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i. Abstract 

The use of mass spectrometry imaging (MSI) for the analysis of 3D tissue 
models of human skin has been shown to provide an elegant label-free 
methodology for the study of both drug absorption and drug biotransformation. 

The main aim of the work presented in this thesis was to develop methodology 
for quantitative assessment of percutaneous absorption using matrix assisted 
laser desorption ionisation mass spectrometry imaging (MALDI-MSI). 
Quantitative assessment of the absorption of an antifungal agent, terbinafine 
hydrochloride, into the epidermal region of a commercial full thickness living 
skin equivalent model (Labskin) was used as a model system. 

Different approaches to generate robust and sensitive quantitative mass 
spectrometry imaging (QMSI) data were developed and compared. The 
combination of microspotting of analytical and internal standards, matrix 
sublimation, and recently developed software for quantitative mass 
spectrometry imaging provided a high-resolution method for the determination 
of terbinafine hydrochloride in Labskin. A quantitative assessment of the effect 
of adding a penetration enhancer (dimethyl isosorbide (DMI)) to the delivery 
vehicle was also performed, and data was compared to LC–MS/MS 
measurements of isolated epidermal tissue extracts. Comparison of means and 
standard deviations indicated no significant difference between the values 
obtained by the two methods. 

In this thesis the localisation of hydrocortisone hydrochloride in ex-vivo skin was 
also investigated. Hydrocortisone exhibits a low ionisation efficiency that makes 
its detection challenging with mass spectrometry techniques. An in-solution and 
on-tissue chemical derivatisation reaction using the Girard reagent T, a 
hydrazine based reagent, significantly increased the sensitivity and detection of 
the respective hydrocortisone-derivative using MALDI-MSI. 

In an additional study, MALDI-MSI was used to assess the metabolic activity in 
Labskin by employing the approach of "substrate-based mass spectrometry 
imaging" (SBMSI). Preliminary MALDI-MSI data detected the activity of the 
carboxylesterase 1 enzyme in the epidermal layer of skin. The MALDI-MSI data 
was supported by preliminary LC-MS/MS analysis. To investigate the 
reproducibility of the results future investigations are required. 
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1.1 Mass spectrometry  

Mass spectrometry (MS) is an analytical technique capable of molecular 

analysis by ionisation of chemical species and subsequent sorting of the ions by 

their mass to charge ratio (m/z). The principal elements of a mass spectrometer 

instrument include the: 

 Ionisation source, where molecules within the sample are ionised.  

 Mass analyser, where ions are separated by their mass to charge ratio. 

 Detector, for the measurement of ion relative abundance, resulting then 

in a mass spectrum. 

 Data system, which includes computer and software, for the acquisition 

and processing of data derived from MS. 

Commercially available mass spectrometers offer different configurations of 

ionisation sources, mass analysers and detectors.  

A simple diagram of a mass spectrometer is illustrated below (Figure 1.1).  

 

Figure 1.1 Basic components of a mass spectrometer, including; a sample inlet, 

an ionisation source, a mass analyser, a detector and a data system (displaying 

the mass spectrum). 
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1.2 Ionisation source 

Multiple ionisation sources are associated with mass spectrometry and their 

different characteristics are mainly related to the exploitable mass range and 

the energies involved in the ionisation process. The ionisation sources used in 

the present study are electrospray ionisation (ESI) and matrix assisted laser 

desorption ionisation (MALDI); they are referred to as "soft" ionisation 

techniques as they cause little or no fragmentation.   

 

1.2.1 Electrospray ionisation (ESI) 

Electrospray ionisation (ESI) was  presented  in the late 1960's by Dole and co-

workers (Dole et al., 1968), and later combined with a quadrupole mass 

analyser by Yamashita and Fenn (Yamashita and Fenn, 1984).  

 

ESI is an atmospheric pressure ionisation technique produced by injecting an 

analyte solution through a capillary, to which a high voltage is applied, into a 

desolvation chamber. The voltage (~ 3-6 kV), which is applied between the 

capillary and the sampling cone, leads to the formation of a droplet containing 

an excess of charges (positive or negative) at the tip of the capillary. As a 

consequence of the strong electric field the shape of the droplet changes to a 

Taylor cone, from which an aerosol of highly charged droplets is released 

(Kebarle and Verkcerk, 2009; Hoffmann and Stroobant, 2007). 

 

In the desolvation chamber, the volume of the droplets reduces due to the 

evaporation of the solvent under the influence of a stream of drying gas/heat. 

The shrinking of droplet volume leads to an increase of the repulsive force 

between the charges at the surface until reaching the Rayleigh instability limit, 

the point at which the surface tension matches Coulombic repulsion. When the 

Rayleigh limit is exceeded, the droplet undergoes Coulombic explosion, 

releasing smaller droplets, which undergo further desolvation and coulombic 

explosion until the formation of gaseous phase analyte ions occurs (Figure 1.2). 
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Figure 1.2 Representation of an electrospray ionisation source. A Taylor cone 

is formed at the tip of the capillary, from which a spray of charged droplets is 

expelled due to an applied voltage. 

The advantage of this method is that it requires very little sample preparation 

and it is able to generate multiply charged ions. Because the analyser in mass 

spectrometry arrays the ions based on their mass to charge ratio, the ability of 

electrospray to produce multiply charged ions extends the mass range of 

analysis up to kDa-MDa orders of magnitude, which makes it possible to 

observe intact proteins and their associated polypeptide fragments (Ho et al., 

2003; Pitt, 2009). Molecules for ESI are already ionised in solution prior to them 

being transferred to the gas phase, therefore non-polar molecules are not very 

ionisable by ESI. 

 

Three main mechanisms have been proposed for the process that leads up to 

the emission of the ions from the charged droplets; these include: the ion 

evaporation model (IEM); the charge reduction model (CRM) and the chain 

ejection model (CEM). The IEM model was proposed by Iribarne and Thomas 

and it is more likely to occur during analysis of small molecular weight 

compounds (Iribarne and Thomson, 1976). This model suggests that pre-

formed solution ions are expelled from nanodroplets, which have reduced their 

volume by evaporation until the field strength at the surface of the droplet is 

large enough to assist the desorption of the ions into the gas phase (Nguyen 

and Fenn, 2007). The CRM model was proposed by Dole et al. and it is more 

likely to occur during analysis of large molecular weight compounds (Dole et al., 
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1968). The CRM model proposes that nanodroplets, containing a single analyte, 

fully evaporate and the residual charge is transferred to the analyte (Fernandez 

de la Mora, 2000). The latest mechanism is the CEM, which was firstly 

described by Ahadi et al. and it is more likely to occur during analysis of 

unfolded, disordered proteins (Ahadi and Konermann, 2012). This model 

suggests that an unfolded protein migrates to the surface of the droplet due to 

the exposure of hydrophobic residues and one chain terminus get partially 

ejected from the droplet into the gas phase. This is followed by further ejection 

of the rest of the protein, which will result in highly charged ions (Konermann et 

al., 2013; Metwally, Duez and Konermann, 2018). A schematic illustration of the 

main mechanisms responsible of ion formation by ESI is provided in Figure 1.3.
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Figure 1.3 Schematic representation of the three proposed mechanisms of ESI. In the IEM small ions are emitted from droplets which 

shrink until the field strength at the surface is large enough for ions to be expelled. In the CRM a droplet containing a single analyte 

evaporates with the residual charge being transferred to the analyte. In the CEM a disordered polymer is partially ejected from the droplet 

where protons attach to the exposed portion, followed by further extrusion and ultimate ejection of the rest of the protein.
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1.2.2 Matrix assisted laser desorption ionisation (MALDI) 

Matrix assisted laser desorption ionisation (MALDI) was developed in the late 

1980’s by Karas, Hillenkamp and co-workers (Karas, Bachmann and 

Hillenkamp, 1985).  MALDI generates intact gas-phase ions from non-volatile 

and thermally labile compounds. Initially, it was established as a widespread 

and powerful source for the detection of macromolecules and biomolecules, 

such as proteins and polysaccharides (Hoffmann and Stroobant, 2007). 

However, the application areas have quickly extended and, nowadays, this 

technique also finds a place into many laboratory’s workflow for the analysis of 

small molecules such as pharmaceuticals, lipids, metabolites and peptides 

(Amstalden van Hove, Smith and Heeren, 2010) . 

MALDI uses a laser to induce ionisation of an analyte, which is mixed with a 

matrix, typically a molecule with conjugated double bonds. The matrix is a key 

component of the method, since it acts by absorbing most of the laser energy 

and promoting analyte ionisation. Although either ultraviolet (UV) or infrared (IR) 

lasers can be used as light sources, the majority of MALDI sources contain UV 

lasers, which include nitrogen laser at a wavelength of 337 nm, and 

neodymium-doped yttrium aluminium garnet (Nd:YAG) laser at a wavelength of 

355 nm. 

In MALDI mass spectrometry profiling (MSP) experiments, an analyte is first co-

crystallised with the matrix, which is usually in high excess. The mixture 

(analyte embedded in the matrix) is dried and placed under vacuum conditions 

inside a MALDI source, where it is irradiated by intense laser pulses. 

Subsequently, high energy excitation of matrix molecules causes rapid heating 

and ablation of crystals which expand into the gas phase. Ionisation events 

could happen under vacuum at any time during this process (Hoffmann and 

Stroobant, 2007). 

A schematic overview of the MALDI technique is shown in Figure 1.4. 
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Figure 1.4 A schematic diagram of the matrix assisted laser desorption 

ionisation process. The laser fires at the crystals (analyte-matrix) causing the 

desorption and ionisation of the gas phase ions, which are then directed into a 

mass analyser. 

 

However, MALDI source can operate also at atmospheric pressure (AP-MALDI) 

(Laiko, Moyer and Cotter, 2000; Li et al., 2014). The principles behind the 

sample preparation and ionisation are the same for both vacuum and AP-

MALDI, however in the latter case, the ions are generated under normal 

atmospheric pressure conditions and their movement into a high vacuum 

analyser is pneumatically assisted by a stream of dry nitrogen (Laiko, Baldwin 

and Burlingame, 2000; Hoffmann and Stroobant, 2007). The main advantages 

of AP-MALDI over conventional vacuum MALDI are associated with the 

preservation of sample integrity, as well as the higher experimental practicality, 

indeed AP-MALDI can be easily combined with mass spectrometer equipped 

with atmospheric pressure interface (API) and interchanged with other AP 

sources (Hoffmann and Stroobant, 2007).  
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1.2.2.1  MALDI ionisation 

The mechanisms behind the ionisation process in MALDI are not entirely 

understood yet. However, it is commonly accepted that the ionisation process is 

separated into two steps: a primary ionisation process during or shortly after the 

laser pulse and a secondary ionisation process in the expanding plume of 

desorbed material (Knochenmuss, 2006). Generation of the first ions represents 

the most disputed part of the ionisation mechanism. Several processes have 

been proposed, and those considered the most probable are: the Lucky 

Survivor model (Jaskolla and Karas, 2011), the coupled photophysical and 

chemical dynamics (CPCD) model (Knochenmuss, 2013, 2016) and the thermal 

proton transfer model (Chu et al., 2014; Lu et al., 2015). 

The Lucky Survivor model proposes that analyte molecules are embedded into 

the matrix as charged species (Hillenkamp and Peter-Katalinić, 2007). After the 

ablation upon laser irradiation, clusters of different sizes, containing matrix, 

analytes and ionic species incorporated in the matrix crystals, are generated. 

An extensive neutralisation of most of the ions by their counter ions is thought to 

occur in the plume; only ions that escape the neutralisation can be detected, 

hence they are called "lucky survivors". This model offers an explanation of the 

presence of the predominantly singly charged ions observed in MALDI spectra, 

since they have the greatest chance of "surviving" (Karas, Glückmann and 

Schäfer, 2000; Karas and Krüger, 2003; Jaskolla and Karas, 2011). In the 

CPCD model, the photoexcitation of the matrix is principally involved in the 

ionisation process.  First, upon laser irradiation, excitation of matrix molecules 

takes place, which raise to the first electronically excited state (S1). This is 

followed by an energy pooling event defined as redistribution of the total energy 

of two neighbouring excited matrix molecules leading to a matrix molecule at a 

higher excited state (Sn), while the other molecule returns to the ground state 

(S0). A subsequent pooling event between one matrix molecule in a highly 

electronic excited state (Sn) with another in the first electronic excited state (S1) 

results in the formation of matrix ions. These ions will undergo a set of reactions 

to generate the final ions (secondary process) (Knochenmuss, 2013, 2016). A 

diagram of the steps that occur in the CPCD model is illustrated in Figure 1.5. 
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Figure 1.5 Schematisation of the two energy pooling events, which are the key 

of the coupled chemical and physical dynamics (CPCD) model: A) S1 + S1 

pooling to S0 and Sn. B) S1 + S0 pooling to S0 and ion. 

 

In the thermal proton transfer model it is important to estimate the ion-to-neutral 

ratio of matrix and analyte molecules for the MALDI mechanism. The laser 

energy absorbed by matrix molecules is converted in thermal energy leading to 

an increase in temperature. The creation of a polar fluid, then, causes a 

reduction of the ionisation energy of the matrix with consequent formation of 

free protons. These protons diffuse through the polar fluid and they are trapped 

by the analyte molecules, causing ionisation of the analyte molecules (Lu et al., 

2015). 

The ions formed during the primary ionisation will react with neutral molecules 

present in the expanding plume of desorbed material, causing the formation of 

the ions which will be detected by the mass spectrometer. The secondary 

ionisation mechanisms include: proton, cation or electron transfer 

(Knochenmuss and Zenobi, 2003). Proton transfer is the main secondary 
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reaction in MALDI and it takes place between protonated matrix and neutral 

analytes, as shown below: 

MH+ + A M + AH+ 

 

1.3 MALDI mass spectrometry imaging (MALDI-MSI) 

MALDI mass spectrometry imaging (MALDI-MSI) is a relatively new and 

powerful technique able to study intact biological samples providing ion 

distribution maps of many non-labelled endogenous and exogenous species 

simultaneously. This is a distinct advantage in comparison to conventional 

techniques, such as immunohistochemistry and radiolabelling. The absence of 

labels or chemical probes makes this technique a fast and relatively 

inexpensive technique, which can be used to perform de novo discoveries. 

MALDI-MSI was first illustrated by Spengler et al. (Spengler, Hubert and 

Kaufmann, 1994), while the first full publication was reported by Caprioli and 

coworkers in 1997 (Caprioli, Farmer and Gile, 1997). In this work, the authors 

described the development of the MALDI-MSI technique to localise peptides 

and proteins in biological tissue.  

Over the past two decades, MALDI-MSI has become established as a powerful 

method extensively employed in many applications (Anderson et al., 2010; 

Francese and Clench, 2010; Solon et al., 2010; Ryan, Spraggins and Caprioli, 

2019) and its use to study skin absorption was one of the first applications of 

MSI in pharmaceutical analysis to be reported (Bunch, Clench and Richards, 

2004).  

