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Abstract: 

At present, workplace researchers lack a suitable methodology for combining 

objective indoor environmental quality (IEQ) data with repeated subjective assessments of 

comfort in real offices.  To address this gap, we conducted a study at two office sites.  Four 

IEQ parameters (carbon dioxide, temperature, humidity, and illuminance) were continuously 

monitored at each site, and brief environmental comfort surveys were sent to employees’ 

smartphones four times per day across the study period.  In total, 45 employees across the 

two sites completed 536 surveys.   

The findings confirm that the repeated sampling approach is a more appropriate 

method for measuring comfort than a questionnaire delivered at one time only.  Adherence to 

recommended temperatures reduced the risk of thermal discomfort, however this effect was 

weak and other predicted associations between the physical environment and environmental 

comfort were not supported.  The results also showed a strong association between 

environmental comfort and self-rated productivity, such that employees rated themselves as 

most productive when they were satisfied with noise levels, temperature, air quality, and 

lighting within the office.  Overall, the results highlight that it is critically important to 

consider strategies for optimising occupant comfort, although this is unlikely to be achieved 

through adherence to environmental comfort boundaries alone.  
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The workplace industry is in the midst of a paradigmatic shift, whereby the traditional 

focus on cost reduction is being gradually superseded by a more user-centric approach in 

which the building occupants are seen as vital assets to which value can be added through the 

provision of more supportive working environments (Haynes, 2007a).  A crucial part of 

making workplaces healthier and more suitable for their users is by mitigating environmental 

sources of physical and/or psychological discomfort (Roskams & Haynes, 2019; Vischer, 

2007. 2008), enabling the employees to conserve attentional focus and energy for their work, 

instead of expending it to cope with adverse environmental conditions.  

Sub-optimal indoor environmental quality (IEQ; the physical conditions within a 

building, encompassing air quality, the thermal environment and the luminous environment) 

can be a major source of discomfort in office buildings, leading to deficits in employee 

wellbeing and productivity (see Al Horr et al., 2016a, 2016b, for reviews).  Hence, a key 

component of best-practice sustainability and wellbeing certifications such as the WELL 

Building Standard (International WELL Building Institute, 2018) is the prescription of 

recommended ranges or limits for key parameters of IEQ.  These guidelines are premised on 

the assumption that occupant comfort, and consequently occupant wellbeing and 

productivity, will be highest when these ‘comfort boundaries’ are adhered to.  However, a 

major limitation is that the supporting literature is largely derived from experimental studies 

performed in climate chambers, and so questions remain over whether the guidelines will 

generalise to real office environments where numerous additional confounds might be 

present.  

Suitable field studies remain very rare. This can be at least partially ascribed to the 

fact that previous solutions for continuous IEQ measurements in offices required the use of 

costly and impractical mobile carts equipped with on-board sensors (e.g., Candido, Kim, de 
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Dear & Thomas, 2016; Parkinson, Parkinson & de Dear, 2015), leading field researchers to 

instead take spot measurements of IEQ at indicative locations and combine these with 

questionnaires which ask respondents to report how they feel in general whilst in the office.  

In these types of study, a significant problem is that neither the IEQ measurements nor the 

employees’ perceptions are spatio-temporally specific (i.e., the measurement cannot be 

assigned to a particular space at a particular time).  Hence, there are growing calls for field 

studies which capture “right-here-right-now” assessments of the workplace environment, 

conducted multiple times across an extended period and combined with objective IEQ data 

(Candido et al., 2016; Choi & Lee, 2018; Deuble and de Dear, 2014; Li et al., 2018).   

Such studies have now been made possible through recent developments in 

technology.  In particular, “smart building” sensor technology enables IEQ to be measured 

more easily than before, and with highly precise spatio-temporal specificity.  Sensors can be 

installed and operated at a relatively low cost, enabling the continuous measurement of key 

IEQ parameters at different locations within a workplace.  In terms of subjective data, 

advancements in computer and smartphone technology have also made it easier for occupants 

to provide repeated assessments of their workplace environment.  As such, there is now a 

golden opportunity for researchers to conduct research which will enable them to more 

rigorously evaluate how occupants are affected by environmental factors in the workplace.   

Two existing studies have made valuable contributions here, but neither quite 

demonstrates how specific aspects of IEQ can be tested against momentary assessments of 

comfort.  MacNaughton et al. (2017) used sensors to measure IEQ in office buildings with or 

without sustainability certifications, and confirmed that occupant’s environmental satisfaction 

and cognitive performance was higher in the certified buildings.  However, their analyses did 

not directly associate environmental data with subjective responses, and so the precise effects 
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of different aspects of IEQ cannot be ascertained.  Romero Herrera et al., (2018) also used 

sensors to monitor IEQ within real offices and combined these with repeated subjective 

comfort ratings, however their analyses focused solely on temperature and thermal comfort, 

and they did not consider the role of specific comfort criteria. 

Therefore, the purpose of this study was to build upon these existing studies by 

developing a more comprehensive methodology for combining sensor-based IEQ data and 

repeated subjective assessments of the workplace environment.  We also aimed to evaluate 

the process for using environmental sensors as part of operational practice.  The study can be 

seen as a second cycle in the development of this methodology, following on from a small 

pilot study (authors, blinded for review).  One major finding from the pilot was a low 

response rate, so further aims of the present study included testing strategies for improving 

the response rate whilst rolling out the implementation to a wider group of employees.  

