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An alternative route to the Mandelbrot set: connecting idiosyncratic digital
representations for undergraduates

Richard Miles

Mathematics undergraduates often encounter a variety of digital representations which are more idiosyn-
cratic than the ones they have experienced in school, and which often require the use of more sophisticated
digital tools. This article analyses a collection of digital representations common to undergraduate dy-
namical systems courses, considers the significant ways in which the representations are interconnected
and examines how they are similar or differ from those students are likely to have experienced at school.
A key approach in the analysis is the identification of mathematical objects corresponding to manipula-
tive elements of the representations that are most essential for typical exploratory tasks. As a result of
the analysis, augmentations of familiar representations are proposed that address the gap between local
and global perspectives, and a case is made for greater use of isoperiodic diagrams. In particular, these
diagrams are proposed as a new stimulus for students to generate their own explorations of fundamental
properties of the Mandelbrot set. The ideas presented are expected to inform the practice of teachers
seeking to develop visually rich exploratory tasks which pre-empt some of the issues of instrumentation
that mathematics undergraduates experience when introduced to new digital tools. The overarching aim
is to address significant questions concerning visualisation and inscriptions in mathematics education.

Keywords: Digital representation, visualisation, instrumentation, undergraduate tasks, Mandelbrot set.

1. Introduction

Drew Berry’s Visualizing the code of life (Berry, 2017) epitomises the power of digital technology
to reify complex scientific concepts and processes. For many mathematics undergraduates, computer
generated images and animations depicting fractal structures seem to hold a particular allure. Digital
images such as these have been a driving force for mathematical enquiry in their own right and, from a
panorama of visualisations, O’Halloran (2015) singles out the familiar representation of the Mandelbrot
set to illustrate how visualisations can lead to new mathematical knowledge.

Looking at the image that Mandelbrot (1982) produced of his eponymous set alongside the embry-
onic version produced by Brooks & Matelski (1981)1 (see Figure 1), it is easy to imagine the different
meanings that students and teachers alike might construct for a single mathematical object depending
on the technology available. This close association between “internal” and “external” visualisation in
tandem with technology is described in detail by Borba & Villarreal (2006, p. 99). The complexity of
what can be meant by visualisation also presents itself through this example. To avoid ambiguity, the
term digital representation is used here to refer to computer generated images representing mathematical
objects such as those shown in Figure 1.

First courses in dynamical systems are amongst the richest in terms of digital representations and
suitable text books (such as, Alligood et al., 1996; Holmgren, 1996; Scheinerman, 2012; Layek, 2015;
Devaney, 2018; Lynch, 2018) enthusiastically encourage students to engage with a range of compu-
tational techniques and visual explorations. On the specific topic of fractals, explorations intended for
both secondary school and undergraduate students have been considered in some detail (for example, see
Doyle, 1992; Naylor, 1999; Choate et al., 1999; Frame & Mandelbrot, 2002; Fraboni & Moller, 2008;

1The image produced by Brooks & Matelski (1981) originates from a 1978 conference. Mandelbrot (1980) includes related
fractal images of this type but they do not correspond as directly to that of Brooks & Matelski (1981).
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FIG. 1. Images of the Mandelbrot set: recreations of the original digital representations from Brooks & Matelski (1981), on the
left, and Mandelbrot (1982), on the right.

Peitgen & Richter, 2013; Peitgen et al., 2013). Novel investigations involving bifurcation diagrams (for
example, see Devaney, 1991; Klebanoff & Rickert, 1998; Ross & Sorensen, 2000; Burns, 2002) may
also be suitable for some undergraduates, but can be very challenging for others. More generally, a
major difference between many of the digital representations that students encounter at university and
ones that they have experienced at school (for example, those produced by a graphics calculator, by dy-
namic geometry software or by a smartphone app) is that the former are more likely to be derived from
specific technologies capable of dealing with research level applications (Oates, 2011; Thomas et al.,
2017). Thomas et al. (2017, p. 109) argue that this has the potential to cause a “discontinuity between
school and university, making the transition less than smooth for students”. This situation may be com-
plicated by issues of instrumentation that can arise from introducing new and complex technologies in
one-semester courses (Stewart et al., 2005). In order to begin to smooth this discontinuity in relation
to an area of mathematics decorated with idiosyncratic digital representations, this article analyses a
collection of digital representations that often feature in exploratory tasks relating to periodic behaviour
in dynamical systems. It considers significant ways in which the representations are interconnected,
how they are similar or differ from those students are likely to have encountered at school, and identi-
fies the essential mathematical objects required to manipulate the representations. By identifying such
corresponding objects, the aim is to provide the simplest basis upon which subsequent instrumental
orchestrations (see Trouche, 2004) can be tailored to individual teaching situations, independent of a
particular appropriate technology. As a result of the analysis, existing digital representations relating to
periodic point classification are augmented so as to bridge the gap between local and global perspectives
(Vandebrouck, 2011; Thomas et al., 2017). Finally, I make the case for greater use of isoperiodic dia-
grams which, despite being simply defined and easily manipulated (see Section 3), do not yet seem to
feature in the undergraduate literature. Crucially, I reveal here how these can be used to provide students
with a new visual stimulus to motivate their own explorations of important properties of the Mandelbrot
set.

