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We develop, after Dellar [Phys. Rev. E. 65, 036309 (2002); J. Comput. Phys. 190, 351 (2003)], a multiple-
relaxation-time (MRT), chromodynamic, multicomponent lattice Boltzmann equation (MCLBE) scheme for
simulation of isothermal, immiscible fluid flow with a density contrast. It is based on Lishchuk’s method
[Brackbill, Kothe, and Zemach, J. Comp. Phys. 100, 335 (1992); Lishchuk, Care, and Halliday, Phys. Rev. E. 67,
036701, (2003)] and the segregation of d’Ortona et al. [Phys. Rev. E. 51, 3718, (1995)]. We focus on fundamental
model verifiability but do relate some of our data to that from previous approaches, due to Ba et al. [Phys. Rev.
E 94, 023310 (2016)] and earlier Liu et al. [Phys. Rev. E 85, 046309 (2012)], who pioneered large density
difference chromodynamic MCLBE and showed the practical benefits of an MRT collision model. Specifically,
we test the extent to which chromodynamic MCLBE MRT schemes comply with the kinematic condition of
mutual impenetrability and the continuous traction condition by developing analytical benchmarking flows. We
conclude that our data, taken with those of Ba et al., verify the utility of MRT chromodynamic MCLBE.

DOI: 10.1103/PhysRevE.102.013309

I. INTRODUCTION

Since 1991, when Gunstensen and Rothman [1] invented
the technique, several multicomponent lattice Boltzmann
equation (MCLBE) variants have been developed to address
different flow regimes [2–4]. The idea remains a milestone
of statistical physics; however, all current MCLBE vari-
ants depart substantially from Ref. [1], which developed di-
rectly from Rothman’s earlier immiscible lattice gas cellular
automata [5,6].

Presently, variants are classified by their physical content
[7]. Where the kinetics of phase separation must be consid-
ered, “free-energy” methods [8,9] and their thermodynami-
cally consistent extensions, due to Wagner et al. [10–12], are
appropriate tools. For workers with a background in molecular
simulation, the Shan-Chen method [13] is a natural choice.
In continuum immiscible hydrodynamics, one incorporates
dynamic conditions of stress continuity (i.e., physical princi-
ples) and the kinematic condition of mutual impenetrability
(with purely logical content) [14] as boundary conditions
between separate flows. In this regime it is safe to use
the chromodynamic, color-gradient, or phase-field method,
which we define as a combination of algorithms due to
Lishchuk [15] (who uses earlier ideas of Brackbill, [16]) and
d’Ortona et al. [17].

Chromodynamic MCLBE uses an immersed boundary
force [16,18], appropriate corrections being applied to the
velocity [19], alongside a computationally efficient, analytic
component segregation [17] which distributes an interface,
which, for continua, should be sharp. (Note, Reiss and Phillips
[20] developed an interfacial perturbation to replace immersed
boundary forces, which is the most physically consistent
encapsulation of MCLB interfacial tension as a perturbation to

the stress.) The method is the most direct descendant of Gun-
stensen’s original, in which the problems of lattice pinning
and faceting have been reduced, Reiss and Dellar [21,22] hav-
ing identified their origin and a means to reduce the impact of
the unphysical interface width scale. Such limitations notwith-
standing, chromodynamic method is robust, transparent, has
low microcurrent and allows direct parametrization of inter-
facial tension, width [23], and the separated fluids’ viscosity
contrast [24], the interface propagation in the base model is
reasonably understood [25,26] (but see below) and different
color gradient (CG) models have been applied successfully to
numerical study of steady and unsteady flow [27–30].

Here we further investigate the fundamentals of the dy-
namics and kinematics of a chromodynamic MCLB interface,
when it separates fluids at density ratio �. Our data aim to
support results by Ba et al. [29] and Wen et al. [30], who
have benchmarked the technique in complex flow situations
using multirelaxation-time (MRT) collision schemes and gen-
eralizations of the segregation method of Ref. [17].

Use of an MRT collision scheme complicates the relation-
ship between model kinematics (which originate in the recolor
step—see Sec. II) and model dynamics (which is extracted
by Chapman-Enskog analysis) [31]. But MRT schemes have
the decisive advantage of stability. Hence, we develop a
Dellar-type MRT scheme, for chromodynamic MCLBE which
couples model kinematics and dynamics clearly. Taking this
model as representative of chromodymamic MRT schemes,
we extend previous work [31], to measure the extent to
which such models meet appropriate dynamic and kinematic
conditions. To achieve this, one should consider fully transient
flows. We do so, first with plane and, later, curved interfaces.
By making direct comparison with appended semianalytic
calculations, which invoke kinematic and dynamic conditions,
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FIG. 1. Schematic. Square D2Q9 lattice with our indexing con-
vention. Odd values of i identify the longer links.

we answer the questions to what extent do the lattice fluids
move together at the interface? and to what extent is the
continuous traction condition met?

We organize the paper as follows. In Sec. II we present
background detail of our model; in Sec. III we derive an MRT
scheme for it; in Sec. IV we present and use semianalytic
tests alongside refined versions of existing tests, to assess its
performance. In Sec. V, we present our conclusions. Details
are presented in the Appendices.

II. BACKGROUND: DENSITY DIFFERENCE
CHROMODYNAMIC MCLBE

Represent red and blue fluid components by distribution
functions Ri(r, t ) and Bi(r, t ), where

fi(r, t ) = Ri(r, t ) + Bi(r, t ). (1)

Above, i = 0, 1, .., (Q − 1) indexes the Q lattice links in
the model (Fig. 1). Let ρ = (ρR + ρB), ρR, ρB, δt , ciα , wi, u,

and cs denote nodal density, red nodal density, blue nodal den-
sity, time step, the α component of the ith lattice basis vector,
the weight for link i, fluid velocity, and the color-blind speed
of sound (or the geometrical lattice tensor isotropy constant),
respectively. Other symbols have their usual meanings. An
MRT collision scheme, for a single fluid subject to a body
force, Gα (r), has a kinetic equation

fi(r + δt ci, t + δt ) = fi(r, t ) −
Q−1∑
j=0

Ai j
[

f j (r, t ) − f (0)
j (ρ, u)

]
+ F1i + F2i, (2)

where, after Refs. [29,30], equilibrium f (0)
i is modified to

allocate mass away from rest link (i = 0), generating a density
contrast [29,30,32]:

f (0)
i (ρ, u) = ρφi + wiρ

(
uαciα

c2
s

+ uαuβciαciβ

2c4
s

− u2

2c2
s

)
, (3)

with

φi =
{

αRρR

ρ
+ αBρB

ρ
, i = 0,

kwi
[
(1 − αR) ρR

ρ
+ (1 − αB) ρB

ρ

]
, i �= 0,

(4)

where k = 9
5 , in D2Q9. Above, αR and αB are considered

shortly when discussing the role of φi.
In Eq. (2), Ai j is a collision matrix element and “sources”

F1i and F2i correct the dynamics for the effects of large density
contrasts and G, respectively [31]. Term F1i is expressed in
tensor Hermite polynomials,

F1i = wiTαβ (ρR, ρB, ρN ,�, u)
(
ciαciβ − c2

s δαβ

)
, (5)

and to embed G we use the form devised by Luo [33],

F2i = wi

[
G · ciα

c2
s

+ 1

2c4
s

(
1 − λ3

2

)

× (Gαuβ + Gβuα )
(
ciαciβ − c2

s δαβ

)]
. (6)

Term Tαβ and eigenvalue λ3 (which determines lattice fluid
kinematic viscosity) are considered in Appendix A. Note, we
assume force-adjusted macroscopic observables,

(ρR, ρB) =
∑

i

(Ri, Bi ), u =
∑

i fi(r, t )ci

ρ
+ G

2ρ
. (7)

Return now to the density contrast mechanism embedded
in f (0)

i and F1i. Parameters αR and αB are chosen such that

� = ρ0R

ρ0B
= c2

sB

c2
sR

=
(

1 − αB

1 − αR

)
, (8)

i.e., to control density contrast, �, via the sonic speed.
Equation (8) supports a condition for mechanical stability,
ρ0Rc2