Additionally, we also demonstrate how hypotheses regarding the nature of the IEQ-comfort 

relationship can be tested, starting with the baseline assumption (as might a building 

manager) that adherence to the WELL guidelines will lead to the highest levels of 

environmental comfort.   

 

Measuring environmental perceptions through experience sampling 

 First, it will be necessary to verify that the proposed methodology is valid in the first 

place.  To do this, we can assess the extent to which each individual’s responses differ every 

time they complete the survey.  If their responses are relatively stable each time, then the use 

of repeated sampling is unnecessary and a questionnaire distributed once will be sufficient.  

However, in line with the criticisms of existing methodologies (Candido et al., 2016; Choi & 

Lee, 2018; Deuble and de Dear, 2014; Li et al., 2018), we predict that there will actually be a 
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high degree of variability in their survey responses, indicating that repeated sampling is the 

most appropriate method for measuring these experiences. 

H1: There will be high variability in each respondent’s perceptions of environmental comfort 

each time they complete the survey. 

 

Exploring the role of air quality 

At the time the research was conducted, most commercially-available sensor devices 

used carbon dioxide (CO2) as their sole indicator of indoor air quality.  CO2  rises in indoor 

environments due to the combination of human respiration and insufficient ventilation, and so 

it is often used as a surrogate measure of the effectiveness of the ventilation system for 

removing airborne pollutants in general, and therefore as a surrogate measure of overall air 

quality.  WELL recommends that indoor carbon dioxide (CO2) is maintained at 800 parts per 

million (ppm) or lower (International WELL Building Institute, 2018).   

This 800 ppm threshold is in accordance with research that shows the risk of ‘sick 

building syndrome’ symptoms increases progressively when CO2 rises above 800 ppm (Apte, 

Fisk & Daisey, 2000; Seppänen et al., 1999; Tsai, Lin & Chan, 2012).  Furthermore, the 800 

ppm threshold is also approximately consistent with research demonstrating that cognitive 

performance and decision-making abilities are highest when CO2 concentrations are at 600 

ppm, and progressively deteriorate at higher concentrations (Allen et al., 2016; Satish et al., 

2012).  Therefore, it can be assumed that CO2 concentration, as measured using the sensors, 

can be used to predict occupant satisfaction with air quality.     

H2: Satisfaction with air quality will be negatively associated with CO2 concentration. 
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Exploring the role of temperature 

Thermal comfort is not only a function of the ambient air temperature itself, but also 

depends upon a range of environmental and individual factors.  As such, WELL does not 

prescribe a particular temperature range, but rather recommends that temperatures within 

mechanically-ventilated offices should adhere to ASHRAE Standard 55-2013 (ASHRAE, 

2013), which itself uses Fanger’s (1970) Predicted Mean Vote (PMV) equation to develop a 

suitable range.  This method enables practitioners to input three environmental parameters 

(mean radiant temperature, air velocity, and relative humidity) and two occupant-related 

parameters (clothing insulation and metabolic rate) in order to generate an ambient air 

temperature at which a predicted 95% of occupants will be comfortable.   

The PMV method is based on decades of experimental research from climate 

chambers (van Hoof, 2008), although the extent to which it generalises to real offices has 

been called into question by studies indicating its predictive validity actually tends to be very 

low in practice (Cheung et al., 2019; Oseland, 1995).  However, given the aforementioned 

methodological limitations of previous field studies, it is important to verify these findings 

using the “right-here-right-now” data collection procedure.  Therefore, we start with the 

baseline assumption that thermal comfort really will be highest at the recommended 

temperature, and that employees will increasingly feel “too warm” the more that the 

recommended temperature is exceeded and “too cold” the more that the actual temperature 

falls below the recommended temperature. 

H3A: Thermal comfort will progressively decrease the more that actual temperature deviates 

from (PMV-derived) recommended temperature. 

H3B: The likelihood of feeling “too warm” will increase the more that temperatures exceed 

the recommended temperature. 
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H3C: The likelihood of feeling “too cold” will increase the more that temperatures fall below 

the recommended temperature. 

 

Exploring the role of illumination 

Office guidelines for illumination simply seek to ensure that the light level is 

sufficient for supporting visual acuity during computerised tasks, balanced with sustainability 

requirements for preserving energy where possible.  According to WELL, this is achieved by 

ensuring that light levels are maintained between 300-500 lux, or by maintaining light levels 

above 215 lux and additionally providing individualised task lighting at each workstation so 

that the user can increase the light level above 300 lux if they prefer (International WELL 

Building Institute).  The 300 lux lower limit also corresponds with guidelines issued by the 

Society for Light and Lighting (2015).  

Though research evidence in this area is limited, there is some evidence to suggest 

that these guidelines match actual employee preferences.  For example, in one study where 

office workers were given control over individual task lighting, approximately 90% chose an 

illumination of 300 lux or above (Veitch & Newsham, 2000).  Hence, it can be assumed that 

illumination measured through sensors will be useful for predicting employee’s visual 

comfort, particularly when the illumination falls below 300 lux.   