In a typical MALDI-MSI experiment, prior to analysis, an effective sample 

preparation step is required, which includes: tissue sampling; tissue sectioning 

and matrix application (Shimma and Sugiura, 2014). An overview of the 

workflow for the MALDI-MSI analysis of a tissue section is illustrated in Figure 

1.6. 
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Figure 1.6 Schematic overview of a MALDI MSI experiment. Figure adapted 

from (Schwamborn and Caprioli, 2010). 
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Matrix deposition technique represents a crucial step in the MSI workflow and 

can significantly impact MSI results in terms of analyte extraction and spatial 

localisation (Smith et al., 2017). Several matrix deposition devices, used to 

generate data in this thesis, will be described later.  

The MALDI-MS images presented in this thesis were acquired using the 

microprobe approach. In this mode, upon co-crystallisation of the matrix with the 

analytes, the laser is fired at the coated sample, at a series of programmed 

raster points in an array of two dimensional positions, creating a full mass 

spectrum at each x,y coordinate. Once the experiment has concluded, the 

results from individual mass spectra are reconstructed into an image revealing 

the localisation and the abundance of ions within the sample (Luxembourg et 

al., 2004). With the microprobe approach, the resolution of the image depends 

on the laser spot size as well as on the sample stage movement increment; and 

the throughput time increases significantly with increased resolution. An 

alternative mode is the microscope mode. In this approach, the laser fires the 

sample with a large beam (usually 200 µm) and the derived ions maintain their 

spatial coordinates throughout travel until they reach a position sensitive 

detector (Luxembourg et al., 2004). In microscope mode the spatial resolution is 

influenced by the quality of the ion optics and the resolving power of the 

detector (Luxembourg et al., 2004; Klerk et al., 2009). Figure 1.7 shows a 

representation of both microprobe and microscope modes for MALDI imaging 

experiments. 
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Figure 1.7 Representation of the two modes used for MALDI-MSI experiments: 

A) microprobe mode, where a high focus laser is rastered across distinct 

regions of the sample, and B) microscope mode, where the laser focus is wide 

and the location of ions is picked up using a position sensitive detector. Image 

from (Luxembourg et al., 2004). 

 

Although the microscope technique offers advantages in terms of high-spatial 

resolution (down to few μm) and high-speed of analysis (Luxembourg et al., 

2006; Lee et al., 2012), at present microprobe mode represents the dominant 

mode for obtaining MALDI-MSI data. This is due to several drawbacks of the 

microscope mode that hamper its implementation. These include: the risk of a 

partial sampling of the sample, if the latter is bigger than the entire area of the 

microscope field of view; the limited m/z range and sensitivity; and its 

compatibility with only analysers that enable ions to preserve the original spatial 

information (i.e. TOF) (Lee et al., 2012; Gessel, Norris and Caprioli, 2014). In 

light of these considerations, the employment of microscope mode is currently 

inappropriate for the image of complex biological sample and, hence, efforts to 

overcome the limitations are necessary.    
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1.3.1 Matrix deposition techniques  

1.3.1.1  Manual spotting  

Manual spotting is the easiest and most practical matrix application technique. 

This technique includes the deposition of microliter (µL) volumes of matrix using 

a hand-held pipette. The main disadvantage of this technique is the significant 

irregularity and inhomogeneity of matrix-analyte crystals, responsible, 

subsequently, for an intense spot-to-spot irreproducibility. The spot 

inhomogeneity also results in the analyte signal changing when the laser is fired 

in different points of an individual spot; the points in which higher analyte 

sensitivity is detected are known as "sweet spots" (Dai, Whittal and Li, 1996; 

Fujita and Fujino, 2013). 

Different approaches for the deposition of matrix using manual spotting have 

been investigated, such as dried droplet (Karas and Hillenkamp, 1988), 

crushed-crystals (Xiang, Beavis and Ens, 1994) and sandwich (Kussmann et 

al., 1997). The most commonly used method is the dried droplet method, which 

consists either of pre-mixing the analyte with the matrix or directly depositing 

the matrix onto the sample surface prior to introduction into the mass 

spectrometer for analysis (Figure 1.8). 
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Figure 1.8 The 'dried droplet' methods. The analyte can be pre-mixed with the 

matrix (A) or the matrix can be applied onto the analyte surface (B). 

 

Considering the poor reproducibility in sample preparation, manual spotting is   

not used for MALDI-MSI experiments, but it finds application in MALDI-MSP in 

order to assess the best matrix and polarity to use for a specific analysis.  

 

1.3.1.2  Acoustic droplet ejection 

Acoustic droplet ejection (ADE) is a technology able to deposit submicroliter 

volumes (170 picoliter per droplet) of matrix solution onto a sample. In ADE, 

radio frequency power is converted to ultrasonic energy through a piezoelectric 

transducer; the ultrasonic energy is spread though the reagent reservoir 

causing the ejection of small droplets from the fluid surface (Pickett et al., 2006)  

A schematic illustration of the ADE mechanism is illustrated in Figure 1.9. 
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Figure 1.9 Schematic representation of an acoustic droplet ejector, consisting 

of a reagent reservoir and acoustic ejector.  

 

The main advantages of this method are the reproducibility of droplet sizes, the 

high extraction capabilities and no risk of clogging due to the absence of 

nozzles (Aerni, Cornett and Caprioli, 2006). The main disadvantages are 

represented by the fixed distance between the droplets (200 μm), which limits 

the spatial resolution in MALDI-MSI experiments (Kaletaş et al., 2009). This 

represents a limiting factor when the acoustic ejector is used as a matrix 

deposition device, in fact, although several spotting patterns could be overlaid 

to minimise the distance between the droplets, the entire coverage of a given 

area is difficult to achieve. 

A commercial acoustic spotter, the Portrait® 630 (Labcyte Inc. California, USA), 

has been employed in this thesis for the work reported in Chapter 3 and 

Chapter 4. 
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1.3.1.3  Sprayers 

Spraying technology allows the deposition of the matrix onto the sample in the 

form of small aerosol droplets. This technique offers the advantage of obtaining 

a uniform matrix coating and it can be accomplished in two ways: manual 

(pneumatic spray) or automatic. An example of a manual pressurised airbrush 

is shown below in Figure 1.10. 

 

 

Figure 1.10 The Iwata Eclipse manual sprayer (www.iwata-airbrush.com). 

 

With manual spraying the reproducibility of experiments is not guaranteed due 

to the difficulty of controlling variables, such as the distance between the 

sprayer and the sample, the speed of the spraying and the amount of matrix 

deposited. These issues can be overcome by using an automatic sprayer which 

permits parameters to be kept constant in multiple experiments with the aid of 

software. 

In the work presented in this thesis, the Sunchrom Suncollect automated 

sprayer has been used (KR Analytical, Sandbach, UK) (Figure 1.11). This 

instrument is equipped with a syringe driver, for controlled matrix delivery, and a 

compressed nitrogen gas line surrounding the needle, enabling ejection of the 

matrix solution as a fine mist. The matrix can be applied at a specific flow rate 

and pressure within a predefined area. Unlike the spotting technique, spraying 

has the advantage of covering the entire sample with matrix, unless clogging 

occurs.  
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Figure 1.11 The SunCollect automated sprayer (www.sunchrom.de). 

 

 

1.3.1.4  Sublimation  

Sublimation is the transition of a solid directly into a gaseous phase. Among the 

matrix application techniques investigated, sublimation is the most recently 

applied to MALDI-MSI.  A detailed description of this technique was illustrated in 

the work by Hankin et al., which reported for the first time the sublimation of 

matrix onto brain tissue sections for the detection of lipids using MALDI-MSI 

(Hankin, Barkley and Murphy, 2007). 

A typical sublimation apparatus is shown in Figure 1.12. This device consists of 

a bottom and top section (condenser part). The matrix is inserted in the bottom 

section, whereas the slide with the sample is fixed on the underside of the top 

section; the two parts are then assembled and tightly sealed. At this point, 

under reduced pressure and heat, the matrix starts to sublime and it is 

deposited onto the sample surface since the condenser is filled with cold water 

(<15° C). 
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Figure 1.12 Representation of the sublimation process. 

 

In Chapter 2 the main advantages of this technique over the spraying technique 

are discussed and sublimation has been chosen as method of choice for the 

deposition of the matrix in the work reported in this thesis. In this regard, a 

commercially available sublimation apparatus available from Sigma-Aldrich, 

(Gillingham, U.K.) has been used. 
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1.4 Mass analysers 

The mass analyser is the component of a mass spectrometer responsible for 

separating ions based on their mass to charge ratio (m/z). Currently, there are 

several mass analysers commercially available that differentiate for the upper 

mass limit and the resolution.  

Common commercially available mass analysers include: time of flight (TOF), 

quadrupole (Q), linear ion trap (LIT), quadrupole ion trap (QIT), fourier 

transform-ion cyclotron resonance (FT-ICR) and Orbitrap. 

 

1.4.1 Time of flight (TOF) 

The concept of a time of flight (TOF) mass analyser was initially introduced by 

W.E. Stephens (Wolff and Stephens, 1953). The TOF analyser operates by 

separating ions according to their velocity when they drift in a free-field region, 

called a flight tube (Hoffmann and Stroobant, 2007). Firstly, ions generated in 

the source are subjected to an applied voltage, responsible for giving the same 

kinetic energy to all ions, which are then accelerated into the TOF tube. The 

velocity and therefore the time that ions take to travel the tube is a function of 

their m/z. The m/z of ions can be determined by measuring the time necessary 

for ions to go through the length of the tube to the detector as reported in 

Equation 1.1; ions with lower m/z will be faster to reach the detector than those 

with higher m/z.  

Equation 1.1 

𝒕𝟐 =
𝒎

𝒛
 (

𝑳𝟐

𝟐𝒆𝑽𝒔
) 

Where t is the time required to cover the distance L before reaching the 

detector; m = mass of ions; z = number of charges; e = charge of an electron; 

Vs = acceleration potential. 

A representation of a linear TOF is illustrated in Figure 1.13. 

 



54 
 

 

Figure 1.13 Representation of a linear time of flight mass spectrometer. 

 

One of the major limitations of linear TOF instruments is the low mass 

resolution. This aspect is essentially due to the spatial and kinetic energy 

spread amongst the ion packets generated by the laser-based ion sources.  

One approach to increase the resolution is by using a reflectron, or ion mirror 

(Figure 1.14). The reflectron was proposed by Mamyrin and coworkers in 1973 

(Mamyrin et al., 1973) and it consists of a cylinder made up of a series of ring 

electrodes and grids that are subjected to a gradient voltage. When the ions 

enter the electrical field, they are deflected back along the flight tube; the ions 

with higher energy will penetrate further into the reflectron field than those with 

lower energy, which penetrate the field less. In this way, the spread of kinetic 

energy of ions with the same m/z is corrected and ions will arrive at the detector 

at the same time (Hoffmann and Stroobant, 2007). 

 

 



55 
 

 

Figure 1.14 Representation of a reflectron time of flight mass spectrometer. 

 

TOF is a pulsed ion analyser, and, hence, its coupling with continuous 

ionisation sources (i.e. ESI) is arduous. A way to overcome this issue is by 

generation of ion packets from the continuous ion stream. The strategy used is 

by setting the TOF analyser orthogonally to the axial path of ions derived from 

the source. Ions are transmitted in a 'pusher' region where ion packets are 

excised and are accelerated into the orthogonal TOF by a pulsed voltage. The 

insertion of an orthogonal reflectron TOF analyser after a horizontal path of ion 

beam confers a V-geometry of the ion trajectory (Hoffmann and Stroobant, 

2007; Greaves and Roboz, 2013) (Figure 1.15). 
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Figure 1.15 Representation of an orthogonal reflectron time of flight analyser. 

Ions derived from the source are accelerated into the orthogonal TOF by a 

pulsed voltage, travelling in a V-shaped trajectory. 

 

By increasing the length of the analyser path it is possible to increase the mass 

resolution. In this regard, an additional reflectron TOF can be introduced in the 

analyser, describing a W-geometry for the ions trajectory (Figure 1.16). It is 

important to consider that, although the increment of flight path allows a high-

resolution, it also increases the chance of ion loss, at the cost of the sensitivity 

(Fliegel et al., 2006; Greaves and Roboz, 2013; Chernushevich et al., 2017) 

(Figure 1.16). 
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Figure 1.16 Comparison of an orthogonal reflectron time of flight analyser with 

V-geometry and W-geometry. In the W-geometry two TOF analysers are 

combined, this allows the ions to travel within a longer flight path and hence, 

increases the mass resolution.  

 

1.4.2 Quadrupole  

A quadrupole mass analyser consists of four parallel metal rods arranged in 

opposite pairs, to which direct current (DC) and alternating radio frequency (RF) 

voltages are applied. In particular, one pair of rods has an applied potential of 

(U+Vcos(ωt)) and the other pair a potential of -(U+Vcos(ωt)). The separation of 

the ions in accordance with their mass to charge ratio (m/z) is based on their 

stability within the oscillating electric field applied to the rods: ions with stable 

trajectory (bounded oscillation) will be able to pass through the rods and reach 

the detector, whereas ions with an unstable trajectory (unbounded oscillation) 

will strike the rods, neutralising them (Figure 1.17). The quadrupole, as an 

analyser, can operate in two modes, in "full scan" or in "selected ion 

monitoring". In the first case, by changing RF and DC voltages, while 

maintaining the ratio of these two voltages constant, the analyser performs a 

sequential scan of ions with different mass to charge ratios. In the second case, 

the quadrupole is fixed at a specific voltage in order to allow only ions with a 

specific m/z to reach the detector. The quadrupole is used in this mode for 
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tandem mass spectrometry (MS/MS) experiments, allowing selection of a 

specific ion of interest prior to fragmentation. 

 

 

Figure 1.17 Representation of a quadrupole mass analyser; the red ions with 

stable trajectory (bounded oscillation) are able to pass through the quadrupole 

whilst the blue ions with unstable trajectory (unbounded oscillation) collide with 

the metal rods. 
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1.5 Multi-analyser systems 

1.5.1 Tandem MS/MS Instruments  

1.5.1.1  TOF/TOF 

Tandem time-of-flight (TOF/TOF) is a tandem mass spectrometry method that 

uses two TOF analysers in sequence. In the currently available instruments, the 

more common configuration is the combination of a linear TOF as a first 

analyser with a reflectron TOF, as a second analyser (Medzihradszky et al., 

2000; Cotter et al., 2005). An electronic gate, called a timed ion selector (TIS) 

allows an ion of interest, separated from the first TOF, to pass through and 

enter a collision chamber, where the parent ion will undergo dissociation by 

induced collision with an unreactive gas (nitrogen or argon) (Figure 1.18). 

 

 

Figure 1.18 A schematic diagram of a tandem time of flight mass analyser; the 

precursor ions selected by the TIS enter into the collision cell, where they 

undergo collisionally induced dissociation. Once generated, the product ions are 

extracted and reaccelerated into the second TOF (Cotter et al., 2005). 

 

 



60 
 

In this thesis, the tandem TOF instrument used is the Autoflex III manufactured 

by Bruker Daltonics (Germany), which employs LIFT technology.  

In the LIFT configuration, to perform MS/MS experiments ions generated in the 

source are accelerated to 8 keV and enter the collision chamber. The precursor 

ion and its product ions, together indicated as an "ion family", have the same 

velocity and reach the TIS gate at the same time. The TIS gate enables only the 

"ion family" of interest to pass through and enter the LIFT cell, a free field region 

whose the potential is raised by 19 keV while the ions are in residence, adding 

acceleration energy when they are extracted into the second TOF (Cotter et al., 

2005).  