SR = ρ0Bc2
SB, where ρ0C is the density deep within the

component C = R, B.
Components are identified by a color index ρN (r, t ),

ρN (r, t ) ≡
(

ρR (r,t )
ρ0R

− ρB (r,t )
ρ0B

)
(

ρR (r,t )
ρ0R

+ ρB (r,t )
ρ0B

) ∈ [−1, 1] (9)

[29,30,32], in terms of which interfacial tension is created by
the action of force,

G = 1
2σK∇ρN , (10)

where σ is the interfacial tension and the mean curvature is
measured as follows [16]:

K = ∇ · n̂, n̂ = −
( ∇ρN

|∇ρN |
)

, (11)

for a red drop, with the usual convention on surface normal,
n̂. Color field ρN is considered continuous, changing rapidly
only in the interfacial region. Its variation may be sharpened
[21,22] and it may be used to control kinematic viscosity,
by setting ν(ρN ) = 1

6 ( 2
λ3(ρN ) − 1) [24,34]. Kinetic-scale, post-

collision color segregation is an adaptation of Ref. [17],

C++
i (r, t ) = ρC (r, t )

ρ(r, t )
fi(r, t )+

±β
φi(r, t )ρR(r, t )ρB(r, t )

ρ(r, t )
n̂ · δt ĉi, (12)

where superscript + (++) denotes a post-collision (post-
recolor) quantity and β is a chosen parameter [17]. This
simple segregation rule is mass-conserving, local (given a
director, n̂) and “bottom-up,” i.e., a kinetic scale postulate. It
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is usually ignored in deriving macroscopic model behavior.
However, Eq. (12) is consistent with a modified equation for
uniform fluid motion [31],

DρR

Dt
+ 1

2
δt

∂2ρR

∂t2

= k

2
c2

s (1 − αR)δt∇2

(
ρ2

R

ρ

)
+ k

2
c2

s (1 − αB)δt∇2

(
ρRρB

ρ

)

+ 1

2
δt uαuβ∂α∂βρR − δtβ(1 − αR)kc2

s nγ ∂γ

(
ρ2

RρB

ρ2

)

− δtβ(1 − αB)kc2
s nγ ∂γ

(
ρRρ2

B

ρ2

)
+ 2δt c

4
s ∂α∂β

(
ρRTαβ

ρ

)
.

(13)

Above, the last term on the right-hand side originates in
correction term, F1i [see Eq. (5)]. Burgin et al. [31] give this
term for an LBGK collision model; on neglecting it they find
by solving Eq. (13): ρR(r, t ) = ρ0R

2 (1 + tanh(βn̂ · (r − ut )),
with equivalent behavior for ρB. When substituted in Eq. (9),
these variations reveal a smoothly varying color index:

ρN (r, t ) = tanh [βn̂ · (r − ut )]. (14)

Quantity ρN is a material invariant, at leading order—see
below. However, the last term in Eq. (13) constitutes an error
associated with pure advection, present even in uniform flow,
which is shown to restrict applicability of the method.

As remarked above, taking the order δt terms in Eq. (13),

∂ρR

∂t
+ uγ ∂γ ρR ≈ 0,

∂ρB

∂t
+ uγ ∂γ ρB ≈ 0, (15)

which is useful in deriving our MRT scheme, in Sec. III, where
Eq. (15) is taken to imply that on short timescales, t0, the color
index is an approximate material invariant, which eliminates
its t0 derivatives from the Euler equation.

Note, Eqs. (5), (6), and (10) require numerical gradients.
Typically, compact second-order stencils, relying on lattice
isotropies, are found to be sufficient in MCLBE but higher
order, noncompact versions (see Appendix B) are helpful
here.

III. MRT SCHEME FOR LARGE DENSITY DIFFERENCE
CHROMODYNAMIC MCLBE

Dellar [35,36] developed an MRT scheme for single com-
ponent flow, which was extended to accommodate the force,
G, used in chromodynamic lattice Boltzmann multicompo-
nent flow [24]. Here, we further adapt that method to com-
pletely immiscible fluids, with density contrast �, where it is
necessary to consider large density gradients in the region of
rapidly changing ρN .

Dellar’s is arguably the most aesthetic and logically con-
sistent MRT scheme. A is defined by its eigenvalues and
eigenvectors, only a subset of which must be chosen, a
majority being assigned in the Chapman-Enskog process.
Working from a weighted orthogonal modal basis introduced
by Junk [37], Dellar [35,36] devised an MRT scheme with less
coupling between the density, momentum, and stress modes
and the three “ghost” modes (in D2Q9) than is present in the
more commonly used MRT scheme of Lallemand and Luo
[38].

We derive, in Appendix A, an MRT scheme-based model,
generalized to chromodynamic immiscible fluids. Our anal-
ysis, performed in D2Q9, attempts to clarify the coupling
between collision and model kinematics. See also Ref. [31].
The resulting scheme involves a set of macroscopic modes,
h(p), defined in Table I; a majority representing observables,
e.g., momentum components.

We define a projection matrix, comprised of orthogonal left
row collision matrix eigenvectors, h(p), each a projector of a
particular mode, m(p),

M ≡ (h(0), h(1), · · · , h(8) )T ,

such that

(m(0), m(1), ..., m(8) )T = M f

= (
ρ, ρux, ρuy, σxx, σyy, σxy, N, Jx, Jy

)T

(see Table I). Above, column vector f ≡ ( f0, f1, ..., f8)T . We
define all the h(p) as weighted polynomial expressions in
the lattice basis of Fig. 1, because a subset (of the h(p)) are
naturally identified as such when deriving the dynamics; see
Appendix A. Project Eq. (2) using left multiplication by M,

M f+ = M f + M A M−1(M f (0) − M f ) + M F, (16)

TABLE I. Collision matrix eigenspectrum summary and notation. Left row eigenvectors (projectors), h(p)(p = 0, 1, ..., 8), corresponding
(i) mode m(p) ≡ ∑

i h(p)
i fi, (ii) eigenvalue, (iii) physical significance, and (iv) equilibrium.

Eigenvector Component Definition Eigenvalue, λp Mode, m(p) Physical interpretation Equilibrium, m(0)(p)

h(0) h(0)
i wi 0 ρ Density ρ

h(1) h(1)
i wicix 0 ρux x momentum ρux

h(2) h(2)
i wiciy 0 ρuy y momentum ρuy

h(3) h(3)
i wic2

ix λ3 
xx Momentum flux component 
(0)
xx

h(4) h(4)
i wic2

iy λ3 
yy Momentum flux component 
(0)
yy

h(5) h(5)
i wicixciy λ3 
xy Momentum flux component 
(0)

xy

h(6) h(6)
i gi λ6 N – 0

h(7) h(7)
i gicix λ7 Jx – 0

h(8) h(8)
i giciy λ7 Jy – 0
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where F is the column vector whose elements are Fi = F1i +
F2i. The projected evolution equation decomposes to forced
scalar relaxations for each mode,

m(p)+ = m(p) + λp(m(0)(p) − m(p) ) + S(p),

S(p) =
8∑

j=0

MpjFj, p = 0, 1, 2, ..., (Q − 1). (17)

In Eq. (17), we use the properties of the h(p),
from which M A = � M, i.e., � = M A M−1, with � ≡
diag(λ0, λ1, ..., λ8). Note, zero eigenvalues are associated
with physical modes subject to conservation principles.

Developing an MRT scheme now reduces to specifying
equilibria, m(0)(p), and sources S(p), such that a Chapman-
Enskog expansion of the kinetic scale dynamics predicts that
the physical modes (Table I) conform with the continuity and
Navier-Stokes equations; see Appendix A.

