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Abstract:Amidmuch recent interest we discuss a Variance
Gamma model for Rugby Union matches (applications to
other sports are possible). Our model emerges as a special
case of the recently introduced Gamma Difference distri-
bution though there is a rich history of applied work using
theVarianceGammadistribution –particularly in finance.
Restricting to this special case adds analytical tractabil-
ity and computational ease. Our three-dimensional model
extends classical two-dimensional Poissonmodels for soc-
cer. Analytical results are obtained for match outcomes,
total score and the awarding of bonus points. Model cali-
bration is demonstrated using historical results, bookmak-
ers’ data and tournament simulations.

Keywords: football; Poisson distribution; Rugby Union;
Soccer; sports analytics; Variance Gamma distribution.

1 Introduction
The Gamma Difference distribution was recently intro-
duced by Klar (2015). This paper had intended to present
one of the earliest applications of this model — namely,
the modelling of Rugby Union matches. However, follow-
ing an inspired suggestion from an anonymous reviewer,
we restrict to a special case of this model – the so-called
Variance Gamma distribution. This limits discussion to
the case where the Gamma distributions in the Gamma
Difference distribution share the same scale parameter.
The importance of this restriction is three-fold. Firstly,
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this builds on a rich history of the Variance Gamma dis-
tribution being used in (typically financial) applications
(Madan and Senta 1990; Senata 2004). Secondly, from an
empirical perspetive, equality of scale parameters means
full model calibration to historical results is possible via
a Gamma generalized linear model (see Section 4). The
restriction also reduces the dimension of the numerical
optimisation problem involved in empirical calibrations to
bookmakers’ betting odds (see Section 5). Thirdly, we are
left with an elegant three-dimensional model as a theo-
retical counterpart to classical two-dimensional Poisson
models for soccer.

The modelling of Rugby Union matches is of indepen-
dent interest in its own right (Scarf, Parma and McHale
2019). There is a large literature centred around Poisson
models for soccer (see e.g. Maher 1982). Whilst aspects of
the Poisson model remain instructive, Rugby’s complex
scoring system is a significant complication (Scarf et al.
2019). Whilst direct extensions of the classical Poisson
model are possible they are highly parameterised (e.g. sin-
gle Poisson models for each mode of scoring) and impor-
tant aspects of the intuition and analytical tractabilitymay
be lost. Alternative parametricmodels for RugbyUnion are
discussed in Scarf et al. (2019). We add to this discussion
by proposing a Variance Gamma model. Aspects of this
model incorporate anon-negativity requirement andallow
for the game’s high-scoring and complex nature which
makes it very difficult to precisely estimate match scores
a priori. This justifies a continuous approximation. This
notwithstanding, empirical results in Sections 4–5 and
shows that our model can give a good description of both
historical data for the Six Nations championship (Thomas,
Reeves andBell 2008) and to implied probability estimates
obtained from bookmakers’ odds. Further justification of
our modelling approach is discussed below.

The layout of this paper is as follows. Section 2 gives a
background tutorial on the classical Poissonmodel for soc-
cer matches. Our own Variance Gamma model for Rugby
Union matches is then outlined in Section 3. In-sample
applications to historical results and to historical book-
makers odds are discussed in Sections 4–5. Sections 6–7
detail out-of-sample applications to tournament simula-
tion and betting. Managerial insights are discussed in
Section 8. Section 9 concludes and discusses the oppor-
tunities for further research.
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2 Background tutorial: the classical
Poisson model for soccer

In this section, following a very helpful suggestion from
an anonymous reviewer, we present a background tutorial
on the classical Poisson model for soccer matches. Along-
side the statistical modelling of empirical match data
(Boshnakov, Kharrat and McHale 2015) the classical Pois-
son model also possesses a surprising degree of theoret-
ical elegance. This is discussed in Scarf et al. (2019) but
arguably goes much deeper.