A schematic representation of a LIFT-TOF/TOF mass spectrometer is illustrated 

in Figure 1.19.  

 

Figure 1.19 A schematic diagram of a tandem time of flight mass analyser 

using LIFT technology; the precursor with the product ions are selected by the 

TIS gate and enter the LIFT cell, from where they are extracted and 

reaccelerated into the second TOF (Cotter et al., 2005).  
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1.5.2 Hybrid mass spectrometers  

1.5.2.1  Quadrupole Time-of-Flight (QTOF) 

Mass spectrometers that combine different mass analysers are commonly 

termed “hybrid” mass spectrometers. Quadrupole time of flight (QTOF or 

QqTOF) instruments are robust and versatile configurations usually combined 

with ESI and MALDI sources. In the common QTOF instruments, an additional 

quadrupole Q0, operated in RF-only mode, is inserted, therefore the instrument 

consists of three quadrupoles Q0, Q1 and Q2 combined with an orthogonal TOF 

mass analyser (Chernushevich, Loboda and Thomson, 2001). The first 

quadrupole Q0 acts as ion guide rather than a mass analyser, enabling the 

transmission of all ions within a specific mass range (Greaves and Roboz, 

2013). 

To obtain full-scan MS data, the three quadrupoles are operated in RF-only 

mode (i.e. as transmission devices) and all ions are transferred into the TOF 

analyser for detection. When using a QTOF for obtaining MS/MS data, the first 

quadrupole Q0 functions as transmission device, the second Q1 as a mass filter 

to select a specific ion of interest, the third Q2 acts as a collision cell, into which 

a collision gas (argon or nitrogen) is introduced (Figure 1.20). The product ions 

then travel into the TOF analyser and are detected (Oberacher and Pitterl, 

2009).  
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Figure 1.20 Representation of a hybrid quadrupole time of flight mass analyser. 

 

In the commercial instrument Synapt G2 HDMS (Waters Corp., UK) (used in 

this thesis) the first quadrupole, used for transmission, is replaced by a 

hexapole and the analytical capabilities of the instrument are increased by 

introducing a 'triwave' region into the QTOF system (Figure 1.21).  
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Figure 1.21 Synapt G2 HDMS mass spectrometer adapted with a MALDI source (Waters Corporation, Manchester, UK). 
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The triwave consists of a travelling wave ion mobility separator (TWIMS), 

preceded and followed by the trap and transfer travelling wave ion guides 

(TWIG's), respectively. IMS is a powerful technique, which enables the 

separation of ions based on their size/charge ratios, as well as their shape 

(cross-sectional area), as they move through an inert gas due to the influence of 

an electric field (Kanu et al., 2008). 

The drift tube of a TWIMS cell is made up of a series of stacked ring ion guides 

(SRIG), organised so that opposite RF voltages are applied on adjacent rings, 

forming a confining barrier surrounding the ions. The superimposition of a DC 

voltage on the RF of adjacent electrodes in a repeating pattern generated a 

series of potential hills (travelling waves). These enable ions to propel over the 

top of the travelling waves as they traverse the cell in the presence of the carrier 

gas buffer (Giles et al., 2004; Pringle et al., 2007). Ions with lower mobility will 

interact more with gas particles and will roll over the wave more times than 

higher mobility ions (Figure 1.22).  
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Figure 1.22 A) Representation of the IMS cell of the Synapt G2 HDMS 

instrument, showing a series of stacked ring ion guides (SRIG) carrying 

opposite RF voltages on adjacent rings to form a confining barrier surrounding 

the ions. B) Representation of the propulsion of ions over the top of the 

travelling wave pulse in the presence of the carrier gas buffer. 
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1.6 Skin structure 

The skin is the largest organ of the human body and represents a natural barrier 

to the environment. It restricts the inward and outward movement of 

substances, i.e. water and electrolytes, and at the same time, ensures 

protection against toxic agents, microorganisms, mechanical insults and 

ultraviolet radiation (Bensouilah and Buck, 2006). 

The skin is commonly subdivided in two structural layers: the epidermis and the 

dermis. The dermis is attached underneath to the hypodermis or subcutaneous 

layer, containing adipose and areolar connective tissue (Tortora and Nielsen, 

2011) (Figure 1.23). 

 

 

Figure 1.23 Structure of skin. Image adapted from (Tortora and Nielsen, 2011).  
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95% of the epidermis is comprised of keratinocyte cells (Xu, Timares and 

Elmets, 2013). Keratinocytes are derived from basal cells, which go through a 

constant process of differentiation and migrate through several suprabasal 

layers (the spinous layer, granular layer, lucidum layer and corneum layer) 

losing their nucleus and becoming more and more compacted in size before 

being finally shed from the surface by the process of desquamation (Sandilands 

et al., 2009).  

The stratum basale consists in a single layer of cuboidal-shaped keratinocyte 

cells, anchored to the basement membrane by epithelia multiprotein complexes, 

called hemidesmosomes-junctions. This layer is also called the germinativum 

layer for the presence of stem cells that undergo mitosis and generate new 

keratinocytes (Borradori and Sonnenberg, 1999). Melanocytes, Langerhans 

cells and Merkel cells can also be present (Parsons, 2002; Tortora and Nielsen, 

2011). 

The spinous layer, also called the prickle-cell layer, is made up of 8-10 layers of 

keratinocytes, which join together through desmosomes. Among the 

keratinocytes, in this layer Langerhans cells and melanocytes may also be 

found (Parsons, 2002; Tortora and Nielsen, 2011). 

In the higher layer, the granular layer, the keratinocytes assume a more 

flattened shape. Here, it is possible to find from three to five layers of 

keratinocyte cells that start to undergo apoptosis. The cells contain granules of 

keratohyalin protein; responsible for binding keratin intermediate filaments into 

keratin (Tortora and Nielsen, 2011; Nafisi and Maibach, 2018). 

The lucidum layer contains about five layers of translucent, flat and dead cells 

that accumulate eleidin, a protein derived from keratohyalin. This layer is 

commonly present in the skin of the palm, soles and fingertips (Tortora and 

Nielsen, 2011; Yousef and Sharma, 2017) 

The stratum corneum, the outermost layer of the epidermis, represents an 

essential mechanical barrier responsible for limiting the penetration of external 

substances as well as limiting water loss. It is made up of 25 to 30 layers of flat 

corneocytes, the finally differentiated keratinocytes, comprised mostly of keratin. 

The corneocytes fix one to another through adhesive intercellular structure 
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called corneodesmosomes, degradation of which seems to be directly 

correlated to the desquamation process (Ishida-Yamamoto and Igawa, 2015) 

(Figure 1.24). 

 

 

Figure 1.24 Representation of the structure of the epidermis. Starting from the 

basal layer, the keratinocytes migrate into layers: spinous, granular, lucidum 

and corneum. Image adapted from (Tortora and Nielsen, 2011). 

 

The dermis is composed mainly of connective tissue, blood vessels, hair shafts, 

sweat glands and nerves; it supports and feeds the epidermis. The main cells 

present in the dermis are fibroblasts, macrophages and adipocytes. The dermis 

is divided into two areas: a papillary layer and a reticular layer (Freinkel and 

Woodley, 2001).  

The papillary layer is the uppermost layer of the dermis, consisting mainly of 

loose connective tissue. From here small extensions of the dermis, called 

"dermal papillae", protrude inside the epidermis, increasing the surface area 

between epidermis and dermis (Hardy, 1992). The dermal papillae nourish the 

avascular epidermis through the capillaries and are directly associated with hair 

follicles growing. Furthermore, the papillary layer can also include free nerve 

endings and touch receptors, called Meissner corpuscles (Tortora and Nielsen, 

2011; Stocum, 2012; Borojevic, 2013). In contrast to the papillary layer, the 
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reticular dermis, the bottom layer of the dermis, is constituted primarily by dense 

irregular connective tissue. It provides elasticity and overall strength to the skin. 

Furthermore, this layer contains also hair follicles, sebaceous as well as sweat 

glands (Tortora and Nielsen, 2011). 

 

1.7 Barrier properties in the skin 

The stratum corneum (SC) represents the principal skin barrier and this function 

is essentially due to the lipid composition and organisation within it (Grubauer et 

al., 1989; Bouwstra et al., 1999; Wertz, 2018). In the SC each corneocyte is 

surrounded by an envelope of cross-linked proteins with which a layer of lipids 

(lipid envelope) are covalently bound, forming the cornified envelope structure 

(Abraham and Downing, 1990; Nemes and Steinert, 1999; Candi, Schmidt and 

Melino, 2005). Between corneocytes, instead, a matrix of lipids arranged into a 

multi-lamellae structure is present. This represents around 20% of the SC 

volume and includes mainly ceramides, cholesterol, cholesterol esters, fatty 

acids, and a small fraction of cholesterol sulphate (Madison et al., 1987; 

Bouwstra et al., 2003). In a few regions of the stratum corneum, the intercellular 

lipid matrix is absent and the interaction of lipid envelopes of adjacent 

corneocytes can occur, increasing the cohesion of the stratum corneum (Wertz 

et al., 1989).  

Michaels and colleagues first proposed the "brick and mortar" model to describe 

the structure of the SC (Michaels, Chandrasekaran and Shaw, 1975). With this 

model, the skin barrier is defined as a two compartment system; corneocytes as 

the bricks and the tightly packed intercellular lipids as the mortar (Nemes and 

Steinert, 1999; Norlén, 2001). A schematic representation of the "bricks and 

mortar" model is offered in Figure 1.25. 
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Figure 1.25 Schematic representation of the "bricks and mortar" model for the 

stratum corneum. 

 

1.8 Percutaneous absorption  

The stratum corneum represents the principal obstacle for the percutaneous 

absorption of therapeutic agents, wherever designed for topical or transdermal 

delivery (Schaefer et al., 1980). With topical drug delivery it is intended that a 

pharmaceutical agent is applied directly onto the skin surface for a localised 

action; whereas with transdermal drug delivery it is intended that a 

pharmaceutical agent enters into the circulation in order to execute its action; 

hence transdermal formulation must be able to pass through all the layers of the 

epidermis and dermis (Osborne, 2008; Murthy and Shivakumar, 2010). 

Percutaneous delivery represents a valid alternative to conventional oral and 

parenteral delivery; it in fact offers the advantage of bypassing the hepatic "first 

pass effect", controlling drug delivery over a longer period of time, acting directly 

on target (e.i. in case of skin pathologies), and increasing patient compliance 

(Kanikkannan et al., 2000; Brown et al., 2006; Pathan and Setty, 2009).  



  

71 

 

It has been established that there is a direct correlation between stratum 

corneum reservoir function (its ability to accumulate topically applied molecules) 

and percutaneous absorption (Rougier et al., 1983; Teichmann et al., 2005). 

The absorption through the stratum corneum is a passive diffusion process, 

which occurs in three possible ways (Haque and Talukder, 2018): 

 intercellular diffusion through the lipid matrix; 

 intracellular diffusion through both the corneocytes and the lipid matrix; 

 transappendageal diffusion along the sweat pores and follicles.  

A schematic representation of the main permeation routes across the stratum 

corneum is shown in Figure 1.26. 

 

 

Figure 1.26 Representation of the pathways responsible for the penetration of 

substances through the stratum corneum. Figure taken from (Haque and 

Talukder, 2018). 
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The passive diffusion of a drug through the stratum corneum can be described 

by  Fick's first law of diffusion, as shown below (Lane, 2013; Ita, 2015) . 

Equation 1.2 

𝐽𝑠𝑠 =
𝐴𝐷𝐾𝐶𝑣

ℎ
 

where: Jss is the steady-state flux of the drug, A is the surface area, D is the 

diffusion coefficient of the drug in the membrane, K is the vehicle/membrane 

coefficient of partition, Cv is the drug concentration in the vehicle and h is the 

membrane thickness. 

From this equation it is evident that the flux is directly proportional to the 

gradient of concentration and inversely proportional to the thickness of the 

stratum corneum. However, it does not consider other factors (biological, 

biopharmaceutical and physio-chemical) that could influence the percutaneous 

absorption too, as summarised in Table 1.1 (Leite-Silva et al., 2012). 

 

 

Table 1.1 Factors that influence the percutaneous absorption. 
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1.8.1 Chemical penetration enhancers (CPEs)  

A method commonly employed for enhancing permeation of drugs is based on 

the inclusion of additives within the formulation. These additives called chemical 

penetration enhancers (CPEs) increase drug flux by provoking reversible 

alterations to the skin constituents (Walker and Smith, 1996; Sindhu et al., 

2017). 

CPEs should satisfy the following properties, (although accomplishing all is 

unlikely) (Williams and Barry, 2012; Sindhu et al., 2017): 

 chemical stability and absence of toxicity; 

 pharmacological inactivity; 

 compatibility with the drug and excipients; 

 absence of irritant and allergenic activity; 

 absence of odour and colour; 

 cost-effectiveness; 

 rapidity in onset and action. 

 

The CPEs can mainly act in three different ways: i) by disrupting SC intercellular 

lipids ii) by improving the partitioning of drug in the membrane or iii) by 

interacting with SC proteins  (Williams and Barry, 2012; Sindhu et al., 2017).  

These mechanisms were first summarised in the lipid-protein-partitioning 

theory, proposed by Barry et al. (Barry, 1991). 

 

1.8.1.1 Disruption of stratum corneum lipids 

As described in Chapter 1.7, in the SC lipids surround the corneocytes in a high 

organised multi-lamellae structure. CPEs can interact either with the head 

groups or the hydrophobic tails of the lipids (Marjukka Suhonen, A. Bouwstra 

and Urtti, 1999). In the first case, CPEs can break hydrogen-bonding between 

ceramide head groups and become new H bond acceptor or donator (Jain, 

Thomas and Panchagnula, 2002; Dragicevic and Maibach, 2015). Amphiphilic 

compounds, instead, are able to enter between the hydrophobic tails of the 

bilayer, disrupting the structure and favouring the lateral fluidisation of lipids 

(Vavrova and Hrabalek, 2005). Some CPEs can act by inducing phase 
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separation in the lamellae (i.e oleic acid) (Ongpipattanakul et al., 1991) or via 

lipid extraction (i.e dimethylsulfoxide, ethanol) (Bommannan, Potts and Guy, 

1990; Anigbogu et al., 1995; Dragicevic and Maibach, 2015). In all cases, a 

perturbation of the original multi-lamellae order is observed, with a decrease of 

microviscosity and an increase in diffusion of substances as a consequence 

(Hadgraft, 1999). 

 

1.8.1.2  Increase of the partitioning of drug  

The partitioning of the drug between the SC and the vehicle represents a key 

role for percutaneous absorption and it is expressed by the coefficient of 

partition (K) (Rougier et al., 1990). For lipophilic substances with log K > 3, the 

preferential absorption pathway is the intercellular route, whereas for hydrophilic 

penetrants with log K < 1, the intracellular route represents the prominent route 

(N’Da, 2014; Marwah et al., 2016) Some CPEs are able to penetrate into the 

SC and modify its chemical properties and, hence, its solvent nature. This 

causes as a result an increase of solubility and partitioning of drug into the SC 

(Dragicevic and Maibach, 2015). 

