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The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the 
environmental science of a place, changing the nature of the underlying modelling process, from one in which 
general model structures are used to one in which modelling becomes a learning process about specific places, in 
particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another 
it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of every-
where, models of everything and models at all times, being constantly re-evaluated against the most current 
evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and non- 
linearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the 
concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first 
proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud 
computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again 
at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the 
remaining research questions. The paper concludes by identifying the key elements of a research agenda that 
should underpin such experimentation and deployment.   

1. Introduction 

The concept of ‘models of everywhere’ was introduced by Beven in 
2007 (Beven, 2007), and revised in a follow up paper (Beven and Alcock, 
2012). The concept is fundamentally about having a stronger association 
between a given environmental model and the place that it represents. In 
the 2012 paper, they argue that it is “useful, and even necessary, to think 
in terms of models of everywhere … [and this] … will change the nature 
of the modelling process, from one in which general model structures are 
used in particular catchment applications to one in which modelling 
becomes a learning process about places”. The ‘necessity’ stems from the 
need to constrain uncertainty in the modelling process in order to sup-
port policy setting and decision-making, particularly around water 
management (e.g. flooding and water quality), although the principles 
can also potentially apply to other areas of environmental modelling and 
management. (In the rest of the paper, we will tend to use examples and 
illustrations from hydrology and flood modelling although we stress this 

potential generality of the approach.) 
This is a compelling argument, and a reaction against the view that 

there can be generic environmental models capable of representing 
processes and behaviours across multiple places and indeed across 
multiple scales. Such general models are “expensive to develop, difficult 
to maintain and to apply because of their data demands and need for 
parameter estimation or calibration” (Beven, 2007). They also have 
problems in dealing with local epistemic uncertainties and 
non-stationarities, for example caused by change in local characteristics 
and climate drivers (e.g. Prudhomme et al., 2010; Beven, 2009, 2016). 

Some examples of models of everywhere have been deployed but for 
relatively constrained applications and at specific scales. However, the 
concept has not been developed to the extent that the authors envisaged, 
where everywhere is represented across all scales in a coherent way. 
This paper re-examines the concept of models of everywhere from a 
technological perspective arguing that, at the time, the underlying 
technology was not sufficiently advanced to support the concept. Now, 
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however, this has changed, with significant developments in areas such 
as data acquisition techniques, data storage and processing technolo-
gies, and data analytics capabilities, alongside a move towards a more 
open science supported by these developments. 

Note that in developing ideas of models of everywhere we mean 
something quite different to the "hyperresolution" models that are 
starting to be used in Earth Systems Science (e.g. Wood et al., 2011; 
Beven and Cloke, 2012; Bierkens et al., 2015; Gilbert and Maxwell, 
2017). With resolutions of the order of 1 km, the latter do not (as yet) 
provide simulations and visualisations at scales that local stakeholders 
can relate to directly (see the discussion of Beven et al., 2015). This is a 
critical aspect of how the models of everywhere concept has the po-
tential to change the way that modelling is done. Both approaches do, 
however, focus attention on a requirement for scale dependent param-
eterisations that has proven difficult to resolve (e.g. McDonnell and 
Beven, 2014). 

The overall aim of the paper is to determine the current feasibility of 
models of everywhere, particularly in the area of hydrological modelling, 
given the state-of-the-art in underlying technology. This breaks down into 
the following objectives:  

1. To carry out a detailed examination of the concept of models of 
everywhere to determine key underlying technological 
requirements;  

2. To compare the state-of-the-art in technology in the period 
2007–2012 and the present day to evaluate whether the time is now 
right for a widespread deployment of models of everywhere;  

3. To provide a research roadmap to support such deployment in terms 
of outstanding research questions and challenges. 

Note that there are other issues related to models of everywhere that 
also should be addressed, most notably human and societal issues. Such 
issues include the need to move towards open science and open data, 
and the role of communities in improving models in representing local 
places. These are alluded to in the paper but a full treatment of this 
important dimension is beyond the scope of the paper. We elect instead 
to focus on technological readiness. 

The work is being carried out in the context of a significant re- 
evaluation of approaches to flood modelling and associated risk man-
agement. For example, the UK Government’s National Flood Resilience 
Review, published in September 20161 included important recommen-
dations around improvements to long-term modelling capabilities. The 
review also encouraged the use of natural flood mitigation methods or 
“working with natural processes”. This concept involves the use of many 
distributed in-channel and off-channel storage features, coupled with 
changes of land use to try to retain more flood runoff in catchment 
headwaters, or at least slow down its arrival to areas at risk of flooding 
(see Dadson et al., 2017). There are many current projects in the UK that 
are implementing natural flood management measures. Very few, 
however, have been associated with detailed monitoring of changes to 
the flow, or the operation of individual mitigation measures. Addition-
ally, there are issues about whether the strategy will be effective under 
extreme flood events, which in the UK are often preceded by a period of 
prior catchment wetting (see Metcalfe et al., 2017; Hankin et al., 2017). 
In fact, by slowing the flow in some parts of the catchment, it is possible 
that the peak flow might increase elsewhere. This is called the syn-
chronicity problem, the impact of which will vary from event to event 
(because of the different patterns of rainfall intensities) and with 
changes in the scale of catchment being considered. The distributed 
nature of this problem, and the potential for such mitigation effects to 
have impacts on other environmental factors, requires an integrated 
catchment modelling approach to evaluate possible implementation 

scenarios. However, the outputs from such models will be associated 
with significant uncertainty, even after calibration on historical data. 
Thus, this is a prime example where the concept of models of every-
where and the local constraint of uncertainty using local information 
would be useful, especially when assessing the uncertainty in potential 
outcomes might make a difference to the decision that might be made. A 
re-evaluation of the concept of models of everywhere is therefore very 
timely. 

The paper is structured as follows. Section 2 examines the concept of 
models of everywhere in more depth, highlighting the different di-
mensions behind this initial vision, and culminating in a set of techno-
logical requirements to support models of everywhere. Section 3 looks at 
the technological landscape, as it existed in the period 2007–2012, 
systematically reviewing the different technological requirements and 
concluding with an overall assessment of technology readiness at that 
time. Section 4 repeats this analysis, but looking at the state-of-the-art 
now. The paper then presents ongoing research in this area, including 
the identification of a research roadmap for the implementation of the 
concept of models of everywhere, (Section 5). Section 6 documents 
related work, including existing deployments of the concept of models of 
everywhere. Finally, Section 7 concludes the paper with some final re-
flections on models of everywhere from a technological perspective. 

2. Models of everywhere unpicked 

While models of everywhere at one level is quite a straightforward 
concept representing as association of models with particular places, at 
another level, it is a rich multi-dimensional conceptual framework. In 
particular, we discuss three (mutually supportive) dimensions with the 
goal of highlighting the technological requirements to support the 
overall vision: 

Models of everywhere; 
Models of everything; 
Models at all times. 

These are discussed in turn below. 

2.1. Models of everywhere 

2.1.1. Key characteristics 
The starting point of models of everywhere is to move from generic 

models that can then be customised to particular locations, for example 
through appropriate parameterisation, to models that are specific to 
particular places. As such, they can be tailored to represent the behav-
iour at a specific place without the need to represent any other place. In 
particular, observations and inputs from local stakeholders can be used 
to constrain the uncertainty that is associated with environmental 
modelling (e.g. Beven, 2009). 

Note that models of everywhere is often interpreted as models rep-
resenting specific localised areas but the concept does not imply any 
particular scale; rather models of everywhere can represent local, 
regional, national and global scale with these models often co-existing. 
While there is an expectation that model parameterisations should be 
resolution dependent (e.g. McDonnell and Beven, 2014; Beven, 2019), in 
the absence of any adequate scaling theory for many environmental 
processes, particular models may need to be tailored for the scale at 
which they operate in terms of both process representations and effec-
tive parameter values. The approach is illustrated in Fig. 1: a generic 
model with a specific set of parameter values cannot represent flooding 
at all areas of the catchment and hence five localised models need to be 
developed. 

A core motivation of models of everywhere is to constrain uncertainty, 
exploiting as much knowledge as is available about a particular place. 
This is developed further when we look at models of everything and 
models at all times in Sections 2.2 and 2.3 below. 

1 https://www.gov.uk/government/publications/national-flood-resilienc 
e-review. 
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2.1.2. Technological requirements 
The main requirement of models of everywhere is very large-scale 

computational capacity. For example, if this approach were to be 
adopted for future flood prediction, there would be a need for the 
deployment of very large numbers of models all over the country at 
different scales. For illustration, consider models applied to support 
Flood and Coastal Risk Management (FCRM) in England. 

For any given community (city, town, village or street), there may be 
an array of models developed, paid for and used by different organisa-
tions, for different purposes, and using different data resources (or, very 
often, common data sets, exploited in different ways). Most localities are 
included within national scale models, sometimes referred to as “stra-
tegic”, with the outputs of the National Flood Risk Assessment (NaFRA2 

published as “Risk of Flooding from Rivers and Sea”3) being typically the 
most generic. Separate models have been applied to provide mapping of 

the flooding from “Surface Water”4 (ubiquitous in coverage, represent-
ing potential flooding from overland flows and ponding, rather than 
water overflowing from rivers or the sea), the “Risk of Flooding from 
Reservoirs” (predicting places at risk in the event of dams and im-
poundments being breached), and groundwater flooding. 