It is best to view this model as a two-dimensional
problem categorised by an average scoring rate λ and a
probability p of scoring that defines the relative strength
of each team. Suppose that the number of goals in a
soccer match is distributed according to a thinned Pois-
son process. Goals are scored at rate λ/90 per minute
and are scored with probability p by Team X and with
probability 1 − p by Team Y. Under this interpretation
the parameter λ gives the expected total number of goals
that scored in the match. The parameter λ can be esti-
mated using extensive historical goal scoring statistics¹.
The parameters p and 1 − p can be estimated using rel-
ative team strengths and corrections for home advantage.
More detailed effects such as short-term form, managerial
changes, fatigue, bookmakers’ information and subjective
judgements could also be incorporated into models (see
e.g. Owen 2011; Constantinou et al. 2012; Constantinou
and Fenton 2017).

Set up in this way the model abstracts from known
qualities of soccer such as its low-scoring nature and the
fact that real goal-scoring patterns are not verywell under-
stood (Kuper and Szymanski 2014). This theoretical ele-
gance is further reinforced by the following. Proposition 1
describes the probability of match outcomes for regular
matches that last 90 minutes. Proposition 2 describes fur-
ther minor adjustments for extra time and penalties.

Proposition 1 (Probability of match outcomes.). We have
the following results for overall match outcomes
(i) The probability of a draw is given by e−λ I0(

√
ab),

(ii) The probability that Team X wins is given by
Q0(

√
a,

√
b),

where a =
√︀
2λp, b =

√︀
2λ(1 − p), Ik denotes the modi-

fiedBessel function of the first kind (Abramowitz andStegun

1 Games in elite leagues tend to average 2.5–3.5 goals per game–with
values outside these ranges often thought to reflect lower overall stan-
dards of playwhere either the defence or the attack holds a systematic
advantage (Soccervista 2018)

1968) and Q0(·) denotes the Marcum Q-function (Nuttall
1975).

Proof. (i). Drawsoccur if both teams scorengoals in games
where 2n goals are scored in total. Conditional on 2n
goals being scored the number of goals scored by team
X is Bin(2n, p). The probability of a draw can thus be
calculated as

Pr(Draw)

=
∞∑︁
n=0

Pr(2n goals scored in total and X scores n goals)

=
∞∑︁
n=0

e−λλ2n
(2n)! . (2n)!p

n(1 − p)n
n!n!

= e−λ
∞∑︁
n=0

(︁
λ
√︀
p(1 − p)

)︁2n

n!n!

= e−λ I0(2λ
√︀
p(1 − p)).

(ii). Team X wins by a margin of r goals if X = k + r,
Y = k and 2k + r goals are scored in total. Similarly to the
above, this probability can be calculated as

∞∑︁
k=0

e−λλ2k+r

(2k + r)! .
(2k + r)!pk+r(1 − p)k

(k + r)!k!

= e−λ
(︂

p
1 − p

)︂ r
2

Ir
(︁
2λ

√︀
p(1 − p)

)︁
. (1)

The probability that Team X wins can then be obtained by
summing equation (1) over r to obtain

Pr(Team X wins)

= e−λ
∞∑︁
r=1

(︂
p

1 − p

)︂ r
2

Ir(2λ
√︀
p(1 − p))

= Q0(
√︀
2λp,

√︀
2λ(1 − p)),

using

Q0(α, β) = e− α2+β2
2

∞∑︁
k=1

(︂
α
β

)︂k
Ik(αβ),

(see e.g. Proakis 1983).

Proposition 2 (Outcomes in one-off knock-out matches.).
Assume that in a penalty shoot-out each team is equally
likely to win². Suppose a knock-out game goes to extra-time

2 This simple assumptionnonetheless seems to be in linewith empir-
ical implied probabilities that can be obtained from bookmakers’
odds.
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(i) The conditional probability that team X wins after
extra time (aet) is given by

Pr(X aet) =
1
2Q0

(︃√︂
2λp
3 ,

√︂
2λ(1 − p)

3

)︃

+
1
2

(︃
1 − Q0

(︃√︂
2λ(1 − p)

3 ,
√︂

2λp
3

)︃)︃
.

