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Abstract: This paper proposes a fast model predictive control allocation (MPCA) approach to minimize the tire 

slip power loss on contact patches for distributed drive electric vehicles (DDEV). In this strategy, two assumptions 

are set up from a practical focus: 1) the vehicle acceleration and yaw rate are measureable by global position system 

(GPS)/ inertial navigation system (INS) and inertial measurement unit (IMU), respectively; 2) the longitudinal 

velocity, road adhesion factor, and vehicle yaw rate are arranged to be “already known” by advanced estimators. 

For the strategy design, a CarSim-embedded driver model and a linear quadratic regulator (LQR) based direct yaw 

moment controller, are respectively applied to calculate the desired longitudinal traction and yaw moment as a 

virtual input first. Then, a MPCA method is proposed to reasonably distribute the virtual input among four in-wheel 

motors in order to optimize the tire slip power loss and vehicle stability performance. To accurately characterize 

tire slip power loss in MPCA, a tire slip estimator is established for tire slip information acquirement. Moreover, 

addressing on the heavily computational challenge in MPCA, a modified continuation/generalized minimal residual 

(C/GMRES) algorithm is employed. Since the traditional C/GMRES algorithm cannot directly solve the inequality 

constraint problem, the barrier functions are applied for transforming the inequality constraints to equivalent cost. 

According to Pontryagin’s minimum principle (PMP) conditions, the existence and uniqueness for solution of the 

modified C/GMRES algorithm are strictly proved. Subsequently, a Karush-Kuhn-Tucker (KKT) condition based 

approach is developed to fast gain the optimally initial solution in C/GMRES algorithm for extending application. 

Finally, numerical simulation validations are implemented and demonstrate that the proposed MPCA can ensure 

the compatibility between the tire slip power loss reduction and vehicle stability in a computationally efficient way.  
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I. INTRODUCTION 

Electric vehicles (EV) have become one of promising solutions in future transportation electrification, owing 

to its advantages of none exhaust emission, fast drive response, high energy utilizing ratio and so forth (Zhang et 

al., 2019). For EVs, one highlighted configuration is the distributed drive electric vehicles (DDEV). Unlike 

traditional central drive EVs, the in-wheel motor (IWM) assembles in each wheel of DDEV and acts as the power 

output unit, providing more control flexibilities to improve vehicle dynamic performance. This kind of control 

system is called over-actuation; however, such feature also brings the control redundancy thus entailing control 

difficulties in DDEVs. To handle it, control allocation (CA) is a widely-used and effective approach, which aims to 

simultaneously satisfy the virtual motion control targets from upper-level motion control and allocate lower-level 

IWMs’ torques for desirable targets (Hu et al., 2019a).  

Various CA objectives are put forward in literature, mainly including the tire slip rate, the tire workload usage, 

the motor’s power loss, and the tire slip power loss. Ref. (Yoshimura and Fujimoto, 2012) designs a CA method to 

minimize the tire slip rate for vehicle stabilization. Similarly for the vehicle stability, several researches (Zhang and 

Göhlich, 2017, Yue et al., 2018) employ the tire workload usage minimization as objective, which aims to maximize 

the attachment margin of tires and indirectly keep the tire force far away from its nonlinear saturation region. In 

order to extend the drive mileage, CAs in reduction of motors’ power loss are also proposed. Ref. (Chen and Wang, 

2014) develops a fast energy optimization based CA approach that can arrange the IWMs’ operation points in higher 

efficiency region by analytical calculation under longitudinal drive cases.  

Although above researches are successful, they can only consider the single objective, namely the vehicle 

stability or vehicle energy efficiency. For the adaptive capacity of complicated and changeable drive cycles, the 

compatibility between vehicle energy efficiency and vehicle stability performance is required. Hence, a few 

researchers gradually focus on the CA of tire slip power loss minimization (Zhao et al., 2019, Kobayashi et al., 

2017). Its primary target is to reduce the tire slip power loss on contact patches for improving the all-electric range 



of vehicles, by which the tire heating dissipation is declined and the tire lifetime can be extended to some extent. 

Additionally, since the tire slip rate couples with tire slip power loss and vehicle dynamics, the CAs for tire slip 

power loss minimization is able to simultaneously implement the desirable energy efficiency and vehicle 

stabilization. By comprehensively analytic derivation, Ref. (Filippis et al., 2018) proposes a sub-optimal CA 

strategy in reducing IWMs’ energy consumption and tire slip power loss. However, it directly takes the tire forces 

to evaluate tire slip power loss, which brings a relative deviation between real and estimated values and thus results 

in undesirable control effect. In (Suzuki et al., 2014), a more reasonable expression of tire slip power loss is designed. 

The tire brush model is adopted to estimate tire slip force and slip rate, and a pseudoinverse-based CA method is 

delegated to satisfy the vehicle stability and reduce the tire slip power loss simultaneously. To further enhance the 

estimation accuracy of tire dynamics, Ref. (Zhao et al., 2019) adopts the UniTire model for online estimation of tire 

slip power loss. However, applying the complicated semi-empirical model in tire dynamics estimation leads to the 

tedious labor burden in parameter tuning. 

In the field of CA approaches, the general ones are rule-based allocation, daisy-chain allocation, redistributed 

pseudo-inverse allocation, and optimization-based allocation. In (Park et al., 2020), the daisy-chain CA method is 

developed to successively set up the drive forces of wheels under the descending order of contribution if the first 

wheel reaches its adhesion limit. This method, however, leads to the extremely uneven torque distribution of IWMs’ 

drive forces, which is inconsistent with sufficient application of each IWM for expected effects. Compared with 

above methods, the optimization based CAs can quantitatively evaluate the control effects and impose the 

equality/inequality constraints with ease, thereby increasingly being employed in torque distribution of DDEVs. In 

(Guo et al., 2020a), a method based on Karush-Kuhn-Tucker (KKT) conditions is adopted to fast optimize the tire 

workload usages of IWMs, showing the desirable effects and guaranteed stability limits.  

To further improve control effects, model predictive control (MPC) based CA (Johansen and Fossen, 2013), 

i.e., model predictive control allocation (MPCA), is gradually applied in IWM’s torque distribution of DDEVs. 