An advantage of Dellar’s approach is that M may be
inverted, using lattice isotropies. The modal evolutions in
Eq. (17) are inverted to yield f+ = M−1 m+. So the post-
collision distribution function is constructed directly from
post-collision m(p)+,

f +
i = (M )−1

i j m+
j

= wi

{[
2 − 3

2

(
c2

ix + c2
iy

)]
ρ + 3((ρux )+cix + (ρuy)+ciy)

+ 9

2

(

+

xxc2
ix + 2
+

xycixciy + 
+
yyc2

iy

) − 3

2
(
+

xx + 
+
yy)

+ 1

4
giN

+ + 3

8
gi(J

+
x cix + J+

y ciy)

}
,

with (ρux )+, (ρuy)+, ρ+, 
+
xx, 
+

xy, 
+
yy, N+, J+

x , and J+
y given

explicitly in Eqs. (A36)–(A41). Of course, color is finally
reallocated according to Eq. (12).

Tensor Tαβ in Eqs. (5) and (13) is shown, in Appendix A,
Eq. (A29), to be identical to that of Burgin et al. [31], for an
LBGK model.

IV. RESULTS AND DISCUSSION

The accuracy of our multicomponent scheme of Sec. III
is assessed against the conditions of mutual impenetrabil-
ity (model kinematics) and the viscous stress transmission
(model dynamics). Transfer of momentum between immisci-
ble fluids is controlled by boundary conditions which refer to
both kinematics and dynamics. In Appendix C we present two
transient test-bench flows which rely upon these conditions
which we compare with data. We mainly consider here the dy-
namics of the scheme, its kinematics having been effectively
assessed by Burgin et al. [31], on the following argument.

Whilst the work of Burgin et al. uses an LBGK collision
method (to highlight the connection between the model kine-
matics and dynamics), the key tests applied consider perfor-
mance in uniform flow, with a flat interface i.e., G = 0. In this
regime, there is no practical distinction between the operation
of MRT and LBGK schemes. Put another way, Burgin’s
simulation data applies to the chromodynamic MCLBE MRT
method of Sec. III. (note, however, we have confirmed this
explicitly). Moreover, the kinetic equation source due from

FIG. 2. Velocity variation for the test illustrated in Fig. 9. Simu-
lation data are represented by crosses and semianalytic theory (which
accounts for the transverse variation of the density) by the continuous
line. For these data, Lx = 200, αB = 0.2, αR = 0.9, � = 8, νR =
νB = 0.333, β = 0.4.

density difference effects [see Eqs. (5)], is identical to that for
LBGK collision.

We consider here curved fluid-fluid interfaces, as well as
plane interfaces. No assessment would be complete without
some consideration of the interfacial microcurrent. For all the
data presented below, we relax the ghost modes of our MRT
scheme to equilibrium, i.e., λ7 = λ8 = 1.

A. Plane interfaces

The data in Fig. 2 compare simulation and theory. We
test the steady-state of uni-directional, pressure-driven flow,
with the transverse density stratification illustrated in Fig. 9.
Note, we do not benchmark against the solution for discon-
tinuous variation of density (see, e.g., Ba et al. [29]). Instead,
we compare simulation data (crosses) with a semianalytical
solution in Appendix D, which accounts for the effects of
continuous variation of density at the interface (continuous
line). For these data, the simulation width Lx = 200, αB =
0.2, αR = 0.9 (corresponding to a density contrast between
separated components’ bulk of � = 8) and νB = νR = 0.333.
These data compare well with theory and data generated by
identical tests applied to the MRT schemes of Ba et al. [29],
which are based upon equivalent MCLBE interface schemes
and traditional MRT collision operators. Note, however, that
we find it necessary to use high order stencils of Appendix B
to compute density gradients.

It is important to note that steady-state data in Fig. 2 do not
verify instantaneous compliance with kinematic (impenetra-
bility) and dynamic (continuous traction) conditions [14,39].
For that, one needs a transient flow. Semianalytical solutions
for multicomponent flow with flat and curved interfaces,
which reference the key boundary conditions at issue are
derived in Appendix C.
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CHROMODYNAMIC MULTIRELAXATION-TIME LATTICE … PHYSICAL REVIEW E 102, 013309 (2020)

FIG. 3. Flow at a flat, sheared interface; comparison of simulation data (crosses) and a semianalytical solution (see Appendix C), for a
large range of density contrasts, �. For these data, shear viscosity η = 0.166, while kinematic viscosity ν = η

ρ
changes. The interface centers

on x = 500 lattice units, with the fluid on the right the denser. The fluid on the left (right) is moving south (north) initially. For panels (a)–(d),
� = 1, 20, 31.25, 50, respectively. These data confirm continuity of velocity and correct transmission of stress across a flat, sheared interface.

In Appendix C, we consider the temporal decay of unidi-
rectional flows of two liquids of different density separated
by a flat interface. The systems have defined initial velocity
profile and the motion decays to rest. The geometry and flow
initial conditions defining our tests are shown schematically
in, e.g., Fig. 7. The density and, with it, the kinematic viscosity
change at the interface, which is tangentially sheared. We
have obtained analytical benchmarks for this problem, in the
sharp interface limit, in Appendix C, using Sturm-Liouville
theory [40] straightforwardly. Figure 3 compares simulation
data (crosses) and the analytical solution, for a large range
of density contrasts, � (see caption). For these data, shear
viscosity η = 0.166 and segregation parameter β = 0.5 are
constant whilst kinematic viscosity ν = η

ρ
changes. This

change is assumed discontinuous in Appendix C, whereas
in simulation density varies across the interface. Even so, it
is clear that these data confirm continuous operation of the
continuous traction condition across the interface, not simply
that the correct steady-state profile is obtained. This assertion
is support by the data in Table II, which shows the domain-
average, relative error between the semianalytic solution for

TABLE II. Time variation of error ε(t ) of Eq. (18).

Lattice relative error (%)

T(lu) � = 10 � = 20 � = 31.25 � = 50

1000 0.299 0.560 0.754 0.979
10 000 0.114 0.199 0.252 0.300
20 000 0.080 0.135 0.167 0.196
50 000 0.047 0.075 0.092 0.115

u(x, t ), and the simulated solution, u∗(x, t ),

ε(t ) =
∑

i |u(xi, t ) − u∗(xi, t )|2
max[u∗(xi, t )]2

, (18)

which never exceeds 1%. Above, xi denotes the discrete, “on-
lattice” value of the transverse coordinate. In Fig. 3 the denser
fluid is on the right. Its greater density means that it is not
accelerated by the traction of the fluid on the left, as strongly
as the the fluid on the left is accelerated by the traction of the
fluid on the right.

Note that data were matched between simulation and
theory by equating the nondimensional groups which scale
the MCLBE dynamics and the corresponding unidirectional
Navier-Stokes equation [Eq. (C1)], as follows: ν(λ3 )∗T ∗

H∗2 = νT
H2 ,

where the quantities with (without) asterisks are in lattice
(physical) units. From this, we find the simulation time

TABLE III. Microcurrent activity for a range of separated com-
ponents’ density contrast. For these data, the interface curvature
calculation [see Eq. (10)] has been replaced by assigning K = 1

R .
The full flow field for the case of � = 10 is shown in Fig. 4(a).

MRT : Fixed K

� αB αR |u|max × 105

0.001 0.9995 0.5000 11.2
0.010 0.9950 0.5000 1.0
0.100 0.9500 0.5000 3.64 × 10−4

10 0.5000 0.9500 1.32 × 10−4

100 0.5000 0.9950 1.8
1000 0.5000 0.9995 7.8
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TABLE IV. Microcurrent activity for a range of separated com-
ponents’ density contrast. The full flow field for the case of � = 10
is shown in Fig. 4(b). The curvature is calculated using stencils here.

MRT : Calculated K

� αB αR |u|max × 105

0.001 0.9995 0.5000 11.2
0.010 0.9950 0.5000 3.3
0.100 0.9500 0.5000 1.0 ×10−1

10 0.5000 0.9500 1.8 ×10−2

100 0.5000 0.9950 1.8
1000 0.5000 0.9995 7.8

corresponding to physical time T as

T ∗ = ν

ν(λ3)

(
H∗

H

)2

T . (19)

B. Curved interfaces

Consider now curved interfaces in two dimensions.
The expected dependence of the interfacial pressure step

on surface tension parameter, σ was, naturally, confirmed for
the range of � ∈ [10−3, 103] (the range of data in Tables III
and IV) and σ ∈ [0, 0.2]. We proceed to consider other tests.