H4: Visual comfort will be positively associated with illumination. 

 

Exploring the impact on productivity 
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 Finally, it should be acknowledged that the implementation and ongoing use of sensor 

technology within offices represents an additional cost for building owners and employers, 

and so it is important to demonstrate their significance not only for subjective comfort per se, 

but also for other organisational outcomes such as productivity.  As we have already 

mentioned, WELL and similar guidelines are premised on the assumption that higher 

environmental comfort will consequently improve employee wellbeing and productivity.  

However, this too is yet to be tested using the proposed methodology.  As such, in this study 

we also test the extent to which environmental comfort (including satisfaction with air 

quality, thermal comfort, visual comfort, and also acoustic comfort) is associated with self-

rated productivity.  

H5: Each aspect of environmental comfort (satisfaction with air quality, thermal comfort, 

visual comfort, and acoustic comfort) will be independently and positively associated with 

self-rated productivity. 

 

Method 

Site Characteristics 

 The study took place in late summer in the United Kingdom.  The research occurred 

opportunistically, following a request by a large facilities management organisation to help 

them interpret the practical significance of data they were collecting through (commercial-

grade) environmental sensors installed at one of their offices.  The research was conducted at 

this office site and at one additional office site belonging to the same company, who had not 

installed any sensors permanently but had expressed an interest in trialling temporary data 

loggers to measure the same parameters.  Both sites could be considered as relatively typical 
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examples of office buildings within the United Kingdom, and neither had achieved any 

sustainability or wellbeing certification. 

Both offices featured predominantly open-plan layouts, where banks of permanent 

workstations without partitions were shared by four, six, or eight employees.  Additionally, 

both sites had enclosed meeting rooms as well as breakout areas within the open-plan areas, 

so that employees could hold formal and informal meetings.  In total, Site A had permanent 

seating for 142 employees, whereas Site B had seating for 56 employees.  Due to differing 

levels of availability indicated by building managers at each site, there was a 4-week data 

collection period at Site A and a 2-week data collection period at Site B.  The employees at 

both sites had a similar set of work activities, involving knowledge-based activities such as 

data analytics, report writing, and managing relationships with clients. 

 

Environmental sensors 

 At Site A, 17 Elsys ERS CO2 sensors (Elsys, 2019) had been permanently installed 

on interior and exterior walls around the workplace, at approximately head height.   These 

sensors provided continuous measurements of carbon dioxide (CO2, in parts per million 

[ppm]), temperature (°C), relative humidity (%RH), and illumination (lux).  At Site B, no 

permanent sensors were installed, so the lead researcher visited the site to install temporary 

data loggers to measure the same environmental parameters.  Eight HOBO U12 (Onset, 

2019a) data-loggers were installed in the office, with one data-logger placed on a central desk 

within each bank of desks.  The HOBO sensors continuously monitored temperature, relative 

humidity, and illumination.  To measure CO2, three Telaire 7001 CO2 sensors (Onset, 2019b) 

were attached to three of the HOBO data-loggers.  The location of the sensors at each site is 

shown in Figure 1. 
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 Although the use of different sensor models with low scientific precision at each site 

may be construed as a limitation, this was an unavoidable consequence of conducting the 

research with an industry partner who had already chosen the technology to implement at 

each site.  However, the use of commercial-grade technology can also be seen as a positive in 

that it mirrors the type of device that is actually used in practice, enabling us to explore their 

strengths and limitations.  Additionally, the technical specifications for each sensor suggest 

that their measurement accuracy is largely similar (see Table 1).  The one possible exception 

to this is the measurement of illumination using the HOBO U12, for which the manufacturers 

provide no information regarding measurement accuracy.  This limitation is discussed in the 

interpretation of findings relating to visual comfort and illumination. 

 Hypotheses relating to CO2 and illumination assumed linear relationships with 

environmental comfort, so raw sensor measurements were used.  For temperature, the 

hypothesis concerned the extent to which the actual temperature deviated from the 

recommended temperature, rather than the actual temperature per se.  As such, a 

transformation was applied to the temperature data.  The recommended temperature (i.e., the 

temperature at which PMV = 0) was calculated at each of the two offices, using the online 

thermal comfort tool developed by the Center of the Built Environment (CBE) at the 

University of California (CBE, 2019).  We inputted the average measured humidity at each 

site (45.63% RH at Site A, 45.47% at Site B), and assumed constant radiant temperatures 

(same as dry-bulb temperature), a typical office airspeed value (0.1 m/s), a typical metabolic 

rate for office work (1.1 met), and a typical clothing insulation matching office dress code 

guidelines (1.0 clo) between participants.  This calculation indicated that the optimal 

temperature at both sites was 22.55°C.  Consequently, to represent “deviation from 

recommended temperature”, we created a new variable by taking the absolute difference 
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between each measured value and 22.55 (i.e., measurements of 20.55°C and 24.55°C would 

both be scored “2”).   
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Table 1: Measurement accuracy of the sensors used in the study 

 

 

Questionnaire 

Subjective data was captured using the experience sampling methodology, in which 

the participants provided repeated assessments of momentary environmental comfort during 

the study.  As with the pilot study (authors, blinded for review), the questionnaire was 

designed to cover the same broad topic areas as a traditional occupant survey, allowing 

occupants to report their moment-by-moment assessments of core aspects of IEQ.  However, 

in a bid to improve response rate, two major alterations were made to the way in which the 

survey was designed and distributed. 