This work, therefore, contributes to the broader aim of addressing one of Presmeg’s significant
questions (Presmeg, 2006, 2014) concerning visualisation in mathematics education, namely, “How can
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teachers help learners to make connections between idiosyncratic visual imagery and inscriptions, and
conventional mathematical processes and notations?” (Presmeg, 2006, p. 25). The results are important
for university mathematics teachers seeking to develop exploratory tasks using digital representations
whilst at the same time pre-empting some of the difficulties their students encounter when introduced to
a variety of new digital tools.

2. Background to the analysis: visualisation, digital representations and instrumentation

Mathematicians, mathematics educators and psychologists use the word visualisation in a number
of different ways depending on context and focus (Clements, 2014). As pointed out by Arcavi (2003,
p. 215), visualisation describes “both the product and the process of creation, interpretation and reflec-
tion upon pictures and images”. O’Halloran (2015) considers visualisation from a multimodal perspec-
tive and uses the term “mathematical image” (O’Halloran, 2015, p. 63) to distinguish representations
of mathematical objects such as those shown in Figure 1 which some authors refer to as visualisa-
tions. Presmeg (2006) considers further nuances of terminology and, in line with Roth (2003) and Cobb
(2002), describes digital representations within the more general context of inscriptions. Here, digital
representations are regarded as a type of inscription that is fundamental to student visualisation and
exploration of dynamical systems.

The ideas in this article are framed within a broader instrumental approach that focuses on how
users’ own mental schemes and techniques may be combined with a digital tool to form an instru-
ment (Rabardel, 2002; Artigue, 2002). Trouche (2004) addresses the teacher’s role in guiding students’
learning processes in relation to such instruments using the metaphor of instrumental orchestration. El-
ements of the resulting framework have been expanded and applied in a number of practical situations
(for example, see Drijvers et al., 2010, 2013; Thomas et al., 2017).

There are a variety of ways to produce the representations discussed here using a software pack-
age such as SageMath, MATLAB, or Mathematica and/or an appropriate programming language or,
alternatively, using a bespoke graphical user interface. Specialist digital dynamical systems tools have
also been made freely available to students and teachers (for example, see Back et al., 1992; Boeing,
2016). The DSWeb project (SIAM, 2019) gives an idea of the level of sophistication possible when
bespoke tools are constructed by teachers and by their students. A particularly interesting case of stu-
dents’ own tool development, featuring exploration and visualisation of the Mandelbrot set, is described
by Marshall et al. (2014). A discussion of all the advantages, disadvantages and choices surrounding
the digital tools just listed is beyond the scope of this article and reliance on a particular technology is
deliberately avoided. Instead, the digital representations themselves are considered as key components
for exploratory tasks and it is assumed that the chosen digital tools can be configured to enable the most
straightforward and essential manipulation of the representations. These assumptions can be seen as the
basis for a typical exploitation mode (Drijvers et al., 2010, p. 215) within an instrumental orchestration.

In their comparison of multimodal social semiotic and constructionist perspectives on the use of dig-
ital representations, Morgan & Kynigos (2014) highlight the central role of manipulation. The authors
refer to this colloquially as “tinkering with digital representations” (Morgan & Kynigos, 2014, p. 360).
According to their perspective, manipulation and the subsequent changes can be treated as part of the
representation itself. A precise taxonomy of such interactions has been produced by Sedig & Sumner
(2006). For example, this taxonomy differentiates between manipulative interactions such as using a
cursor to grasp a digital representation and perform some action on it, and more conversational interac-
tions such as entering commands into an input box. Trouche (2004) uses the general term enablements
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TABLE 1. Six digital representations relating to periodicity.