1. Interfacial microcurrent

We study a red drop, initialized with radius R = 60, on
a lattice of size 200 × 200, with periodic boundary condi-
tions. An interfacial microcurrent is present in all MCLBE
models—see Fig. 4. It has been argued [41] that microcurrent
circulation is a “correct” hydrodynamic response to applica-
tion of a force, or perturbation, which is not native to the
continuum scale (where an interface is discontinuous). We
return to this point shortly.

For the particular case of chromodynamic MCLBE, the
spatial pattern of nonisotropic numerical errors not offset by
pressure (density) changes drive a persistent circulation. The
source of numerical error lies in derivatives, discretization
error associated with the Chapman-Enskog and the recolor
step. With an interface force, setting K = 1

R (i.e., circumvent-
ing a numerical calculation of K) after Eq. (10) significantly
reduces microcurrent activity [41]. Figure 4 compares the
microcurrent flow field, at � = 10, for calculated and fixed
curvature drops. Flow field vectors are normalized in each
plot. The flow in the case of fixed curvature is actually much
weaker (refer to Tables III and IV) and more restricted to the
interfacial region. We will return to this matter shortly.

With � = 1 (no density contrast), numerical error derives
only from the interface force, with the dominant contribution
arising from calculation of local interface curvature, K . In the
presence of component density differences, we introduce a
need to correct the dynamics, which, as we see in Sec. III, in-
troduces strong interfacial density gradients. Evolution equa-
tion source terms which rely on numerical derivatives of
density add error to that already present in the Lishchuk, or
interface force. Here, we make a quantitative assessment of
the impact of that additional error.

FIG. 4. Normalized microcurrent flow excerpt for � = 10 in the
vicinity of a drop, radius R = 20 for (a) constant curvature K = 1

R
and (b) numerically calculated curvature K = ∇sρ

N . See Tables III
and IV to scale these velocity fields. Note, the circulation in the case
of fixed curvature [panel (a)] is more localized.

We present microcurrent data for a range of separated
components’ density contrast, �, in Tables III (fixed K) and
IV. Based on the above discussion, the magnitude of the
microcurrent depend on � (and, of course, |G|), but is largely
independent of collision scheme. This is confirmed in the data
in Tables III and IV. (We note that changing the collision
model to an LBGK scheme does not alter any of these data
by more that a few percent.) For small �, when density
contrast correction terms are small, the domain maximum
microcurrent flow velocity magnitude, |u|max = max(|u|), is
small. As the value of � increases (or decreases, in case of a
rare drop) the microcurrent intensity increases.

For small �, the microcurrent regime is different, now
being dominated by the interface force. First, we note a
dramatic reduction in microcurrent recorded in both Tables III
(fixed K) and IV, as interfacial density gradients reduce in
size. Second, in comparing data for � ∈ [10, 0.1] between
Tables III (fixed K) and IV, we observe the signature reduction
in microcurrent activity when we eliminate reliance on a K
computed from second numerical gradients.
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FIG. 5. Low Re internal flow past a tethered, cylindrical drop for � = 5. Flow outside the drop has been suppressed in these data. Panel
(a) shows the total flow, in which the velocity field clearly has a nonphysical component perpendicular to the interface. Panel (b) shows the
microcurrent error, measured from the frozen phase field from panel (a), without external flow, and panel (c) shows the physical flow exposed
by subtracting the microcurrent in panel (b). The solid black line represents the center of the interface between the fluids (ρN = 0 contour).
The internal flows are clearly parallel to the interface, as is the external flow (not shown).

For larger density contrasts, where the principal cause of
the circulation is presumably density contrast, the data of
Tables III and IV both comply with a scaling |umax| ∼ 7.4 ×
10−3�.

2. Kinematics of curved interfaces

Previous work [31] considered kinematics of a flat in-
terface. Figure 5(c) shows the flow (once the microcurrent
is subtracted), which is produced when blue fluid passes a
tethered, cylindrical red drop, for density contrast � = 5. The
Reynolds number must be kept very small here, to restrict
deformation, and the drop is held spherical by large surface
tension. Hence, these data correspond to the challenging
regime of small Reynolds and capillary number. This accounts
for the large microcurrent. The resulting Stokes’ regime flow
of internal and external fluid is apparently tangential to the
curved interface at all points and continuous across it, i.e.,
we observe that, in the interfacial region, vn = 0, vt = con-
tinuous. This accords with the kinematic condition of mutual
impenetrability. Note that the flow in Fig. 5(c) is not the solved
flow past a three-dimensional spherical drop.

3. Dynamics of curved interfaces

In Appendix C, we consider the temporal decay of a “uni-
directional” flow of two liquids of different density separated
by a curved interface. For this test, the system again has
a defined initial velocity profile and the motion decays to
rest. The geometry and flow initial conditions defining our
test are shown schematically in Fig. 8. The assumed density
and, with it, the kinematic viscosity change at the interface,

which is tangentially sheared. In all cases, the denser fluid
is on the left, which accounts for its smaller acceleration.
We have obtained an analytical solution for this problem,
in the sharp interface limit in Appendix C, using adapted
Sturm-Liouville theory. Figure 6 compares simulation data
(crosses) and the analytical solution, for range of density
contrasts, � (see caption) which is, note, smaller than that
in Fig. 3. This reduction reflects the introduction of a curved
interface. For these data, R0 = 120, R = 360, shear viscosity
η = 0.333 segregation parameter β = 0.3 are constant, while
kinematic viscosity ν = η

ρ
changes. This change is assumed

discontinuous in the treatment of Appendix C, whereas in
simulation density varies across the interface. Even so, these
data confirm correct transient transmission of stress across the
interface in our model, not simply that the correct steady-state
profile is obtained.

Introduction of curvature undoubtedly reduces range of
density contrast available to method whilst producing cor-
rect interfacial conditions but, in general, data presented in
this section confirm that chromodynamic MRT schemes with
density difference do recover correct boundary conditions at
interface.

V. CONCLUSIONS

Using a single fluid formulation, we have developed a
convenient, multiple-relaxation-time (MRT) collision scheme
multicomponent lattice Boltzmann scheme (MCLBE) for sim-
ulating completely immiscible fluids with a density contrast,
�, using the chromodynamic variant. Our technique is based
upon the method of Dellar [35,36]. The model evolves a set of
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FIG. 6. Flow at a curved, sheared interface; comparison of simulation data (crosses) and semianalytical solution (see Appendix C) for a
range of density contrasts, �. For these data, shear viscosity η = constant, while kinematic viscosity ν = η

ρ
changes. In all panels the interface

centers on r = 120 lattice units, with fluid on the left the denser. The fluid on the left (right) is in uniform rotation (at rest), initially. For panels
(a)–(d), � = 1, 2, 3, 5, respectively, which is smaller than the range of � shown in Fig. 3. These data confirm continuity of velocity and
correct transmission of stress across a curved interface.

physical and nonphysical (ghost) modes of the system, equal
in number to the cardinality of lattice basis set, then constructs
an explicit distribution function a posteriori. We place all
corrections to the target dynamics (the weakly compress-
ible Navier-Stokes equations) in the kinetic-scale evolution
equation. Significantly, the latter relies on density gradients,
which can be large when � is large, which limits applications
to moderate density contrast. We present in the appendices
enhanced (but noncompact) stencils for gradient calculation
which improve performance.