(2)

(ii) The probability that team X wins the knockout match
is given by

Pr(X wins) = Q0
(︁√︀

2λp,
√︀
2λ(1 − p)

)︁
+ e−λ I0(2λ

√︀
p(1 − p))Pr(X aet). (3)

Proof. (i–ii). Since extra time is 1/3 the of regular time
define a′ = a/3, b′ = b/3. If a game goes to extra time it
follows from Proposition 1 that

Pr(X wins outright in extra time)
= Q0(a′, b′),

Pr(X aet) = Q0(a′, b′) +
1
2 e

− λ
3 I0(a′b′),

Pr(X wins) = Q0(a, b) + e−λ I0(ab)Pr(X aet).

In both Propositions 1–2 above an underlying richness is
clearly apparent. The model is tractable and has a mod-
ular structure to it – meaning the above adjustment can
be made to adjust for extra time and penalties. This ele-
gance is further reinforced by the fact that the probabilities
in Propositions 1–2 can be calculated using

Q0(α, β) = 1 − G2,α2 (β2) − e− α2+β2
2 I0(αβ),

where G2,α2 (·) denotes the Cumulative Distribution Func-
tion (CDF) of the non-central χ2 distributionwith 2 degrees
of freedom and non-centrality parameter α2 (Annamalai
and Tellambura 2008).

Thus, inspired by the elegance of the classical Pois-
son model, in Section 3 we construct a Variance gamma
model for Rugby Union matches. Analogues of these clas-
sical results are obtained and then further extended to
account for Rugby’s additional complexities.

3 A Variance Gamma model for
Rugby Union matches

Building on from the classical Poisson model briefly
described in the previous section let X and Y denote the

number of points scored in a sporting context by team X
and team Y, respectively. We assume that X ∼ Γ(α, β1) and
Y ∼ Γ(α, β2) and, further, that X and Y are independent.
Thus, we keep the classical simplifying independence
assumption but consider alternative distributional forms.
See e.g. a related discussion in Scarf et al. (2019). The com-
plexity of the scoring system and Rugby’s high-scoring
nature justifies the continuous approximation considered
here as it is very difficult to estimate the precise numeri-
cal score in such matches given the range of possible sce-
narios that could occur. This formulation also naturally
imposes a non-negativity constraint with respect to the
discussion of a Gaussian model in Scarf et al. (2019).

Under this model we have that

E[X] =
α
β1

, E[Y] =
α
β2

.

Moreover, the probability that X scores x points and Y
scores y points can be calculated as p = Pr

(︀
x − 1

2 ≤
X ≤ x + 1

2
)︀
Pr

(︀
y − 1

2 ≤ Y ≤ y + 1
2
)︀
, where

p =
(︂
Fα,β1

(︂
x +

1
2

)︂
− Fα,β1

(︂
x − 1

2

)︂)︂
(︂
Fα,β2

(︂
y +

1
2

)︂
− Fα,β2

(︂
y − 1

2

)︂)︂
. (4)

The result shown in (4) follows from a continuity correc-
tion using Fα,β(·) the CDF of a Gamma distributed random
variable with parameters α and β. Following Klar (2015)
we have the following definition:

Definition 1. A Variance Gamma(c, σ, v, λ) random vari-
able is a real-valued random variable with probability den-
sity

fVG(x) =
2 exp(v(x − c)2/σ2)
σ

√
2πλ1/λΓ(1/λ)

(︃
|x − c|√︀
2v2/λ + σ2

)︃ 1
λ − 1

2

K1/λ−1/2

(︃
|x − c|

√︀
2σ2/λ + v2
σ2

)︃
, (5)

and characteristic function

ϕVG(t) := E[eitX] = eict(1 − ivλt + σ2λt2/2)−1/λ , (6)

where Kλ(·)denotes themodified Bessel function of the third
kind.