First, several participants in the pilot study suggested that the daily e-mail reminders 

to complete the workplace assessment were ineffective, as they had fallen into the habit of 

ignoring non-urgent e-mails.  Second, even though the pilot survey had only taken five 

minutes to complete, it was reasoned that this may still have been too long for employees 

with busy workloads.  As such, in the present study we used smartphone notifications to 

deliver a shorter one-minute survey (retaining only the core questions on subjective 

environmental comfort).    

Sensor IEQ Parameter Measurement range / (accuracy) 

Elsys ERS CO2  

(Site A) 

Carbon dioxide 0 - 2,000 ppm / (± 50 ppm + 3% of reading) 

Temperature 0 - 40°C  / (± 0.2°C) 

Relative Humidity 0 - 100% / (± 2%) 

Lux 4 - 2000 lux / (± 10 lux) 

Telaire 7001 CO2 

(Site B) 
Carbon Dioxide 0 – 10,000 ppm / (± 50 ppm + 5% of reading) 

HOBO U12 

Temp/RH/Light 

(Site B) 

Temperature -20 - 70°C  / (± 0.35°C) 

Relative Humidity 5 - 95% / (±2.5%) 

Lux 10-30,000 / (exact accuracy not stated) 
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The survey was designed within LifeData (LifeData, 2019), a commercially-available 

smartphone application (app) for experience sampling research studies.  The app was 

programmed to alert participants (using push notifications) to complete the survey at four 

random intervals each working day.  Hence, participants at Site A each received 80 

notifications across the 4-week study period, whilst participants at Site B received 40 

notifications across the 2-week study period.  Participants were encouraged to respond to as 

many notifications as they could, without disrupting their ordinary working activities.  If the 

participant chose not to respond within 10 minutes of the notification, the notification 

disappeared.  

On the first page of the survey, participants viewed simplified floorplans of their 

office divided into different zones (shown in Figure 1), and were asked to select the zone that 

they were currently seated in.  Next, single-item measures were used for each of the five IEQ 

comfort criteria.  The same 7-point Likert scale (1=Very dissatisfied, 7=Very satisfied) was 

used to assess satisfaction with air quality, thermal comfort, visual comfort, and acoustic 

comfort.  Importantly, questions were worded so that they referred to the participant’s 

experience ‘right-here-right-now’, rather than in general (e.g. “How satisfied are you with the 

noise levels right now?”).   

If the participant indicated dissatisfaction (i.e., a rating of 1-3) for any component of 

environmental comfort, then they were prompted with a follow-up question which invited 

them to list the source(s) of their dissatisfaction.  For the purposes of this research, we 

recorded whether or not a respondent had recorded a vote of “Too warm” and “Too cold” 

following a response of thermal discomfort.  

Finally, self-rated productivity was measured using an item asking “What impact has 

the workplace had upon your productivity in the past half hour?”, where participants used a 
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slider scale to indicate their response on a 100-point scale (1=Very negative impact, 

100=Very positive impact).  This item was intentionally limited to the impact of the 

workplace environment upon productivity, so that results were not confounded by any non-

environmental influences on productivity.  

After the data collection period had elapsed, spatial and temporal identifiers were 

used to combine questionnaire responses with objective IEQ data.  The participant’s response 

for “current working location” was used to identify the closest sensor(s) on each occasion, 

and the relevant timepoint was identified through data automatically collected by LifeData on 

the exact time each survey was completed.  Specifically, we combined each survey response 

with the data from the nearest sensor, taking the average of each IEQ parameter in the half 

hour preceding the completion of the survey. 

 

Participants 

 Participation in the study simply entailed downloading the LifeData app and relevant 

survey package, and then completing workplace assessments when a smartphone notification 

was received.  At Site A, the 121 permanent employees at the site were contacted by e-mail 

with information about the study and an invitation to participate.  In total, 13 individuals from 

this site participated in the study, and together provided 119 momentary assessments of the 

workplace environment across a 4-week data collection period.  At Site B, 56 employees 

were contacted and 32 agreed to participate, together providing 417 momentary assessments 

across a 2-week data collection period.  As such, the combined dataset contained 536 

observations from a total sample size of 45 employees (24 female, 21 male).  Participants’ 

age ranged between 22 and 63 (M = 32.8).  



THE RELATIONSHIP BETWEEN IEQ AND COMFORT 16

  

 

Results 

Procedure 

The experience sampling method yields a “nested” data structure, whereby individual 

survey responses (Level 1) are nested within participants (Level 2).  Using ordinary 

regression techniques for nested data increases the likelihood of producing spuriously 

significant effects (Hox, 1997), so multilevel modelling methods were used instead, 

following the procedure outlined by Field et al. (2012).  Specifically, the intraclass 

correlation coefficient (ICC), which partitions the proportion of total outcome variance 

attributable to Level 1 and Level 2 factors, was calculated to assess the extent to which 

subjective responses fluctuated on each measurement occasion (H1).  Then, multilevel linear 

modelling was used to test the extent to which the subjective responses could be predicted by 

the objective IEQ data (H2-H5).    