Representation Dimension Axes Enabling objects
cobweb plot 1 state-state map, initial point

bifurcation diagram 1 parameter-state family of maps
classification plot 2 state coordinate map

neighbourhood diagram 2 state coordinate map, fixed point,
neighbourhood radius

isoperiodic diagram 2 parameter coordinate family of maps
Mandelbrot set 2 parameter coordinate family of maps

to refer to elements of a digital tool that allow users to make such adjustments. Irrespective of a chosen
technology, it is possible to identify the mathematical objects corresponding to enablements that facili-
tate the most essential manipulation of a given representation. I refer to these objects here as enabling
objects. Corresponding examples will be contrasted with more generic enablements in the next section.

3. Analysis and results: connecting digital representations related to periodicity

In what follows, a dynamical system may be thought of simply as a system of states determined by
a map f : Rn → Rn, where n = 1 (a one-dimensional system) or n = 2 (a two-dimensional system).
The focus here is on examples defined by polynomial coordinate functions that are governed by one or
two parameters, as these are most often used as the basis of exploratory tasks. That is, examples that
correspond to a family of maps, such as the logistic family f (x) = ax(1−x), the Hénon family f (x,y) =
(a− x2 + by,x), or the complex quadratic family, defined as a family of two-dimensional systems by
f (x,y) = (x2− y2 +a,2xy+b), where a and b are real parameters. For all such examples, the defining
family of maps and real parameters feature as enabling objects of the digital representations considered.
These representations together with their specific enabling objects are listed in Table 1. Details of the
axes are also included, as these are related to the combinations of enabling objects. For example, the
space of parameters may be represented on one axis (corresponding to a one-dimensional parameter
space and labelled as ‘parameter-state’) or on both axes (corresponding to a two-dimensional parameter
space and labelled as ‘parameter coordinate’). In both these cases, a family of maps is subsequently
required as an enabling object. In contrast, if both the axes correspond in some way to state space
(labelled either as ‘state-state’ or ‘state coordinate’ depending on the dimension of the system), then
only a single map is required.

The six example text books listed in the introduction were selected based on accessibility of the
content for undergraduates studying a first course in dynamical systems. Among the representations
listed in Table 1, the cobweb plot, bifurcation diagram and Mandelbrot set feature in consistent forms in
all of these text books. Neighbourhood diagrams are found to have more variable forms and purposes
and the representation considered here is based on Alligood et al. (1996, Ch. 2). Isoperiodic diagrams
do not feature in any of the text books listed, and the classification plot is introduced later in this section.

Before analysing the facets of each representation in Table 1 in more detail, it may be helpful to
recall how the most common representations are likely to arise in a natural teaching sequence. Students
are generally introduced to one-dimensional systems prior to two-dimensional ones; therefore, they
usually encounter cobweb plots and bifurcation diagrams (representing aspects of periodicity for one-
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FIG. 2. A cobweb plot showing an attracting period 2-orbit for the map f (x) = 3.2x(1− x) linked via the red dashed lines to the
corresponding orbit in relative position in the bifurcation diagram of f (x) = ax(1− x).

dimensional systems) prior to neighbourhood diagrams (representing local expansion and/or contraction
around a fixed point in two-dimensional systems). The familiar representation of the Mandelbrot set is
likely to be first encountered independently of a link with periodicity, as such a link does not present
itself directly from the definition. The link that is usually made relates to “periods of bulbs” (Frame &
Mandelbrot, 2002, p. 64), and this leads to well-established exploratory tasks for students. Another well-
known exploration (Devaney, 1991) connects the Mandelbrot set to bifurcation diagrams. However,
neither of these lines of investigation are likely to arise spontaneously for students based on the familiar
representation of the Mandelbrot set alone, without additional prompting from the teacher.

The cobweb plot augments a Cartesian representation of the defining map for a one-dimensional
system using a two-dimensional representation of a one-dimensional trajectory (shown for a logistic
map in the left half of Figure 2). The enabling objects are a single defining map f (for example, entered
via an input box) and an initial point x0 ∈ R (for example, adjusted via a control that can be dragged
along the x-axis). The bifurcation diagram is a more bespoke representation, where the parameter space
usually appears on the x-axis and the state space appears on the y-axis (shown for the logistic family
in Figure 2, right). This means that the bifurcation diagram requires the defining family of maps as
an enabling object. However, no further enabling objects are required as the y-values (representing
asymptotic orbits) of the displayed co-ordinates depend only on the independent x-value (representing
the defining parameter). With only a single enabling object, the usefulness of this representation is
greatly increased by generic enablements such as range and zoom controls that allow a user to explore
particular parameter intervals in more detail.