More detailed models also exist in many places to support activities 
such as the economic appraisal of proposed flood defence schemes, flood 
risk assessments for proposed floodplain developments, or the detailed 
design, construction and maintenance of drainage systems. These 
models usually capture further information about infrastructure (e.g. 
bridges, culverts, weirs, sluice gates) and river channel surveys. 

Organisations commissioning and owning such models may include 
the Environment Agency, which leads on FCRM in England for local 
government, water companies supplying drainage services, private de-
velopers or other landowners. It is usual for all of the above models to 
evolve over time, incorporating both new data and technical 

Fig. 1. Models of everywhere: showing a range of models across a catchment (the Conwy) representing different places, in this case at the same scale (see also Fig. 2/ 
3 which build on this). 

2 https://www.gov.uk/government/publications/flooding-in-england-na 
tional-assessment-of-flood-risk.  

3 https://data.gov.uk/dataset/risk-of-flooding-from-rivers-and-sea1. 

4 https://www.gov.uk/government/publications/flood-maps-for-surface 
-water-how-they-were-produced. 
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improvements (e.g. better numerical solution schemes). It is also com-
mon for multiple instances of each model to be executed, i.e. many in-
dividual “runs” or simulations, to support scenario or uncertainty 
analysis. The Environment Agency has over 1500 such detailed local 
models, and reported in its 2010–2015 modelling strategy5 an invest-
ment of approximately £17 million per year in modelling and mapping 
and an additional £15 million in gathering and processing data to sup-
port FCRM. 

This has significant resource requirements in terms of the number of 
processors or virtual machines to run these models and data storage, as 
well as the human costs in terms of developing and tailoring the models 
for given places, and analysing and understanding the outputs. For 
example, production6 of the “Risk of Flooding from Surface Water” maps 
cited earlier involved more than 70,000 individual simulations of flood 
inundation on a mosaic of approximately 7100 36 km2 tiles covering all 
of England, run on a 2m � 2m resolution digital height map that 
included over 91,000 manually-determined corrections. This process 
needed around two months for data preparation and one month of 
computer processing time, fully utilising a grid of over 100 GPU- 
accelerated PCs. 

Where possible, technological and operational support would need 
to be provided for such development. This also asks important questions 

over the underlying distributed systems architecture to support such 
massive deployment, e.g. centralised, distributed or decentralized (or 
indeed combinations of different approaches). 

The approach also asks fundamental questions over the relationship 
and consistency of models at different scales and how to support 
reasoning across scales in terms of supporting a deeper understanding of 
the science and all its complexities and inter-dependencies. 

2.2. Models of everything 

2.2.1. Key characteristics 
The second dimension is concerned with exploiting information 

about a place, in particular, coupling a model of that place with as much 
local data as can be collected, thus embracing the heterogeneity of 
available data sources. The availability of such data is increasing 
significantly and now includes (Blair et al., 2019): 

Remote sensing data collected by satellites or aircraft-borne in-
struments (including drones); 
Other monitoring technologies that consist of a range of sensor 
technologies typically in close proximity with the observed phe-
nomena, including the use of Internet of Things (IoT) technologies to 
provide real-time streaming and multi-faceted data about the natural 
environment; 
Historical records held in a variety of locations and scales; The 
increasing amount of data available from national/local government 
and other open data portals often increasingly offering APIs, e.g. 
data.gov.uk; 

Fig. 2. Models of everything: showing the rich diversity of data and models that may exist for a given place and how they may inform each other.  

5 https://www.gov.uk/government/uploads/system/uploads/attachment 
_data/file/292949/geho0310bsbt-e-e.pdf.  

6 https://www.whatdotheyknow.com/request/208078/response/ 
520170/attach/3/National%20modelling%20and%20mapping%20method% 
20statement%20May%202013.pdf. 
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Data mining provides additional information from the web or social 
media; 
Data collected from citizen science, with the potential to direct cit-
izen science to areas of data scarcity. 

Together, this adds up to the potential for having environmental data 
at an unprecedented scale (Blair et al., 2019). For example, if focusing 
on flood prediction, it is possible to use a variety of data sources such as 
historical Parish records and flood marks, satellite imagery, local sen-
sors, photographs from social media and citizen science to help steer 
process-based hydrological models. Indeed many researchers are advo-
cating such approaches in hydrology, e.g. (Di Baldassarre et al., 2009; 
Smith et al., 2009, 2015), and more generally in disaster risk reduction 
(McCallum et al., 2016). 

The concept also naturally extends to other aspects of environmental 
science, for example collecting and analysing data around water quality 
issues, biodiversity, or soils and indeed the inter-dependencies between 
them. 

The additional dimension of models of everything is shown in Fig. 2. 
The concept of models of everything has the potential to further 

reduce the uncertainty around predictions for a variety of different 
variables of environmental interest in a coherent way. This is particu-
larly important where the relevant processes are intrinsically coupled, 
for example the water flows that drive the transport of nutrients from 
farmland and households into rivers and lakes. This constraint of un-
certainty is important because many of the sources of uncertainty are 
epistemic in nature. Epistemic uncertainties are those are those that 
arise from lack of knowledge, in contrast to aleatory uncertainties that 
represent random variability that derives from ‘irreducible natural 
variability’ (see Beven, 2009, 2016; Rougier et al., 2013; Beven and 
Hall, 2014; Di Baldassarre and Beven, 2016). By definition, it is not 
possible to deal with epistemic uncertainties in process models without 
breakthroughs or deepening of knowledge about a given place and its 
states and behaviours. Beven et al. (2015) also talk about the role of 
models of everything in overcoming what they refer to as hyper-
resolution ignorance in modelling, that is evaluating the hyperresolution 
information produced by simulation to overcome the local lack of data 
and unknowns in scientific understanding (e.g. the understanding of 
subsurface structures in hydrology). 

2.2.2. Technological requirements 
Models of everything adds significantly to the requirements imposed 

on the computational infrastructure around five key areas:  

1. How to store the ‘big data’? With models of everywhere, there is a need 
to capture and store significant quantities of data about a given 
place, and then repeat this across all places. This therefore very 
quickly becomes a ‘big data’ problem. In many ways, though, this is 
more demanding than many areas of big data given the high level of 
heterogeneity in the data-sets with some of the data being structured 
and other elements being unstructured, and inevitably captured in a 
wide variety of formats (Blair et al., 2019).  

2. How to represent and manage the collected data? Given the variety and 
heterogeneity discussed above, there is a need to represent, evaluate 
and manage the overall collection of data, and this must include 
support for interoperability, data discovery and also the association 
of appropriate meta-data and ontologies, including provenance 
information. 

3. How to ensure open access to data? The concept of models of every-
thing implies a move towards open data, where data is openly 
available for use and stored in a way that allows such open access 
(also important to support a more collaborative and cross- 
disciplinary science as required to interpret this data). As 
mentioned in the introduction, while this is technically straightfor-
ward to achieve, this requirement is more concerned with cultural 
issues, for example around the perceived value of data. Note that 

ideally this open philosophy would also extend to models, with 
models available as open source.  

4. How to make sense of the heterogeneous data elements? It is one thing to 
have access to this rich underlying data, but it is another thing to be 
able to make sense of this data and therefore data analysis techniques 
are also required to build this higher-level of understanding from the 
underlying data (cf. environmental data science (Blair et al., 2019)). 
This will inevitably imply the construction of data models using a 
rich array of statistical and machine learning techniques.  

5. How to combine process models with data models? Once the data models 
are constructed, there is a need to couple the data model or models 
with process models to build a complete understanding of a given 
place. Techniques are therefore required to support model coupling 
between process and data models. In hydrology, it has been shown 
that even hydrological observations may not always be informative 
in model calibration and validation (e.g. Beven and Smith, 2015). 

There are also important human and societal issues around privacy 
and security but, as mentioned in the introduction, this area is not 
considered in this paper (but is an important area of future investiga-
tion). Note that the execution of additional data models, and the need to 
allow for observational uncertainties also increases the computational 
requirements of the system. 

2.3. Models at all times 

2.3.1. Key characteristics 
The final dimension is that models should be active at all times, 

constantly re-evaluating what is known about particular places and 
adapting accordingly. This does not necessarily mean that models are 
always executing as this would consume significant computational re-
sources without any real gain. Rather, models should execute periodi-
cally and frequently, for example when new data becomes available, to 
understand the “idiosyncrasies of particular places” (Beven, 2007) and 
how this might change over time. At other times, the model would be in a 
quiescent state, but otherwise ready to re-execute at any time. This 
contrasts significantly with existing practice when distinct model runs 
are carried out infrequently under the auspices of a scientific experi-
ment, with perhaps more runs carried out an at a pre-deployment phase 
to understand the sensitivities and uncertainties of a given (generic) 
hydrological model. This iterative approach is nicely aligned with the 
work of Box (1980) on the iterative relationship between practice and 
theory (Box’s loop), recently extended by Blei (2014) in the context of 
latent variable models applied to complex data-sets. This may also 
introduce more consistency between models used for short-term fore-
casting, often applied in an adaptive framework where on-line data can 
be used for updating, and simulation models that are rarely updated. 