All data analysis was performed using R Studio (R Studio Team, 2016), using the 

nlme package (Pinheiro et al., 2017) for fitting and comparing the multilevel models and the 

MuMIn package (Barton, 2018) for calculating pseudo-R2 estimates for the models.   Models 

were fitted using the restricted maximum likelihood procedure.  

 

Descriptive Statistics 

 Table 2 shows the mean measurements for each IEQ parameter across the working 

day at each site.  As shown, the 800 ppm upper bound for CO2 concentration was rarely 

exceeded at either office, and the overall average was within the comfort boundary (M = 753 

ppm at Site A, M = 785 ppm at Site B).  Temperature was very close to the 22.55°C 

recommendation at Site A and was maintained within a relatively narrow range, but at Site B 
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temperatures were significantly warmer and the average measurement (M = 25.33°C) was 

almost three degrees higher than the recommendation.  Humidity at both sites was entirely 

within the 30-50% boundary specified by WELL (M = 45.6% RH at Site A, M = 45.5% at 

Site B).  Finally, both sites failed to achieve the recommended lower bound for light intensity 

(M = 233 lux at Site A, M = 171 lux at Site B), indicating that both offices were relatively 

dark throughout the working day.   

 Table 3 shows the corresponding descriptive statistics from the subjective 

questionnaire responses.  All responses were approximately normally distributed, and 

averages tended towards the midpoint of the scale.  Interestingly, despite the closer adherence 

to recommended temperatures at Site A than Site B, subjective thermal comfort was lower at 

this site (M = 3.49 at Site A vs M = 3.71 at Site B).  The most positively-rated aspects of each 

office were the acoustics, which were slightly higher than satisfactory at both sites (M = 4.97 

at Site A, M = 4.39 at Site B).   

Table 3 also shows the ICC for each of the outcome measures.  ICC ranges between 0 

and 1, with values closer to 1 indicating a lower proportion of within-participant variance.  

As such, the ICC is commonly used as a measure of reliability, where ICC > 0.6 is viewed as 

the minimum criteria for “good” test-retest reliability (Cicchetti, 1994).  As shown, the only 

outcome which met this cut-off point was perceived visual comfort (ICC = 0.61), whilst self-

rated productivity (ICC = 0.59) and perceived acoustic comfort (ICC = 0.56) were marginally 

below the cut-off point.  The weakest test-retest reliability was observed for perceived 

thermal comfort (ICC = 0.26).  Together, these results demonstrate relatively high fluctuation 

each time each respondent completed the survey, and so H1 was supported.  
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Table 2: Mean measurements of the environmental parameters at the two sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 Carbon Dioxide 

 

(in ppm; 

<800ppm 

recommendatio

n) 

Temperature 

 

(in °C; 22.55°C 

recommendatio

n) 

Humidity 

 

(in %RH; 40-

60%RH 

recommendatio

n) 

 

Illumination 

 

(in lux; 300-500 

lux 

recommendatio

n) 

Time of 

Day 

Site A Site B Site A Site B Site A Site B Site A Site B 

09:00-10:00 748.33 847.76 22.64 24.71 46.32 48.32 247.25 157.62 

10:00-11:00 794.43 872.02 22.73 25.10 45.94 47.58 244.07 166.85 

11:00-12:00 788.15 854.75 22.70 25.36 45.82 46.61 242.07 174.30 

12:00-13:00 774.78 812.78 22.71 25.52 45.52 45.50 252.09 177.18 

13:00-14:00 794.66 784.56 22.75 25.62 45.41 44.69 253.66 173.14 

14:00-15:00 779.87 749.59 22.79 25.61 45.57 44.00 234.43 183.45 

15:00-16:00 733.76 724.86 22.76 25.59 45.57 43.48 213.21 188.39 

16:00-17:00 641.98 675.74 22.62 25.50 45.01 43.34 187.29 165.00 

Overall 753.19 785.05 22.71 25.33 45.63 45.53 233.16 171.13 
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Table 3: Descriptive statistics for each of the survey items. 

 

Main Analyses 

 For each outcome (perceived air quality, thermal comfort, visual comfort, and 

productivity), a random-intercept model fit the data better than an intercept-only model (p-

values < 0.0001), indicating that multilevel modelling procedures were appropriate for testing 

the hypotheses.  A binary variable representing site (1 = Site A, 2 = Site B) was added to all 

of the models to control for any contextual variance between the two sites.  Linear models 

were used in all cases except for H3B and H3C, where logit models were used to model the 

binary response variables.  The number of observations that each analysis was performed 

 Site A Site B Combined 

Item M SD M SD M SD ICC 

[PERCEIVD AIR QUALITY]  

“How satisfied are you with air quality 

right now?” 

(1=Very dissatisfied, 7=Very satisfied) 

4.55 1.45 3.76 1.24 3.93 1.33 

 

 

0.51 

[PERCEIVED THERMAL 

COMFORT]  

“How satisfied are you with temperature 

right now?” 