 

1.8.1.3  Interaction with stratum corneum proteins 

The dense crosslinking of SC proteins is responsible of the insolubility of 

corneocytes, and, hence, limits drug absorption through the intracellular route 

(Marjukka Suhonen, A. Bouwstra and Urtti, 1999). The CPEs increase drug 

permeation by denaturing or modifying SC proteins conformation causing 

swelling and increase of hydration (Williams and Barry, 2012). An example of 

CPEs belonged to this category are sulfoxide enhancers, that have been shown 

to denature keratin from alpha helical to beta sheet (Oertel, 1977). 

A common classification of the CPEs is based on their chemical structure, as 

shown in Table 1.2 (Lane, 2013; Dragicevic and Maibach, 2015). 
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Table 1.2 Main classification of chemical penetration enhancers 
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1.9 Methods for evaluating percutaneous absorption 

and drug quantitation in skin 

The evaluation of quantitation of skin penetration/permeation is of essential 

importance for the analysis of dermatoxicity and pharmacological activity of 

topically applied drugs. This analysis can be carried out either in-vivo or in-vitro. 

However, considering the issues relating to costs and ethics, in-vivo studies are 

limited and, hence, in-vitro techniques are usually more popular. 

A comprehensive analysis of the many techniques used for the analysis of 

drugs in the skin was performed by Moser et al. (Moser et al., 2001) and Ruela 

et al. (Ruela et al., 2016). Three approaches - tape-stripping, diffusion cell and 

autoradiography - are described below. 

 

1.9.1 Tape stripping  

Tape stripping represents the traditional method for the analysis of drug 

concentration throughout the SC (Escobar-Chávez et al., 2008). This technique 

consists on removing the cells from the SC by applying serial adhesive tapes to 

the skin surface; from each tape the drug levels and stratum corneum thickness 

are calculated (Moser et al., 2001) (Figure 1.27). 

 

 

Figure 1.27 Representation of tape stripping method. After applying formulation 

at the skin surface of the donor (A), the cells from the stratum corneum are 

progressively removed by adhesive tapes (B). Image adapted from (Moser et 

al., 2001). 
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This technique is easy to perform, relatively non-invasive and does not require 

labelled compounds and, hence, it can be performed both in-vivo and in-vitro. 

However, it also presents several drawbacks; the amount of the SC removed is 

not constant on each strip, and decreases as more tapes are used, probably 

due to a more effective cohesiveness of the SC in the deeper layers (Alikhan 

and Maibach, 2010). In this regard, the measurement of the SC harvested from 

each tape strip must be identified e.g. by calculating the weight of the pieces of 

tape before and after stripping (Bommannan, Potts and Guy, 1990). In addition, 

the difficulty of removing completely the stratum corneum must be also 

considered. As reported by van der Molen et al. the presence of furrows in the 

skin can prevent complete cell removal (van der Molen et al., 1997). As a 

consequence of these issues, a high experimental error from tape stripping can 

be expected.  

 

1.9.2 Diffusion cell method 

A classic diffusion cell experiment is composed of two compartments, a donor 

and a receptor, separated by a mounted sample (i.e. skin), as illustrated in 

Figure 1.28. 

 

Figure 1.28 Schematic representation of a diffusion cell, containing a donor and 

a receptor compartment separated by the skin sample. Image taken from 

(Moser et al., 2001) 
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In the donor compartment the drug formulation is inserted and, then, by 

measuring periodically the drug concentration in the receptor compartment it is 

possible to evaluate the permeation rate of the drug through the skin barrier 

(Touitou, Meidan and Horwitz, 1998). Usually the analysis of drug within the 

receptor fluid is performed using high performance liquid chromatography 

(HPLC). In addition, excess analyte on top of the skin as well within the skin 

layers can be examined for further evaluations, such as total disposition and 

percentage recovery.  

 

1.9.3 Autoradiography 

Autoradiography is a photographic technique able to visualise radiolabelled 

compounds across the stratum corneum, at both the cellular and sub-cellular 

level (Caro and van Tubergen, 1962). Its application for transdermal research 

was first reported by Touitou and co-workers (Fabin and Touitou, 1991; Touitou, 

Alkabes, et al., 1994; Touitou, Levi-Schaffer, et al., 1994). In the work of Fabin 

and Touiton quantitative evaluation of drug localised in various levels of skin, 

using autoradiography was obtained with the aid of imaging software (Fabin and 

Touitou, 1991). 

Autoradiography can also be performed on the whole body, enabling the 

evaluation of dermal absorption and the involvement of other tissues in the body 

(Wester and Maibach, 2001; Griem-Krey et al., 2019). 

 

1.10 Models for analysis  

Over the years animal samples have been often used as a replacement for 

human subjects in order to generate representative information, important for 

the progress of pharmaceutical, toxicological and cosmetic skin research. 

However, studies carried out by Netzlaff et al. and Bronaugh et al. provide 

evidence that the choice of the animal is key in such studies and that the most 

appropriate animal will depend on the compound under investigation. They 

showed that differences in the skin structure of different animals, such as 
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thickness of the SC, composition of intercellular SC lipids, and density of hair 

follicles could give rise to changes in the absorption kinetics for different 

compounds. It is therefore impossible to find a perfect animal model but, most 

often, porcine skin has been selected as the model of choice (Bronaugh, 

Stewart and Congdon, 1982; Netzlaff et al., 2006; Lademann et al., 2010). The 

understanding of whether animal models can actually predict the human in-vivo 

response represents a contentious issue and difficulties in translating results 

derived from animal models to clinical studies have recently been highlighted by 

leading pharmaceutical companies (Shanks et al., 2009; Mead et al., 2016). 

The intrinsic differences between human and other species as well as the 

common failure to reproduce all of the clinical and histopathological features of 

individual subtypes can give rise to misleading results (Conn, 2013). In addition, 

under the 7th Amendement to the EU Cosmetics Directive, the use of animals to 

test cosmetic ingredients has been banned (EU 2003), therefore the cosmetics 

industry has been forced to consider alternatives.  

 

1.11 3D skin models 

The NC3Rs (National Centre for the Replacement, Reduction and Refinement 

of Animals in Scientific Research) is an UK national organisation that strives to 

find alternative models as efficient methods for non-animal testing and 

research. The principles behind the 3Rs were first described by Russell and 

Burch in 1959; these include: Replacement, the use of insentient material as an 

alternative to conscious living animals; Reduction, the use of fewer animals that 

experience distress; Refinement, the use of methods to reduce or eliminate 

animal distress (Tannenbaum and Bennett, 2015). In light of these principles, a 

variety of in-vitro three dimensional (3D) reconstructed skin models have been 

developed (Nakamura et al., 2018). 

The possibility of isolating the epidermis from the dermis in human skin and 

culturing keratinocytes in-vitro represents the starting point behind the 

development of 3D skin models (Medawar, 1941; Rheinwald and Green, 1977). 

For the development of these models, following isolation of the epidermis, 

keratinocytes are cultured at an air liquid interface, either on an acellular 
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support or on a cellular support (dermal component consisting of fibroblasts in a 

3D scaffold) (Niehues et al., 2018). The scaffolds most commonly used are 

collagen and fibrin. The scaffold plays an important role since it recapitulates 

the in-vivo dermal extracellular matrix and allows cells to communicate with 

each other and form a differentiated epidermis; this process occurs after about 

two weeks, resembling the structure of the in-vivo skin epidermis (Macneil, 

2007; Rademacher et al., 2018). Alternatively, keratinocytes can be cultured 

directly onto a human de-epidermised acellular dermis (DED) (Pruniéras, 

Régnier and Woodley, 1983; Ponec et al., 1988). However, in the work reported 

by El-Ghalbzouri and colleagues it was illustrated that the inclusion of 

fibroblasts positively affected the epidermal morphogenesis and differentiation 

(El‐Ghalbzouri et al., 2002; Tjabringa et al., 2008). In light of these 

considerations, human skin equivalent models [HSEs] can be divided into two 

main groups: reconstructed human epidermis [RHEs] - 3D differentiated 

epidermis cultures derived from human keratinocytes; and full thickness living 

skin equivalents [LSEs], constituted of both epidermis and dermis. 

A schematic representation of the 2 groups of 3D skin models is illustrated 

below in Figure 1.29. 

 

Figure 1.29 Schematic representation of A) a reconstructed human epidermis 

[RHE]. Keratinocytes are cultured on the membrane of a cell culture insert; B) 

living skin equivalent [LSE]. Keratinocytes are cultured on a dermal support, 

consisting of fibroblasts in a 3D scaffold. Figure taken from (Rademacher et al., 

2018). 



  

81 

 

To date, a range of commercially available models have become established for 

toxicological and pharmaceutical studies. These include RHEs, such as EpiSkin 

(Epskin, Lyon, France) and EpiDerm (Mattek, Ashland, USA) and LSEs, for 

example EpiDermFT (Mattek, Ashland, USA), T-skin (Episkin, Lyon, France) 

and Labskin (Innovenn (UK) Ltd, York, UK). A comprehensive review of their 

use in drug development has been published by Mathes and co-workers 

(Mathes and Ruffner, 2014; Ruffner, Graf-Hausner and Mathes, 2016). As a 

result of including the dermal component, the biological complexity increases 

moving from RHEs to LSEs, and can be further increased by adding within 

these models cell types such as melanocytes, stem cells or Langerhans cells, 

or by using novel approaches, such as organ-on-a-chip (Mathes and Ruffner, 

2014; Niehues et al., 2018). This last approach offers the possibility to culture 

different types of cells on a specially designed microchip, in which cells interact 

with a dynamic micro or nano fluidic flow in order to reproduce the in-vivo 

microenvironment (Wang et al., 2015). The fabrication of the first chip, on which 

skin cells were directly cultured and differentiated on, was presented by Lee et 

al. (Lee et al., 2017). The chip consisted of two compartments, separated by a 

porous membrane. On the top compartment, a chamber containing fibroblasts 

within a mixture of collagen and keratinocytes was present; whereas the bottom 

compartment contained a chamber for vascular cells and channels for the 

infusion of culture media with nutrients. Compared to engineered skin 

equivalents, RHEs and LSEs, skin-on-chip offers the advantage of including 

vascular structure into the model, as well as reproducing mechanical forces and 

dynamic flow system, representing a more physiologically appropriate skin 

model. However, the high cost and technical challenge of this model represent 

the main drawbacks that hamper its wide spread use (Abaci et al., 2017; van 

den Broek et al., 2017; Rademacher et al., 2018; Sriram et al., 2018).  

The main advantages of 3D over 2D skin models for the testing of topical 

medication have been described by Teimouri et al. (Teimouri, Yeung and Agu, 

2018). 3D cell culture models provide a better representation of native skin 

compared to monolayer 2D cell culture. More representative cell-to-cell and cell-

to-extracellular matrix interactions occur in 3D skin models, leading to a better 

understanding of the in-vivo processes. 3D skin models offer an enhancement 

in quality, since they can be cultured for a longer time before de-differentiation 
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and decline occurs, making these models more appropriate and flexible for in-

vitro analysis (Teimouri, Yeung and Agu, 2018).  



1.11.1 3D skin models and skin absorption 

Over the years tissue engineered HSEs have been established as valid models 

for in-vitro cosmetic and pharmaceutical testing, as well as for the investigation 

of skin biology mechanisms behind the generation of the epidermis, skin barrier 

repair/wound healing, skin pathologies and absorption testing  (Schäfer-Korting, 

Mahmoud, et al., 2008; Xie et al., 2010; Ali et al., 2015; De Vuyst et al., 2017; 

Lewis et al., 2018; Bataillon et al., 2019). 

The main aim of developing RHEs is to obtain models able to mimic faithfully 

the structure and architecture of in-vivo skin, such as protein expression and  

lipid organisation (Zhang and Michniak-Kohn, 2012). In the work reported by 

Ponec et al. tissue architecture, lipid organisation and permeability properties of 

three RHEs models (EpiDerm, SkinEthic, EpiSkin) were investigated (Ponec et 

al., 2000). From this study it emerged that the tissue architecture of these 3D 

models highly mirrored that in native epidermis, whereas the main differences 

were found in the lipid expression levels. The levels of polar ceramide 

subclasses were much lower or absent in RHEs models in comparison to in-

vivo skin, causing a higher permeability. In the work reported by Smeden et al. 

the lipid analysis of HSE models was performed using liquid chromatography-

mass spectrometry (LC-MS) (Van Smeden et al., 2014). The results showed 

that HSEs differed from native skin mainly in the free fatty acid (FFA) chain 

length and grade of unsaturation. In particular an increase of monounsaturated 

FFAs were present compared to native skin, in agreement with previous results 

showed by Thakoersing et al. (Thakoersing et al., 2013). The formation of 

epidermal barrier in RHEs can be improved by the introduction of supplements 

within the culture media. Several studies have shown that vitamin D, vitamin C, 

fatty acids and serum growth factor type can decisively influence the final lipid 

content in the skin (Ponec et al., 1997; Vičanová et al., 1999; Gibbs et al., 

2007). 
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However, a concern that has been expressed in the use of 3D cell culture 

models for absorption studies relates to the difference in the absorption 

properties of such models compared to human skin (Schäfer-Korting, Bock, et 

al., 2008). It was found in a large-scale validation study carried out in Germany 

that the permeation of chemicals was overestimated when using 3D models 

(Schäfer-Korting, Bock, et al., 2008). This aspect is mainly due to the deviations 

in lipid composition and organisation within these models (Bell et al., 1991; 

Mathes and Ruffner, 2014; Abd et al., 2016). 

A discussion of the philosophy of the use of tissue models is appropriate. For 

acceptance of the use of these models in demonstrating absorption what is 

required is an acknowledgment that the models are "models", not human skin. 

In order for the models to be used to predict absorption behaviour in human 

skin, what is therefore required is that their absorption behaviour be fully 

characterised for substrates with a range of physio-chemical properties so that 

conversion/scaling factor can be derived (Russo et al., 2018). 

 

1.11.2 Labskin 

In this thesis the skin model system used is a commercial 3D living skin 

equivalent model, Labskin, produced by Innovenn (York,UK). 

Labskin is a well-structured model, containing all of the layers of skin 

(epidermis, dermis and complete basement membrane). The development of 

this model consists of the following steps: 

1. Dermal equivalent: first, fibroblast cells are placed in a fibrin gel scaffold 

and left for 6 days within media specifically created for Labskin; 

2. Living skin equivalent: after 6 days, keratinocyte cells are deposited on 

top of the dermal component and left for 2 days within the media 

(submerged growth). Afterwards, the media on the surface is removed 

allowing the keratinocyte cells to differentiate into the suprabasal layers 

at an air-liquid interface. After seven days exposure at the air-liquid 

interface, the keratinocytes differentiate into the different layers of the 

epidermis; at this point, the stratum corneum is thin and therefore, the 

model mimics sensitive skin. At day 12 air-liquid interface, the stratum 
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corneum becomes thicker thus, mimicking mature skin. The company 

ships the model at day 12 air liquid interface. 