Unlike the CAs that only focus on current states, MPCAs are able to optimize the future system dynamics of a short-

term predictive horizon for more desirable control effects (Englert and Graichen, 2020). In (Zhao et al., 2015), to 

hold the vehicle stability, the optimization problem of MPCA is established, considering a series of constraints, 



such as IWMs’ output limits, tire slip rate limits and so forth. Results yield that the MPCA method can conduct 

superior transition performance and smoother control command compared with the CAs that only focus on current 

states. That said, it is noteworthy that the online optimization of MPCA is not a facile task in practical 

implementation due to its huge computing burden. In (Yuan et al., 2016), a holistic MPCA is proposed with various 

safety constraints of DDEV. To validate its feasibility, the hardware-in-the-loop experiment is carried out by particle 

swarm optimization (PSO) algorithm under field programmable gate array (FPGA) chip. Thanks to the parallel 

calculation capacity of PSO and FPGA, the proposed MPCA is verified to be real-time applicable; nevertheless, the 

wider application of MPCA is still limited because of the expensive FPGA chip cost.  

To fill above gaps, this paper proposes a fast MPCA focusing on the compatibility between the tire slip power 

loss and the vehicle stability. To this end, a hierarchical control framework is developed under the following 

assumptions: 1) from a practical focus, the vehicle acceleration and yaw rate are assumed to be measured by global 

position system (GPS)/ inertial navigation system (INS) (Hu et al., 2019c) and inertial measurement unit (IMU) 

(Lenzo et al., 2020), respectively; 2) the longitudinal velocity, road adhesion factor, and vehicle yaw rate are 

assumed to be “already known” by advanced estimators (Guo et al., 2018, Qin et al., 2018) to avoid distracting 

readers’ focus. In upper level of control framework, a CarSim-embedded driver model is adopted to generate the 

front wheels’ steering angle and longitudinal traction demands. Since the addressed study emphasis is the fast 

MPCA, the simple but effective approach, linear quadratic regulator (LQR), is applied for lateral motion control to 

gain the appropriate external yaw moment. A tire slip estimator is established for tire slip information acquirement. 

Given the external yaw moment and tire slip information, the MPCA controller is designed in the lower level for 

torque allocation. To migrate the computational burden, the continuation/generalized minimal residual (C/GMRES) 

algorithm is applied in MPCA. To fit the application of C/GMRES algorithm, the barrier functions are adopted to 

equivalently transform the inequality constrained problem as an unconstrained one, and the existence and 

uniqueness for solution is proved by the optimality conditions of Pontryagin’s minimum principle (PMP). 

Furthermore, a KKT condition based approach is proposed to fast obtain the optimally initial solution in C/GMRES 

algorithm for expected optimization convergence. To sum up, the main contributions of this paper are listed below.  



First, the MPCA control problem of torque allocation is properly and systematically established, considering 

the tire slip energy-saving effect and vehicle stability guarantee.  

Second, to mitigate the heavy computational burden in MPCA, the C/GMRES algorithm is adopted and 

modified for fast optimization, yielding the applicable control effects and the real-time calculation efficiency for 

practical application.  

Third, for proposed C/GMRES method, the sufficiency that solution is existent and exclusive, is strictly proved 

according to PMP optimality conditions.  

Fourth, the tire slip information is online gained by the proposed estimation method and integrated into the 

proposed MPCA. Hence the tire model is not required in control-oriented model, and the optimization complexity 

of MPCA can be decreased.  

The rest of this paper is organized as follows. Section II introduces the two degree-of-freedom (DOF) vehicle 

model and the tire slip rate update model. The proposed control framework, including yaw motion control, tire slip 

information estimation and MPCA, is elaborated in Section III. The validations of proposed MPCA method are 

demonstrated with in-depth analysis in Section IV, followed by the main conclusions in Section V.  

 

II. CONTROL-ORIENTED MODEL FORMULATION 

2.1. Two Degree-of-freedom Vehicle Model 

The two DOF vehicle model is adopted in this paper, as the schematic depicted in Fig. 1, whose expression is 

presented (Hu et al., 2019b):  

 t t t t t t tx A x B u D w      (1) 

and 
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where =[ ]T

tx    is the state variable, and tu M   is the control variable. tw   is the external disturbance.   

and   denote the vehicle sideslip angle and the yaw rate, respectively. M  denotes the external yaw moment, and 



  is the front wheels’ steering angle. 
fC  and rC  are the tire cornering stiffness of vehicle front and rear axles, 

respectively. al  and bl  represent the distance from center-of-gravity (CoG) to front and rear axles, respectively. m  

and xv  are the vehicle mass and longitudinal velocity, respectively. zI  is the vehicle yaw inertia.  

fC  and rC  are mainly influenced by tire vertical loads and road adhesion factor, which are expressed as (Ma 

et al., 2019),  
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where   is the road adhesion factor; 
0fC  and 0rC  are the nominal cornering stiffness of front and rear tires, 

respectively; 
0zfF  and 0zrF  are the nominally vertical load of the front and rear tires, respectively. 

zfF  and zrF  are 

the varying vertical load of front and rear tires, respectively. They can be expressed (Rajamani, 2006):  
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where xa  is the longitudinal acceleration measured by GPS/ INS (Hu et al., 2019c), and 
cgh  is the height of vehicle 

CoG.  
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Fig. 1. Schematic of linear two DOF vehicle model.  

 

2.2. Tire Slip Rate Model 

Without the consideration of braking force compensation, the wheel rotational dynamics can be presented as,  



 s i i w xiJ w T r F     (5) 

where sJ  is the wheel rotational inertia. iw  and iw  are the rotational speed and acceleration for the i th wheel, 

where subscript 1,2,3,4i   denote the left-front, right-front, left-rear and right-rear, respectively and hereinafter. 

iT  is the output torque of the i th IWM, and wr  is the effective radius of wheel. xiF  is the longitudinal force of the 

i th tire. The tire longitudinal slip rate (Pomponi et al., 2018) is defined as,  

 i w xi
i

xi

w r v

v



    (6) 

where xiv  represents the longitudinal velocity of the i th wheel’s center. Taking the slip rate derivative with respect 

to time, there is  
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By Eq. (6), Eq. (7) can be rewritten as,  

 2( 1) ( 1)i xi
i i i

i i w

w v

w w r
         (8) 

Substituting iw  in Eq. (8) with Eq. (5) and defining xi xi iF C  , it yields 
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where xiC  is the longitudinal slip stiffness of tire. xi xia v  is the longitudinal acceleration of tire center. Based on 

Eq. (9), the state update function of tire slip rate is presented:  
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where 
1 2 3 4[ , , , ]Tx      is the system state vector, and 

1 2 3 4[ , , , ]Tu T T T T  is the system control vector. 