Proposition 3. Suppose β1≤β2. The distribution of Z :=
X − Y is Variance Gamma(0, σ, v, λ) where λ = 1/α, v =
α

(︁
1
β1 − 1

β2

)︁
, σ2 = 2α

β1β2 .
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Proof. X has characteristic function
(︁
1 − it

β1

)︁−α
, Y has

characteristic function
(︁
1 − it

β2

)︁−α
so X − Y has charac-

teristic function

ϕX−Y =
(︂
1 − it

β1

)︂−α(︂
1 +

it
β2

)︂−α

=
(︂
1 − i

(︂
1
β1

− 1
β2

)︂
t +

t2
β1β2

)︂−α

. (7)

The result follows upon comparison of equations
(6–7).

Using Fσ,v,λ(·) to denote the CDF of Z in Proposition 3
gives:

Proposition 4 (Probability of match outcomes.).

Pr(Xwins) = Pr
(︂
Z≥1

2

)︂
= 1 − Fσ,v,λ(1/2),

Pr(Y wins) = Pr
(︂
Z≤ − 1

2

)︂
= Fσ,v,λ(−1/2),

Pr(Draw) = Pr
(︂

−1
2≤Z≤1

2

)︂
= Fσ,v,λ(1/2) − Fσ,v,λ(−1/2). (8)

Motivated bypotential sports-betting applications (Stefani
2008) we have the following special case of related results
in Zhao (2011).

Proposition 5 (Distribution of points total.). The distribu-
tion of the combined points total for X and Y has probability
density

f (y) =
y2α−1(β1β2)αe−β2y

Γ(α)2
1∫︁

0

uα−1(1 − u)α−1 exp{(β2 − β1)yu}du.

Proof. From the convolution formula the density function
of X + Y can be written as

fX+Y (y)

=

y∫︁
0

fX(x)fY (y − x)dx,

=
(β1β2)αe−β2y

Γ(α)2

y∫︁
0

xα−1(y − x)α−1e(β2−β1)xdx,

=
(β1β2)αe−β2y

Γ(α)2 y

1∫︁
0

(yu)α−1(y − yu)α−1e(β2−β1)yudu,

=
y2α−1(β1β2)αe−β2y

Γ(α)2
1∫︁

0

uα−1(1 − u)α−1 exp{(β2 − β1)yu}du.

InmostmainstreamRugbyUnion competitions teams gain
a losing bonus point if they lose by a margin of 7 points
or less. This simple observation leads to the following
proposition:

Proposition 6 (Probability of obtaining a losing bonus
point.)

Pr(Team X obtains a losing bonus point)
= Fσ,v,λ(−0.5) − Fσ,v,λ(−7.5). (9)

In RugbyUnion teamsmay also gain a bonus point by scor-
ing four ormore tries in a givenmatch though there is some
minor deviation in bonus points and tournament structure
around the world (see e.g. the discussion in Smart 2019).
Historical data shown in Quarrie and Hopkins (2007) sug-
gests that 5.9 tries is roughly equivalent to scoring 55
points. This suggests that in our model scoring four tries
would be roughly equivalent to scoring 55× 4

5.9≈37 points
and follows a similar approach taken in Smart (2019). This
simple observation leads to the following proposition:

Proposition 7 (Approximate probability of obtaining a try
bonus point.)

Pr(Team X obtains a try bonus point) ≈ 1 − Fα,β1 (36.5).

4 In-sample application: model
calibration using historical
results

In this section we calibrate our model to the Guinness Six
Nations championship based on historical data for the five
competitions (2014–2018). This tournamenthaspreviously
attracted academic interest (Thomas et al. 2008). More-
over, the tournament’s well-established nature, coupled
with the absence of promotion and relegation, mean that
we can reasonably expect past results to serve as a good
indication of future performance in this case.