This leads to a new perspective of “modelling as a learning process”, as 
discussed in depth in the 2007 paper (Beven, 2007). The 2012 paper 
(Beven and Alcock, 2012) develops this further talking about models as 
hypotheses to be tested against current and historical observations with 
some models being rejected in favour of others and indeed this changing 
over time, so the current chosen model structure and associated as-
sumptions best reflect the full idiosyncrasies of a given place as repre-
sented by numerous additional data observations. This in turn leads to 
an adaptive approach to modelling. 

The final aspect to consider is what can be adapted about the model. 
There are various possibilities here, increasing in level of sophistication 
and ambition:  

1. The outcomes from a model can be adapted for the purposes of real- 
time forecasting when data can be made available for assimilation, 
and post-event analysis can then be used to inform local improve-
ments to the model, including adaptation of parameter values to best 
represent behaviour at the current time; 
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2. A number of models can co-exist in an ensemble approach, with 
model selection applied to identify the best models for that given 
place/time;  

3. The internal structure and behaviour of a given model can be 
adapted, for example, by changing fine-grained elements of the un-
derlying hydrology to best reflect the current place/time;  

4. The representation of residual uncertainty can be adapted as more 
information is obtained locally. 

Clearly, these approaches can also be combined in different ways. 
Indeed, a combination of all four offers a new and radical approach to 
models of everywhere. 

The concept of models at all times is illustrated in Fig. 3. 
The key motivation of models at all times is to offer a modelling 

framework that supports explicit reasoning about uncertainty, with the 
explicit goal of reducing uncertainty for a given place. More specifically, 
the approach also has the potential to deal with epistemic uncertainties, 
as argued in (Beven and Alcock, 2012). In this paper, following Beven 
(2006), the authors argue for an approach based on limits of acceptability, 
whereby models that perform well according to such limits are accept-
able (and perhaps reinforced), while others are rejected, with this driven 
by the collected set of observational data (cf. models of everything). 
Finally, the approach has significant potential to deal with 
non-linearities and fundamental changes over time, for example related 
to climate change, with its emphasis on ongoing adaptation to the cur-
rent context. 

2.3.2. Technological requirements 
Models at all times is crucial to the overall vision of models of 

everywhere, but adds a whole new level of complexity in terms of the 
underlying technology requirements. In particular, the approach am-
plifies the underlying resource requirements and also the underlying 
distributed systems architecture as discussed in Section 2.1. For example, 
the approach requires the frequent execution of potentially ensemble 
models at large numbers of places and different scales. 

The approach also introduces significant additional (mutually sup-
portive) requirements:  

1. How to support adaptive reasoning? As discussed above, ‘models at all 
times’ is fundamentally a learning process and implies that models 
are constantly adapted in response to new knowledge extracted from 
available data-sets. There is therefore the need to support this 
adaptive reasoning and ideally this should involve a strong element 
of automation as provided, for example, by autonomic computing 
(supporting self-adaptive systems) (Kephart and Chess, 2003; 
McKinley et al., 2004).  

2. How to incorporate reasoning about uncertainty? Building on the above, 
it is important that adaptation decisions incorporate reasoning about 
uncertainty, and this implies making uncertainty explicit in the 
modelling process, and also incorporating approaches to deal with 
epistemic uncertainties and non-linearities as inevitably encountered 
in such complex systems.  

3. How to support adaptation? A truly adaptive system requires ready 
access to a range of elements that can be changed. Supporting more 
coarse-grained adaptation is relatively straightforward, and imple-
mented in terms of selecting from different models in model en-
sembles, or changing model parameters. Supporting fine-grained 
strategies is however more challenging as this requires intimate 

Fig. 3. Models at all times: showing the meta-level reasoning framework associated with models as a learning process, extracting meaning from diverse data about a 
place, applying learning techniques to extract meaning from this data and making appropriate adaptations around model selection and parameterisation. 
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access to the structure and behaviour of individual models in terms 
of, for example, alternative hydrological equations at the heart of the 
model. Most existing models will not provide such access, i.e. black 
box implementations. To fully realise the vision however, we need to 
go further than this and provide more white-box access to internal 
software architectures of environmental models, as provided by, for 
example, reflective architectures (Maes, 1987; Kon et al., 2002). 

‘Models at all times’ also places additional emphasis on the need to 
integrate process and data models (discussed in Section 2.2) to support 
adaptive reasoning. 

There is also an over-arching requirement emanating from this 
analysis, and that is the ability to support deployment at scale, and this 
implies the ready deployment of individual models (of everywhere) and 
also of large numbers of models at different scales. There are many di-
mensions to this scalability involving, for example, making it easier to 
deploy models in underlying computational infrastructure, whether 
provided by HPC or cloud facilities, offering software frameworks that 
can support the deployment of models or ensembles of models ready to 
be tailored for the idiosyncrasies of places, and automating the subse-
quent adaptation/learning process (hence the importance of self- 
adaptive approaches). 

2.4. Overall analysis 

‘Models of everywhere’ is an important and potentially crucial 
approach to environmental modelling, particularly in terms of managing 
uncertainty. A full implementation of the concept however imposes very 
significant requirements in terms of the technological infrastructure 
alongside other fundamentals, most notably cultural elements around a 
move to open science (incorporating more open approaches to data and 
modelling). The approach is best understood as a combination of models 
of everywhere, everything and at all times, with this trichotomy used to 
analyse the overall requirements in more depth in the discussions above. 
The resultant requirements are shown in Table 1 below. 

These requirements can usefully be clustered as follows: 

1. The capacity and level of sophistication of the underlying techno-
logical infrastructure in terms of both computation and data (R1, R2, 
R4, R5);  

2. The availability of rich data analytics capability to make sense of 
complex and highly heterogeneous data-sets (R3, R6, R7, R8);  

3. The ability to support modelling as a learning process, including 
reasoning about uncertainties (R9, R10, R11);  

4. Practical issues around deployment at scale, including availability of 
open data and approaches to support large-scale deployment (R3, 
R12). 

This clustering will be used in the assessment of the changing tech-
nological landscape as discussed in Sections 3 and 4 below. 

3. Technological landscape (2007–2012) 

3.1. Overview of the landscape 

In the period 2007 to 2012, the landscape was dominated by grid 
computing. The concept of grid computing was first introduced in in the 
1990s and became prominent with the publication of the seminal paper 
by Foster and Kesselman (1998), introducing the grid as a “blueprint for 
a new computing infrastructure”. The term was introduced as a meta-
phor for the electricity grid, with the goal of making computational 
power as accessible and ubiquitous as electricity. Software platforms 
were developed to support the deployment of applications and services 
in the grid, most notably the Globus toolkit, with various versions 
released starting in 1997 with the last major release (Globus toolkit 
version 5) in 2009.7 Around this time, the grid was being superseded by 
cloud computing (for example, the first version of Amazon Web Ser-
vices8 was introduced in 2006 with rapid growth since); this growth in 
cloud computing is discussed further in Section 4.1 below. 

In parallel, researchers were becoming interested in the use of such 
computational power to support a range of application domains 
including, for example, eCommerce. Most notably, in the context of this 
paper, there was also great interest in eScience, that was, the use of 
technological infrastructure including the grid to support a new kind of 
computationally intensive and data-rich science (Hey et al., 2009). For 
example, in the UK, the national eScience programme ran from 2001 to 
2010, supporting a range of infrastructure projects and application 
projects in areas as diverse as bioinformatics, neuroinformatics and 
medical informatics. In the environmental area, the most prominent 
project was climateprediction.net.9 Similar, large-scale initiatives were 
launched in other countries, for example in the States the National 
Science Foundation (NSF) funded a series of cyberinfrastructure initia-
tives starting around 2003, including the Open Science Grid10 developed 
by the Open Science Grid Consortium (OSGC). 

3.2. Addressing the requirements 

3.2.1. Underlying technological infrastructure 
The emergence of the grid and also the eScience community that 

coalesced around the grid provided important expertise, experience and 
also facilities to support the development of models of everywhere. 
However, in practice (and this is clear in retrospect), the grid did not 
meet the full set of requirements to support the broader vision of models 
of everywhere. 

Although the vision of the grid was to provide plentiful resources on 
demand, the reality was somewhat different at that time. The avail-
ability of resources varied greatly and depended on access to one of the 
experimental grid facilities that were introduced in different global 
centres. The overall distributed systems architecture was therefore one 
of centres at given fixed locations offering (by definition) relatively 
centralised services with partial access and limited control of these 
services. A number of researchers explored more decentralized 

Table 1 
Technological requirements for models of everywhere, everything and at all 
times.  