With its grounding on the global Cartesian representation of a function, the cobweb plot satisfac-
torily addresses the issue of linking the concepts of repelling and attracting periodic orbits to one of
the most common digital representations that students will have encountered before in school. Thomas
et al. (2017) provide insight into what is known about such encounters, and consider the typical tech-
nologies used. For example, most students are likely to have graphed functions using technology such
as Geogebra which has been used to generate the graph in Figure 2. Therefore, the additional cobweb is
built on familiar terrain. Although the bifurcation diagram is more idiosyncratic than the cobweb plot, it
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also uses the idea of displaying points based on some form of coordinate dependency. So, there is also a
Cartesian perspective familiar to students underpinning this representation. There are also natural ways
in which the cobweb plot and the bifurcation diagram can be visually connected, as suggested by the
red lines in Figure 2. These representations do not usually appear juxtaposed in this way, yet a dynamic
link between the two (facilitated by the additional enabling object of a parameter value) generates a new
hybrid digital representation that emphasizes the global Cartesian perspective.

Beyond the problems associated with the shift in technologies from school to undergraduate level
highlighted in the Introduction, one of the most significant issues identified by Thomas et al. (2017)
(see also Vandebrouck, 2011) is the leap from global and pointwise representations of functions in
school to local perspectives at undergraduate level. Neighbourhood diagrams embody this leap. These
representations are often used to reveal expansion and/or contraction close to a fixed point in a two-
dimensional state space and facilitate classification of these points as saddles, sources and sinks. Beyond
the defining map f (x,y) = ( f1(x,y), f2(x,y)) and a given fixed point, a neighbourhood diagram also
requires a neighbourhood radius as an enabling object (for example, implemented via an input box or
slider). Although intersections of the curves f1(x,y) = x and f2(x,y) = y correspond to fixed points, this
global perspective is often suppressed (for example, see Alligood et al., 1996, Sec. 2.2). Generic zoom
enablements of digital tools make inclusion of these curves much more meaningful, as the local and
global perspectives can then be easily compared. The left pane of Figure 3 shows this augmentation for
the Hénon map f (x,y) = ( 1

2 − x2− 3
2 y,x) at a source.

How else might we construct a digital representation that can be tied to the familiar global picture re-
vealing the location of fixed and periodic points but which also facilitates classification of the associated
periodic orbits? Beginning with the correspondence between intersections of the curves f k

1 (x,y) = x
and f k

2 (x,y) = y and points of period k, pixel colour coding around each point (x,y) on or close to the
curves according to the moduli of the eigenvalues λ1, λ2 of the Jacobian matrix D f k(x,y) gives a vi-
sual means to classify the periodic orbit as a source, sink or saddle. For example, for j = 1,2, using
green to show both |λ j| > 1, red to show both |λ j| < 1 and blue to show only one of |λ j| > 1, re-
spectively. This produces a classification plot which requires only a given map as an enabling object.
The right pane of Figure 3 is a classification plot showing a period 3 saddle orbit for the Hénon map
f (x,y) = ( 5

4 − x2− 3
4 y,x). Colours are chosen according to the regime just described and the colour

intensity (that is, an RGB vector scaling) is based on the proximity of f k(x,y) and x, or of f k
2 (x,y) and y.

The use of pixel colouring according to corresponding point properties is also a key idea behind
representations of two-dimensional parameter spaces. The bifurcation diagram for one-dimensional
systems provides a means to make immediate qualitative comparisons within a family of dynamical
systems. With an analogous purpose in mind, Gallas (1993) introduced isoperiodic diagrams for the
two-dimensional parameter space of the Hénon map. The essence of his idea is to colour code points in
this space according to the length of a dominant attracting periodic orbit (if one can be computationally
detected) for the corresponding Hénon map. The resulting digital representation (see the left pane in
Figure 4) provides a highly structured picture of parameter space and this only requires a two-parameter
family of maps as an enabling object. In a similar way to the a bifurcation diagram, the usefulness of
this digital representation is enhanced by generic enablements such as range and zoom controls. There
is nothing special about the Hénon map here, apart from the number of dimensions of the parameter
space, so isoperiodic diagrams allow students to visualise parameter spaces for two-parameter families
much more generally. For example, an isoperiodic diagram for the complex quadratic family can be
produced using the same tool as for the Hénon map. The result is shown in the right pane of Figure 4
where there is an instantly recognisable resemblance to the standard representation of the Mandelbrot
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FIG. 3. The left pane shows two iterates of distortion for a neighbourhood centred around a source for the Hénon map f (x,y) =
( 1

2 −x2− 3
2 y,x). The right pane is a classification plot, using colour coding based on eigenvalues of D f k(x,y) to identify a period

3-saddle orbit for f (x,y) = ( 5
4 − x2− 3

4 y,x)

.

set. Thus, the isoperiodic diagram provides students with a visual stimulus to formulate their own
questions concerning periods of bulbs in the Mandelbrot set. Beyond investigations of the complex
quadratic family, isoperiodic diagrams also provide students with a means to investigate and interlink
the Mandelbrot-like sets that arise from multiple critical points for more general complex polynomial
maps. For example, I have used variations on the following task prompt to initiate such explorations.