 

After 12 days at the air-liquid interface, Labskin is viable for an additional 10 - 

14 days, representing a valuable model for longer-term skin experiments. In 

addition, Labskin is the only 3D skin model presently available, able to host 

microorganisms on the surface and, hence, mimic the microflora of human skin. 

This potential is due to the properties of surface, which is relatively dry 

compared to other models and presents protective functions similar to human 

skin. Considering these aspects, it is understandable that interest in the use of 

Labskin has increased over the years as a valuable platform for microbial 

studies of cosmetics and skin products, drug delivery as well as wound care 

products (https://www.labskin.co.uk/). 

 

In light of all these benefits in addition to the easy availability of the model (no 

ethical licence required), Labskin was selected as the model of choice for the 

experiments carried out in this thesis.  

 

1.11.3 MALDI-MSI and skin  

This thesis is particularly focused on the quantitative assessment of 

percutaneous absorption of an antifungal agent, terbinafine hydrochloride, in a 

3D LSE model, Labskin, by using MALDI-MSI. In addition, the effect of the 

penetration enhancer dimethyl isosorbide (DMI) to the delivery vehicle has also 

been investigated.  

 

1.12 Terbinafine hydrochloride 

Terbinafine hydrochloride is an antifungal agent belonging to the allylamine 

class (Petranyi, Ryder and Stütz, 1984) and it acts by blocking squalene 

epoxidase (Nowosielski et al., 2011). The hydrochloride form of terbinafine has 

been included in topical formulations for the treatment of dermatophytoses, 

pityriasis versicolor, and cutaneous candidiasis (Belal, El-din and Eid, 2013) 
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(Figure 1.30). Commercial dosage cream contains 1% (w/w) of terbinafine 

hydrochloride and, in a previous study, this was used as a model formulation for 

dermatopharmacokinetics (DPK) study of terbinafine hydrochloride through in-

vivo and in-vitro tape-stripping experiments (Saeheng et al., 2013). 

 

 

Figure 1.30 Structure of terbinafine hydrochloride. 
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Chapter 2: Optimisation of the 

detection and imaging of terbinafine 

hydrochloride in a commercial 3D 

skin model using MALDI-MSI. 
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2.1 Introduction 

As discussed in Chapter 1.8 drug penetration through the skin represents a 

crucial process for targeting the active agent directly to the action site in the 

body, whilst limiting the side effects. The understanding of this process 

represents a very big scientific challenge that, if addressed, would lead to the 

significant advancement of novel topical and transdermal system delivery 

(Depieri et al., 2015; Ruela et al., 2016). Traditional techniques widely accepted 

for assessing the efficacy of drug formulations for topical and transdermal 

delivery include tape stripping and diffusion cells, as discussed in Chapter 1.9. 

However, the major disadvantage of these approaches is represented by the 

lack of spatial resolution, as they are restricted to the thickness of skin layers. 

 

To increase the spatial resolution, mass spectrometry imaging techniques have 

been introduced to assess drug penetration directly in biological sections; the 

imaging techniques employed to date include matrix assisted laser desorption 

ionisation mass spectrometry imaging (MALDI-MSI) (Prideaux et al., 2007) 

time-of-flight secondary ion mass spectrometry (TOF-SIMS) (Sjövall et al., 

2014), and desorption electrospray ionisation mass spectrometry imaging 

(DESI-MSI) (D’Alvise et al., 2014; Taudorf et al., 2015). Comprehensive reviews 

of the application of mass spectrometry imaging techniques for drug distribution 

studies have been produced by Stoeckli and Prideaux (Prideaux and Stoeckli, 

2012) and Swales et al. (Swales et al., 2019). 

 

MALDI-MSI is currently the most popular MSI technique being used to visualise 

the distribution of compounds directly in tissue sections (Jove et al., 2019; 

Strnad et al., 2019). MALDI-MSI offers large advantages; comprising high 

throughput, robustness and the ability to map ion distribution of many 

compounds without requiring the use of labels, such as isotopes or fluorescent 

tags (Schulz et al., 2019). 

 

Although over the years, several studies have described the application of 

MALDI-MSI to examine endogenous compounds in skin tissue, such as lipids 

and proteins (Hart et al., 2011; Enthaler et al., 2012, 2013), few publications 

have reported its application for the study of drug absorption. In work completed 
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by Bunch et al. MALDI-MSI was used to map the distribution of an antifungal 

agent, ketoconazole, in porcine epidermal tissue (Bunch, Clench and Richards, 

2004). More recent work by Bonnel et al. used MALDI-MSI to investigate the 

distribution profiles of four different drugs in human skin explants (Bonnel et al., 

2018). 

 

Because of the poor accessibility of ex-vivo human skin due to ethical and 

functional limitations, 3D in-vitro engineered models have been developed as 

an alternative system for drug penetration testing, as described in Chapter 1.11 

(Mathes and Ruffner, 2014; Ruffner, Graf-Hausner and Mathes, 2016).  MALDI-

MSI of 3D skin models was initiated by the Clench group, who published the 

first publication on the use of MSI with these models, demonstrating that 

MALDI-MSI could be used to analyse the drug penetration of imipramine within 

a commercially available 3D tissue model of the epidermis "Straticell" (Avery et 

al., 2011). Other studies of a similar type have been reported by Francese et al. 

(Francese et al., 2013) and Mitchell et al. (Mitchell et al., 2015, 2016). In the 

work of Francese et al. MALDI-MSI was used to map the distribution of the drug 

acetretin within a commercial living skin equivalent model, with the purpose of 

investigating the efficiency of the compound curcumin as a matrix compared to 

CHCA. MSI data of Labskin 4 hours post-treatment showed the penetration of 

acetretin into the epidermal layer (Francese et al., 2013). In further development 

of this work reported by Harvey et al., the localisation of the same drug was 

analysed using MALDI-MSI, after the creation of an LSE exhibiting psoriatic-like 

properties by treatment of the commercial product with the pro-inflammatory 

cytokine interleukin-22 (Harvey et al., 2016). In this modified model, the 

distribution of acetretin was studied at 24 hours and 48 hours post-treatment 

and the data obtained demonstrated that after 48 hours, it was possible to 

observe the drug penetration into the dermal region, whereas at 24 hours, it 

was still localised in the epidermal layer only.  

 

In MALDI-MSI experiments a basic requirement is the presence of a matrix 

(usually a small organic compound) which enables analyte desorption and 

ionisation  (Hoffmann and Stroobant, 2007). The choice of the correct matrix 

plays a pivotal role as it can highly influence the desorption/ionisation process, 

thus contributing to spectral quality, i.e., peak resolution, sensitivity, intensity 
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and noise (Lemaire et al., 2006). A comprehensive review into MALDI 

approaches for the analysis of low molecular weight compounds was conducted 

by Bergman et al. (Bergman, Shevchenko and Bergquist, 2014). Most 

commonly for MALDI positive mode, alpha-cyano-4-hydroxycinnamic acid (α-

CHCA), 2,5-dihydroxybenzoic acid (DHB) and sinapinic acid (SA) matrices have 

been found to be good candidates for direct analysis of both large molecules, 

i.e. peptides and proteins, and low-weight molecules (endogenous and 

exogenous). Matrices such as 9-aminoacridine (9-AA) are preferred for the 

detection of small molecules in negative mode (Baker, Han and Borchers, 

2017). Aside from the conventional matrices, novel strategies have been 

developed to overcome matrix selectivity issues, i.e. including additives to 

matrix solutions (Billeci and Stults, 1993), combining  matrix compounds (binary 

matrices) (Laugesen and Roepstorff, 2003; Guo and He, 2007) and using ionic 

matrices (Zhao et al., 2017). 

There is not an easy way to determine which matrices will work for a particular 

analyte, and a "trial and error" approach is often employed. The fastest and 

most cost-effective way for matrix sample preparation is by manual pipetting of 

analyte-matrix onto a MALDI sample target. This way could include a variety of 

possible procedures, i.e. crushed-crystals (Xiang, Beavis and Ens, 1994), 

sandwich (Kussmann et al., 1997) and dried droplet (Karas and Hillenkamp, 

1988), which represents the most common (Chapter 1.3.1.1).  

Although the dried droplet method has been widely used for MALDI-MS profiling 

(MALDI-MSP), it is usually not applicable for MALDI-MS imaging (MALDI-MSI), 

due to diffusion and segregation effects causing irregular distribution of matrix 

crystals (Luxembourg et al., 2003). 

The crystal size and homogeneity of matrix distribution onto the sample are 

strongly influenced by the matrix deposition technique, which therefore affects 

the spatial resolution of images when using MSI. Over the years multiple matrix 

deposition techniques have been established, such as micro-spotting, 

airbrushing, inject printing, spraying and sublimation (Aerni, Cornett and 

Caprioli, 2006).  

Several studies have provided evidence that sublimation is able to create 

smaller matrix crystal size diameters (1 to 3 µm) than those produced by 
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spraying methods which are typically 5 to 20 µm (Phan et al., 2016). Murphy et 

al. showed the improved quality of imaging of lipids in different tissues  

analysed by MSI when the matrix was applied by sublimation (Murphy et al., 

2011). However, owing to its solvent-free mechanism, a recrystallisation step 

after sublimation can be necessary to allow better extraction of analyte of 

interest from the sample and therefore a more intense signal (Yang and 

Caprioli, 2011). Commonly the recrystallisation step is performed by incubation 

with solvent vapour (Yang and Caprioli, 2011; Meisenbichler et al., 2019; 

Morikawa-Ichinose et al., 2019), although the literature has also reported  the 

use of sprayers for solvent application (Ferguson et al., 2013; Lauzon et al., 

2015; Dueñas, Carlucci and Lee, 2016). 

 

2.2 Aims of the chapter 

In the following chapter we aimed to develop a suitable method to detect an 

antifungal agent, terbinafine hydrochloride, in a 3D LSE, Labskin, by using 

MALDI-MSI. Firstly, optimisation work of mass spectrometry analysis to improve 

the signal of the standard terbinafine hydrochloride (TBF HCl) was performed. 

Furthermore, in this chapter, two different matrix deposition techniques, 

automated spraying and sublimation, to image the distribution of terbinafine HCl 

in Labskin, were examined and compared. Finally, the use of the penetration 

enhancer dimethyl isosorbide dimethyl ether (DMI) was investigated for 

assessing percutaneous penetration of the drug by MALDI-MSI. 

 

2.3 Materials and methods 

2.3.1  Chemicals and materials 

MALDI matrices and instrument calibrants - Alpha cyano-4-hydroxycinnamic 

acid (α-CHCA), 2,5-dihydroxybenzoic acid (DHB), 9-aminoacridine (9-AA), 

aniline, acetone, trifluoroacetic acid (TFA), phosphorus red and formic acid (FA) 

were purchased from Sigma-Aldrich (Gillingham, UK). For tissue staining 

protocols haematoxylin, eosin, xylene substitute and ethanol (EtOH) were 
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purchased from Sigma-Aldrich (Gillingham, UK). Pertex mounting medium was 

obtained from Leica Microsystems (Milton Keynes, UK). Acetonitrile (ACN) and 

methanol (MeOH) were purchased from Fisher Scientific (Loughborough, UK). 

Terbinafine hydrochloride standard and isosorbide dimethyl ether (DMI) were 

purchased from Sigma-Aldrich (Gillingham, UK). Conductive indium tin oxide 

(ITO)-coated microscope glass slides were purchased from Sigma-Aldrich 

(Gillingham, UK). 

 

2.3.2  Tissue preparation 

Living skin equivalent models (LSEs) were supplied by Innovenn (York UK). 

LSEs were delivered after 14 days of development in transport culture medium. 

At the time of delivery LSEs were transferred into new 12 deep well plates, 

suspended in fresh Labskin maintenance medium and left to incubate for 24 

hours with 5% CO2, 37°C. Labskin was treated with terbinafine hydrochloride at 

1% w/w dissolved either in acetone/olive oil (80:20 v/v) or in 100% DMI. After 

treatment, LSEs were re-incubated for 24 hours. After incubation, the samples 

were taken, snap-frozen with liquid nitrogen cooled isopentane (2-5 min) and 

stored at -80°C. For cryosectioning, LSEs were transferred into the cryostat 

(Leica 200 UV, Leica Microsystems, Milton Keynes, U.K.) and mounted onto a 

cork ring using diH2O at −25°C for 30 min to allow to thermally equilibrate. The  

tissues were cryosectioned (12 µm), thaw mounted onto ITO glass slides, and 

stored at −80°C.  

 

2.4 Optimisation of mass spectrometry imaging  

2.4.1  Mass spectrometric profiling of terbinafine 

hydrochloride 

Different matrices dissolved in several solvent mixtures were compared for best 

mass spectrometric analysis of terbinafine hydrochloride. For positive mode the 

matrices used were: either 5 mg/mL or 10 mg/mL of α-CHCA in ACN/0.5% TFA 

(7:3, v/v); 5 mg/mL of α-CHCA in ACN/0.2% TFA (1:1, v/v) + equimolar amount 
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of aniline added to the final volume; 20 mg/mL DHB in either ACN/MeOH (1:1, 

v/v) or ACN/0.2% TFA (1:1, v/v). The binary matrix was prepared by mixing in 

ratio 1:1 CHCA solution matrix (20 mg/mL in ACN/5% FA (7:3, v/v)) with DHB 

solution matrix (20 mg/mL in ACN/0.1%TFA (7:3, v/v)). For negative mode, the 

matrix used was: 15 mg/mL 9-AA in MeOH/diH2O (4:1, v/v).  

Terbinafine hydrochloride (100 μg/mL unless otherwise stated) was mixed with 

each matrix solvent composition (ratio 1:1) by using the dried droplet method. 

Then, three spots (0.5 μL) from each mixture were deposited across the length 

of the MALDI stainless steel plate and then allowed to dry at room temperature 

prior to mass spectrometric analysis. 

 

2.4.2  Mass spectrometric imaging of terbinafine in Labskin 

2.4.2.1  Matrix deposition  

2.4.2.1.1 Spraying  

All sample sections were taken from -80oC and freeze-dried under vacuum 

(0.035 mbar) for 2 hours to avoid delocalisation of the analyte and preserve the 

integrity of the tissues. The matrix (5 mg/mL α-CHCA in ACN/0.2% TFA (1:1, 

v/v) with equimolar amount of aniline added to the final volume) was deposited 

onto the treated tissue section surface using a SunCollectTM automated sprayer 

(KR Analytical, Sandbach, UK). Eleven layers of matrix were sprayed with a 

flow rate of 3 μL/min for the first layer and 3.5 μL/min for the following ten 

layers. The time taken to spray eleven layers of matrix on an area of 432 mm2 

was around 1 hour and the total amount of matrix deposited was around 1 mg 

per the entire area (432 mm2), hence 2.31 µg/mm2. 

 

2.4.2.1.2 Sublimation  

α-CHCA (300 mg) was spread evenly at the bottom of the sublimation 

apparatus (Sigma-Aldrich). ITO-coated glass slides containing treated Labskin 

tissues were attached to the flat top of the chamber using double-sided tape. 