Equivalent MRT schemes, due to Ba et al. [29] and, earlier,
Liu et al. [32] pioneered our essential approach. These authors
showed the clear benefits of MRT collision models in bench-
marking against complex flow simulations. To compliment
this work, we focus, here, on fundamental, physical compli-
ance in chromodynamic MCLBE MRT schemes. We produce
data which compare well with the steady-state tests devised
by Ba et al. [29], but also with new theory, as follows. We
assess our model dynamics against semianalytical solutions
to transient flow test cases which reference, explicitly, the
kinematic condition of mutual impenetrability and dynamic
interface boundary condition of continuous traction. Broadly,
data compare well with these solutions, confirming satisfac-
tory, instantaneous compliance with kinematic and dynamic
conditions at the simulation interface.

While the Dellar-type MRT scheme we develop here
is operationally equivalent to that of Ba et al., it has an
advantage. Practically, it has improved implementability—a
post-collision distribution function is explicitly constructed
from modes with simple, scalar relaxation. Theoretically,
the connection between model kinematics and dynamics is

visible. This is a consequence of placing all density-difference
dynamics corrections in the kinetic scale source term.

MCLBE MRT schemes are not without limitations:
the well-known MCLBE interfacial microcurrent. Here our
simulations of curved interfaces suggest that it may be re-
moved completely from steady state simulations. Further, data
presented for curved interfaces conform to our understanding
of the interfacial microcurrent (see Ref. [41]), but the expected
effect of dynamics corrective terms increases microcurrent
activity associated with the method, roughly in proportion to
�, with the contribution to the spurious signal greater than
that arising from the surface tension perturbation for � > 10.

APPENDIX A: MULTIRELAXATION-TIME SCHEME
FOR FORCED, DIPHASIC FLUIDS WITH

LARGE DENSITY CONTRASTS

We derive the Navier-Stokes equations from the multiple-
relaxation-time (MRT) lattice Boltzmann equation, adapted
for multicomponent applications with a large density differ-
ence between completely immiscible components, where a
body force is present. The latter is necessary to carry the
interface force.

In the interest of a compact literature, we retain the overall
structure of the analyses of Guo et al. [19], Dellar [35,36] and
Hou et al. [42]. Our analysis, whilst based in D2Q9, gener-
alizes straightforwardly. We choose to extend the scheme of
Dellar because it is efficient (due to a careful choice of non-
hydrodynamic modes N , Jx and Jy), robust, straightforward to
implement and, not least, logical. In this section

∑
i is used as

an abbreviation for
∑(Q−1)

i .
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At the kinetic scale, the forced MRT LBE for a system
subject to an “external” force term can be expressed as

fi(x + ciδt , t + δt )

= fi(x, t ) +
∑

j

Ai j
[

f (0)
j (x, t ) − f j (x, t )

] + δt Fi, (A1)

where the density-difference supporting equilibrium which
distributes mass away from the rest ( j = 0) link via term φ j ,
is in the form of

f (0)
j = ρφ j + ρw j

(
3uαc jα + 9

2
uαuβc jαc jβ − 3

2
uγ uγ

)
,

(A2)
and where the kinetic equation source term, Fi, is assumed to
have the following properties,

∑
i

(1, ci, cici )Fi = (0, nG, C + CT ), (A3)

where scalar n and symmetric tensor, (C + CT ), are to be
determined.

We first set out the basics, then proceed to the Chapman-
Enskog analysis to obtain the thermodynamic limit of the
kinetic scheme defined in Eq. (A1) (i.e., find appropriate
expressions for tensor C, which represents the crux of the
problem of recovering correct hydrodynamics with the MRT
scheme), then we transform to a modal description, and
finally, we invert that transformation to obtain an explicit
expression for the post-collision distribution function.

To maintain parity with the analysis of Guo et al. [19] at
the outset, we now relax the definition of lattice velocity in
Eq. (7) as follows:

ρu =
∑

i

fi(r, t )ci + mG, (A4)

with m a constant to be determined.
Dellar’s [35,36] eigenvalues and corresponding left row

eigenvectors for the collision matrix Ai j can be tabulated as
in Table I, where we define


αβ ≡ 

(0)
αβ + 


(1)
αβ, (A5)

for α, β = x, y, and the 

(p)
αβ have the usual meaning,



(p)
αβ =

∑
i

f (p)
i ciαciβ, p = 0, 1. (A6)

Mode 
αβ will be seen, shortly, to include the momentum
flux and viscous stress tensors. As set-out in Table I, matrix
Ai j has the following properties which, it will be seen, are
necessary to recover correct hydrodynamics,

∑
i

(1i, ciα, ciαciβ )Ai j = (0, 0, λ3c jαc jβ ). (A7)

Here α and β represent either x or y. We also assume that
the lattice basis ci and the corresponding weights wi have

properties ∑
i

wi = 1,
∑

i

wi(ciα )2p+1 = 0, p � 0,

∑
i

wiciαciβ = 1

3
δαβ,

∑
i

wiciαciβciγ ciθ = 1

9
(δαβδγ θ + δαγ δβθ + δαθ δβγ ), (A8)

where δαβ is the Kronecker δ. Weightings wi are those of Qian
et al. [43] and, later, Hou et al. [42]: w0 = 4

9 , wodd = 1
36 ,

weven = 1
9 . Figure 1 shows our definition and indexing of

links.
Note that the six left row eigenvectors h(0) · · · h(5), which

appear in Eqs. (A7) and Table I, are linearly independent but
not orthogonal. We will return to this matter. We follow Dellar
[35,36] in selecting the other three “ghost” eigenvectors, or
basis vectors (see Table I) as

g0 = 1, godd = 4, geven = −2. (A9)

We note that Benzi et al. [44,45] used a qualitatively similar
basis.

Our equilibrium distribution function f (0)
i may easily be

shown to have the following necessary properties:∑
i

[1, ciα, ciαciβ ] f (0)
i (ρ, u)

= [ρ, ρuα, (2φ1 + 4φ2)ρδαβ + ρuαuβ]. (A10)

Note, φ1 and φ2 depend upon the chromodynamic field
[see Eq. (4)], so the spatial-temporal variation of the isotropic
term of the second moment is modified:

∑
i f (0)

i ciαciβ =
{ 3

5 [(1 − αR)ρR + (1 − αB)ρB]δαβ + ρuαuβ}, with the varia-
tion of the speed of sound between blue components now
apparent, since c2

sR = 3
5 (1 − αR), c2

sB = 3
5 (1 − αB).

We now proceed with a Chapman-Enskog expansion of
the kinetic equation and distribution function. To reflect the
changes occurring at different timescales, we write

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · , (A11)

∂

∂t
= ∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
· · · (A12)

Parameter ε can be interpreted as the Knudsen num-
ber. Assuming that density and velocity are not to be ex-
panded in ε, the assumptions in Eq. (A10) imply

∑
i f (p)

i =
0 and

∑
i f (p+1)

i ci = 0, (p � 1), but note Eq. (A4) implies∑
i f (1)

i ci = −mGδt .
Consider the most rapid behavior in the model. Applying

the above expansions, we have

O(ε) : (ciα∂α + ∂t0 ) f (0)
i = − 1

δt

∑
j

Ai j f (1)
j + Fi. (A13)

Summing (i.e.,
∑

i) Eq. (A13) and using Eqs. (A3) and
(A7),

D

Dt0
ρ = 0. (A14)
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For the counterpart result in the model kinematics, we use
Eq. (15) as DρR

Dt = DρB

Dt = 0, from which [31],

DρN

Dt0
= 0. (A15)

Multiplying Eq. (A13) by cix (say), summing and using
Eqs. (A3) and (A7) result in an Euler equation,

∂α
(0)
αx + ∂t0ρux = nGx. (A16)

Equation (A16) differs from Eq. (10b) in Ref. [19], since
the latter couples n, m, and τ (LBGK collision parameter).
Here, we recover the appropriate Euler equation by setting
n = 1 with, note, no constraint on m at O(ε).