( ( ), ( ))f x t u t  represents the mapping relation among x , x  and u . dC  is the output matrix equaling to a diagonal 

identity matrix, and y  is the system output.  

 



III. CONTROL STRATEGY ILLUSTRATION 

3.1. Control Framework  

The proposed control framework consists of upper-level control, tire slip estimator, and lower-level control, as 

shown in Fig. 2. At each sample instant, the vehicle dynamic system and an embedded driver model constructed in 

the software CarSim, provide the longitudinal vehicle velocity, road adhesion factor, vehicle sideslip angle, yaw 

rate, and front wheels’ steering angle to upper-level control. In upper-level control, regarding sideslip angle and 

yaw rate, the references are produced by steering angle, tire adhesion factor, and vehicle velocity, and the errors 

between target and feedback are calculated. Based on the errors, a LQR controller contributes to generate the 

external yaw moment for guaranteeing vehicle drive property and lateral stability. Meanwhile, the torques and 

speeds regarding IWMs are fed back into the tire slip estimator so that the longitudinal velocity of tire center, tire 

slip rate, and longitudinal slip stiffness can be observed. In lower-level control, based on estimated tire information, 

expected total traction torque and external yaw moment, MPCA controller is developed to allocate the torque 

command of IWMs for minimum of tire slip power loss and vehicle stability. Since the addressed CA is highly 

nonlinear and multiple-constraints coupled, the C/GMRES algorithm is delegated to solve the MPCA problem in a 

computationally efficient way. Here the equality constraints are merged into the optimization problem to reduce the 

solving complexity, and external penalty method is adopted in handling inequality constraints to meet the 

C/GMRES algorithm’s application. As such, an unconstrained MPCA problem can be formulated, thus C/GMRES 

algorithm is applicable. Additionally, to extend the algorithm application, a KKT conditions based two-steps 

method is designed for initial solution solving. Finally, the torque command of IWMs is gained and inputs into the 

high-fidelity vehicle model of software Carsim.  
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Fig. 2. Control framework schematic. 

 

3.2. Upper-level Yaw Motion Control 

The LQR controller is adopted in yaw motion control to meet the yaw motion stability. According to two DOF 

vehicle model of Eq. (1), the steady-state sideslip angle r  and yaw rate r  can be expressed in the form of state 

update as,  

 r t r t tx A x D w     (11) 

where [ ]T

r r rx   . Here r  is set as zero, and r  is determined by the following expression (Zhang and Göhlich, 

2017).  
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where rK  denotes the understeer gradient, and g  is the gravitational acceleration. From Eqs. (1) and (11), the error 

system of yaw motion control can be formulated as (Wang et al., 2019),  

 t t te A e B u     (13) 

where [ ]T

r re        is the error variable. Then the performance index of LQR controller is defined as,  
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where   represents the Euclidean norm. 
lqrQ  and 

lqrR  are the diagonal weight matrixes related to e  and tu , 

respectively. By solving the Riccati equation of Eq. (14) (Nguyen et al., 2019), the control gain vector of LQR 
lqrK  

can be gained, and the expected external yaw moment can be calculated by 
lqrM K e  . To gain the sideslip angle 

 , the longitudinal velocity xv , and road adhesion factor  , extensive studies of advanced estimators (Qin et al., 

2018, Guo et al., 2018) have been carried out with high accuracy. Moreover, the IMU is easily adopted in practice 

to measure the yaw rate   (Lenzo et al., 2020). Thus these variables are assumed to be obtainable in this paper.  

3.3. Tire Slip Estimator 

From Section 2.2, the tire slip rate model is not applicable unless xiv , iT , xiC  and iw  are known. Owing to the 

independently driven capacity of DDEVs, iT  and iw  can be gained by IWMs’ feedback. The state update 

expressions of estimated velocity ˆ
xiv  are furnished as,  
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where sd  is the wheel track width. Based on the derivative of xiv  and iw  regarding time, ˆ
i  can be calculated by 

Eq. (8). From Eq. (5), the estimated wheel force ˆ
xiF  can be expressed (Maeda et al., 2012):  
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where s  is the Laplace operator. The first order inertial link 
1

1s 
 is applied to eliminate noise caused by taking 

differential of wheel rotation speed iw . Based on xi xi iF C  , the estimated tire longitudinal stiffness ˆ
xiC  can be 

calculated by FFRLS algorithm. The regression equation in FFRLS algorithm is defined:  

 ( ) ( ) ( )TZ t t t     (17) 

The calculation process of FFRLS algorithm is given as,  
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where ˆ
xiZ F  is the measured output, ˆ( )T

it   is the input regression, and ˆ( ) xit C   is the pseudo-parameter. 

K  is the recursive gain matrix, P  is the covariance matrix, and   is the forgetting factor which is arranged within 

0 to 1. If the regression ˆ
i  equals zero, the persistent excitation is not satisfied. Thus, to avoid the saltation of ˆ

xiC  

caused by extensively small ˆ
i , Eq. (18) is not updated if _

ˆ
i i thres  . Fig. 3 to 5 show the estimation results under 

single lane change (SLC) cycle with target vehicle velocity of 80 km/h and road adhesion factor of 0.85. As yielded 

in Fig. 3, adopting Eqs. (8) and (15) can achieve the accurate estimation of i . The result of ˆ
xiC  is shown in Fig. 4. 