Requirement Primary motivation(s) 

R1: Massive resource requirements in terms of 
underlying computation and storage (cf. big data) 

Models of everywhere, 
everything and at all times 

R2: Appropriate underlying distributed systems 
architecture for models of everywhere 

Models of everywhere, 
everything and at all times 

R3: Support for reasoning across scales Models of everywhere 
R4: Appropriate data representation architecture, 

recognising the heterogeneity of underlying data 
(structured and unstructured) and its complexities 

Models of everything 

R5: Support for data discovery and navigation Models of everything 
R6: Supporting open access to data Models of everything 
R7: Providing rich data analytics methods to make 

sense of this data 
Models of everything 

R8: Supporting the integration of process and data 
models 

Models of everything, at all 
times 

R9: Support for adaptive reasoning Models at all times 
R10: Support for reasoning about uncertainty, 

including epistemic uncertainties and non-linearities 
Models at all times 

R11: Ability to support coarse-grain and fine-gran 
adaptation of environmental models 

Models at all times 

R12: Supporting deployment of models of everywhere 
at scale 

Models of everywhere, 
everything and at all times  

7 http://toolkit.globus.org/toolkit/.  
8 https://aws.amazon.com/.  
9 http://www.climateprediction.net/.  

10 https://www.opensciencegrid.org/. 
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architectures, for example climateprediction.net (mentioned above) and 
SETI@home11 utilising BOINC12 – a more peer-to-peer volunteer 
computing platform, but such initiatives were not mainstream and not 
integrated into other grid initiatives. 

It is also important to emphasise that this was a research programme 
and hence the underlying platforms were not stable, with frequent 
changes over time in terms of services and facilities on offer. As will be 
seen, this contrasts significantly with what is available now in terms of 
both capacity and stability of services (see Section 4.2). 

More fundamentally, the services on offer did not have the level of 

sophistication to meet the technology infrastructure requirements as 
identified in Table 1. 

The main middleware technology used at the time was the Globus 
Toolkit, with the overall architecture of the Toolkit (v5) shown in Fig. 4. 

This was a large and complex architecture with many dimensions 
but, as can be seen, the emphasis is on supporting resource sharing, and at 
a fairly low level of abstraction. As stated in the seminal paper on the 
“anatomy of the grid”, Foster et al. (2001) argue that the grid was 
fundamentally about coordinated resource sharing and problem solving 
in dynamic, multi-institutional virtual organisations”. They go on to 
argue that this implies “direct access to computers, software, data, and 
other resources” …. and this sharing should be “highly controlled”. 
Hence, the emphasis was very much on meta-level concerns such as 
standardised APIs to ensure interoperability, service discovery, access 
control and resource management. There was also more emphasis in 
practice on computational resources rather than data management, for 
example GRAM (Grid Resource Allocation and Management offered an 
architecture to submit and monitor (batch) jobs in the Grid (see Fig. 5). 
This is quite different though from the execution style required for 
models of everywhere. 

As mentioned above, the data side was quite primitive with an 
emphasis on low-level facilities for access to data remotely (GridFTP13) 
and to assist in replication of data. While the grid was used successfully 
for a number eScience experiments involving elements of ‘big data’, the 
level of sophistication of data management was insufficient for the rich 
and heterogeneous data required for models of everywhere (and asso-
ciated needs in terms of discovery and navigation), and indeed for 
environmental data more generally. As will be seen below, this is one 
area that has advanced significantly in the last few years. 

There was also a general lack of experience of using grid computing 

Fig. 4. The architecture of the Globus Toolkit Version 5 (http://toolkit.globus. 
org/toolkit/about.html). 

Fig. 5. The architecture of GRAM (http://toolkit.globus.org/toolkit/docs/4.0/execution/wsgram/WS_GRAM_Approach.html).  

11 https://setiathome.berkeley.edu/.  
12 https://boinc.berkeley.edu/. 13 http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/. 
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for the earth and environmental sciences. Other scientific communities 
were more advanced in terms of their use of grid computing and 
embracing eScience. This led to a lack of services specific to this field, e. 
g. to support environmental modelling in the grid, although parallel 
developments such as the OpenMI (Open Modelling Interface) stan-
dard14 as adopted by the Open Geospatial Consortium, provided 
important building blocks to support model deployment and (most 
crucially) interoperability across models. 

In summary, grid computing was important in terms of establishing a 
community working together on distributed architectures and infra-
structure and, in particular, for building a strong dialogue with the 
science community in terms of a new open, computational and data-rich 
style of science. However, there are a number of limitations that 
impacted on the feasibility of models of everywhere, most notably the 
difficulties of access to computational and data resources, the lack of 
sophistication of the distributed infrastructure particularly in terms of 
data management, and the primitive nature of many of the services on 
offer (also revisited below under ‘deployment at scale’). 

3.2.2. Data analytics 
The ability to represent and access very-large scale and highly het-

erogeneous data is important. Equally, it is crucial to have a range of 
techniques to make sense of this data. As can be seen above, this re-
quires: a move towards open data as a prerequisite for open science; the 
availability of a rich set of techniques to analyse data; the ability to 
extend this reasoning across scales; and an integration of process 
modelling with data models produced to analyse the complex data (over 
and above the baseline requirement for storing, accessing and managing 
large and complex data-sets). Open data was in its infancy in the period 
2007–2012 with data often regarded as core intellectual property with 
many institutions seeking ways to commercialise their rich data-sets. 
There was however, a growing recognition with the complexity of 
modern science, that a new, more open approach to data was necessary. 
For example, the Royal Society published “Science as an Open Enter-
prise” in 201215 with a core recommendation: 

“Scientists should communicate the data they collect and the models 
they create, to allow free and open access, and in ways that are 
intelligible, assessable and usable for other specialists in the same or 
linked fields wherever they are in the world” 

This built on the emergence of Science 2.0 (Waldrop, 2008), seeking 
an open approach to science based on emerging Web standards 
(particularly Web 2.0 technologies offering user generated content and a 
move towards a more social web). In practice, however, at that time 
there were many cultural and technological barriers to a world where 
data-sets were available for open access in common repositories. 

In terms of making sense of data, the environmental sciences, 
including hydrology, make extensive use of process models to under-
stand fundamental processes of nature and then use these models to 
make future predictions. A wide range of process models have been 
developed, for example in hydrology, where there have been recent 
attempts to incorporate multiple process components into a common 
framework (e.g. Fenicia et al., 2011; Clark et al., 2015). In applications 
for flood risk assessment, there have been many codes routinely used 
both by industry and researchers to model the flow of water through the 
landscape, including interactions with physical infrastructure systems. 
These codes can be categorised reasonably precisely in terms of the 
approximations made to a set of physical governing equations (in the 
case of flood models this means simplifications of the fundamental 
Navier-Stokes equations for fluid dynamics). Even so, there remain 
differences in the interpretation of the prototypical physical equations, 

the numerical schemes that are used to solve them, the discretisations 
involved in applying those schemes to real data sets, and in the very 
many “edge cases” for which special solutions are required. Benchmark 
comparisons16 have shown how important these differences can be in 
controlling the results of flood simulations in various situations. There is 
also a strong body of research on training models based on historical 
data, and current observations can be used to steer future states of the 
model (data assimilation) (Lahoz et al., 2010; Park and Xu, 2017). 

More generally, in the time period under consideration, there was a 
deep concern that process models alone are not sufficient, and that 
fundamental issues remain, for example, reasoning about uncertainty 
and dealing with epistemic uncertainties and non-linearities in complex 
systems. Indeed, this is the prime driver for models of everything. This 
reflects a sense that it is necessary to integrate the process model view of 
science with one that recognises the importance of data and associated 
data analytic techniques (effectively data models). This is a significant 
cross-disciplinary challenge requiring input from environmental, com-
puter and mathematical scientists. At that time, this dialogue was not 
happening (discussed further in Section 4.1). Scientists also tended to 
focus on specific experiments and studies to understand phenomena at a 
given scale, so reasoning across scales was in its infancy. 

Overall, even by 2012, there were major barriers around data ana-
lytics that made it very hard to support the realisation of models of 
everywhere. 

3.2.3. Modelling as a learning process 
As discussed above, the perspective of models as a learning process is 

the most important but also most demanding aspect of implementing 
models of everywhere requiring a new, adaptive approach to learning. 
From our analysis, this breaks down into support for adaptive reasoning, 
explicitly representing consideration of uncertainty in this reasoning, 
and also being able to carry out both coarse-grained and (importantly) 
fine-grained adaptations. 

In the field of computer science, in the time period under consider-
ation, a deep understanding of adaptive computing developed. For 
example, IBM launched a new initiative examining autonomic systems 
in 2001, that is systems that can self-manage (mirroring the autonomic 
functioning of nervous system in the human body), in terms of a range of 
self-* properties (e.g. self-awareness, self-configuration, self-healing and 
self-optimisation) (Kephart and Chess, 2003). More generally, there was 
a large literature around software architectures to support 
self-adaptation (including reflective architectures), the use of control 
loops in decision making, and the use of more advanced machine 
learning techniques to support higher levels of autonomic 
self-management, for example dealing with unknowns (Oreizy et al., 
1999; McKinley et al., 2004). However, there has been little or no 
consideration about how such techniques can be used in terms of 
adaptive environmental modelling. Existing environmental models are 
also often written in older programming languages, most notably 
Fortran, and tend to be monolithic, black box implementations, hence 
do not lend themselves to the implementation of fine-grained adaptation 
strategies. 