At slower O(ε)2, the Chapman-Enskog expansion is

O(ε2) : ∂t1 f (0)
i + (ciα∂α + ∂t0 ) f (1)

i

− 1

2

(
ciα∂α + ∂t0

) ∑
j

Ai j f (1)
j

= −1

2

(
ciα∂α + ∂t0

)
δt Fi. (A17)

Summing (i.e.,
∑

i) Eq. (A17) and simplifying gives

∂t1ρ = 0, (A18)

having set (m − n
2 ) = 0. This is equivalent to Eq. (13a) of

Ref. [19]. Constants m and n are now determined for our MRT
scheme,

n = 1, m = 1
2 . (A19)

Multiply Eq. (A17) by ciy (say), sum, identify the second-
order moment using Eq. (A3), and use Eqs. (A7) and (A19),

∂t1 (ρuy) = ∂ασ ′
αy, (A20)

where the viscous stress tensor σ ′
αy is

σ ′
αy = −

(
1 − λ3

2

)

(1)

αy − δt

4
(Cαy + Cyα ). (A21)

Equation (A20) is the MRT equivalent of Eq. (13b) in
Ref. [19]. (Our assignment m = 1

2 accords with Guo et al. but
their constraint (n + m

τ
) = 1 does not arise here.)

So far, our approach parallels that of Ref. [19] but our use
of an MRT scheme means we must proceed to an expression
for 


(1)
αβ via a second moment of Eq. (A13) (i.e., multiply by

ciαciβ and sum). After algebra,

λ3



(1)
αβ

δt
= − 2ρ

3
Sαβ − uα (Gβ − ∂β�′) − uβ (Gα − ∂α�′)

+
[

uγ ∂γ �′ − 1

3
ρ∂γ uγ

]
δαβ + 1

2
(Cαβ + Cαβ ),

(A22)

where Sαβ = 1
2 (∂αuβ + ∂βuα ), and we have defined

�′ = 3
5 (1 − αR)(ρR + �ρB) − 1

3ρ. (A23)

To obtain 

(1)
αβ in Eq. (A22), multiply Eq. (A13) by ciαciβ ,

sum, substitute the definition of f (0)
i [Eq. (3)], use Eqs. (A7)

to introduce eigenvalue λ3, and, crucially, use Eq. (A15) (i.e.,

the model kinematics) to eliminate terms like ∂
∂t0

(2φ1 + 4φ2)

[31]. That is, the form of 

(1)
αβ in Eq. (A22) relies on the

fact that ρN is a material invariant, on the shortest timescales.
Use the viscous stress definition, Eqs. (A21) and (A22), and
simplify,

σ ′
αβ

δt
= − 1

2λ3
(Cαβ + Cβα ) + 2

3

(
1

λ3
− 1

2

)
ρSαβ

+
(

1

λ3
− 1

2

)
[uα (Gβ − ∂β�′) + uβ (Gα − ∂α�′)]

−
(

1

λ3
− 1

2

)[
uγ ∂γ �′ − 1

3
ρ∂γ uγ

]
δαβ.

(A24)

The discrepancy between the desired result (a term in
ρSαβ ) and Eq. (A24) defines an error,

Eαβ = − 1

2λ3
(Cαβ + Cβα ) +

(
1

λ3
− 1

2

)
[uα (Gβ − ∂β�′)

+ uβ (Gα − ∂α�′)] −
(

1

λ3
− 1

2

)

×
[

uγ ∂γ �′ − 1

3
ρ∂γ uγ

]
δαβ. (A25)

Therefore, we make the following choice for Cαβ :

Cαβ =
(

1 − λ3

2

)
[uα (Gβ − ∂β�′) + uβ (Gα − ∂α�′)]

−
(

1 − λ3

2

)[
uγ ∂γ �′ − 1

3
ρ∂γ uγ

]
δαβ, (A26)

whence, from Eq. (A24), σ ′
αβ = 2

3 ( 1
λ3

− 1
2 )ρSαβδt , so our

model’s kinematic viscosity is ν = 1
6 ( 2

λ3
− 1). Further, we are

also now able to write a local expression for the viscous stress
in our large density difference model from Eqs. (A6) and
(A21),

σ ′
αβ = −

(
1 − λ3

2

) ∑
i

f (1)ciαciβ + δt

4
(Cαβ + Cβα ), (A27)

with Cαβ defined in Eq. (A26). With this Cαβ , source Fi in
Eq. (A1) is partitioned into a term responsible for correcting
for density gradients associated with component changes, F1i,
and one for the interface force F2i,

Fi = F1i + F2i, (A28)

where, conforming to Eq. (5),

Tαβ = 1

2c4
s

(
1 − λ3

2

){
1

3
ρ∂γ uγ δαβ

− (uα∂β�′ + uβ∂α�′ + uγ ∂γ �′δαβ )

}
, (A29)

and Eq. (6) gives F2i (which differs significantly from that Guo
et al. derive, for a uniform density LBGK).

We now turn to the modal projection. We encapsulate
the collision source term within the evolution of the modes
defined in Table I. In doing so, the advantages of Dellar’s
MRT scheme are preserved and we shall be able to produce
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a collision step which is particularly implementable. Define
matrix left row eigenvectors,

M ≡ (h(0), h(1), · · · , h(8) )T , (A30)

such that

m = M f = (ρ, ρux, ρuy, σxx, σyy, σxy, N, Jx, Jy )T . (A31)

Equation (A1) is left multiplied by M,

M f+ = M f + M A M−1(M f (0) − M f ) + M F, (A32)

where F denotes the column vector with elements Fi, and f ,
f+, and f (0) are column vectors. h(n) are left (row) eigenvectors
of A, hence M A = � M, or

� = M A M−1, � = diag(λ0, λ1, · · · λ8), (A33)

where λ0 = λ1 = λ2 = 0, λ3 = λ4 = λ5, and λ7 = λ8. There-
fore, Eq. (A32) may be written

m(p)+ = m(p) + λp(m(0)(p) − m(p) ) + S(p),

p = 0, 1, .., (Q − 1), (A34)

the projection of Fi in Eq. (A1) giving modal source,

S(p) =
∑

j

MpjFj . (A35)

We aim to determine the S(p), then to invert the transfor-
mation in Eq. (A32). Bearing in mind the structure of M, it is
straightforward to show

S(0) = h(0) · F =
∑

i

h(0)
i Fi = A ≡ 0,

S(1) = h(1) · F =
∑

i

h(1)
i Fi =

∑
i

cixFi = nFxδt ,

S(2) = h(2) · F =
∑

i

h(2)
i Fi =

∑
i

ciyFi = nFyδt ,

S(3) = h(3) · F =
∑

i

h(3)
i Fi =

∑
i

c2
ixFi = Cxx,

S(4) = h(4) · F =
∑

i

h(4)
i Fi =

∑
i

c2
iyFi = Cyy,

S(5) = h(5) · F =
∑

i

h(5)
i Fi =

∑
i

cixciyFi

= 1

2
(Cxy + Cyx ),

S(6) = h(6) · F =
∑

i

h(6)
i Fi =

∑
i

giFi

= −1

2
(Cxx + Cyy),

S(7) = h(7) · F =
∑

i

h(7)
i Fi =

∑
i

gicixFi = 0,

S(8) = h(8) · F =
∑

i

h(8)
i Fi =

∑
i

giciyFi = 0.

Note, source Fi has no projection onto the nonhydro-
dynamic modes N , Jx, Jy. Projections of f (0) are also

required:

h(0) · f (0) =
∑

i

h(0)
i f (0)

i =
∑

i

1i f (0)
i = ρ,

h(1) · f (0) =
∑

i

h(1)
i f (0)

i =
∑

i

cix f (0)
i = ρux,

h(2) · f (0) =
∑

i

h(2)
i f (0)

i =
∑

i

ciy f (0)
i = ρuy,

h(3) · f (0) =
∑

i

h(3)
i f (0)

i =
∑

i

c2
ix f (0)

i = 
(0)
xx

h(4) · f (0) =
∑

i

h(4)
i f (0)

i =
∑

i

c2
iy f (0)

i = 
(0)
yy ,

h(5) · f (0) =
∑

i

h(5)
i f (0)

i =
∑

i

cixciy f (0)
i = 
(0)

xy ,

h(6) · f (0) =
∑

i

h(6)
i f (0)

i =
∑

i

gi f (0)
i

= 9

5
αRρR + 9

5
αBρB − 4

5
ρ,

h(7) · f (0) =
∑

i

h(7)
i f (0)

i =
∑

i

gicix f (0)
i = 0,

h(8) · f (0) =
∑

i

h(8)
i f (0)

i =
∑

i

giciy f (0)
i = 0.