By taking the update mechanism in FFRLS, the great saltation of ˆ
xiC  is eliminated in accord with physical 

characteristics of tires. To verify the precision of ˆ
xiC , the comparison between real tires’ longitudinal forces and 

the values of reverse calculation by FFRLS algorithm is shown in Fig. 5, namely xiF  and ( ) ( )Tt t  . The difference 

between two variables is relatively small, which means the adopted FFRLS algorithm is accurate enough for 

controller application.  



 

Fig. 3. Tire slip rate estimation result.  

 

Fig. 4. Estimation of tire longitudinal slip stiffness.  

 

Fig. 5. Tire longitudinal force comparison between real value and value of reverse calculation by FFRLS algorithm.  



 

3.4. Lower-level Torque Allocation Control 

The main objective in lower-level control is to allocate the torques among IWMs for tire slip power loss 

minimization and vehicle stability. In the following, the MPC control problem is constructed first, and then a 

modified C/GMRES algorithm is introduced.  

3.4.1. Control Allocation Problem Construction 

The control problem 0P  for the addressed issue can be furnished as,  
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where ( ( ), ( ))oc x t u   and ( ( ), ( ))oh x t u t  represent the equality and inequality constraints in MPCA, respectively. ox  

is the initial state of MPCA, and 
pN  represents the predictive horizon. The performance cost ( ( ), ( ))l x u   is 

presented as,  

 1 2( ( ), ( )) ( ( ), ( )) ( ( ), ( ))l x u l x u l x u          (20) 
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where 
1 1 1 2 2 2 3 3 3 4 4 4=[ ]T

loss x x x x x x x xP F v F v F v F v     denotes the longitudinal slip power loss vector of tires 

(Kobayashi et al., 2018).  1 2 3 4diagQ q q q q  and  1 2 3 4diagR r r r r  are the diagonal weight 

matrixes. The cost 1( ( ), ( ))l x u   and 2 ( ( ), ( ))l x u   are adopted to minimize the square norm of tires’ slip power 

loss and the square norm of IWM’s torque vibration, respectively.  

To satisfy the longitudinal and yaw drive property, the equality constraint of virtual controls is set as,  

 ( ( ), ( )) ( )oc x t u u        (22) 



where 

1 1 1 1
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 is the coefficient matrix, and [ ]T

totT M    is the virtual control vector. 

totT  denotes the expected total traction torque from driver.  

The inequality constraints are provided by,  

 
max min( ( ), ( )) [( ) ( ) ] 0T T T

oh x t u u u u u        (23) 

where 
max max1 max 2 max 3 max 4[ ]Tu u u u u , and max iu  represents the maximum torque output of the i th IWM. 

min min1 min 2 min 3 min 4[ ]Tu u u u u , and min iu  represents the minimum torque output of the i th IWM. Based on the 

tire adhesion circle theory (Zhang and Göhlich, 2017), the tire forces should meet the relationship 

2 2

2 2
1

xi yi

zi

F F

F


  to 

ensure vehicle stability. Thus the following inequality limits are imposed:  
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where max iT  and min iT  are the maximum and minimum torque physical limits of the i th IWM, respectively.   is the 

margin coefficient. Since the model errors between controller and real vehicle are inevitable,   is set as 0.85 to 

meet 

2 2

2 2
1

xi yi

zi

F F

F


 .  

Remark 1: It is noteworthy that 2 ( ( ), ( ))l x u   is of significance in control effects of MPCA. Given that the dynamic 

response of IWM can be seen as first-order inertia link, it is quite difficult for an IWM to make its real torque output 

to approximate the control command if the control command is jittered. In addition, the unnecessary vibration of 

command will entail undesirable tire slip and indirectly influence the IWMs’ lifetime to some extent.  

Remark 2: From the expression of 1l  in Eq. (21), the cost item  
2 2( ) ( )

( ) ( ) ( )i s i
i xi i

w

T J w
q v

r

 
  


 can be 

approximately seen as  
2 2( ) ( ) ( )i xi i iq v T     since ( )iw   is relatively smaller under most of cases. Given that 

greater slip rate generally occurs under higher vehicle velocity, the time-varying weight item  
2

( ) ( )i xi iq v     is 



effective to penalize the enlargement of ( )iT   for reducing ( )i  . In other words, by minimizing 1l , the slip rate 

of each tire can be adaptively restricted, and this is why the constraints of slip rate are not imposed in the proposed 

MPCA. Numerical simulations in Section IV also validate this viewpoint.  

3.4.2. Application of Modified C/GMRES Algorithm 

The C/GMRES algorithm is applied to efficiently solve the addressed MPCA problem. To reduce the control 

complexity, a new optimized vector is redefined to reduce the number of optimized variables by merging equality 

constraints into optimization. Since the original C/GMRES algorithm cannot handle the inequality constraints, the 

barrier function method is adopted to construct an equivalent optimization problem satisfying system boundaries. 

Finally, the MPCA problem 0P  is transformed to an unconstrained one, and the solution existence and uniqueness 

are verified. To extend the algorithm application, a fast initialization approach based on KKT optimality conditions 

is also developed in MPCA.  

1) Control Problem Transformation  

Based on equality constraint (22), the following expression is hold (Li et al., 2015):  
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By Eq. (25), a new optimized vector 
1 2 1 2[ ] [ ]T Tu u u T T   can be defined, and  
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By Eq. (26), the equality constraints (22) can be merged into state updates, and the number of optimized 

variables in proposed MPCA can be reduced by 3× pN  (i.e., Lagrange multiplier, 3T , and 4T  at each predictive 

instant for C/GMRES algorithm), which considerably migrates the calculation burden. To satisfy the limits of 3T  

and 4T , a new limits of u  should be imposed:  
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The inequality constraint 
1 2( ( ), ( )) [ ]T

oh x t u h h   related to u  can be set up as,  
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To handle Eq. (28) in C/GMRES algorithm, the barrier function method (Boyd et al., 2006) is adopted, and the 

original control problem 0P  can be rewritten to be a new one 1P :  
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where   is the weight coefficient of barrier function.    1 2ln ( ( )) ln ( ( ))h u h u           is the equivalent cost 

by log barrier functions, which is able to avoid exceeding the inequality constraints of Eq. (28). Specifically, it is 

verified (Nocedal and Wright, 2006) that by the log barrier functions, the optimal solution of unconstrained problem 

(like 1P ) infinitely closes to that of original problem (like 0P ) when 0  .  