There is also the important requirement to represent and reason 
about uncertainty explicitly as part of the adaptation process. At that 
time, there was growing recognition of the need to represent uncertainty 
in modelling and reasoning about uncertainty across scientific experi-
ments. For example, the UncertWeb project introduced techniques to 
capture uncertainties as meta-data in web-based environments, with 
details of the resultant UncertWeb framework published in early 2013 
(Bastin et al., 2013). Researchers had also developed a number of 
frameworks to reason about uncertainty in scientific experiments, 
including seminal work by Beven and Binley (1992, 2014) and others 

14 http://www.openmi.org/.  
15 https://royalsociety.org/~/media/Royal_Society_Content/policy/projects/ 

sape/2012-06-20-SAOE.pdf. 

16 https://www.gov.uk/government/publications/benchmarking-the-latest 
-generation-of-2d-hydraulic-flood-modelling-packages. 
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(see Renard et al., 2010; Vrugt and Sadegh, 2013; Nearing et al., 2016). 
As discussed in the 2012 models of everywhere paper, Beven and Alcock 
(2012) were just starting to think about reasoning about uncertainties in 
model selection or rejection (as a key part of models as a learning 
process). 

In summary, most of the building blocks were there by 2012, but the 
work was fragmented and split across many communities, and key issues 
remained over how to support more advanced reasoning of un-
certainties, including dealing with epistemic uncertainties. 

3.2.4. Deployment at scale 
Finally, and importantly, there is the key question of whether there 

was sufficient advancement at that time to support deployment of the 
kind of scale that makes models of everywhere a reality. As discussed 
above, there are several key dimensions to support such large-scale 
deployment, including how easy it is to deploy individual models, 
what support there is to then repeat this across many places (at different 
scales) and also whether the learning (and hence tailoring process) can 
be automated. The latter issue is intrinsically inked to the support for 
self-adaptive modelling and hence we focus more on the first two issues. 

One of the key problems with deploying in the grid environments, or 
indeed to other HPC facilities, is the low level of abstraction offered by 
software platforms. This was discussed in the consideration of the 
Globus Toolkit above. Given this, the development and deployment of 
even an individual model is a tedious, expensive and error prone process 
and this in itself is a barrier (Simm et al., 2018) to the deployment of 
models of everywhere. This is a barrier to more general deployment 
across a range of places where the individual models need to be specific 
to this place, both initially and also with the model or models refined 
over time to reflect the particular idiosyncrasies of this place. This im-
plies some form of software framework coupled with models as a 
learning process and, at that time, this was significantly beyond the 
state-of-the-art for model development. 

It is interesting to note that the initial models of everywhere paper 
(Beven, 2007) discusses an object-oriented approach to programming 

models of everywhere, mapping individual active spatial objects to 
places and also explicitly representing the relationship between places 
(mainly in terms of fluxes). This is an attempt to seek a higher level of 
abstraction to support the deployment of models of everywhere. At the 
time of writing, object-oriented computing and indeed distributed ob-
jects were an important area of research reflected in the importance of 
technologies such as CORBA (Common Object Request Broker Archi-
tecture).17 This approach is now largely superseded by alternative pro-
gramming models, reflecting (most principally) difficulties in realising 
distributed objects in Internet-scale developments. 

3.3. Overall assessment and technological readiness 

It is clear from the assessment above that, even by the end of this 
period (2012), there were major technological barriers in terms of the 
deployment of models of everywhere. Our overall assessment is sum-
marised in Table 2, which shows an overall rating against each of the 
requirements together with the identification of the most important 
barriers. 

As can be seen from Table 2, the overall readiness level is generally 
low to medium, with important barriers remaining across all categories. 
It is interesting to note that quite a number of the barriers are due to a 
silo-ed approach to research and can be addressed by more cross- 
disciplinary collaboration in this area. Overall, we would argue that, 
in the period 2007–2012, the vision of models of everywhere was right 
but the technology was not ready. We continue our discussion by 
considering how things have advanced to date, noting important de-
velopments that make an implementation of the concept more realistic. 

4. Technological landscape (current) 

4.1. Overview of the landscape 

The technological landscape has changed enormously since 2012 
and indeed this is one of the key drivers to revisit the concept of models 
of everywhere in terms of technological readiness. In particular, there 
have been three mutually supportive areas of significant innovation, 
namely cloud computing, data science and IoT. We look at each in turn 
below. 

The concept of cloud computing first came to prominence in the last 
decade. For example, Amazon introduced Amazon Web Services, as an 
early cloud offering, in 2006. It has really been in the last five years 
though that the area has exploded in terms of scale and sophistication of 
the underlying services on offer. The cloud is defined as “a set of 
Internet-based application, storage and computing services sufficient to 
support most users’ needs, thus enabling them to largely or totally 
dispense with local data storage and application software” (Coulouris 
et al., 2011). Cloud computing further promotes the view of everything as 
a service, from low-level services such as data storage or virtualised 
machines, through intermediary middleware services supporting par-
allel/distributed computing or database facilities, through to a plethora 
of applications (referred to as Infrastructure as a Service (IaaS), Platform 
as a Service (PaaS) and Software as a Service (SaaS)). Cloud computing 
may be offered by companies and made available to others as services, i. 
e. public clouds such as those offered by Amazon, Google, IBM, Microsoft 
and Yahoo, or private clouds that can be established within an organi-
sation or associated community (e.g. using open source software such as 
OpenStack or CloudStack). Hybrid solutions are also possible where an 
organisation may have their own private cloud but extended with extra 
capacity from public clouds. There is also a move in cloud computing 
from owning resources to a more elastic use, where resources can be 
requested (and paid for in the case of public clouds) only when required. 

The growth of cloud computing over the last five years in particular 

Table 2 
Assessment of technological readiness (2007–2012).  

Requirements 
cluster 

Technological 
readiness 

Most significant barriers 

Technological 
infrastructure 

** Insufficient level of resources offered by 
the grid; lack of stability of grid 
platforms; lack of sophistication of 
services offered; lack of support for 
complex and highly heterogeneous 
data. 

Data analytics * Lack of progress towards open data; 
immaturity and lack of cross- 
disciplinary dialogue on data analytics; 
lack of sophistication in dealing with 
uncertainty in process models; lack of 
research on process and data model 
integration; lack of research on 
reasoning across scales. 

Modelling as a 
learning process 

** Lack of cross-disciplinary research 
looking at adaptive techniques in 
environmental modelling; little support 
for fine-grained adaptation due to 
existing model structures; major issues 
around representing and reasoning 
about uncertainties; lack of support for 
epistemic uncertainties and dealing 
with non-linearities. 

Deployment at scale * Low level of abstraction in grid 
environments; lack of programming 
models or frameworks to support 
deployment at scale. 

Key (readiness level): **** ¼ very high (no significant barriers); *** ¼ high 
(some significant barriers); ** ¼ medium (a number of important barriers); * ¼
low (major barriers remain). 

17 http://www.omg.org/spec/CORBA/. 
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has been phenomenal. For example, a report by Cisco indicates that in 
2015 total data storage capacity in data centres is 382 EB, with this 
projected to grow to 1.8 ZB by 202018. There has also a corresponding 
growth in processing capabilities, and innovation around cloud services, 
most notably for the purposes of this paper in the area PaaS, with a wide 
range of new services introduced to storage and process massive data- 
sets, e.g. BigTable, Cassandra and HBase in terms of ‘big’ data storage 
and MapReduce and Apache Spark in terms of distributed computation 
(we return to this innovation in Section 4.2 below). 

The developments in cloud computing have also stimulated interest 
in ‘big data’ or more generally data science, that is the science of ana-
lysing and making sense of very large and/or highly complex data-sets. 
This is a fundamentally cross-disciplinary area of study involving, for 
example mathematical sciences, computational sciences and areas of 
application. To support this, a number of such cross-disciplinary in-
stitutes have been set up worldwide, including the Alan Turing Institute 
in the UK, and Data Science Institutes at Berkeley and Columbia in the 
United States, and Imperial College London, UCL, Warwick and Lan-
caster also in the UK, amongst many others. With the huge investments 
in data science, there is a growing body of literature on techniques to 
extract meaning for large and complex data-sets, including techniques 
that embrace unstructured data. More importantly, there is a dialogue 
across disciplines to understand how different techniques can work 
together to resolve major challenges around big data. 

A lot of the research in data science is targeted at underlying algo-
rithms and their scalability and efficiency. There is also an emphasis on 
more applied research, most notably in the areas of eCommerce and 
marketing, smart cities, logistics and transport, and also health and 
wellbeing (Blair et al., 2019). There is also huge potential in data science 
for the natural environment although, perhaps surprisingly, this is an 

area that is relatively under-developed (it is though one of the major 
themes of the Data Science Institute19 at Lancaster University, UK). 