(1=Very dissatisfied, 7=Very satisfied) 

3.49 1.7 3.71 1.39 3.66 1.46 0.26 

[PERCEIVED ACOUSTIC 

COMFORT]  

“How satisfied are you with noise levels 

right now?” 

(1=Very dissatisfied, 7=Very satisfied) 

4.97 1.46 4.23 1.28 4.39 1.35 0.56 

[PERCEIVED VISUAL COMFORT]  

“How satisfied are you with the overall 

lighting right now?” 

(1=Very dissatisfied, 7=Very satisfied) 

4.18 1.33 4.37 1.17 4.35 1.18 0.61 

[SELF-RATED PRODUCTIVITY]  

“What impact has the workplace had 

upon your productivity in the past half 

hour?” 

(1=Very negative impact, 100=Very 

positive impact) 

51.05 19.36 48.71 17.83 48.93 17.95 0.59 
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upon ranged from 460 to 536 due to missingness.  Summary statistics for each of the 

multilevel linear models are presented in Table 4.  

 The results of the analyses provided mixed support for the study’s hypotheses.  In 

terms of the effects of the physical environment, the only significant effects arose with 

respect to the thermal environment.  As expected, deviation from recommended temperatures 

was negatively associated with thermal comfort (p = 0.031), although the pseudo-r2 estimate 

indicated that this was a very small effect, with only 1.1% of the outcome variance explained 

(marginal_GLMM2 = 0.011).  The results of the logit models also confirmed that higher 

temperatures increased the likelihood of a “Too warm” vote (p < 0.001), but there was no 

evidence that the likelihood of a “Too cold” vote increased at lower temperatures (p = 0.84).  

Overall, H3B was supported and H3A was partially supported.  

 Contrary to expectations, there was no evidence to support a negative association 

between CO2 concentration and satisfaction with air quality (p = 0.21).  Thus, H2 was not 

supported.  However, a second model was tested post-hoc in which deviation from 

recommended temperature was added in as an explanatory variable.  The results confirmed a 

significant effect whereby satisfaction with air quality decreased the more that temperature 

deviated from the thermal comfort policy (p < 0.0001).  Approximately 6.3% of the variance 

in satisfaction with air quality was accounted for by the predictors (marginal_GLMM2 = 

0.063). 

 There was also no evidence to support the predicted positive association between 

illuminance and visual comfort (p = 0.74).  Indeed, the very small coefficient for illumination 

indicates that illuminance and subjective visual comfort were almost entirely independent of 

one another in the sample.  Therefore, H4 was not supported.  
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 Finally, a multivariable multilevel regression model was used to test the hypothesised 

relationship between environmental comfort and self-rated productivity.  As expected, the 

results of the model confirmed that self-rated productivity was independently and positively 

associated with acoustic comfort (p < 0.0001), thermal comfort (p < 0.0001), perceived air 

quality (p < 0.0001), and visual comfort (p = 0.0001).  The pseudo-r2 calculation revealed that 

these four components of environmental comfort together accounted for 50.8% of the 

variance in ratings of productivity (marginal_GLMM2 = 0.508).  Acoustic comfort had the 

strongest impact upon ratings of productivity.  As such, H5 was supported. 
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Table 4: Summary statistics for each of the multilevel linear regression models. 

 Model for predicting perceived air quality (n = 536 

observations, from 39 participants) 

Explanatory Variable Estimate t-value p-value 

Organisation -0.26 -0.75 0.46 

CO2 concentration (ppm) 0.0001 0.89 0.37 

Temperature (deviation from 

comfort policy; °C) 

-0.18 -4.24 <0.0001 

Marginal r2 = 0.063 
 

 Model for predicting perceived thermal comfort (n = 

535 observations, from 39 participants) 

Explanatory Variable Estimate t-value p-value 

Organisation 0.45 1.34 0.19 

Temperature (deviation from 

comfort policy; °C) 

-0.12 -2.17 0.031 

Marginal r2 = 0.011 
 

 Model for predicting perceived visual comfort (n = 460 

observations, from 31 participants) 

Explanatory Variable Estimate t-value p-value 

Organisation -0.93 -1.73 0.1 

Illumination (lux) 0.00004 0.33 0.74 

Marginal r2 = 0.054 
 

 Model for predicting self-rated productivity (n = 460 

observations, from 31 participants) 

Explanatory Variable Estimate t-value p-value 

Organisation -0.78 0.19 0.85 

Visual comfort 2.41 4 0.0001 

Satisfaction with air quality 2.23 4.34 <0.0001 

Thermal comfort 3.46 7.68 <0.0001 

Acoustic comfort 4.2 8.21 <0.0001 

Marginal r2 = 0.52 

 

 

Discussion 

 The development of environmental sensor technology opens up a golden opportunity 

for research combining spatially- and temporally-bound measurements of IEQ with “right-

here-right-now” assessments of environmental comfort in real offices.  Accordingly, the aim 

of this study was to develop a methodology for integrating building and human analytics in 
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this way, and to evaluate the process by which it could be used in real offices to measure and 

improve employee’s comfort and productivity.  The findings and their implications are 

discussed in the following sections, along with the limitations of the study and suggestions 

for future research. 