The flat top of the chamber was then attached to the bottom using an O-ring 
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seal and the vacuum was applied. When a stable vacuum of 2.5 x 10-2 Torr was 

achieved, the top was filled with cold water (5°C) and the temperature was set 

to 180°C. The sublimation process was performed until the optimal amount of α-

CHCA (0.2 mg/cm2) was achieved. To monitor the quantity of matrix deposited, 

the glass slide with the tissue section was weighed before and after the 

sublimation process; the amount of matrix (mg) was calculated by the difference 

and divided by the area of the sublimed slide (mg/cm2). The time taken to 

complete this process was around 20 minutes.  

 

2.4.2.1.3 Recrystallisation 

For MS/MSI experiments, after sublimation an additional recrystallisation 

process was performed. A glass Petri dish (100 mm diameter x 15 mm depth) 

was used to carry out the recrystallisation on sublimated tissues. The glass 

slide was fixed to the underside of a petri dish lid using standard double-sided 

tape. The lid was then placed on the rest of the dish and put in the oven for 2 

minutes at 180°C. The petri dish was then retrieved from the oven and a 

solution of 1 mL deionised water and 50 μL trifluoroacetic acid was pipetted 

onto filter paper placed at the bottom of the petri dish. The petri dish was then 

sealed with Parafilm (Sigma Aldrich, UK) and placed in the oven for 6 minutes. 

The dish was then unsealed, and the lid returned to the oven to dry for a further 

2 minutes. 

 

2.5 Instrumentation  

2.5.1  Mass spectrometry  

All experiments were performed using an Autoflex III (Bruker Daltonik GmbH, 

Germany) equipped with a 200-Hz SmartbeamTM laser. For MALDI-MSP mass 

spectra were manually acquired in positive and negative mode in reflectron 

mode at a mass range of 50-1000 m/z. Six hundred laser shots were acquired 

for each spectrum. External mass calibration was achieved using a phosphorus 

red standard at approximately 200 ppm. 
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2.5.2  Data processing  

MALDI-MSP data were acquired using FlexControl (Bruker Daltonics, 

Germany), converted to .txt file format using FlexAnalysis (Bruker Daltonics, 

Germany) and analysed using Mmass v5 open source software (Strohalm et al., 

2010). 

 

For MALDI-MSI positive ion mode, mass spectra were acquired at a pixel size 

of either 30 µm or 10 µm from 100 m/z -1000 m/z. The laser was focused at the 

small setting (around 20 µm diameter). Four hundred laser shots were acquired 

for each pixel and the data were processed using FlexImaging 3.0 software 

(Bruker Daltonics, Germany). 

 

2.6 Histological analysis  

2.6.1  Haematoxylin and eosin staining  

LSE sections (12 µm) after MALDI-MSI were stained used Mayer's 

haematoxylin and eosin solutions. First, any presence of matrix was removed 

by washing the slides with 100% (v/v) EtOH. Sections were then rehydrated by 

submerging in 95% (v/v) and 70% (v/v) EtOH washes for 3 min and they were 

left for 1 min in deionised water before being stained in filtered Meyer's 

haematoxylin for 10 min. Tissues were washed in running tap water for 3-5 min 

and dehydrated using 70% (v/v) and 95% (v/v) EtOH solutions then immersed 

in filtered eosin 100% (v/v) for 1 min. The last dehydration step was performed 

using 95% (v/v) and 100% (v/v) EtOH solution, each for a period of 3 min. 

Finally, the slides were submerged in 2 changes of xylene substitute for 5 min 

each and mounted using Pertex mounting medium.  

Optical images were obtained using an Olympus BX60 microscope and 

analysed with Q-Capture-Pro 8.0 software (QImaging, Surrey, BC, Canada). 
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2.7  Results and discussion 

2.7.1  Comparison of matrices  

A wide variety of matrices are currently available for the analysis of low 

molecular weight analytes. The optimisation of the matrix choice remains a 

fundamental aspect, since it strongly depends on the analyte under 

investigation in terms of structure, solubility and physiochemical properties 

(Reyzer and Caprioli, 2007). 

In positive mode, a standard solution of terbinafine hydrochloride (100 µg/mL) 

was examined using MALDI-MSP with the two most commonly used matrices, 

CHCA and DHB, at different concentrations and solvent compositions. 

Alternatively, in negative mode, terbinafine hydrochloride (100 µg/mL) was 

analysed using 9-AA matrix. With 9-AA matrix no significant signals were 

obtained; this matrix was therefore not considered further (Figure 2.1). These 

results were expected due the basic nature of the amine group of terbinafine. All 

profiling experiments were performed using the dried droplet technique, the 

most common approach used to prepare MALDI sample spots. 
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Figure 2.1 MALDI-MS spectrum acquired in negative mode on the spot TBF 

(100 µg/mL) mixed with the matrix 9-AA. No evidence of the expected peak [M-

H]-, m/z 290.19 was observed. 

 

For positive mode, first, the effect of DHB at the same concentration (20 

mg/mL) prepared in either ACN/MeOH (1:1, v/v) or ACN/0.2% TFA (1:1, v/v), 

were compared. The presence of TFA in the solvent, an excellent proton 

donator, led to a more efficient ionisation of the analyte and consequently 

higher signal intensity, as show in the Figure 2.2A. In addition, a lower standard 

deviation in the latter case was also observed. However, the differences in error 

bars shown in the Figure 2.2A could be derived from inhomogeneity of matrix-

analyte crystals, responsible for spot to spot irreproducibility, as well as from   

the background noise of the MALDI technique (Krutchinsky and Chait, 2002; 

Wijetunge et al., 2015) The chemical noise measured at the detector, beside 

limits the sensitivity of the technique, affects the signal of the acquired spectra, 

generating a non-uniform background.  

 

Next, the performance of CHCA at two different concentrations; 5 and 10 

mg/mL dissolved in ACN/0.5% TFA (7:3, v/v) was investigated. The optimal 

concentration of matrix was found to be 5 mg/mL; since a lower signal intensity 

of terbinafine hydrochloride was detected when the higher concentration of 

CHCA was used (Figure 2.2B). As reported in the proteomic study conducted 



  

97 

 

by Zhang et al., this aspect may be explained by the fact that an increase in 

matrix concentration may derive an increase of matrix clusters responsible for 

the analyte signal suppression (Zhang et al., 2010). 

To increase the sensitivity of the terbinafine hydrochloride different approaches 

have been investigated, either by mixtures of matrix compounds (CHCA-DHB) 

or by adding liquid aniline to matrix preparation. 

The application of CHCA-DHB mixture was previously reported to improve the 

spot-to-spot reproducibility and signal-to-noise ratio in peptide analysis 

(Laugesen and Roepstorff, 2003; Schlosser et al., 2005). In more recent work, 

Shanta et al. reported the combination of CHCA-DHB with a mixture of 

piperidine and TFA for the visualisation and identification of phospholipids in 

brain tissue by using MALDI-MSI in both positive and negative modes (Shanta 

et al., 2011).  

Another strategy widely employed to increase the sensitivity and improve the 

ionisation of the analyte of interest involves the use of ionic liquid matrices 

(ILMs). The most common examples of ILMs consist of a combination of an acid 

normally used as MALDI matrix with an organic base, i.e pyridine, aniline, 

tributylamine in equimolar proportions (Meriaux et al., 2010). In particular, the 

addition of aniline within CHCA matrix solution has been reported as an 

excellent strategy to detect low molecular mass analytes, thanks to the 

improvement in the signal-to-noise ratio and absence of interfering peaks 

generated by conventional CHCA matrix (Calvano, Carulli and Palmisano, 

2009).  

Analysing these two different approaches, ANI-CHCA was found to be the most 

favorable for increasing the absolute intensity of terbinafine hydrochloride and 

reducing the matrix interference in the low m/z range on the spectrum (Figure 

2.2C). 
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Figure 2.2 The effect of several matrices on the signal intensity of terbinafine 

hydrochloride ([M+H]+; m/z 292.2) (n = 9). A) 20 mg/mL DHB dissolved in I) 

ACN/MeOH (1:1, v/v), II) ACN/0.2% TFA (1:1, v/v). B) CHCA dissolved in 

ACN/0.5% TFA (7:3, v/v) at concentrations: I) 5 mg/mL and II) 10 mg/mL. C) 

CHCA dissolved in different solvents at different concentrations: I) 5 mg/mL in 

ACN/0.2% TFA (1:1, v/v) with equimolar aniline, II) 20 mg/mL in ACN/5% FA 

(7:3, v/v) mixed in ratio 1:1 with 20 mg/mL DHB in ACN/0.1% TFA (7:3, v/v). 

 

(B) 

(C) 

(A) 
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The final step of the matrix optimisation study was to compare the energy 

threshold for ion production of terbinafine hydrochloride obtained when mixed 

with all different matrix compositions (Figure 2.3). 

 

 

Figure 2.3 MALDI-MS spectra of terbinafine hydrochloride standard (100 

µg/mL) obtained for different matrices. Peaks with a star represent the peak of 

the terbinafine hydrochloride in positive mode ([M+H]+; m/z 292.2). 
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Figure 2.4A shows that the employment of ANI-CHCA matrix resulted in a 

significant enhancement in spectral quality of terbinafine hydrochloride 

compared to the other matrices. Furthermore, the superiority of the ionic liquid 

matrix was highlighted also when the relative intensity of the analyte was 

investigated (intensity peak of terbinafine HCl/intensity peak of matrix), 

supporting the ability of the ionic liquid matrix (ANI-CHCA) to suppress matrix 

ion peaks (Figure 2.4B).   

Morphological aspects of matrix crystallisation resulting from sample deposition 

in different matrices by the dried droplet technique are shown in Figure 2.4C. 

With manual spotting, the crystallisation tended to be irregular and 

inhomogeneous, DHB formed needle-shaped crystals pointing to the edge of 

the rim, whereas CHCA crystals appeared smaller with low density at the center 

of the rim. A slightly higher homogeneity crystal distribution was obtained with 

the combination of two matrices (CHCA-DHB), whereas the ANI-CHCA gave a 

very typical transparent droplet base with crystal clusters across. 
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Figure 2.4 A) Absolute and B) relative intensity of terbinafine hydrochloride 

peak ([M+H]+; m/z 292.2) with several matrices (n = 9). I) 5 mg/mL CHCA in 

ACN/0.2% TFA (1:1, v/v) with equimolar aniline, II) 5 mg/mL and III) 10 mg/mL 

CHCA in ACN/0.5% TFA (7:3, v/v); 20 mg/mL DHB in: IV) ACN/MeOH (1:1, v/v) 

and V) ACN/0.2% TFA (1:1, v/v). VI) 20 mg/mL CHCA in ACN/5% FA (7:3, v/v) 

mixed in ratio 1:1 with 20 mg/mL DHB in ACN/0.1% TFA (7:3, v/v). For relative 

intensity, TBF intensity was normalised with the [CHCA+H]+ peak of m/z 190.05, 

when CHCA was used as matrix, and with the [DHB+H]+ peak of m/z 155, when 

DHB was used as matrix. When the binary matrix was used, the TBF peak was 

normalised for both VIa) [CHCA+H]+ peak and VIb) [DHB+H]+ peak.  C) Matrix 

crystal morphologies obtained by the dried droplet deposition method. 
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2.7.2 Spraying  

As the ionic liquid matrix ANI-CHCA was found to be the optimal matrix to 

enhance the intensity of the analyte of interest, terbinafine hydrochloride, it was 

decided to use this matrix for further MALDI-MS imaging investigations. First, 

the matrix ANI-CHCA was applied onto the Labskin tissue by using a 

SunCollect automated sprayer, widely used as matrix deposition device 

(Francese et al., 2013; Barré et al., 2019; Morikawa-Ichinose et al., 2019). The 

spraying conditions were optimised and, to assess the optimal number of 

layers, the sample was observed using microscopy when different layers of 

matrix were applied. It was found that 11 layers of matrix were required to give 

a good consistency in crystal size and excellent coverage of tissue.  

Figure 2.5 shows MALDI-MS images of the distribution of terbinafine parent 

compound at m/z 292.2 in a section of Labskin following treatment with 20 μL of 

terbinafine (1% (w/w) in emulsion acetone/olive oil (80:20)) for 24 hours. To 

increase the lateral spatial resolution of the MALDI-MS image, it was decided to 

reduce the pixel size to 10 μm. This was possible using the Autoflex III (Bruker 

Daltonic) instrument, which offered the advantage of changing the laser focus 

diameter down to 10 µm, allowing the generation of high resolution images, 

without oversampling. From the image it can be seen that the terbinafine signal 

appeared to be localised solely to the epidermal layer, with no penetration 

within the dermal region. The absence of the drug in the deeper layer of the skin 

was as expected considering the high lipophilicity and keratophilicity of the 

molecule, which leads  to its accumulation solely onto the epidermal layer 

(Pretorius et al., 2008). 

From the image it was also possible to detect an undesirable migration/diffusion 

of the analyte. The analyte delocalisation could represent a major drawback 

when spray-coating is used; primarily due to the presence of the solvent 

responsible for tissue wetting during the spraying (Schwartz, Reyzer and 

Caprioli, 2003; Puolitaival et al., 2008). In addition, other parameters could 

affect analyte delocalisation, i.e. the pressure with which the matrix solution hits 

the tissue, nozzle movement and height. Although these parameters could be 

optimised to minimise analyte delocalisation, the presence of a solvent is 
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necessary to prepare the matrix solution for this method and hence it cannot be 

completely eliminated.  

 

 

Figure 2.5 A) MALDI-MS image showing the distribution of terbinafine 

hydrochloride ([M+H]+; m/z 292.2). (Spatial resolution = 10 µm). B) Overall 

MALDI-MS spectra, inlay shows zoom at m/z 292.2. Image is generated by 

using TIC normalisation. 

 

2.7.3  Sublimation  

To increase the spatial resolution, sublimation, a solvent-free matrix deposition 

technique was examined. Kim et al. were the first to describe the use of 

sublimation/deposition for direct MALDI analysis (Kim, Shin and Yoo, 1998). In 

the study, the authors highlighted the excellent advantage of employing this 

technique to deposit both sample and matrix when they were not soluble with 

each other (Kim, Shin and Yoo, 1998). Over the years, the use of sublimation 
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for direct sample analysis by MALDI-MS imaging applications has been more 

widely established (Hankin, Barkley and Murphy, 2007; Caughlin et al., 2017; 

Bøgeskov Schmidt et al., 2018; Kaya et al., 2018). A wide sublimation study 

was performed by Thomas et al. on 12 different matrices (Thomas et al., 2012). 

From the study it was found that the sublimation of the matrix 1,5-

diaminonaphthalene (DAN) was particularly efficient for high spatial resolution 

imaging of lipids in both positive and negative ion polarities.  

In this work 0.2 mg/cm2 of organic matrix CHCA alone was applied by 

sublimation onto a section of Labskin treated with terbinafine (1% (w/w) in 

acetone/olive oil (80:20)) for 24 hours. In agreement with results obtained using 

the automatic sprayer system, MS images of Labskin section showed no 

delivery of the drug into the dermis, but confirmed the localisation of terbinafine 

hydrochloride at m/z 292.2 only in the outmost layer of the skin, the epidermis 

(Figure 2.6). The localisation of drug was also supported by haematoxylin and 

eosin staining performed on the same section of Labskin after sublimation 

(Figure 2.7). 
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Figure 2.6  A) MALDI-MS image showing the distribution of terbinafine 

hydrochloride ([M+H]+; m/z 292.2). (Spatial resolution= 10 µm). B) Overall 

MALDI-MS spectra, inlay shows zoom at m/z 292.2. Image is generated by 

using TIC normalisation. 