We model the observed match score as a Gamma gen-
eralized linear model with identity link (Bingham and Fry
2010). This linearity adds to the interpretability of the
model. For example, results in Table 1 indicate that home
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Table 1: Gamma generalized linear model with identity link applied
to historical data for the Guinness Six Nations championship over
the years 2014–2018.

Parameter Estimate e.s.e t-value p-value

Intercept (England) 19.3595 2.7870 6.946 0.0000a

Team= France −4.6091 2.6682 −1.727 0.0863 ·
Team= Ireland −1.9671 2.9247 −0.673 0.5023
Team= Italy −6.6983 2.4650 −2.717 0.0074b

Team=Scotland −4.4742 2.6233 −1.706 0.0903 ·
Team=Wales −1.4067 2.8934 −0.486 0.6276
Opponent= France 1.4405 2.3164 0.622 0.5351
Opponent= Ireland −2.8016 2.0015 −1.404 0.1625
Opponent= Italy 20.4322 3.8541 5.301 0.0000a

Opponent=Scotland 6.1693 2.6656 2.314 0.0221c

Opponent=Wales −0.5858 2.1297 −0.275 0.7837
Home 3.0894 1.3812 2.237 0.0269c

Dispersion parameter ϕ̂ = 0.2054172. ·,a,b,cDenote statistical
significance at the 10%, 5%, 1% and 0.1% levels respectively.

advantage is worth approximately three extra points to the
home team. This linearity is also convenient with respect
to numerical calculations in Section 7. The variable team
abstracts from teams’ attacking strengths and is highest
for England. The variable opponent abstracts from teams’
defensive strengths and is lowest (best) for Ireland and
Wales and higher (worse) for generally weaker teams such
as France, Scotland and Italy. Estimated parameters for
this model are shown below in Table 1. An F-test gives
an F-value of 9.961 on 11 and 138 degrees of freedom giv-
ing conclusive evidence (p = 0.000) that the individual
teams’ offensive and defensive strengths and home advan-
tage all have a significant effect upon match outcomes.

Given an estimated value of µX from the model in
Table 1 the parameters of the underlying gamma distribu-
tion can be obtained using

µX =
α
βX

; α =
1
ϕ ; βX =

α
µX

=
1

ϕµX
.

Similarly, the variance of the match scores can be cal-
culated as Var[X] = α/β2X = ϕµ2X. Expected match scores

Table 2: Expected match scores for the Guinness Six Nations
championship based on the model shown in Table 1.

Home
team

Away team

England France Ireland Italy Scotland Wales

England – 24–15 20–17 43–13 29–15 22–18
France 18–21 – 15–19 38–14 24–16 17–19
Ireland 20–17 22–12 – 41–10 27–12 20–15
Italy 16–40 17–35 13–38 – 22–35 15–38
Scotland 18–26 19–21 15–24 38–19 – 17–24
Wales 21–19 22–14 18–17 41–12 27–14 –

Table 3: Estimated probabilities of a home win (away win) for the
Guinness Six Nations championship based on the model shown in
Table 1.

Home
team

Away team

England France Ireland Italy Scotland Wales

England – 0.753 0.555 0.961 0.827 0.601
– (0.219) (0.409) (0.033) (0.152) (0.366)

France 0.391 – 0.347 0.927 0.706 0.411
(0.575) – (0.615) (0.063) (0.265) (0.552)

Ireland 0.609 0.806 – 0.979 0.873 0.643
(0.356) (0.166) – (0.016) (0.108) (0.321)

Italy 0.078 0.133 0.051 – 0.226 0.077
(0.912) (0.851) (0.940) – (0.755) (0.912)

Scotland 0.284 0.438 0.238 0.851 – 0.295
(0.689) (0.528) (0.733) (0.134) – (0.675)

Wales 0.552 0.743 0.530 0.963 0.823 –
(0.414) (0.227) (0.432) (0.031) (0.155) –

according to this model are shown in Table 2. Estimated
probabilities of match outcomes according to this model
are shown in Table 3.