2) C/GMRES Algorithm and Analysis  

Based on Eq. (29), the Hamiltonian function of problem 1P  can be expressed as, 

    1 2( , ) ( , ) ln ( ( )) ln ( ( )) ( , )TH x u l x u h u h u f x u                (30) 

where 1 2 3 4
[ ]T      is the co-state vector. The differentials of Eq. (30) with respect to x  can be yielded 

as,  
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Since there is no terminal cost in problem 1P  and ox  is given, the updates with respect to states and co-states 

can be yielded as below, respectively,  
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   (32) 

 

1 1

1

2 2

2

3 3

3

4 4

4

( ) ( 1) ( ( 1), ( 1))

( ) ( 1) ( ( 1), ( 1))

( ) ( 1) ( ( 1), ( 1))

( ) ( 1) ( ( 1), ( 1))

H
x u

H
x u

H
x u

H
x u

      


      


      


      


  
       

 


        
  


 
        

  
       

  

   (33) 



Based on the optimality conditions of PMP (Kirk, 2004-04-30), the MPCA problem is transformed to be an 

optimal control one:  
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where the optimized vector is,  
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Ideally, solving Eq. (34) is realizable by iterative optimization algorithms, like sequence quadratic 

programming (SQP) methods and interior-point method etc., but causing expensive calculation burden. To avoid 

the calculations of Jacobian matrix, Hessian matrix and inverse in Eq. (34), the continuation method is applied 

(Allgower and Georg, 2003), and Eq. (34) can be rewritten as a linear dynamic system:  

 ( ( ), ( ), ) ( ( ), ( ), )o o s o oF U t x t t F U t x t t     (37) 



where s  is the stability matrix, aiming to stabilize ( ( ), ( ), )o oF U t x t t  at original. If ( ( ), ( ), )o o

F
U t x t t

U




 is 

nonsingular, the solution ( )oU t  can be determined by,  

 1( ) [ ( ( ), ( ), )] [ ( ( ), ( ), ) ( ( ), ( ), ) ( )]o o o s o o o o

F F
U t U t x t t F U t x t t U t x t t x t

U x
 

   
 

   (38) 

To further avoid the computational labor caused by inverse operation of 1[ ( ( ), ( ), )]o o

F
U t x t t

U




, the forward 

difference approximation is imposed, and then the GMRES algorithm can be adopted to search the optimal solution 

U  (Kelley, 1995). The state update step   is set equaling to control sample step t  for simplification. At each 

sample, ( )U t  is determined by summing up ( )oU t  and U t , and the first group of control command (i.e., u ) in 

( )U t  is adopted to calculate four IWMs’ torque commands by Eq. (26). For more details, the calculation steps of 

C/GMRES algorithm are summarized in Table I.  

Table I. C/GMRES algorithm illustration.  

C/GMRES algorithm 

1. Initialize 0t  and (0)ox x . Calculate (0)U  numerically by function ( (0), (0),0) 0oF U x ; 

2. The first control variable of (0)U  outputs in MPCA;  

3. At next sample cycle [ ]s t t t , obtain the feedback states of system and set ( )o ox x t . The 

difference of states at the last moment and current moment is calculated by ( ) ( ) ( 1)o o ox t x t x t ;  

4. Given 
1kU , ( )ox t , ( ) /ox t t  , size of difference grids  , and allowed maximum iteration 

number 
maxk , the optimal kU  is gained by GMRES method with forward difference approximation;  

5. Set 1k k kU U U t  

6. Update t t t  and 1k k ;  

7. Return to step 2.  

 

It is noteworthy that the optimal solution of C/GMRES algorithm is existent and exclusive only if 
F

U




 is 

invertible (Ohtsuka, 2004). Moreover, one can find that from Eq. (34), 
F

U




 is in fact a p pN N  block diagonal 

matrix, whose each block is a Hessian matrix of Hamiltonian function, namely 
2

2

H

u
. Thus, whether 

F

U




 is 

invertible, can be judged by analyzing the singularity of 
2

2

H

u
. By Eq. (36), the expression of 

2

2

H

u
 is furnished 

as,  
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The discussion regarding singularity of 
2

2

H

u
 is illustrated as below.  

Proposition 1: When the feasible region exists and C/GMRES algorithm in MPCA is proceeding after initialization, 

the inequality constraint ( )h   is always hold by ( )oU t t   that satisfies ( )h  .  

Proof: The optimization of C/GMRES algorithm is essential to minimize the value difference between each side of 

equality sign in Eq. (34) according to optimality conditions of PMP. The contradiction method is adopted here for 

proof. Since ( )oU t t   satisfies the inequality ( )h   and the feasible region of optimization exists, 
1

0
H

T


  


 

and/or 
2

0
H

T


  


 by Eq. (36) if ( )oU t  by C/GMRES algorithm makes ( ) 0h   . As such, by Eq. (34), the value 

difference by GMRES algorithm leads to 0 , which is obviously incorrect and inconsistent to the PMP 

conditions. Thus to minimize the optimization cost, C/GMRES algorithm should choose the descending search 

direction of minimizing residual between each side of equality sign in Eq. (34) ; that is, under the case in proposition 

1, the barrier function (29) is applicable to guarantee the inequality constraints. For calculation accuracy of 

C/GMRES algorithm, a detailed error analysis is provided in (Ohtsuka, 2004).  



Proposition 2: When C/GMRES algorithm in MPCA is proceeding after initialization, 
2

2

H

u
 is positive definite 

and invertible if ( )oU t t   satisfies the inequality constraint.  

Proof: From proposition 1 and the assumption that the inequality constraint ( )h   by ( )oU t t   is hold, 
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. Since the weight matrixes Q  and 

R  are always greater than zeros, there is,  
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Therefore, 
2

2

H

u
 is positive definite and invertible. That is, 

F

U




 is also positive definite and invertible since 

its diagonal blocks are comprised of 
2

2

H

u
.  

From propositions 1 and 2, ( )oU t t   should satisfy the inequality constraint ( )h   so that 
F

U




 is invertible. 