 

Relationship between IEQ and subjective comfort 

 Mixed support was found for the study’s hypotheses about the role of IEQ.  It was 

confirmed that adherence to the recommended temperature reduce the risk of thermal 

discomfort, and that exceeding the recommended temperature increased the likelihood that 

the occupants would report feeling “too warm”, however these effects were relatively weak.  

In contrast to the pilot study (authors, blinded for review) there was no association between 

CO2 and satisfaction with air quality, and neither was there an association between visual 

comfort and illumination. 

 At first glance, these findings seem to imply that environmental sensors are of limited 

utility for predicting subjective comfort.  However, this should be interpreted with caution, 

given that the IEQ at both sites was generally within recommended ranges.  Probably, 

environmental sensors are most useful for predicting (dis)comfort when physical conditions 

deviate most strongly from comfort policies.  Indeed, the one IEQ issue that was detected in 

the study (frequent exceedance of temperature at Site B in particular) likely contributed to the 

statistically significant effects of temperature.  In the pilot study, temperature remained 

almost entirely within the comfort boundary and no significant effect on thermal comfort was 

found, however CO2 significantly exceeded the recommended upper bound (M = 1,425ppm) 

and a significant effect on satisfaction with air quality was found (authors, blinded for 

review).  As such, the failure to detect significant effects here does not necessarily imply that 
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the use of environmental sensors would not be valuable at sites which have worse IEQ 

conditions.  

 Having said that, it is also important to consider the possible limitations of the sensor 

technology and the assumptions underlying their use.  In particular, the assumption that CO2 

is an accurate measure of overall air quality may not be completely valid.  For example, the 

study by Ramalho and colleagues (2015) showed that whilst CO2 is significantly correlated 

with most indoor air pollutants, the associations tend to be weak and can be affected by 

numerous seasonal, building-related, and occupant-related factors.  Moreover, we also 

unexpectedly found that temperature was a significant predictor of satisfaction with air 

quality, indicating that air quality judgements may involve complex and multi-faceted 

determinants.  To provide building managers with more useful information, therefore, it will 

be valuable to extend the range of IEQ parameters that are continually monitored.  Indeed, 

more recent commercially-available sensor devices also monitor five additional types of 

airborne pollutant as well as CO2 (e.g., uHoo, 2020). 

 The failure to find a significant effect of illumination was surprising, given that 

illuminance at both sites was consistently below the recommended lower bound.  Possibly, 

this may also relate to a limitation of the sensor devices (especially for the data loggers, 

which did not specify measurement accuracy).  However, the observed association in this 

case was so weak that it is more likely that moderate levels of visual comfort were achieved 

despite relatively dark conditions simply because the backlit computer screens enabled users 

to complete their tasks effectively, regardless of ambient illumination.  It remains to be seen 

whether increasing the ambient lighting would be sufficient for achieving even higher ratings 

of visual comfort, or whether it will be necessary to use additional strategies such as 
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supporting occupants’ circadian rhythms through increased daylighting (Edwards & 

Torcellini, 2002). 

  Indeed, subjective environmental comfort was relatively modest for all aspects of 

IEQ, despite relatively high adherence to comfort boundaries.  Possibly, the most effective 

way of optimising environmental comfort will be to allow employees to adjust local 

conditions to their own preferences, instead of attempting to satisfy all occupants with the 

same configuration of IEQ.  For example, in thermal comfort research it is now recognised 

that there is significant inter-individual variability in thermal comfort preferences (Wang et 

al., 2018), which may explain why the PMV method tends to be a relatively poor predictor of 

actual thermal comfort in practice (Cheung et al., 2019; Oseland, 1995).  One study which 

trialled individual temperature control (through heaters and fans embedded in the desk chair) 

succeeded in greatly improving thermal comfort amongst a small sample of participants (Kim 

et al., 2019), and similar strategies have also been suggested to improve visual comfort 

(Veitch, 2013). 

 

Relationship between subjective comfort and productivity 

 Interestingly, whilst the relationship between IEQ and subjective comfort was 

complex and unclear, there was a very clear and strong association between subjective 

comfort and self-rated productivity.  As expected, employees reported the highest levels of 

productivity when they were satisfied with the air quality, temperature, illumination, and 

noise levels within the office.  This is in line with theoretical expectations that environmental 

comfort is a crucial factor which mediates the relationship between the physical environment 

and employee job performance (Roskams & Haynes, 2019; Vischer, 2007, 2008), in that 

discomfort contributes to stress, and draws attentional and energetic resources away from the 
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completion of work-related activities.  Hence, however it might be achieved, the provision of 

subjective comfort amongst employees should be a crucial consideration for employers.   

The strong effect size associated with acoustic comfort in particular is in accordance 

with previous research highlighting that distraction by irrelevant speech has an especially 

pernicious impact on employee productivity in open-plan offices (e.g., Haapakangas et al., 

2008; Mak & Lui, 2012).  Environmental sensors used to measure sound pressure level could 

ostensibly help to detect conditions which are more likely to result in distraction, however it 

should be noted that distraction does not result from loudness per se, but rather from the 

intelligibility of the irrelevant noise source and the extent to which it captures the employee’s 

attention (Oseland & Hodsman, 2018).  Therefore, it would be most effective to combine 

their use with psychoacoustic design strategies, such as the provision of silent working areas 

within the office and/or the use of more absorbent building materials to limit sound 

transmission.  