We now find from Eq. (A34) and Table I the following
“forced” modal evolution equations:

i = 0 : ρ+ = ρ, (A36)

i = 1 : (ρux )+ = ρux + nFxδt , (A37)

i = 2 : (ρuy)+ = ρuy + nFyδt , (A38)

i = 3 · · · 5 : (
αβ )+ = 
αβ − λ3
(

αβ − 


(0)
αβ

)
+ δt

2
(Cαβ + Cβα ), (A39)

i = 6 : N+ = N − λ6N, (A40)

i = 7, 8 : J+
α = Jα − λ7Jα, (A41)

where subscripts α, β = x, y. We note the simple form of the
relaxation equations for m(6) · · · m(8), i.e., N , Jx, Jy, which for
λ6 = λ7 = 1, reduce to N+ = J+

x = J+
y = 0.

Having found the forced evolution equations for all the
modes m(p), we turn at last to the inversion, from mode space,
directly to obtain the distribution function. We define column
vectors k(p):

k(0)
i = 2wi − 3

2
wi

(
c2

ix + c2
iy

)
, (A42)

k(1)
i = 3wicix, (A43)

k(2)
i = 3wiciy, (A44)

k(3)
i = 9

2
wic

2
ix − 3

2
wi, (A45)

k(4)
i = 9

2
wic

2
iy − 3

2
wi, (A46)

013309-11



J. SPENDLOVE et al. PHYSICAL REVIEW E 102, 013309 (2020)

k(5)
i = 9wicixciy, (A47)

k(6)
i = 1

4
giwi, (A48)

k(7)
i = 3

8
giwicix, (A49)

k(8)
i = 3

8
giwiciy. (A50)

It is straightforward, using the isotropy lattice properties
expressed in Eqs. (A7) to show the k(p)s have the property
h(p) · k(p′ ) = δpp′ , and hence

M−1 = (k(0), k(1), · · · , k(8) ). (A51)

Having found M−1, it is now possible to reconstruct a post-
collision distribution function vector f+ = M−1 m+ which, on
appeal to Eq. (A34), gives

f +
i = (M )−1

i j m+
j

= wi

{[
2 − 3

2

(
c2

ix + c2
iy

)]
ρ + 3((ρux )+cix + (ρuy)+ciy)

+ 9

2

(

+

xxc2
ix + 2
+

xycixciy + 
+
yyc2

iy

) − 3

2
(
+

xx + 
+
yy)

+ 1

4
giN

+ + 3

8
gi(J

+
x cix + J+

y ciy)

}
,

with the (ρux )+, (ρuy)+, ρ+, 
+
xx, 
+

xy, 
+
yy, N+, J+

x , and J+
y

determined in Eqs. (A36)–(A41) above. Species or color is
finally reallocated according to Eq. (12).

Sources S(p) which rely on kinetic equation source term
Fi may require spatial numerical derivatives of, e.g., density.
Computation of such derivatives is important for scheme
stability and accuracy. The latter is enhanced by use of higher-
order stencils, as discussed below.

APPENDIX B: HIGH-ORDER LATTICE STENCILS

It is possible to exploit lattice tensor isotropy, to develop
noncompact stencils of any chosen order of accuracy for first
gradient quantities. Thampi et al. have given a similar treat-
ment of this essential approach [46] but based around the other
gradient quantities (the Laplacian). Consider a scalar function
denoted f . No confusion with the color-blind distribution
function, fi, should arise from use of this notation. A multi-
variate Taylor expansion, on the lattice, of function f (r) may
be written: f (r + Nci ) = f (r) + ∑∞

n=1
Nn

n! (c · ∇)n f . Taking
moments of this expansion with wicix and appealing to lattice
properties Eq. (A8), we straightforwardly obtain

∑
i

wi f (r + Nci )cix = N

3

∂ f

∂x
+

∞∑
n=2

N (2n−1)

(2n + 1)!
E(2n−1),

(B1)
where N ∈ Z+, and we define the mth error term

E(m) =
(

Q∑
i=1

wicixciα1 ciα2 ..ciαm

)(
∂m f

∂xα1∂xα2 ...∂xαm

)
. (B2)

We do not need expressions for the E(m) to eliminate them.

Let us obtain a noncompact stencil for ∂ f
∂x , correct to (say)

fifth order, using straightforward linear algebra methods. Take
N = 1, 2, 3 in Eq. (B1) and truncate each equation at n > 3,
to obtain three equations (one for each choice of N). These
three equations may be written as follows:⎡

⎢⎣
∑

i wi f (r + ci )cix∑
i wi f (r + 2ci )cix∑
i wi f (r + 3ci )cix

⎤
⎥⎦ =

⎡
⎢⎣

11

1!
13

3!
15

5!
21

1!
23

3!
23

5!
31

1!
33

3!
35

5!

⎤
⎥⎦

⎡
⎢⎣

1
3

∂ f
∂x

E(3)

E(5)

⎤
⎥⎦. (B3)

The inverse matrix of coefficients, Ci j = i(2 j−1)

(2 j−1)! exists and
may be computed. Inverting the above, then, we find an
expression for ∂ f

∂x as

∂ f

∂x
=

[
9

2
− 9

10

1

10

]⎡
⎢⎣

∑
i wi f (r + ci )cix∑

i wi f (r + 2ci )cix∑
i wi f (r + 3ci )cix

⎤
⎥⎦. (B4)

This approach may be adapted to yield expressions for
gradients of chosen accuracy.

APPENDIX C: TRANSIENT MULTICOMPONENT FLOWS
WITH TRANSVERSE DENSITY STRATIFICATION

We consider the semianalytic, transient flows used in
Sec. IV. These are, essentially base states of perturbed flows
such as those developed by Kao [47] and Yih [48], which
we obtain, here, by straightforward application of Sturm-
Liouville theory. We use similar methodology on two cases
of unidirectional, density stratified flow tangent to, first, a flat
interface, then, second, a curved interface. We assume the
separated fluids have identical shear viscosity, η1 = η2 = η,
so the only variation between their kinematic viscosities arises
from density.

Consider flow u(x, t )êy, (see Fig. 7) with translational in-
variance in the y direction and no-slip boundaries at x = 0, H .
The flow is modeled as being density stratified with interfacial
boundary conditions introduced as matching conditions on the
solution’s two pieces. Using the Navier-Stokes equations, the
problem is written

ρ(x)
∂

∂t
u(x, t ) = ∂

∂x

[
η

∂

∂x
u(x, t )

]
,

u(0) = u(H ) = 0,

(C1)

with matching conditions on u(x, t ) applied at x = H
2 (below).

We seek u(x, t ), by modal projection on Sturm-Liouville
eigenfunctions, φn, with eigenvalues, cn [40],

u(x, t ) =
∞∑

n=1

σne−c2
ntφn(x) (C2)

(where σn is a constant to be determined), such that

d

dx

(
η

dφn(x)

dx

)
+ c2

nρ(x)φn(x) = 0,

φn(0) = φn(H ) = 0,∫ H

0
ρ(x)φn(x)φm(x)dx = δnm. (C3)
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FIG. 7. Schematic. Geometry and initial conditions. Fluid is in
unidirectional flow, u(x)êy. There is translational invariance in the y
direction and density stratification, with the red (blue) fluid assumed
to have density ρ1 (ρ2). Initially, the red (blue) fluid moves in the y
(−y) direction.