  

106 

 

 

Figure 2.7 Haematoxylin & eosin stained optical image of the sublimated 

section after MALDI-MSI A) 4X magnification B) 10X magnification C) 20X 

magnification. 

 

After sublimation, a recrystallisation step can be performed on the sample in 

order to rehydrate it (Bouschen et al., 2010). The necessity to execute this 

additional step on sublimed samples was considered in order to increase the 

analyte extraction. The extraction efficiency may be relatively low without a 

recrystallisation because of absence of solvent in the sublimation (Shimma et 

al., 2013; Morikawa-Ichinose et al., 2019). The choice of solvent used for 

rehydration of sample depends on the analyte and matrix used. One water-

based solvent, with addition of TFA, was chosen to incorporate the analyte into 
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the sublimated matrix, following the recrystallisation procedure developed by 

Yang and Caprioli (Yang and Caprioli, 2011).  

 

The recrystallisation was performed on a sublimated sample treated with 

terbinafine for 24 hours in the same composition examined previously. MALDI 

MS/MS imaging was performed on the recrystallised sample while keeping high 

spatial resolution at 10 µm. Figure 2.8 shows the MALDI-MS/MSI spectrum 

obtained from the major product ion at m/z 141. 

 

 

Figure 2.8 A) MALDI-MS/MSI distribution of terbinafine fragment [M+H]+ at m/z 

141 of  LSE 24 hours post-treatment  B) Haematoxylin & eosin stained optical 

image of the same section 1) 10X magnification 2) 20X magnification C)  

MALDI-MS/MSI spectrum showing the major product ion at m/z 141. 

 

Although the MS/MS data supported the MALDI-MSI data, which showed that 

the localisation of drug was confined in the epidermal layer, the spatial 

resolution appeared to be lost with the additional recrystallisation step. This 

drawback could be due to the fact that the exposure with the vapor may lead to 

an excessive water condensation on the glass surface, generating a non-
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homogenous matrix composition and consequently causing analyte migration 

from the tissue. Although this aspect could be improved with further optimisation 

of solvents and time (Yang and Caprioli, 2011; Dueñas, Carlucci and Lee, 

2016), by analysing the signal of terbinafine hydrochloride (m/z 292.2) in two 

sections of Labskin, one exposed only to matrix sublimation and the other 

exposed to matrix sublimation/recrystallisation, an increase of intensity was not 

detected in the latter (data not shown). However, it is important to note that the 

analysis was performed on different sections of Labskin and on different days, 

hence, a direct comparison was not suitable. In this study it was decided to not 

proceed further with a recrystallisation step after sublimation. 
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2.8 Comparison of automated sprayer and sublimation 

methods for terbinafine mass spectrometry imaging  

The MALDI-MS images obtained by automated sprayer and sublimation were 

directly compared. Both images showed a relatively uniform intensity of 

terbinafine across the outermost layer of skin, the epidermis, although a 

significant enhancement of the spatial resolution was obtained when the matrix 

was applied by sublimation (Figure 2.9). 

 

 

Figure 2.9 Comparison of MALDI-MS images of terbinafine hydrochloride 

([M+H]+; m/z 292.2) by applying CHCA with A) optimised automatic sprayer and 

B) optimised sublimation method to Labskin section 24 hours post-treatment. 

 

It is common knowledge that, beside the laser spot size, the quality of the image 

could be strongly limited by factors including crystal size and uniformity of the 

matrix. In regards to this, the analysis of the matrix morphology was 

investigated. The spraying of 11 layers of ANI-CHCA produced a 

heterogeneous matrix deposition with splits and many incongruities, whereas 

very small crystal size and high uniformity of matrix was achieved with CHCA 

applied by sublimation (Figure 2.10). The superiority of a dry-coating approach 

for the imaging of small molecules was emphasised also by Lauzon et al. 

(Lauzon et al., 2015). Yang and Caprioli also highlighted the benefit of a 

sublimation approach for achieving high spatial resolution for imaging of large 

molecules, proteins up to m/z 30000 on mouse and rat brain (Yang and 

Caprioli, 2011).  

m/z 292.2 m/z 
292.2 

A) B) 
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Figure 2.10  Optical images comparing matrix coverage and crystal morphology 

for the A) optimized automatic sprayer, and B) optimized sublimation matrix 

application methods using CHCA as matrix. 

 

The ion peak patterns generated by the matrix were also investigated. In this 

regard, regions of interest (ROIs) with equal area (24 pixels) were selected in 

the tissue-free regions and the signal from CHCA applied by these two different 

techniques was extracted and compared. The overall spectrum from the 

sprayed ANI-CHCA showed multiple matrix sodium/potassium-adduct peaks 

([M+K]+, m/z 228; [M-Na+K]+, m/z 250) hardly detectable in the overall spectrum 

from the sublimed CHCA (Figure 2.11). The reduction of the intensity of CHCA 

cluster peaks in the spectrum from sublimed CHCA was attributable to the 

higher purity of matrix and this aspect guaranteed less interference in the 

spectrum in the low m/z range, minimising possible peak interference 

drawbacks with the terbinafine hydrochloride ion peak. 

 

m/z 292.2 

m/z 292.2 

A) 

B) 
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Figure 2.11 Overall MS spectra of CHCA matrix peaks (with no sample) when 

applied to ITO glass slide with A) optimised automated spraying and B) 

optimised sublimation matrix application methods. Spatial resolution = 30 µm. 

Inlays show the MS spectra zoomed in the lower m/z range (m/z 200-300). TIC 

normalisation. 

 

2.9  Optimisation of percutaneous delivery of 

terbinafine hydrochloride  

Once established that the uniform coating of matrix and small crystal sizes 

achieved by sublimation ensured a better spatial resolution and limited analyte 

delocalisation compared to the automatic sprayer method, this study proceeded 

with the optimisation of the terbinafine percutaneous delivery. 

 

As discussed in Chapter 1.8.1, the inclusion of chemical penetration enhancers 

(CPEs) within a drug formulation could represent a valid strategy to enhance 

the drug penetration through the stratum corneum (the limiting barrier to drug 

absorption). In the work reported by Erdal et al. (Erdal et al., 2014) three CPEs 
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(nerolidol, dl-limonene and urea) were investigated. From this study it emerged 

that the addition of nerolidol in a topical terbinafine formulation increased the 

delivery of the drug within deeper layers of epidermis, allowing potentially the 

treatment of deep cutaneous infections (Erdal et al., 2014). 

 

Specifically, in the study presented in this chapter, the assessment of enhanced 

topical delivery of terbinafine by using DMI based formulation was investigated 

(Figure 2.12). DMI is a "sustainable" solvent widely included in cosmetic and 

pharmaceutical formulations (Durand et al., 2009). In this context the term 

"sustainable" refers to a solvent where the production process includes pollution 

prevention/control and resource-usage reduction (Glavič and Lukman, 2007). 

DMI acts as chemical enhancer by improving the partitioning of active agents 

into the stratum corneum and leading to a greater penetration of them into the 

epidermis (Zia et al., 1991; Otto et al., 2008).  

 

 

 

Figure 2.12 Structure of isosorbide dimethyl ether. 

 

 

Figure 2.13 shows MALDI-MSI images of the distribution of the terbinafine 

parent compound at m/z 292.2 in a section of Labskin following treatment with 

20 μL of terbinafine (1% (w/w) in 100% DMI) for 24 hours. As can be seen from 

the figure, the main concentration of terbinafine was focused in the epidermis. 

Tandem MS/MS imaging experiments carried out on the [M+H]+ signal for 

terbinafine at m/z 292.2 showed the expected major product ion at m/z 141 and 

supported the presence of terbinafine in the epidermis (Figure 2.14). These 

results find support from previous unpublished studies performed on ex-vivo 

human skin, in which it was shown that the inclusion of DMI within vehicle 
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enhanced the drug penetration only within the epidermal layer and did not lead 

to penetration into the dermis (personal communication).  

 

 

 

Figure 2.13  A) MALDI-MSI distribution of terbinafine [M+H]+ at m/z 292.2 of 

LSE 24 hours post-treatment in 100% DMI. Matrix (CHCA) applied by 

sublimation. Spatial resolution = 30 μm. B) Haematoxylin & eosin stained optical 

image of the sublimated section. 4X magnification. 

 

 

 

m/z 292.2 

(A) (B) 

          

       



  

114 

 

 

Figure 2.14  (A) MALDI-MS/MSI distribution of terbinafine fragment [M+H]+  at 

m/z 141 of LSE 24 hours post-treatment in 100% DMI. Matrix (CHCA) applied 

by sublimation. Spatial resolution = 10 µm. (B) Haematoxylin & eosin stained 

optical image of the same section. (B1) 4X magnification. (B2) 10X 

magnification. (B3) 20X magnification. 

. 
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2.10  Concluding remarks   

In this study, a commercial LSE model was treated with terbinafine 

hydrochloride dissolved in different solvent mixtures. Additionally, MALDI-MSI 

was used to identify the localisation of the drug in samples of the LSE. Data 

was obtained after depositing the matrix onto the sample using two different 

matrix deposition techniques, spraying and sublimation. Use of the sublimation 

was shown to give a better spatial resolution of the images obtained from the 

samples 24 hours post-treatment. This result was due to several factors 

associated with the sublimation technique: microcrystalline morphology of the 

matrix deposition, increased purity of deposited matrix, evenness of deposition 

and less spreading of analyte due to solvent deposition during matrix 

application.  

 

It was demonstrated that 24 hours post-treatment terbinafine was localised only 

in the epidermal layers of the LSE, either when the drug was formulated with 

acetone/olive oil (80:20) or with a known penetration enhancer 100% DMI.  
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Chapter 3: Optimisation of 

methodology for quantitation in 

MALDI-MSI. 
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3.1 Introduction 

The quantitation of drugs in tissues is an essential part of pharmaceutical 

discovery and development. The determination of the concentration of a drug at 

the site of action is extremely important for the assessment of its efficacy.  

Quantitative whole-body autoradiography (QWBA) and liquid chromatography 

tandem mass spectrometry (LC-MS/MS) represent traditional techniques widely 

employed to detect the amount of drugs and metabolites in biological tissues 

after their administration (Hamm, Bonnel, Legouffe, Pamelard, J.-M. Delbos, et 

al., 2012).  

Quantitative whole body autoradiography (QWBA) is an advancement of whole 

body autoradiography (WBA), which is an imaging technique able to visualise 

the in situ distribution of radiolabelled molecules throughout tissue sections of 

laboratory animals, usually rodents  (Solon and Kraus, 2001).  

In brief, the WBA technique comprises first of the administration of a 

radiolabelled molecule (typically 14C or 3H) to lab animals and then euthanasia 

at specified time points. The entire animal carcass is then snap-frozen, 

embedded in carboxymethylcellulose and cryosectioned to obtain a 

representative slice (Solon and Kraus, 2001). By exposing tissue sections to a 

detector capable of measuring radioactivity (x-ray film or phosphor image plate) 

it is possible to obtain information about the distribution and the relative 

concentration of radiolabelled material in an animal body. To generate absolute 

quantitative data, Schweitzer et al. (Schweitzer, Fahr and Niederberger, 1987) 

introduced a robust and simple quantitation method that consisted of spiking a 

range of radioactive calibration standards within blood samples and embedding 

them with the animal. 

The QWBA technique allows spatial information to be retained and it is highly 

sensitive and reliable. In addition, the images generated are of high resolution. 

However, this technique presents several drawbacks that need to be 

contemplated too. Firstly, it is a technique which can only be used for targeted 

analysis and it is expensive in terms of instrumentation and synthesis of 

radiolabels. In addition, the quantitation relies only on the concentration of 

radioactivity, which could include as well as the parent compound its 



  

118 

 

metabolites or degradation products. This can  lead to misleading results for the 

amount of parent compound in the section (Solon et al., 2010). For this reason, 

often liquid chromatography tandem mass spectrometry (LC-MS/MS) is used as 

a complementary technique to support QWBA data. In the pharmaceutical 

industry LC-MS/MS has been indicated as technique of choice for the 

identification and quantitation of drugs and metabolites in biological tissues 

(Rönquist-Nii and Edlund, 2005). Although this technique offers the enormous 

advantage that it can give excellent separation of compound mixtures as well as 

reliable quantitation, it has the disadvantage of losing spatial information from 

the sample. LC-MS/MS analysis cannot be carried out directly on intact tissue 

sections, but analytes of interest have to be extracted out of the tissue. This 

increases the complexity of sample preparation and leads only to an average 

concentration within the tissue sample being obtained. 

In light of these considerations, in the last decade the potential of mass 

spectrometry imaging (MSI) technology for quantitative studies has been 

extensively examined. This technology combines the benefit of keeping the 

spatial information of non-labelled compounds in the tissues with the specificity 

of mass spectrometry. A comprehensive review into quantitative MSI strategies 

for biomedical applications was conducted by Ellis et al. (Ellis, Bruinen and 

Heeren, 2014). 

The major drawbacks in generating quantitative mass spectrometry imaging 

(QMSI) data from biological tissue sections concern the ionisation of the analyte 

of interest. Indeed, the ion intensity of the analyte depends strongly on both the 

nature of the analyte as well as on the histological microenvironment that is 

sampled with the analyte. This latter aspect is responsible for what are defined 

as "matrix" or "ion suppression" effects. In addition the recovery of the analyte 

from the tissue also needs to be considered (Porta et al., 2015). 

In this regard, methods to overcome the limitations and increase the potential of 

MSI for quantitative analysis are highly sought after and developed. In 

particular, the imaging techniques most commonly employed to acquire 

absolute quantitative data include matrix assisted laser desorption ionisation 

mass spectrometry imaging (MALDI-MSI) (Groseclose and Castellino, 2013), 

and desorption electrospray ionisation (DESI-MSI) (Vismeh, Waldon and Zhao, 
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2012; Groseclose and Castellino, 2013; Hansen and Janfelt, 2016). 

Additionally, a recent study reported by Swales et al. described the application 

of liquid extraction surface analysis mass spectrometry imaging (LESA-MSI) for 

spatial quantitation of drugs in tissues (Swales et al., 2016). 

The generation of calibration curves based on the use of serial dilution of 

standards represents a pivotal aspect to assess absolute quantitation. A 

comprehensive review on calibration/standardisation strategies for quantitation 

of small molecules using MALDI-MSI has been conducted by Rzagalinski and 

Volmer (Rzagalinski and Volmer, 2017). In order to mimic ion suppression 

effects within tissue a common approach used is by using mimetic arrays 

created from tissue homogenates (Groseclose and Castellino, 2013; Jadoul, 

Longuespée and Noël, 2015) and surrogate material (pseudo-tissue) (Takai, 

Tanaka and Saji, 2014a) or to spot working standard solutions using a control 

tissue in two different ways: (1) by spotting a range of standard concentration 

onto the tissue prior to depositing the matrix or (2) by spotting a range of 

concentration underneath the tissue prior to positioning the tissue and 

depositing the matrix.  