Finally, there have been significant developments in the area of IoT, 
with the Internet evolving from being an Internet of computers to one 
that is an Internet of ‘Things’, with the Things being everyday objects 
with embedded intelligence (Atzori et al, 2010). Experts predict that IoT 
will embrace over 50 billion devices by 2020 (see Fig. 6). 

As with data science, the main growth areas are expected to be 
around smart cities, logistics and transport and health and wellbeing. 
There is also significant potential for IoT deployments in the natural 
environment; for example, Nundloll et al. (2019) describe an experiment 
in deploying an environmental IoT in a catchment in Wales. 

It is clear however that this is an area in its infancy. The real sig-
nificance of IoT technology in this area is when data can be combined 
with other sources including remote sensing, earth monitoring tech-
nologies, historical records and other data mined from the web in sup-
port of models of everything (as discussed in Section 2.2). 

These technologies are mutually supportive in that cloud computing 
provides the underlying very large-scale and elastic pool of resources 
and associated services to store, process and present very large data-sets. 
Data science provides a range of methods to make sense of complex data 
and extract meaning from this data, and IoT technology provides access 
to real-time observations on a very large scale. This symbiotic rela-
tionship is illustrated in Fig. 7. 

4.2. Addressing the requirements 

4.2.1. Underlying technological infrastructure 
The underlying technological infrastructure has changed signifi-

cantly in terms of both the availability of large-scale computational re-
sources and also the stability of the associated platforms. There has also 

Fig. 6. Expected growth of IoT (https://www.i-scoop.eu/internet-of-things-guide/).  

18 https://www.cisco.com/c/dam/en/us/solutions/collateral/service-pro 
vider/global-cloud-index-gci/white-paper-c11-738085.pdf 19 http://www.lancaster.ac.uk/dsi/. 
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been significant innovation in this area with an explosion of new ser-
vices now available. 

The developments in cloud computing, as documented above, are 
particularly significant in this regard. Whereas grid computing was a 
rather niche and immature technology, cloud computing provides access 
to an abundance of underlying resources (in terms of both computation 
and storage) and also an ever increasing set of associated services. The 
services most relevant for models of everywhere include: 

A rich underlying set of programming constructs to support distrib-
uted programming, including service-oriented architecture, con-
tainers and microservices/serverless computing, e.g. Docker20 and 
Rocket21 (for containers) and OpenWhisk22 and AWS Lambda23 (for 
microservices/serverless approaches); 
Services to support the subsequent deployment and execution of 
complex distributed executions, e.g. Kubernetes24 and ZooKeeper25; 
A range of underlying storage architectures that cater for very large 
scale and highly heterogeneous data-sets, including unstructured 
data, e.g. Cassandra26 HBase27 and MongoDB28; 
Parallel and distributed programming paradigms to process and 
manipulate such data-sets, including historical and streaming data- 
sets, e.g. the Hadoop framework29 MapReduce (Dean and Ghema-
wat, 2008), Spark30 and Pig31; 
Techniques to semantically enrich and subsequently navigate very 
large scale and highly heterogeneous data-sets, e.g. building on 
technologies such as OWL, SPARQL and RDF32 and also graph da-
tabases such as GraphDB33 AllegroGraph34 or Neo4j35; 
Software frameworks and associated libraries to support data ana-
lytics, e.g. Mahout36 or RStudio37; 

Services to support scientific workflow in the cloud, e.g. Taverna38 

and Kepler.39 

There is also strong interest in achieving integration between cloud 
computing and IoT technology, although this work is at early stages of 
development. Most significantly, there is a rapidly growing body of 
research around edge computing (sometimes also referred to as fog 
computing) to provide intermediary storage and processing capabilities 
closer to end devices (Lopez et al., 2015). For example, edge devices can 
be used to carry out initial analyses of real-time streaming data from IoT 
devices, with only aggregate or significant data then sent to the cloud 
environment. Edge computing can also support the integration of mobile 
devices (Ahmed and Ahmed, 2016). 

The technological landscape has therefore changed dramatically 
with many of the technologies now in place to support models of 
everywhere. A number of significant barriers though still remain, most 
notably the lack of standardisation in cloud computing, with different 
providers offering quite distinct programming paradigms and APIs. This 
leads to problems of vendor lock-in and also difficulties in managing 
computations that span multiple providers (including hybrid cloud en-
vironments embracing public and private providers). There are also 
difficulties in programming and managing the underlying technological 
infrastructure especially when combining cloud computing with IoT 
technology, the result being a rather sophisticated but highly complex 
system in itself (more accurately described as a system of systems 
(Jamshidi, 2011)). We return to this point below (under deployment at 
scale). 

4.2.2. Data analytics 
There have been similar advances in terms of data analytics. There is 

now much more awareness of the need to move to open science, 
including the need for open data policies. Governments and research 
funding bodies are also moving towards the need for open data, and 
there is a similar move towards more open, reproducible or repeatable 
science.40 It is fair to say though that important barriers remain and 
these tend to be cultural rather than technological.41 

In terms of making sense of data, the emergence of data science as a 
discipline is strongly encouraging albeit with a need to attract more data 
scientists to work on environmental challenges and problems (Blair 
et al., 2019). The most important development has been the 
cross-disciplinary dialogue that is now happening within the data sci-
ence community involving statisticians, computer scientists and domain 
experts (amongst others). This is very significant and is leading to 
breakthroughs in terms of efficient algorithms and their application in 
important societal problems. In the Data Science Institute at Lancaster, 
for example, we are interested in how contemporary techniques such as 
extreme value theory, changepoint analysis, time-series analyses and 
statistical/machine learning can be applied to complex environmental 
data. We are also particularly interested in how resultant data models 
can co-exist and inform process models, combining stochastic and 
deterministic understanding of complex environmental phenomena. 
While there is increasing awareness of the potential of such approaches, 
this is a relatively immature area; solutions tend to be ad hoc and a more 
principled understanding of how such techniques can work together has 
yet to emerge. There is also a similar narrative around reasoning across 
scales; while there is more experience of this in the earth and environ-
mental sciences, the solutions are also quite ad hoc and often not shared 
across different areas of study. 

Fig. 7. The symbiotic relationship between cloud computing, data science 
and IoT. 
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40 http://royalsociety.org/uploadedFiles/Royal_Society_Content/policy/proje 

cts/sape/2012-06-20-SAOE.pdf.  
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In conclusion, there have been significant developments since 2012, 
particularly in terms of the required cross-disciplinary dialogue around 
data science for the natural environment. Nevertheless, this work is still 
at a relatively early stage of maturity with important (and fairly unique) 
challenges of this area still to be addressed (Blair et al., 2019). 

4.2.3. Modelling as a learning process 
As discussed above, many of the building blocks for models as a 

learning process were already in place by 2012, albeit fragmented across 
different communities. The state-of-the-art now is quite similar and 
there remains a need for stronger cross-disciplinary dialogue between 
researchers working on environmental modelling, data science and 
adaptive/autonomic computing. The most significant changes in this 
time have been: i) advances in areas such as statistical and machine 
learning that directly supports meta-reasoning about model selection 
and rejection, and ii) the computational capacity offered by the cloud, 
which supports both the execution of complex environmental models in 
the cloud, and the execution of associated reasoning algorithms. 

There has been little progress on the crucial area of uncertainty – in 
terms of representing uncertainty explicitly in computations, and also 
reasoning about uncertainty as part of the decision making process. 
More generally, one of the most significant developments over this time 
period in the environmental sciences has been the recognition of the 
unavoidable uncertainties associated with predictive models, whether 
used for simulation or forecasting purposes (e.g. Beven, 2009). As noted 
earlier, a primary driver for the models of everywhere concepts was the 
potential for using local information to constrain local uncertainties in 
predicting local variables. This is not just a problem of assessing the 
statistics of model residuals (though many studies have approached the 
problem in this way). This is because many sources of uncertainty are 
the result of lack of knowledge about processes, variables or forcings 
(particularly into the future) that are not necessarily easily represented 
in simple statistical forms. In particular, input uncertainties will be 
processed through the nonlinear dynamics of a model to produce com-
plex nonstationary residual structures, that will then interact with un-
certainties in the observational data used in model evaluation, which 
might also have associated epistemic uncertainties (e.g. in hydrology, 
arising from the rating curves used in the estimation of river flows, (see 
Westerberg et al., 2011; Westerberg and McMillan, 2015; Coxon et al., 
2015)). These issues underlay the development of the Generalised 
Likelihood Uncertainty Estimation (GLUE) methodology (e.g. Beven and 
Binley, 1992, 2014; Beven, 2006, 2016), which includes some statistical 
methods as special cases. 

As new data become available, it should be possible to learn more 
about the characteristics of the uncertainties associated with different 
predictands, at least where the new data are informative (that this may 
not always be the case has been shown by Beven et al., 2011 and Beven 
and Smith, 2015). In doing so, it will be possible to combine prior in-
formation with the new information to update the estimates. This leads 
naturally to a form of Bayesian reasoning, where uncertainties can be 
represented as probabilities, but much more research is needed in 
environmental models to understand how best to define the likelihoods 
used in the Bayesian methodology. Simple statistical likelihood func-
tions used with multiplicative Bayesian updating appear to lead to 
overconditioning of model parameters because they do not take any 
account of the epistemic nature of sources of uncertainty (e.g. Beven 
et al., 2011; Beven, 2016, 2019). There are also issues of whether even 
the best models might be fit-for-purpose for the type of decisions that 
they might be used for (see the discussion of Beven and Lane, 2019). 