5 In-sample application: model
calibration using bookmakers’
data

Implied probabilities for match outcomes can be obtained
from raw bookmakers’ odds using basic normalisation
(S̆trumbelj 2014) which ensures that the estimated prob-
abilities sum to 1. Following helpful suggestions from an
anonymous reviewer an example calculation of how this
can be achieved is shown below in Table 4.

Our model can be calibrated to this bookmakers’
data by minimising the least squares distance between

Table 4: Example calculation of implied probabilities from
bookmakers’ odds.

Suppose the odds for an England v Australia match are:
England win 4/11
Draw 33/1
Australia win 14/5.
The implied probabilities can be calculated as
Pr(England win). 1−p

p = 4
11 ; p = 11

15 ,
Pr(Draw). 1−p

p = 33
1 ; p = 1

34 ,
Pr(Australia win). 1−p

p = 14
5 ; p = 5

19 .
These probabilities sum to 11

15 + 1
34 + 5

19 = 9941
9690 .

So using basic normalisation
Pr(England win) = 11

15 × 9690
9941 = 7106

9941 ,
Pr(Draw) = 1

34 × 9690
9941 = 285

9941 ,
Pr(Australia win) = 5

19 × 9690
9941 = 2550

9941 .
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Table 5:Model calibration to bookmakers’ data from the 2018/19 autumn internationals.

Match and date Outcome Bookmakers’ odds Bookmaker’s implied probability Estimated model probability

Italy v New Zealand Italy win 25/1 0.038 0.038
24.11.18 Draw 100/1 0.010 0.010

New Zealand win 1/41 0.953 0.953
Scotland v Argentina Scotland win 4/9 0.667 0.667
24.11.18 Draw 25/1 0.037 0.037

Argentina win 9/4 0.296 0.296
England v Australia England win 4/11 0.715 0.715
24.11.18 Draw 33/1 0.029 0.029

Australia win 14/5 0.257 0.257
Wales v South Africa Wales win 5/4 0.422 0.422
24.11.18 Draw 25/1 0.036 0.036

South Africa win 3/4 0.542 0.542
Ireland v USA Ireland win 1/100 0.976 0.976
24.11.18 Draw 90/1 0.011 0.011

USA win 75/1 0.013 0.013

Data obtained from oddschecker.com on 19.11.18.

Table 6:Model calibration to bookmakers’ data for selected UK domestic matches.

Match and date Outcome Bookmakers’ odds Bookmaker’s implied probability Estimated model probability

Gloucester v Saracens Gloucester win 8/13 0.609 0.609
22.2.19 Draw 25/1 0.038 0.038

Saracens win 25/14 0.353 0.353
Harlequins v Bristol Harlequins win 2/7 0.729 0.729
23.2.19 Draw 25/1 0.036 0.036

Bristol win 3/1 0.234 0.234
Wasps v Sale Wasps win 17/35 0.644 0.644
23.2.19 Draw 25/1 0.037 0.037

Sale win 2/1 0.319 0.319
Exeter v Newcastle Exeter win 2/17 0.882 0.882
23.2.19 Draw 50/1 0.019 0.019

Newcastle win 9/1 0.099 0.099
Northampton v Bath Northampton win 8/11 0.555 0.555
23.2.19 Draw 22/1 0.042 0.042

Bath win 11/8 0.404 0.404
Worcester v Leicester Worcester win 8/13 0.602 0.602
24.2.19 Draw 25/1 0.037 0.037

Leicester win 17/10 0.360 0.360

Data obtained from oddschecker.com on 18.2.18.

the bookmaker estimates and the theoretical quantities
shown in Proposition 4. This can be achieved using the
function optim in R which in practice often ensures that
the bookmaker probabilities are reconstructed exactly
modulo machine error. Results clearly demonstrate that
the parameters of our model can produce realistic match
probabilities for a range of international (Table 5) and
English domestic matches (Table 6). This is important in
that it shows parameterisations of our model can be used
to match empirical market probabilities in a similar way
to how theoretical financial options-pricing models can
be used to derive implied volatilities from traded prices on
markets.