 

Process evaluation 

 In addition to developing a methodology for integrating building analytics and human 

analytics, we also wanted to evaluate whether this process was justified and to identify the 

factors which affected its implementation at real office sites.  Turning first to the justification 

for the methodology, the results confirmed that individual experiences of environmental 

comfort and productivity tended to fluctuate each time the survey was completed, casting 

aspersions on the assumption that these phenomena can be reliably measured using a one-

time-only questionnaire asking employees how they feel in general.  As critics have noted 

(e.g., Deuble & de Dear, 2014), this methodology appears to yield responses which are far 

too general to be practically useful.  For example, an average response of “moderately 
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comfortable” could refer equally to an employee who is moderately comfortable at all times 

and an employee who spends half the time highly uncomfortable and the other half highly 

comfortable.  Hence, our results support the contention that the experience sampling 

methodology is a more appropriate for measuring employees’ experiences in the workplace. 

 Secondly, recognising that the use of the sensor devices will be most useful when a 

high proportion of office users agree to provide repeated measures of subjective experience, 

we also wanted to explore whether response rate could be improved by reducing the length of 

the survey and distributing it via smartphone rather than e-mail.  The effectiveness of this 

strategy was mixed.  At Site A, both the initial uptake (~10.7%) and the subsequent 

completion rate of the distributed surveys (~11.4%) was notably lower than that of the pilot 

study.  However, at Site B there was significantly higher uptake (~57.1%) and also a 

relatively good completion rate of the distributed surveys (~32.6%).   

This suggests that response rate is not simply a function of the way in which the 

survey was designed and distributed, but is also strongly affected by organisational-

contextual factors.  Indeed, it has been previously demonstrated that the degree to which 

employees within an organisation feel autonomous or externally-controlled affects the way in 

which they respond to survey reminders (Romero Herrera et al., 2018).  On a similar note, in 

the present study we observed that the building managers at Site B were considerably more 

enthusiastic about the research, and took it upon themselves to repeatedly encourage 

employees at the site to participate in the research.  These findings imply that organisational 

leadership and company culture may play a significant role in influencing engagement with 

the technology.  This prediction could be verified in future by also capturing qualitative 

and/or quantitative data about the organisation itself, and considering which factors 

differentiate the most and least engaged groups of respondents. 
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Limitations 

 The present study demonstrates a sound methodology for interrogating the 

relationship between IEQ and subjective comfort in real offices, making use of the latest 

technological developments and overcoming the limitations of previous research.  

Nonetheless, our current findings are restricted to two office sites with relatively good IEQ, 

and may not generalise to other environments.  Similarly, the relatively small dataset in the 

present study also limited our ability to add additional important variables to the models (e.g., 

age, gender), in order to preserve statistical power.  By way of contrast, the database of the 

most popular traditional occupant survey currently has more than 550,000 responses from 

almost 4,000 different buildings (Oldman, Finch, Percival & Rothe, 2019).  Accordingly, we 

believe an important next step is to grow the overall dataset and increasingly incorporate 

measurements from a more diverse range of offices with more varied environmental 

conditions 

As the size of the overall dataset grows, so too does the statistical power for analysing 

the associations between the variables of interest.  The methodology we have developed can 

be easily replicated within any workplace, using commercially-available sensor and mobile 

smartphone technology.  By compiling a large dataset in this manner, and potentially by 

developing it even further through the inclusion of individual variables and organisational 

variables, researchers can test increasingly complex models for predicting employee 

environmental comfort.  This will provide valuable new insights into the nature of the IEQ-

comfort relationship.  

Secondly, it should also be noted that our research is passive, in that we made no 

active intervention to the workplace environment (other than installing the temporary data 

loggers at Site B).  In practice, facilities managers will increasingly use live environmental 
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sensor data as part of their everyday operational practice, and may also incorporate repeated 

subjective assessments of occupant experience as this study recommends.  However, there is 

limited understanding at present of how this type of feedback loop between building users 

and managers can be most effectively used within real organisations to proactively support 

occupant comfort, wellbeing, and productivity.  This would be a useful focus of investigation 

in future research.  

 

Conclusion 

 With smart building technology predicted to exponentially increase in popularity in 

coming years, it is crucial to understand how new technology can be effectively used to 

enhance occupant experience in the workplace.  Our research is the first to develop the 

methodology for directly combining environmental sensor data with repeated assessments of 

subjective experience, in order to test the extent to which compliance with IEQ comfort 

criteria effectively improves occupant comfort.   

The results showed that there was a weak relationship between temperature and 

thermal comfort, but no relationship between CO2 and satisfaction with air quality, nor 

between illumination and visual comfort.  However, there was a strong effect to suggest that 

employees felt most productive when they were satisfied with the air quality, temperature, 

illumination, and noise levels within the office.  Therefore, the optimisation of environmental 

comfort is highly important but also very complex, and may necessitate strategies beyond 

mere compliance with comfort criteria.  In the next stage of the research, it will be necessary 

to apply the methodology more widely, and to investigate the implementation of a proactive 

facilities management service which combines both environmental sensor data and subjective 

human data.   
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