A critical aspect of the models of everywhere concept is the potential 
for using local knowledge within this learning process to improve the 
representations of places. This is where information from local stake-
holders and the Internet of Things might be used in local model evalu-
ations to reject potential model structures and constrain uncertainties in 
parameterisations and outcomes. This can be considered as an extension 
of the collaborative and participatory learning that has already been 

used in a number of local flood risk assessments and water resource 
management projects (e.g. Lane et al., 2011; Landstr€om et al., 2011; 
Evers et al., 2012; Maskrey et al., 2016; Ferr�e, 2017; Basco-Carrera et al., 
2017; see also Voinov et al., 2016). An important component of this 
learning process is the potential to visualise model outcomes at scales 
that allows consideration of local detail by local stakeholders so that 
different scenarios (and their uncertainties) can be explored in collab-
orative ways (Hankin et al., 2017, see below). 

4.2.4. Deployment at scale 
There have been several important developments in terms of 

deploying at scale, with containers in particular making it far easier to 
deploy and subsequently manage executing models in the cloud in a 
platform-independent manner. The availability of cloud-based workflow 
engines is also significant, although there are questions over whether 
workflow offers the right abstraction for all elements of environmental 
modelling (Blair et al., 2019). 

More generally, there is still a problem-implementation gap (France 
and Rumpe, 2007) between what scientists would like to do in the cloud, 
and the level of support offered by existing technologies and services, 
with a prior knowledge of the underlying technical details required. This 
makes it very time consuming and also error prone to execute envi-
ronmental models or ensemble models in the cloud, and also requires 
access to computing expertise, which may be a scarce resource in many 
environmental research labs. In the context of models of everywhere, the 
models may themselves be quite complex, involving different ensembles 
of process models or the integration of process and data models for 
example. This makes the cost quite prohibitive, especially when this 
would entail the deployment of many instances of these models at many 
different places and scales. 

Software frameworks offer a promising technology to support the 
more rapid deployment of recurrent software architectures (Johnson, 
1997). Software frameworks are tailored towards particular domains of 
application, abstracting over the lower level details and capturing the 
commonalities within that domain, while allowing some degree of 
specialisation. They are heavily used in cloud computing, for example 
MapReduce abstracts over the complexities of managing a large and 
complex underlying cloud infrastructure and supports the execution of 
distributed algorithms in the cloud, allowing the user to plug-in and 
specialise the computation through providing application specific map 
and reduce operations (Dean and Ghemawat, 2008). At present though 
such frameworks tend to be relatively generic, e.g. dealing with 
distributed computation, and are not specific enough to support some-
thing as domain dependent as environmental models. 

In terms of programming models, distributed objects have now been 
replaced by alternative paradigms supported in the cloud, around 
service-oriented architecture enhanced by concepts such as deployment 
in containers and optionally support for microservices. This approach 
overcomes the problems associated with distributed object technology, 
being much better suited to large-scale Internet wide deployment. Some 
research is required though in terms of how to map models of every-
where on to such programming concepts. 

4.3. Overall assessment and technological readiness 

It is apparent from the discussion above that there have been sig-
nificant advances in the underlying technology to support the vision of 
models of everywhere. Equally, a number of barriers remain. Our overall 
assessment is summarised in Table 3, repeating the style of analysis 
carried out for the period 2007–2012 (in Table 2). 

From this analysis, we can see that there have been significant shifts 
in readiness around the underlying technological infrastructure and in 
data analytics and also (partially) around supporting deployment at 
scale. Support for modelling as a learning process has not changed much 
although the developments in cloud computing and data analytics does 
offer the potential (as yet unrealised) of significant advances in this area. 
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The need for cross-disciplinary dialogue is a common theme across all 
these areas and is crucial in terms of addressing the remaining barriers. 

Overall, we conclude that, in terms of technological readiness, the 
time is right to carry out large-scale experiments of the concept of 
models of everywhere. The next section explores ongoing research in 
this area. 

5. Initial experiments and research roadmap 

Ongoing research at Lancaster is looking at an experimental 
deployment of the concept of modes of everywhere in the area of hy-
drology, supported by recent developments in cloud computing, data 
science and new sources of data (including but not limited to IoT 

technology). The initial deployment is targeting a specific place with the 
intention of having a modelling framework that is able to capture and 
indeed learn the idiosyncrasies of that place. The overarching goal of 
this work is to identify software architectural principles for imple-
menting models of everywhere in the cloud with a view to supporting 
more widespread deployment of models of everywhere at different 
places and at different scales (discussed further below). We are also 
strongly interested in supporting decision making at different scales, for 
example over the potential effectiveness of different natural flood 
management strategies and also over how to use constrained national or 
regional budgets most effectively. 

The high-level systems architecture is as shown in Fig. 8 below. 
This recognises the existence of multiple sources of data and the 

importance of integrating this data and, in turn, looking at model inte-
gration on top of this, which includes both data and process models 
coupled together. The top layer then supports interrogation and 
querying of the information about that particular place. This maps on to 
a more detailed cloud-based systems architecture exploiting the range of 
services supported by the cloud in each of these areas. This is shown in 
Fig. 9. 

Through this work, we intend to overcome the remaining techno-
logical barriers around models of everywhere and therefore open the 
door to the desired, more widespread deployment of the concept in 
hydrology and beyond. 

Further details of this research can be found in Towe et al. (2019) 
with Edwards et al. (2017) also discussing human and societal di-
mensions of the research around decision making. 

Our overall research roadmap is summarised in Table 4, which shows 
the key research questions and associated areas of investigation. 

Having deployed the concept of models of everywhere at a given 
place, we then hope to consider how to generalise the approach to model 
other environmental facets at that place, to model other places 
(including places at other scales), and to support coherent reasoning 
across scales. This also involves key questions over discretisation, 
especially given the fact that data may exist at different scales for a given 
place. In the longer term, we will also be interested in how the concept 
can be applied to other areas of environmental science, including 
biodiversity and soil management, and also how models of everywhere 
can help us in understanding the inter-dependencies across such areas (a 
key motivation of models of everything as discussed above). This quickly 
becomes a large research agenda that goes beyond the scope of our 
research study, and we hope to stimulate other research to address these 

Table 3 
Assessment of technological readiness now.  

Requirements 
cluster 

Technological 
readiness 

Most significant barriers 

Technological 
infrastructure 

*** Lack of standardisation in cloud 
computing; difficulties in managing 
complex underlying distribute systems 
infrastructure (or systems of systems). 

Data analytics *** Cultural impediments to open data; 
need to address particular data science 
challenges related to the environment, 
including around process and data 
model integration and on reasoning 
across scales. 

Modelling as a 
learning process 

** Lack of cross-disciplinary research 
looking at adaptive techniques in 
environmental modelling; little support 
for fine-grained adaptation due to 
existing model structures; major issues 
around representing and reasoning 
about uncertainties; lack of support for 
epistemic uncertainties and dealing 
with non-linearities. 

Deployment at scale *** Problem-implementation gap and the 
need to raise the level of abstraction in 
terms of supporting execution in the 
cloud; lack of experience of using cloud 
programming paradigms in this area. 

Key (readiness level): **** ¼ very high (no significant barriers); *** ¼ high 
(some significant barriers); ** ¼ medium (a number of important barriers); * ¼
low (major barriers remain). 

Fig. 8. High-level systems architecture.  
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key issues. 

6. Related work 

There are, of course, already models of everywhere (and to some 
sense everything) in the sense of global earth system science models that 
have been developed from global atmosphere and ocean dynamic cir-
culation models. Examples are the Japanese Earth Simulator (Habata 
et al., 2003); EC-Earth (Hazeleger et al., 2010) and the Community Earth 
System Model (Hurrell et al., 2013). While these are still limited to grid 
resolutions of kilometres for global applications, these systems 
commonly include the possibility of nesting finer grid domains, with 
boundary conditions provided by global simulations. The philosophy of 
such approaches, however, has been quite different from that presented 
here. The model structure and parameterisations are generally fixed, so 
that application everywhere has been a matter of finding appropriate 
effective parameter values for different grid locations using whatever 
data might be available. 

There have also been some attempts to produce distributed model-
ling systems that could be applied widely at finer grid scales, allowing 
for a more flexible choice of structures. In hydrology, for example, there 
was the inter-agency Object Modelling System (OMS) of Leavesley et al. 
(2002) that developed into a more general modelling system (Lloyd 
et al., 2011; David et al., 2013). More recently, Clark et al. (2015) have 
proposed the Structure for Unifying Multiple Modeling Alternatives 
(SUMMA) framework. In both cases, several different model represen-
tations were provided for the user to choose from in producing a models 
structure for a particular catchment area. Within these systems, the 
expertise of users can be elicited to define appropriate model structures, 
although identification of appropriate model parameters and hypothesis 
testing of competing model structures are still major issues (e.g. Weiler 
and Beven, 2015). The type of approaches presented here could be used 
with such systems. 

