jensen,
1906) shows that the expected standard deviation will always
be greater than or equal to the square-root of the expected
variance√

(E[Var(Y )]) ≤ E[

√
Var(Y )] (A20)

and hence we only have a lower bound for the expected stan-
dard deviation. In this case because the emulator variance is
so low we assume the emulator is accurate enough for us to
believe the expected standard deviation will be close to the
square-root of the expected variance. For this same reason in
this paper we do not calculate parameter sensitivities in terms
of the standard deviation from the variance-based measures;
instead we only quote percentage of the expected variance
explained by each input.
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