φn is obtained piecewise, by solving Eq. (C3):

φ(1)
n (x) = A(1)

n sin

(
cn√
ν1

x

)
, x ∈

[
0,

H

2

)
, (C4)

φ(2)
n (x) = A(2)

n sin

(
cn√
ν2

(x − H )

)
, x ∈

[
H

2
, H

]
, (C5)

where A(1)
n and A(2)

n are integration constants and νi = η

ρi
,

i = 1, 2.
The kinematic condition [φ(1)

n (H/2) = φ(2)
n (H/2)] and the

continuous traction condition ([φ(1)′
n ]H/2 = [φ(2)′

n ]H/2) provide
matching conditions via Eqs. (C4) and (C5)—for nontrivial
A(1)

n and A(2)
n ,

√
ρ2 tan

(
cnH

2
√

ν1

)
+ √

ρ1 tan

(
cnH

2
√

ν2

)
= 0. (C6)

By treating cn as a continuous variable, this equation
was solved using the Newton-Raphson method. Having thus
determined the cn, use the kinematic condition and the ortho-
normality property [Eq. (C3)], to show

A(1)
n = 2

{
ρ1

[
H −

√
ν1

cn
sin

(
cnH√

ν1

)]

+
sin2

( cnH
2
√

ν1

)
sin2

( cnH
2
√

ν2

)ρ2

[
H −

√
ν2

cn
sin

(
cnH√

ν2

)]}−1/2

, (C7)

A(2)
n = −A(1)

n

sin
( cnH

2
√

ν1

)
sin

( cnH
2
√

ν2

) . (C8)

FIG. 8. Schematic. Geometry and initial conditions. A weakly
compressible fluid is in rotational flow uφ (r)êφ . r represents a “trans-
verse” coordinate. A no-slip boundary is located at r = [R]. There
is transverse density stratification with the red (blue) fluid having
density ρ1 (ρ2). Initially, the red (blue) fluid moves in the êφ (is at
rest).

Finally, we determine the σn, using the initial conditions

σn = A(1)
n

u0

cn

{
ρ1

√
ν1

[
1 − cos

(
cnH

2
√

ν1

)]

− ρ2
√

ν2

sin
( cnH

2
√

ν1

)
sin

( cnH
2
√

ν2

)[
1 − cos

(
cnH

2
√

ν2

)]}
. (C9)

In summary, our transient flow’s solution is defined by
Eqs. (C2), (C7), and (C9).

We consider, now, flow in the axially symmetric geometry
of Fig. 8. The initial condition is uφ (r, 0) = r[�(r) − �(r −
R0)], the only nonzero strain rate is εrφ = 1

2 {r ∂
∂r [ 1

r uφ (r, t )]}
and the fluid stress divergence is ∇ · σ = 1

r2
∂
∂r (r2σrφ ). The

fluids are Newtonian, with σrφ = 2ηεrφ . From the Navier-
Stokes equations, therefore,

ρ(r)
∂

∂t
uφ (r, t ) = 1

r2

∂

∂r

{
r3η

∂

∂r

[
1

r
uφ (r, t )

]}
,

uφ (0, t ) = uφ (R, t ) = 0,

p2 = p1 + σ

R0
,

(C10)

with matching conditions applied at r = R0.
Let uφ (r, t ) = ∑∞

n=1 σne−c2
ntφn(r), this time using a Sturm-

Liouville eigenspectrum such that

d

dr

[
r

d

dr
φn(r)

]
− 1

r
φn(r) = −c2

n

( r

ν

)
φn(r),

φn(0) = φn(R) = 0,∫ R

0
r[ν(r)]−1φn(r)φm(r) = δnm.

(C11)
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Above, we have used an integrating factor to reach Sturm-
Liouville form and the weight function is w(r) = r

ν
= rρ(r)

η
=

rν(r)−1 [40]. φn(r) is obtained by solving Eq. (C11) (Bessel’s
equation with n = 1):

φ(1)
n (r) = A(1)

n J1

(
cnr√
ν1

)
, r ∈ [0, R0), (C12)

φ(2)
n (r) = A(2)

n

[
J1

(
cnr√
ν2

)
− B(2)

n Y1

(
cnr√
ν2

)]
, r ∈ [R0, R],

(C13)

with B(2)
n = J1( cnR√

ν2
)

Y1( cnR√
ν2

)
. We determine eigenvalues, cn, using the

kinematic and continuous traction conditions as φ(1)
n (R0) =

φ(2)
n (R0) and ε

(1)
rφ |R0 = ε

(2)
rφ |R0 , respectively. These provide

matching conditions on φn(r) with a nontrivial solution pro-
vided f ( cnR0√

ν1
) = 0, where

f (X ) = −kaJ1(X )

[
J0(kaX ) − J2(kaX )

− J1(kakbX )

Y1(kakbX )
Y0(kaX ) + J1(kakbX )

Y1(kakbX )
Y2(kaX )

]

+
[

J1(kaX ) − J1(kakbX )

Y1(kakbX )
Y1(kaX )

]
[J0(X ) − J2(X )].

(C14)

Above, ka =
√

ν1
ν2

, kb = R
R0

.

Eigenvalues cn were again obtained using Newton-Raphson
iteration. Given a set of cn, we can now write

A(1)
n =

[
1

ν2
1

∫ R0

0
rφ(1)

n φ(1)
n dr

+ 1

ν2
2

J1
( cnR0√

ν1

)
J1

( cnR0√
ν2

) − B(2)
n (R0)J1

( cnR0√
ν2

) ∫ R

R0

rφ(2)
n φ(2)

n dr

]− 1
2

,

(C15)

which was obtained using Simpson’s rule. Also,

A(2)
n = A(1)

n

J1
( cnR0√

ν1

)
J1

( cnR0√
ν2

) − B(2)
n (R0)J1

( cnR0√
ν2

) . (C16)

Integration constants, σn, are determined using initial and
orthonormality conditions on φn, as

σn = A(1)
n

ρ1

η

∫ R0

0
r2J1

(
cnr√
ν1

)
dr, (C17)

which was again evaluated using Simpson’s rule. The full
transient flow was computed using Eqs. (D3), (D4), (D5),
and (C17).

APPENDIX D: NUMERICAL SOLUTION OF STEADY,
PRESSURE-DRIVEN FLOW WITH DENSITY

STRATIFICATION

Consider the steady-state of the density stratified, unidirec-
tional flow u(x)êy, shown in Fig. 9, now with a steady pressure

FIG. 9. Schematic representation of the geometry and transverse
density stratification used in the pressure gradient (white arrow)
driven flow tests.

gradient (−Gêy), a continuous transverse variation of density

ρ(x) = 1

2
(ρ0R + ρ0B)

+ 1

2
(ρ0R − ρ0B) tanh

[
β

(
x − H

4

)]
�

(
H

2
− x

)

+ 1

2
(ρ0R − ρ0B) tanh

[
β

(
3H

4
− x

)]
�

(
x − H

2

)
,

(D1)

where �(x) is the Heaviside function. For this flow, the
Navier-Stokes equation for a weakly compressible lattice fluid
and the associated boundary and symmetry conditions are,
respectively,

d

dx

[
η(x)

d

dx
u(x)

]
= G, u(0) = u(H ) = 0,

[
du

dx

]
H/2

= 0,

(D2)

where ρ, u, and η again denote the density, velocity, and
shear viscosity of the fluid, respectively. Note, shear viscosity,
η, varies continuously with x when the kinematic viscosity,
ν(λ3) = constant, due to the variation in ρ(x) identified in Eq.
(D1). Let x � H

2 . Integrating ordinary differential equation
Eq. (D2) and eliminating the integration constant using the
symmetry condition, we have

du

dx
= G(2x − H )

2η(x)
. (D3)

Substituting η(x) = ν(λ3)ρ(x), integrating over
range [0, x] with x < H

2 , using the boundary con-
dition u(0) = 0 and using a dummy variable, we
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obtain

u(x) = G

2ν(λ3)

∫ x

0

(2α − H )

ρ(α)
dα. (D4)

The integral in Eq. (D4) was evaluated numerically, using
Simpson’s rule, using the expression for density given in
Eq. (D1).
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