In flood risk management, there are inherent motivations to view 

Fig. 9. More detailed cloud-based systems architecture.  

Table 4 
Overall research roadmaps.  

Research questions Potential solutions 

How to effectively and efficiently map 
the concept of models of everywhere 
on to contemporary cloud 
programming paradigms and 
associated services? 

Identifying appropriate software 
architectures for models of everywhere 
and examining the mapping on such 
architectures to service-oriented 
architecture, containers and 
microservices. 

How to deploy models of everywhere at 
scale, with a view to supporting the 
rapid deployment of new instances? 

Investigating the role of specialised 
software frameworks for models of 
everywhere, coupled with the use of 
techniques from the model-driven 
engineering community, especially 
around domain specific languages. 

How to achieve data integration given 
highly heterogeneous sources of data 
(including unstructured and more 
structured data)? 

Investigating underlying cloud storage 
technologies such as Cassandra or HBase, 
and associated technologies for semantic 
integration (especially ontologies and 
linked data). 

How to make sense of this complex data? Explore a range of appropriate data 
science methods in isolation and in 
combination. 

How to achieve integration between process 
models and data models? 

Seek underlying principles related to 
process and data model integration; 
investigate how this can support a 
reduction of uncertainty and also how it 
can deal with epistemic uncertainty and 
non-linearities. 

How to realise the concept of modelling as 
a learning process? 

Seek to bring together expertise in 
adaptive/autonomic computing and 
environmental modelling; seek ways to 
annotate computations with uncertainty 
and use this in the reasoning/adaptation 
process; seek approaches to support both 
coarse and fine-grained adaptation; seek 
approaches to accept, refine or reject 
models, including consideration of the 
limits of acceptability approach.  
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modelling as a process of learning about places, stemming from two 
distinctive features of the problem. Firstly, the likelihood and impacts of 
flooding, although driven ultimately by weather and climate, are 
strongly influenced by local features of landscapes, land use, and human 
activities. In some cases, even very small topographic features or 
infrastructure assets can have a significant control on flood risk, for 
example by directing the flow of flood waters towards or away from 
buildings. This information is not always captured well (if at all) in 
generic model structures and data sets. Secondly, the assessment of flood 
risk involves gathering information about extreme events, which tends 
to place an emphasis on historical knowledge, often reliant upon 
detailed knowledge of the locality for interpretation, and on the 
updating of risk assessments as new observations become available. 

For these reasons, some flood risk management applications already 
implement frameworks for iterative co-production of modelling, based 

on the incorporation of knowledge about specific localities from multi-
ple stakeholders. One such system42 has been developed for the Flanders 
Environment Agency (Vlaamse Milieumaatschappij, VMM) for mapping 
areas at risk of flooding from surface runoff. Here, a web-based interface 
creates a shared collaboration space enabling local partners, such as 
town councils or local water- and sewer managers, to engage in a dia-
logue about model improvements (Fig. 10). 

Important features that have been incorporated within the modelling 
through this process include areas where flood water can be held back 
by embankments, or drained by pumps and control structures (e.g. gates, 
sluices, weirs, culverts) that are known to local staff and may not be 
represented adequately without that detailed local knowledge, such as 

Fig. 10. (a) Co-production and local improvements of a flood risk model by Flanders Environment Agency (Vlaamse Milieumaatschappij, VMM), illustrating place- 
based dialogue about local model errors and data; (b) Difference viewer allowing cooperating parties to assess model updates, supported by contextual information. 

42 https://www.youtube.com/watch?v¼lEWtELDWTsU&feature¼youtu. 
be&t¼74. 
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the flood retention storage and flow control structures represented in 
Fig. 10. 

The co-production website is shared with professional partners and 
within its first three months of operation enabled more than 9000 
detailed improvements to data and modelling to be implemented 
together with nearly 300 re-simulations for 103 sub-models involving 
150 organisations, and resulting in positive evaluations of model im-
provements at 500 locations across the whole of Flanders. 

The VMM example discussed here explicitly exposes modelling as 
part of a process of learning about place through knowledge sharing, 
supported by digital technology. A more constrained example is the 
flood hazard mapping of the FEMA National Flood Insurance Program43 

where model-based flood risk assessments are published and can be 
challenged by individuals, on the basis of detailed local knowledge, via a 
web-based facility. 

Stakeholder interaction with the outputs of models of everywhere 
can also made more direct and local, to demonstrate and explain as-
sumptions, and to alter inputs or outputs as a way of iterating to a co- 
produced model of a place. In this way local models will be better 
constrained by the local stakeholder information, and more trusted if 
done well. As an example of this way of working, a series of workshops, 
sponsored by Natural England, were used to engage local farming 
communities on the potential benefits of ‘working with natural pro-
cesses’ (WWNP) to mitigate flooding, often called Natural Flood Man-
agement (see Hankin et al., 2017 for modelling concepts). 

Two engagement devices were used. An Augmented Reality Sandbox 
was used to provide real-time feedback on the response of flow pathways 
to a user sculpting channels in sand. Virtual inputs to the sandbox are 

Fig. 11. Engagement, capture of local data and knowledge on the iTable.  

Fig. 12. FiGIS and model outputs on the iTable following one of the workshops.  

43 https://www.fema.gov/national-flood-insurance-program-flood-hazard 
-mapping. 
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controlled by waving a hand over the sandbox. Water flow pathways and 
storages are then shown by projection of blue onto the sand. This was 
used as a precursor to the demonstration of more quantitative modelling 
results, with visualisations being projected onto a large interactive 
iTable and shown in Fig. 11. 

Engagement using the iTable followed 4 key steps:  

1) The model, and modelling assumptions, is explained following a 
general discussion of NFM. A baseline run of the model under flood 
conditions is discussed for acceptability in terms of local knowledge 
of patterns of flooding.  

2) A GIS package is used to show different layers for the local catchment 
and bring in layers of potential opportunities that might be based on 
national strategic layers.44 These are discussed with the participants 
and options and be switched on and off according to where the 
catchment partners identify where they would be happy to try 
different sorts of NFM.  

3) The measures are then plugged into the model and the model is run 
to predict the outcome of the changed configuration.  

4) The distributed changes to the hydrological responses are explored 
with the partners to understand model behaviour and effectiveness. 
Fig. 12 shows the outputs following one of the workshops. 

Interestingly, in some discussions of significant measures in front of 
their peers, landowners came up with interventions that were very sig-
nificant, for example sacrificing some summer irrigation storage to act as 
flood storage areas in the winter season. This process of standing around 
the tables and discussing the catchment with peers appeared to make 
people more forthcoming, and the process more effective. The process 
does, however, require a different approach to modelling since some of 
the feedback from local stakeholders might not be positive. It is there-
fore important that the modellers involved should not be too protective 
about their model, but should recognise and explain the assumptions 
and uncertainties inherent in the modelling process and be prepared to 
incorporate new knowledge as far as possible. Finding ways of 
conveying (and if necessary recalculating) prediction uncertainties 
within this context is the subject of on-going work. 

7. Conclusions 

This paper has carried out a systematic analysis of the technological 
readiness for the concept of models of everywhere. In particular, the 
paper has examined the various dimensions associated with models of 
everywhere and determined a set of technological requirements that 
must be met for the successful large-scale deployment of the concept. 
This set of requirements was then used to compare technological read-
iness when models of everywhere was first proposed against the readi-
ness levels now, showing that the time is right for widespread 
experimentation and deployment of the concept. Although many of the 
technological barriers have been removed, key research issues remain 
and the paper has highlighted a set of open research questions that must 
be addressed before progress can be made. Importantly, this research 
agenda represents a shift in environmental modelling from an approach 
centred on process understanding (through deterministic models) to one 
that embraces a more data-centric perspective, whereby the two ap-
proaches can work in tandem to achieve a deeper understanding of 
specific places and hence to support more nuanced decision making 
about a given place. 

There are also key limitations of the models of everywhere approach 
including the computational requirements if rolled out on a large scale 
and also the advances needed in environmental science to develop scale 
dependent parameterisations and embrace an underlying science of 
everything, everywhere and at all times. 

In conclusion, the concept of models of everywhere is even more 
important than when it was first proposed given the environmental 
challenges we face, and this paper has demonstrated that the time is 
right for more large-scale experimentation with the concept. Further 
research though is clearly needed to deliver against this vision and this 
research has to be fundamentally trans-disciplinary in nature bringing 
together environmental scientists, data scientists and computer scien-
tists to reach a common understanding of representing complex envi-
ronmental data, making sense of the resultant highly heterogeneous 
data, integrating knowledge from process and data models, and rolling 
out the concept of scale. Equally importantly, there is a need to work 
closely with social scientists to understand the human and societal issues 
related to models of everywhere, including the necessary cultural shift to 
open data, treatments of security and privacy and the role of commu-
nities in ensuring models represent the peculiarity of places. 
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