6 Out-of-sample application:
Simulating the Six Nations Rugby
Union Championship

In this section we consider tournament simulations in an
out-of-sample application of ourmodel. Simulations of the
2019Guinness SixNations championship under themodel
in Section 4 are shown in Table 7. Results demonstrate that
tournament outcomes are subject to considerable uncer-
tainties – especially once the effects of home advantage
are taken into account (see e.g. Thomas et al. 2008). Gener-
ally, the model seems to produce realistic-looking results.
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Table 7: Simulated results for the 2019 Guinness Six Nations
championship based on the model shown in Table 1.

Team Mean Standard
Deviation

Median Confidence
Interval

Actual

Position
England 2.419 1.202 2 1–5 2
France 3.688 1.242 4 1–6 4
Ireland 2.197 1.177 2 1–5 3
Italy 5.806 0.510 6 4–6 6
Scotland 4.354 1.137 5 2–6 5
Wales 2.535 1.300 2 1–5 1

Points
England 15.127 3.448 12 8–22 18
France 11.129 3.504 11 5–18 10
Ireland 15.770 3.424 16 9–22 14
Italy 4.138 1.529 4 3–9 0
Scotland 8.799 3.614 9 2–17 9
Wales 14.706 3.749 15 7–21 20

Results based on 100,000 simulations. Top panel: Final position.
Bottom panel: Points total. Note that all listed points totals exclude
an additional three bonus points awarded to teams that win the
Grand Slam. This is an innovation introduced to ensure that any
team that won all five matches automatically wins the Championship
irrespective of the number of bonus points awarded to other teams.

For example, Italy appear to be much weaker than the
other teams in the tournament. Results also give non-
trivial insights in that there may be advantages in having
an improved defensive record (Ireland) compared to hav-
ing an improved offensive record (England). This reflects
enhanced recent emphasis upon the defensive side of
international Rugby.

7 Out-of-sample application:
Match prediction accuracy and
projecting betting odds for the
Six Nations Rugby Union
Championship

In this section, following very helpful comments from an
anonymous reviewer, we consider an out-of-sample bet-
ting application to the 2019 Guinness Six Nations Champi-
onship. To do this we use themodel estimated in Section 4
and use Proposition 4 to estimate the probabilities for
each match outcome. Results are shown in Table 8. Of
the 15 matches shown in this table the favourites won
13 matches, lost one (England upset favourites Ireland)
and drew one (favourites England drew with Scotland). If
we count a draw as being half-way between a win and a

Table 8: Estimates and 95% confidence intervals for probabilities
of individual match outcomes for the 2019 Guinness Six Nations
Championship using the Gamma generalized linear model shown in
Section 4.

Match Home win Away win Draw

France v Wales 0.411 0.552 0.036
(0.198–0.625) (0.335–0.769) (0–0.250)

Scotland v Italy 0.851 0.134 0.015
(0.739–0.963) (0.029–0.240) (0–0.120)

Ireland v England 0.609 0.356 0.035
(0.392–0.826) (0.143–0.568) (0–0.247)

Scotland v Ireland 0.238 0.733 0.029
(0.068–0.408) (0.554–0.913) (0–0.199)

Italy v Wales 0.077 0.912 0.011
(0.006–0.148) (0.834–0.990) (0–0.082)

England v France 0.753 0.219 0.028
(0.579–0.927) (0.054–0.384) (0–0.193)

France v Scotland 0.706 0.265 0.029
(0.526–0.886) (0.092–0.438) (0–0.202)

Wales v England 0.552 0.414 0.034
(0.341–0.763) (0.206–0.623) (0–0.242)

Italy v Ireland 0.051 0.940 0.009
(0–0.105) (0.879–1.000) (0–0.063)