The Mandelbrot set is defined in terms of a single critical point for the complex quadratic map
z 7→ z2 + c, where c is a complex parameter. How might ‘generalized’ Mandelbrot sets be defined for a
complex cubic map where the constant term is given by a parameter? For example, for a map such as
z 7→ z3− z+c? How do these generalized Mandelbrot sets relate to the associated isoperiodic diagram,
and what can you deduce about the structure of such sets in relation to parameter space?

This example underscores how important it is that digital representations are equipped with well-
chosen enablements. In particular, the implied notion of a ‘generalized’ Mandelbrot set requires not only
a defining map but the addition of a critical point as an enabling object. Such deep explorations are far
more difficult for students to undertake without appropriately configured digital representations at hand.
Therefore, in this example, isoperiodic diagrams and ‘generalized’ Mandelbrot sets offer technological
and pedagogical affordances (Trouche, 2019, p. 395) that enable students to experiment efficiently,
simulate, explore similarity and change, and form conjectures to support their conceptual understanding
of dynamical systems.

4. Conclusions and challenges

Digital representations are motivating and powerful components of mathematical exploration. This arti-
cle provides a basis for university mathematics teachers to consider how they arrange digital representa-
tions within their own exploratory tasks for students. However, with the wealth of capabilities offered by
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FIG. 4. Isoperiodic diagrams for the Hénon family f (x,y) = (a− x2 +by,x) (left pane) and the complex quadratic family f (z) =
z2 +a+bi (right pane). In both cases, the parameter space of (a,b)-coordinates is represented.

digital tools deployed at undergraduate level comes an inevitable level of complexity. Here, the essence
of a significant collection of digital representations has been extricated from these potentially complex
technologies. This enables the representations to be systematically compared and connected with each
other and with the familiar representations that undergraduates will have encountered in school. The
innovations that are proposed capitalise on existing visual links and address the global-local leap that
students are presented with at undergraduate level. In addition, by exploring the affordances of isope-
riodic diagrams, a new visual route of exploration for students is revealed which empowers them to
formulate their own conjectures concerning important properties of the Mandelbrot set.

An alternative lens that could be used in this article is provided by the notion of webbing (Noss &
Hoyles, 1996), as this addresses the guiding aim of helping learners to make connections, as described
in Presmeg’s question in the Introduction. Although this perspective is not pursued here, it could po-
tentially be harmonised with instrumental approaches (Trouche & Drijvers, 2014). Placing the analysis
within an instrumental approach also raises further questions and challenges. For example, how can
intended instrumental orchestrations be best achieved with the aid of one (or more) of the many digital
tools available? In particular, configuring such tools so that students are able to produce intended rep-
resentations using pre-selected enablements can be challenging. This configuration requires not only
adaptable capabilities from the chosen tools but also requires teachers to develop expertise in manipu-
lating these capabilities towards their own didactical intentions. The complexities of this issue recall the
connection between instrumental orchestration and technological pedagogical content knowledge raised
by Drijvers et al. (2013). I have often arranged exploratory tasks around the representations considered
here with the aid of bespoke browser-based tools2 which I have gone on to progressively refine based
on successive iterations of the tasks. In line with a concluding conjecture of Drijvers et al. (2013), inte-
gration of these tools has stabilized to a point where my own orchestrations have shifted focus, placing
mathematical exploration above technology mastery. For example, I now devote less time to procedural

2Figure 3 and Figure 4 were produced using these bespoke browser-based tools. Figure 2 was produced using a combination
these tools and Geogebra.
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tasks at the start of computer-based classes and aim to move students more quickly on to tasks of the
type described at the end of Section 3, where it is necessary for them to experiment using the appropriate
digital representations themselves.

Using the term instrumental genesis, Trouche (2004) describes the process of how instruments may
be constructed as augmentations of the body, comprising both an artifact component (for example, a
digital representation) and a psychological component linked to students’ activities, knowledge and ex-
isting methods of working. Given the diversity and complexity of tasks involving digital representations
that my students now seem confident in approaching, a potential outcome of the shifted focus described
above is a more affirmative perception of instrumental genesis taking place. Thus, to record this more
concretely, an important future research direction presents itself concerning students’ fluency, synthesis
and perspectives on the role of the digital representations considered here, probing the choices, infer-
ences, and conjectures that they make when using these representations in their own explorations.
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