In other words, for addressed problem 1P , the inequality constraints and the optimization effects can be both 

guaranteed as long as ( )h   by (0)U  is hold according to ( ) ( )+ ( )o o oU t U t t U t t    . The calculation of (0)U , 

namely the initialization in C/GMRES algorithm, is introduced in the following.  

3) Initialization Calculation  

For the addressed problem 1P , (0)U  can be set to be a zeros vector if the controller starts up when vehicle is 

standstill, and propositions 1 and 2 are hold. Moreover, from Table I, the numerical algorithms can also be adopted 

in gaining (0)U  in C/GMRES algorithm. That said, to enlarge the application of proposed method, this paper 

proposes a fast initialization approach for the addressed MPCA, which demands less computational labor but is 



subject to propositions 1 and 2. Owing to the short sample step and predictive horizon in addressed MPCA, the 

initialization is approximately considered as a single-step MPCA optimization, namely 1pN  (Ohtsuka, 2004). 

Then (0)U  is calculated by 1 (0)
pN u , where * *1   means an identity matrix with the scale of * * , and   is the 

Kronecker product. It is noteworthy that by this manner the solution optimality is deteriorated to some extent, but 

it is acceptable since this method is only adopted in initialization and satisfy propositions 1 and 2. According to 

problem 1P , this single-step optimization is a QP issue, and a KKT condition (Guo et al., 2020a) based method can 

be employed for fast solving. The optimization problem can be expressed as,  

 
min max

min ( (0), (0))

s.t. (0)

l x u

u u u    
   (41) 

where 2 1   is an extremely small offset vector with all the elements of 
-1010  to guarantee the solution absolutely 

satisfying propositions 1 and 2. By Eq. (41), Lagrangian equation is presented as,  
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where 1  and 2  are the Lagrangian multiplier vectors regarding lower and higher limits, respectively. To solve Eq. 

(42), the two-steps method based on KKT conditions is proposed and summarized in Table II. Since the optimization 

in Eq. (41) is strictly convex, the globally optimal solution can be gained by the proposed two-steps initialization 

method, as detailed in (Zhang et al., 2017). Then, the initial solution (0)U  can be set as 
*

21 (0)
pN u  .  

Table II. KKT condition based method for initialization. 

KKT condition based method 
1. Preliminary optimization:  

1) Optimization of Eq. (41) is considered as an unconstrained problem, and set 1 2 0  . By 0
L

u
, the solution 

(0)*u  is gained.  

2) If min max(0)u u u   

Return (0)*u  as the optimal solution 

Else 

go to secondary optimization 

End 

2. Secondary optimization:  



1) For i =1, 2 

If the i th element in solution (0)*u  is greater than the element in 
maxu  ,  

set the i th element of 
1  equals to zero and the i th element in (0)*u  equals to the i th element in 

maxu  .  

If the i th element in solution (0)*u  is less than the element in 
minu   

set the i th element of 
2  equals to zero and the i th element in (0)*u  equals to the i th element in 

minu  .  

End 

2) By 0
L

u
, a new (0)*u  is gained.  

3) If 
min max(0)u u u   

Return (0)*u  as the optimal solution 

Else 

Repeat to secondary optimization 

End 

 

Now the introduction of proposed MPCA is completed. More specifically, an intuitive schematic is 

summarized in Fig. 6. At each sample instant, the tire information, vehicle velocity, and road adhesion factor are 

fed back and input into MPCA controller, and the target traction torque and external yaw moment are also given 

from upper-level control. For this MPCA, if the current sample instant is that of controller startup, the initialization 

calculation in Table II is conducted to gain the control command. Otherwise, at generic instant, the optimization 

operations in C/GMRES algorithm are implemented to find the command, shown in Table I. Afterwards, by 

optimized command and Eq. (26), four torque commands of IWMs are acquired and adopted for DDEV’s control. 

It is noteworthy that for both initialization and generic period, the “warm-startup” mechanism is used and 

contributes to accelerate the solving convergence rate (Guo et al., 2020b), as depicted by purple lines in Fig. 6.  
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Fig. 6. Schematic of proposed C/GMRES algorithm based MPCA. 

 

IV. NUMERICAL SIMULATION AND ANALYSIS 

The validations are carried out by co-simulation platform of Matlab and the high-fidelity software CarSim 

(Corporation, 2019) under Intel(R) Core(TM) i5-9400F CPU @ 2.9GHz desktop computer, where a CarSim-

embedded driver model with 0.8 s preview time is adopted. Two cycles of SLC maneuver under high and low 

adhesion roads are employed as the test cycle, and the SLC profile is illustrated in Fig. 7. The parameters regarding 

vehicle and controller are listed in Table III. In this paper, the tire workload usage optimization (TWUO) allocation, 

and the MPCAs by SQP and active-set (AS) methods are conducted to verify the control effects and computational 

efficiency of proposed MPCA by comparisons, respectively. More details about TWUO allocation method and 

evaluation index of tire slip energy loss are described below.  

1) TWUO Allocation Method: The TWUO CA is widely used optimization based method for vehicle stabilization, 

whose objective is given (Zhang and Göhlich, 2017):   

 
min max

( ) ( )

s.t.

T TJ u u u u

u u u
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where 
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 
   

 
 is the weight matrix, and   is a two-dimensional 

diagonal penalty weight matrix to meet virtual controls. Here the SQP algorithm by Matlab library function 

“fmincon” with toleration error threshold of 0.01, is adopted for online solving of Eq. (43).  

2) Tire Slip Energy Loss Calculation for Evaluation Validation: The tire slip power loss is derived from tire friction-

heating dissipation on contact patch, including longitudinal power loss and lateral power loss (Zhao et al., 2019, 

Kobayashi et al., 2017). Through the whole cycle, the tire slip energy loss totalE  is defined as,  

 longitudinaltot lateralalE E E     (44) 
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where longitudinalE  and lateralE  denote the longitudinal tire slip energy loss and lateral tire slip energy loss, respectively. 

endt  denotes the end time instant of cycle. i  and yiF  are the sideslip angle and lateral force for the i th tire, 

respectively.   

 

Fig. 7. SLC test cycle profile.  

Table III Parameters regarding vehicle and proposed strategy.  