Scotland v Wales 0.295 0.675 0.029
(0.115–0.475) (0.489–0.862) (0–0.209)

England v Italy 0.961 0.033 0.006
(0.919–1.000) (0–0.069) (0–0.043)

Ireland v France 0.806 0.166 0.028
(0.643–0.970) (0.015–0.317) (0–0.179)

Italy v France 0.133 0.851 0.016
(0.026–0.239) (0.737–0.966) (0–0.123)

Wales v Ireland 0.530 0.432 0.038
(0.299–0.761) (0.203–0.661) (0–0.267)

England v Scotland 0.827 0.152 0.021
(0.695–0.959) (0.029–0.275) (0–0.144)

Implied probabilities that lie outside of the constructed confidence
intervals are indicative of potentially profitable opportunities due to
mis-pricing.

loss this gives the model an out-of-sample success rate of
13.5/15= 90%.

Accompanying 95% confidence intervals for these
estimated probabilities can then be obtained via the
delta method (see e.g. Bingham and Fry 2010). To be
precise the confidence intervals can be constructed as
p̂± tn−p(0.975)σ̂P where σ̂2P can be obtained via a linear
transformation of the variance-covariance matrix of the
coefficient estimates for the underlying generalized linear
model. Results in Table 8 are suggestive of possible mis-
pricing (and profitable opportunities) if the implied proba-
bilities from the odds offered by a counter-party lie outside
of the intervals constructed.

Following helpful suggestions from an anonymous
reviewer a candidate betting strategy can be constructed
from this model as follows. Define the decimal odds as
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D := (profit + bet)/bet. Let p denote the probability that
the bet pays out. The expected profit of the bet is then
equal to pD and the bet is advantageous if

pD > 1; p >
1
D . (10)

Equation (10) thus lays out perhaps themost practical way
of applying results in Table 8 once the attendant uncer-
tainties are adequately accounted for. The Kelly criterion
(Thorp 1966) or the more conservative half-Kelly criterion
could then be used to determine the optimal bet size.

8 Managerial insights
This paper has contributed to the quantitative modelling
of sports (Haigh 2009). Whilst, increasing attention has
been paid to other sports such as football (Owen 2011),
cricket (Dewart andGillard 2019), golf (Lewis 2005), athlet-
ics (Volf 2011), and tennis (Forrest and McHale 2019) until
recently relatively little attention had been paid to Rugby
Union (Scarf et al. 2019). In extending a classical Pois-
son model we are able to highlight important conceptual
differences between football and Rugby Union.

This paper provides a new way of conceptualising
Rugby Union matches in a way that is more intuitive than
more highly parameterised alternatives (Scarf et al. 2019).
Themodel is easy to simulate fromand canbe calibrated to
historical match data via standard applied statistical tech-
niques (standard generalised linear models) or to book-
makers odds. Here, this latter calibration is achieved by
using computational least squares in R. This is shown
to re-construct empirical probabilities inferred from cited
bookmakers’ odds for historical matches over a range of
different competitions. R-code and examples are available
from the authors upon request.

9 Conclusions and further work
Following recent theoretical and applied work we develop
a Variance Gamma model for Rugby Union matches. Our
model retains the elegance of the classical Poisson model
for soccer but incorporates Rugby-specific features such
as a non-negativity constraint (in contrast with e.g. a
Gaussian model briefly discussed in Scarf et al. 2019) cou-
pled with extreme unpredictability caused by the game’s
high-scoring nature and the complexity of the scoring sys-
tem. Results are obtained for the probability of match
outcomes, the distribution of the points total and the

awarding of bonus points. Empirical calibration of the
model to historical match data and to bookmakers’ odds
gives encouraging results in sample. Out-of-sample appli-
cations to tournament simulation, to match prediction
accuracy and to betting are also discussed. Out-of-sample
our model has a match outcome prediction accuracy of
90%. Future work will explore sports-betting applications
alongside extensions to other sports.
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