Parameter Value Unit 

Vehicle mass 1412 kg 

Distance from CoG to front axle 1.015 m 

Distance from CoG to rear axle 1.895 m 
Wheel track width 1.675 m 

Wheel radius 0.308 m 

Vehicle rotational inertia of Z axis 1536.7 kg.m2 
Tire rotational inertia 2.5 kg.m2 

Weight matrix lqrQ  of LQR controller 7100,10 ]diag([ )  - 

Weight matrix lqrR  of LQR controller 10-3 - 

Physical boundary of M  ±4000 N.m 

Boundary of IWM torque output ±540 N.m 
Predictive horizon 6 - 

Sample time step in MPCA 0.01 s 

Weight matrix of output state Q  1, 1, 2, 2]diag([    )  - 

Weight matrix of control increment R  1000,1000,2000,2000])diag([   - 

Weight coefficient of log function   0.001 - 

Allowed maximum iterative number 
maxk   4 - 

 

4.1. Control Performance Illustration 

1) High Adhesion Road Test 

Under this test, the target vehicle velocity and road adhesion factor are set as 80 km/h and 0.85, respectively. 

Fig. 8 shows the results of total traction torque, vehicle velocity, external yaw moment, and vehicle yaw rate, which 

yields that two methods can meet the given virtual controls and keep the yaw rate tracking error within a small 

range. The optimized torques by C/GMRES algorithm are illustrated in Fig. 9 and restricted within the limits of 

min max[ , ]u u . Table IV depicts the energy loss effects of tire slip. Compared with TWUO method, the proposed 

method realizes the reduction of 2.34 % in tire slip power loss, where those in longitudinal and lateral directions 



are 9.9 % and 0.92 %, respectively. This indicates that the proposed method is effective in saving the tire slip energy 

for higher utilization efficiency of vehicle power and lower tire wear.  

 
(a)                                                                                          (b) 

 Fig. 8. Virtual controls, vehicle velocity, and yaw rate under high adhesion road. (a) Total traction torque and vehicle velocity; (b) External 

yaw moment and yaw rate.  

 
Fig. 9. Results of 

1T  and 
2T  by proposed method under high adhesion road.  

 
Table IV. Tire slip power loss results under high adhesion road 

Method Longitudinal (J) Lateral (J) Total (J) 

TWUO 1266.77 6740.70 8007.47 
Proposed method 1141.36 6679.01 7820.37 

Reduction (%) 9.9 0.92 2.34 

 

To further evaluate the vehicle stability, Fig. 10 shows the results of torque allocation, tire workload usage and 

tire slip rate. One can find that from Fig. 10 (a), TWUO inclines to adopt the front IWMs for traction drive as much 

as possible. This can be explained that for the studied DDEV, owing to greater distance between CoG and rear axle, 

the vertical forces of rear axle are smaller than those in front axle under most of cases. According to tire adhesion 

circle theory (Wei et al., 2019), the rear wheels are easier to reach the tire grip margin and more sensitive to skid. 

Hence the greater absolute torque is arranged in front IWMs by TWUO method to reduce the total tire workload 

usage, as shown in Fig. 10. Instead, the MPCA allocates the IWMs’ torques more evenly. From Fig. 10 (c) and Fig. 

10 (d), the tire workload usages and tire slip rate by MPCA are similar with those by TWUO method. At around 

2.7 s to 3.7 s, MPCA can even achieve slightly smaller tire workload usages of front wheels than TWUO method. 

This is because by neglecting the small iw  and considering i xi w xi i wT F r C r  , the cost items in MPCA and TWUO 



CA are changed to  
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 of 

TWUO method. Hence that is why the CA of tire slip power loss minimization can achieve the similar tire workload 

usage in Fig. 10, and the quantitative results of overall tire workload usages listed in Table V also verify this 

viewpoint.  

    
(a)                                                                                                          (b)  

    
(c)                                                                                                          (d) 

Fig. 10. Torque output, tire workload usage and tire slip rate under high adhesion road. (a) Torque output by TWUO; (b) Torque output by 

proposed method; (c) Tire workload usage and tire slip rate by TWUO; (d) Tire workload usage and tire slip rate by proposed method.  

 

Table V. Overall tire workload usage under high adhesion road.  

Method Mean Maximum Variance 

TWUO 0.2962 2.4737 0.4300 

Proposed method 0.2935 2.4892 0.4205 

Reduction (%) 0.88 -0.63 2.21 

 

2) Low Adhesion Road Test  

This test is conducted with target vehicle velocity of 80 km/h and adhesion factor of 0.45. Fig. 11 shows the 

results of virtual controls, vehicle velocity, and yaw rate. The target vehicle velocity can be effectively tracked by 

two CA methods, which is attributed to the guaranteed total traction torque, as shown in the top subfigure of Fig. 

11 (a). From Fig. 11 (b), both allocation methods can track the yaw rate reference and target external yaw moment 



within small errors, while that by MPCA yields superior transient response as drawn in the zoomed figure of Fig. 

11 (b), owing to its consideration of future state trajectory in optimization.  

 
(a)                                                                                                          (b) 

 Fig. 11. Virtual controls, vehicle velocity, and yaw rate under low adhesion road. (a) Total traction torque and vehicle velocity; (b) 

External yaw moment and yaw rate. 

 

Fig. 12 depicts the optimized torques (i.e., 1T  and 2T ) and their limits in MPCA. Compared with the results 

under high adhesion case, the feasible region of optimized torques is further reduced by Eq. (24) because the tire 

adhesion circle narrows with decreasing road adhesion factor. Even imposed by such narrow limits, the modified 

C/GMRES algorithm can still provide an effective solution holding the inequality constraints, as shown in the 

zoomed figures of Fig. 12. This also verifies the effectiveness of the propositions 1 and 2. Fig. 13 yields the 

accumulated tire slip energy loss results in longitudinal and lateral directions. From Fig. 13 (a), the accumulated 

longitudinal tire slip power variations are more like an echelon compared with that under high adhesion road, and 

the main tires’ wear occurs during the two cornering periods of SLC cycle. From Fig. 13 (b), the accumulated lateral 

tire slip power loss at each tire of MPCA is nearly same with those by TWUO method. More intuitively, Table VI 

yields the quantificational tire slip power loss results, and the reduction of tire slip power loss by MPCA can reach 

17.64 % and 1.3 % in the longitudinal and lateral directions, respectively.  

 
Fig. 12. Results of 

1T  and 
2T  by proposed method under low adhesion road. 



 
(a)                                                                                                          (b) 

Fig. 13. Accumulated tire slip power loss results by TWUO and proposed method under low adhesion road. (a) Longitudinal; (b) Lateral. 
Table VI. Tire slip energy loss results under low adhesion road.  

Method Longitudinal (J) Lateral (J) Total (J) 

TWUO 773.18 5906.66 6679.84  
Proposed method 636.79 5829.67 6466.46 

Reduction (%) 17.64 1.30 3.19 

 

Fig. 14 draws the results of IWMs’ torque output, tire workload usage, and tire slip rate. Unlike that under high 

adhesion road, the torque output of IWMs varies more sharply in this test, owing to the less feasible regions of 

optimization as shown in Fig. 12. From Fig. 14 (c) and Fig. 14 (d), the tire workload usage by MPCA can still be 

restricted below one under such a severe drive cycle. This can be explained by two reasons. First, the reference yaw 

rate in upper-level control is limited by 0.85 / xg v  to avoid exceeding the tire grip margin to some extent. Second, 

by proposed MPCA, the tire workload usage limit is constructed as an equivalent inequality constraints of Eq. (24). 

Given that Eq. (24) is satisfied from Fig. 12, the enlargement of tire workload usages can be restricted by proposed 

MPCA. For quantitative evaluation, Table VII lists the overall tire workload usage results and yields that even 

superior effects of tire workload usage in MPCA than TWUO method. This is caused by two reasons: 1) as 

mentioned in the analysis of Table V, the tire slip power loss optimization is able to minimize xiF  so as to reduce 

the tire workload usage to some extent; 2) owing to optimization of future state trajectory and the penalty item of 

 ( ) ( )i i oT T t t     in MPCA, the optimized torque command is smoother, which avoids the unnecessary tire 

workload usage.  

  
(a)                                                                                               (b) 



  
(c)                                                                                                (d) 

Fig. 14. Torque output, tire workload usage and tire slip rate under low adhesion road. (a) Torque output by TWUO; (b) Torque output by 

proposed method; (c) Tire workload usage and tire slip rate by TWUO; (d) Tire workload usage and tire slip rate by proposed method. 

 

Table VII. Overall tire workload usage under low adhesion road.  

Method Mean Maximum Variance 

TWUO 0.7058 3.3136 1.2954 

Proposed method 0.6908 3.3230 1.2678 

Reduction (%) 2.1220 -0.2827 2.1270 

 

4.2. Computational Efficiency  

To validate the computational efficiency, the SQP and AS algorithms by Matlab library function “fmincon” 

with toleration error threshold of 0.01, are adopted in MPCA for comparison. Fig. 15 shows the computational time 

per sample in MPCAs. Compared with SQP and AS methods, the computational time per sample by C/GMRES 

algorithm is greatly reduced by around two orders of magnitude. Table VIII illustrates the qualified results of 

computational time for three algorithms. The mean and maximum calculation time by C/GMRES algorithm are 

much smaller than those by SQP and AS methods. Focusing on the sample step of 0.01 s in this paper, it can be 

concluded that among three algorithms only the C/GMRES one is real-time applicable at each sample instant in 

MPCA. Additionally, the variance of computational time by C/GMRES algorithm is only under the order of 

magnitudes of 10-6 and distinctly lower than those by SQP and AS algorithms, signifying the more stationary 

calculation time per sample in MPCA.  

 

Fig. 15. Computational time illustration under high adhesion road. 



Table VIII. Computational time per sample instant.  

Test Cycle Method Mean (s) Maximum (s) Variance (s) 

High Adhesion 
Road 

SQP 0.1732 0.2931 0.0002  

AS 0.2994 0.7180 0.0112 

Proposed method 0.0008 0.0029 2.5×10-6 

Low Adhesion 

Road 

SQP 0.1709 0.4532 0.0005 

AS 0.2901 0.7300 0.0088 

Proposed method 0.0008 0.0027 2.1×10-6 

 

V. CONCLUSION 

In this paper, a fast MPCA approach is proposed in torque distribution of DDEVs to minimize tire slip power 

loss and guarantee vehicle stability. Here two practical assumptions are set up: 1) the vehicle acceleration and yaw 

rate are assumed to be measureable by GPS/INS and IMU, respectively; 2) the longitudinal velocity, road adhesion 

factor, and vehicle yaw rate are assumed to be “already known” by advanced estimators. To mitigate the calculation 

labor in MPCA, the C/GMRES algorithm is delegated for online optimization. As to reduce the calculation 

complexity and handle the inequality constraints, the original MPCA problem is transformed to be an unconstrained 

one by merging equality constraints into optimization objective and adopting external penalty method. Given this, 

the existence and uniqueness for solution of the modified C/GMRES algorithm are strictly proved. To extend the 

application of C/GMRES algorithm, a KKT optimality condition based approach is proposed for fast initialization 

of MPCA. The validations are carried out under two SLC tests of different tire-friction factor and yield the superior 

control effects by MPCA method than TWUO method in tire power loss minimization and vehicle stability. More 

importantly, the computational efficiency of C/GMRES algorithm is greatly higher than SQP and AS algorithms in 

MPCA frame. The highlighted advantages of the proposed MPCA are summed up:  

1) The proposed MPCA method can effectively reduce the tire slip power loss and guarantee the vehicle 

stability simultaneously, which even achieves the similar tire workload usage like TWUO method does;  

2) With the modifications adopted in this paper, the C/GMRES algorithm based MPCA approach can strictly 

satisfy the desirable equality and inequality constraints;  

3) Compared with MPCAs by SQP and AS algorithms, the C/GMRES algorithm yields distinctly higher 

computational efficiency, indicating its potentials in real-world application. 

The future work will focus on the robustness improvement of proposed MPCA due to the highly nonlinearities 

and uncertainties in DDEVs.  
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