Lagarrigue et al. used spotting onto tissue in order to quantify the amount of 

pesticide chloredecon within mouse liver sections (Lagarrigue et al., 2014). In 

this study six replicates were performed and a good linearity coefficient was 

achieved (R2 from 0.9807 to 0.9981). In contrast, Pirman et al. spotted a range 

of calibration standards underneath a control brain tissue in order to quantify 

levels of cocaine by visualisation of the expected major product ion at m/z 182 

using MALDI-MS/MS imaging (Pirman et al., 2013).  

In MALDI-MSI, the nature of analyte ionisation depends strongly on the entity of 

the analyte as well as the tissue. The same molecule can be subjected to 

varying ion suppression effects in different tissues or across the same tissue in 

response to a changeable histological framework as well as to the ionisation 

competition with compounds within the morphological microenvironment 

(Hamm, Bonnel, Legouffe, Pamelard, J. M. Delbos, et al., 2012). This aspect in 

addition to the variation of ion signals due to heterogeneity of matrix deposition 

represent the major issues that need to be addressed in the development of 

MALDI-MSI as a method for quantitative mass spectrometry imaging (QMSI). 
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In order to correct for the issues that could compromise MALDI-MSI spectral 

quality different normalisation strategies were developed (Fonville et al., 2012). 

The basic principle of normalisation is to employ a factor against which to 

correct each mass spectrum. Total ion current (TIC) normalisation represents 

the most commonly used correction approach. In previous studies, TIC was 

used to normalise MALDI-MSI spectra acquired from rat brain tissue sections 

and perform quantitative analysis of both several neurotransmitters and drugs 

(Goodwin et al., 2011; Shariatgorji et al., 2014) .  

Although the TIC normalisation approach has been widely used to eliminate 

systematic artefacts derived from matrix crystal distribution, this approach may 

generate misleading conclusions from MALDI-MSI spectra, especially when the 

intensity of the analyte varies in different regions of the tissue (Deininger et al., 

2011). 

In order to correct for "matrix" or "ion suppression" effects, largely highlighted in 

the study carried out by Stoeckli et al. (Stoeckli, Staab and Schweitzer, 2007), 

different normalisation strategies for MALDI-MSI data have been developed and 

examined.   

The normalisation method developed by Hamm et al. based on a factor called 

the tissue extinction coefficient (TEC) aimed to correct for the ion suppression 

effects of the analyte of interest in a particular organ or region of interest 

(Hamm, Bonnel, Legouffe, Pamelard, J. M. Delbos, et al., 2012). This technique 

was adopted to quantify the amount of olanzapine specifically in rat kidney 

sections as well as quantify the amount of propranolol in multiple organs of a 

mouse. The method consisted of covering a glass slide and a control tissue 

section with the analyte mixed with matrix. The average intensity of the analyte 

extracted from the tissue section was divided by the average intensity of the 

analyte on the glass slide and, in this way, the tissue extinction coefficient 

(TEC) was calculated. Then a calibration curve was generated by spotting a 

range of standards near a dosed tissue; the average intensity of the analyte 

from the dosed tissue was extracted and multiplied by the TEC and, then, 

compared to the calibration curve in order to assess the quantity of the drug in 

the tissue. 
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Matrix peaks have also been used to normalise the intensity of the analyte of 

interest and in the literature it is possible to find a large variety of applications of 

this approach to perform quantitative MALDI imaging of small molecules 

(Bunch, Clench and Richards, 2004; Takai et al., 2012). In the works reported 

by Takai et al. a DHB matrix peak was employed to normalise the signal 

intensity of the drug raclopride in multiple organs by using whole-body sections 

(Takai et al., 2012). Instead, Bunch et al. investigated the normalisation to a 

CHCA sodium adduct peak at m/z 212 for the determination of the drug 

ketoconazole in the skin (Bunch, Clench and Richards, 2004). 

Multiple studies have shown how normalisation to an internal standard 

increases the quantitative capabilities of MSI analysis (Pirman and Yost, 2011; 

Prentice, Chumbley and Caprioli, 2017). The internal standard is a molecule 

with chemical and physical characteristics similar to analytes under study. 

During MSI analysis the internal standard mimics the behaviour of the analyte of 

interest in terms of ionisation efficiency and compensates for the tissue-

dependent ion signal variations of the analyte. This aspect causes an 

improvement in relative signal ion reproducibility and image quality due to an 

increase in pixel to pixel precision (Pirman et al., 2013; Chumbley et al., 2016). 

The growing interest in the QMSI field has led to the necessity of developing 

software packages designed for QMSI data. For this purpose, ImaBiotech 

developed the package software Quantinetix™ (www.imabiotech.com); 

whereas, more recently, Uppsala University (Sweden) developed msIQuant 

freeware software available from www.maldi-msi.org. It is a novel and 

established software designed for visualising and processing quantitative 

analysis of a large MSI data set, supporting multiple functions and MSI 

normalisation factors (Källback et al., 2016).  

In this study, different methods for generating accurate quantitative data of 

terbinafine hydrochloride in treated Labskin have been investigated. Different 

calibration/standardisation approaches have been compared, including: 1) cell 

films; on-tissue application of standards by 2) spraying and 3) microspotting; 

and 4) cell plug. In addition, preliminary quantitative data of terbinafine levels in 

Labskin tissues treated with different formulations have been obtained and the 

http://www.imabiotech.com/
http://www.maldi-msi.org/
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performance of the penetration enhancer dimethyl isosorbide (DMI) in 

increasing the drug penetration has been assessed. 

 

3.2 Aims of the chapter 

In the following chapter we aimed to develop a robust, sensitive and 

reproducible methodology for generating accurate quantitative analysis of 

terbinafine hydrochloride, in Labskin, by using MALDI-MSI. The capability of the 

penetration enhancer dimethyl isosorbide (DMI) was also investigated. 

 

3.3 Materials and methods 

3.3.1 Chemicals and materials 

Alpha cyano-4-hydroxycinnamic acid (α-CHCA), phosphorus red, terbinafine 

hydrochloride standard (TBF HCl, MW 327.89), isosorbide dimethyl ether (DMI), 

haematoxylin, eosin and xylene substitute were purchased from Sigma-Aldrich 

(Gillingham, U.K.). X-tra® slides and Pertex mounting medium was obtained 

from Leica Microsystems (Milton Keynes, U.K.). Industrial methylated spirit 

(Ims) was purchased from Thermo Fisher Scientific (USA). 

Labskin living skin equivalent (LSE) samples were provided by Innovenn (U.K.) 

Ltd. (York, England). 

 

3.3.2 Tissue preparation  

3.3.2.1  Cell culture 

Normal human dermal fibroblasts (NHDF) were purchased from PromoCell 

(Heidelberg, Germany) and cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) media (Lonza Ltd, UK) supplemented with 10% foetal bovine serum 

(FBS) and 1% penicillin and streptomycin (Thermo Scientific, USA). 
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Immortalised human epidermal keratinocytes (T0345) were obtained from ABM 

(Richmond, BC, Canada) and cultured in Green's media. Green's media was 

obtained by mixing under sterile conditions the following: Hams F12 media 

(Lonza Ltd, UK) (108 mL), DMEM media (330 mL), L-glutamine (5 mL; 200mM), 

10% FBS, 1% penicillin and streptomycin, adenine (2 mL, 4.62 x 10-2 M), and 

insulin-transferrin-selenium (ITS-G, 100 X; 2.5 mL), hydrocortisone (80 µL of 2.5 

mg/mL), isoproterenol (80  µL of 2.5 mg/mL) and epidermal growth factor (EGF) 

(25 µL of 1 mg/mL). 

All cell lines were maintained in a humidified atmosphere containing 5% CO2 at 

37 oC. They were cultured until they reached 80% confluence. Once confluent, 

the cell lines were passaged by trypsinisation, subsequent centrifugation, 

resuspension in fresh medium and seeded in new flasks. 

 

3.3.2.2  Living skin equivalent samples 

Living skin equivalent (LSE) samples were obtained and cultured as described 

in Chapter 2.3.2. For these experiments, Labskin was treated with 20 μL of 

terbinafine hydrochloride at 1% (w/w) dissolved either in 100% DMI or in an 

emulsion made up of water/olive oil (80:20 v/v) with 10% and 50% DMI; and 

incubated for 24 hours. For the blank tissue, used for generating on-tissue 

calibration array, Labskin was left untreated and incubated for 24 hours. For the 

vehicle control tissue, instead, Labskin was treated with 20 µL of vehicle 

water/olive oil (80:20) alone and incubated for 24 hours. After incubation, the 

samples were taken, snap-frozen with liquid nitrogen cooled isopentane (2−5 

min) and stored at −80 °C. For cryosectioning, LSEs were transferred into the 

cryostat (Leica 200 UV, Leica Microsystems, Milton Keynes, U.K.), mounted 

onto cork ring using diH2O at −25 °C for 30 min to allow to thermally equilibrate. 

The 12 μm tissue sections were cryosectioned, thaw mounted onto poly-L-

lysine glass slides, and stored at −80 °C. Before standards and matrix 

application the samples were freeze-dried under vacuum (0.035 mbar) for 2 

hours to avoid delocalisation of the analyte and preserve the integrity of the 

tissues. 
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3.3.3 Strategies for generating standard curves 

3.3.3.1  Cell films 

Working standards were made to 1, 10, 50, 100 and 500 ng/µL of TBF HCl in 

MeOH/H2O (50:50) and deposited onto a “film” of keratinocyte and fibroblast 

cells cultured on a poly-L-lysine glass slide. Before culturing the cells, the glass 

slide was prepared and cleaned. A wax pen was used to draw on the slide a 

square constituting of hydrophobic barriers, inside of which the cells could be 

cultured. The slide was then sterilised by submerging in Ims 70% for 10 sec, 

and then it was washed with phosphate buffered saline (PBS) twice for 10 sec 

and Green's media for 10 sec. At this point the cells were prepared; 

keratinocyte (T0345) and fibroblast cells (NHDF) were cultured as described in 

Section 3.3.2.1. Once confluent, they were trypsinised and counted; 45000 

keratinocytes and 15000 fibroblasts were mixed in order to mimic the same ratio 

composition present in the Labskin tissue (3:1) and then, 300 μL of the mixture 

was deposited onto the slide. The slide with cells was maintained in a 

humidified atmosphere containing 5% CO2 at 37 oC overnight in order to allow 

the cells to settle onto the slide. The day after the excess media was tapped off 

and the slide was washed twice in PBS and the cells were fixed in formalin 10% 

for 30 min at room temperature. The glass containing the cell film was kept in 

PBS at + 4 oC until performing MALDI-MSI experiments. For MALDI-MSI 

analysis, the slide containing the cell film was washed with 0.1 M ammonium 

bicarbonate solution in order to remove the excess PBS and kept freeze-dried 

under vacuum (0.035 mbar) for 2 hours. The working solutions of TBF HCl 

(from 1 to 500 ng/µL) were deposited onto different areas of cell film using the 

SunCollectTM automated sprayer (KR Analytical, Sandbach, UK). The standards 

were sprayed in a series of four layers using a flow rate of 4 µL/min.  
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3.3.3.2  On-tissue application of standards 

For quantitative MALDI-MSI experiments the second approach investigated was 

based on generating a calibration curve by applying a dilution series of 

terbinafine hydrochloride standard onto blank tissue sections. Working 

standards were made to 0.1, 1, 100, 500, 1000, 1500, 2000, 3000 and 4000 

ng/μL of TBF HCl in MeOH/H2O (50:50). Calibration standards were applied 

onto the epidermis area of 12 μm thick of blank tissue sections using both 

spraying and microspotting. 

 

3.3.3.3  Spraying 

Terbinafine hydrochloride standards (0.1-4000 ng/ μL in MeOH/H2O (50:50)) 

were deposited onto blank Labskin sections using the SunCollectTM  automated 

sprayer (KR Analytical,  Sandbach,  UK).  A tissue section was used for each 

drug concentration. The standards were sprayed in a series of two layers and 

with a flow rate of 5 µL/min.  

 

3.3.3.4  Microspotting  

Terbinafine hydrochloride standards (0.1-4000 ng/μL in MeOH/H2O (50:50)) 

were applied onto the epidermis area of 12 µm thick section of blank Labskin 

tissue using an acoustic robotic spotter (Portrait 630, Labcyte Inc., Sunnyvale, 

CA). For application of the standards the number of cycles for each spot was 

set to 20 for a total volume of 3.4 nL of each deposited solution. Five extra 

spots were applied outside the tissue to give a “drying time” between each 

cycle. 
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3.3.3.5  Cell plug 

Working standards were made to 3, 300, 1500, 3000, 9000, 15000, 21000 and 

42000 ng/μL of TBF HCl in MeOH/H2O (50:50). 20 µL of these standards were 

mixed with 40 µL of non-homogenised keratinocytes cells. The resulting 

suspension was pipetted into a gelatin block in order to generate a calibration 

array. The gelatin block was made by pouring 20% gelatin (w/v) into an ice cube 

mould, which was set in the fridge at +4 ºC for 4 hours before being frozen 

overnight in -80 ºC. Before the loading process, the top of the block was 

cryosectioned in order to obtain an even surface and 10 holes were drilled into 

the frozen gelatin at a drill diameter of 2.5 mm and depth of 10 mm. The holes 

were filled with the suspensions made up of non-homogenised cells mixed with 

drug standards in a ratio 2:1 v/v. In order to generate non-homogenised 

keratinocytes, T0345 cells were cultured in 2D conditions as explained in 

Section 3.3.2.1. Once confluent the cells were trypsinised and counted; to fill 

the 10 holes to generate a full cell plug array ≥ 11,000,000 cells were 

necessary. The cells were centrifuged, the supernatant was removed, and the 

residue of media was washed out using 0.1 M ammonium bicarbonate without 

perturbing the pellet. The cells were then mixed with drug standards (2:1 v/v), 

the suspension loaded into the gelatin holes and kept at -80 ºC. Mixtures with 

cells resulted in dilution of the drug standards by a factor of 3, thus the final 

concentration of drug standards in the calibration array was 1, 100, 500, 1000, 

3000, 5000, 7000, 14000 ng/µL. Before MALDI-MSI analysis the cell plug was 

cryosectioned at a -30 ºC using Leica Cryostat (Leica 200 UV, Leica 

Microsystems, Milton Keynes, U.K.) to obtain a section of 12 µm.  
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3.4 Matrix deposition 

3.4.1 Sublimation 

The matrix CHCA was applied by the sublimation technique as described in 

Chapter 2.4.2.1.2. 

 

3.5  Instrumentation 

3.5.1  Mass spectrometry  

All imaging experiments were performed using a Waters MALDI HDMS Synapt 

G2 mass spectrometer (Waters Corporation, Manchester, U.K.) equipped with a 

neodynium:yttrium aluminum garnet (Nd:YAG) laser operated at 1 kHz. The 

instrument calibration was performed using phosphorus red. MALDI-MS images 

were acquired in positive mode, in full scan “sensitivity” mode at a range of m/z 

100−1500, (resolution 10 000 FWHM) at pixel size of 60 μm × 60 μm, and with 

laser energy set to 250 arbitrary units. The ion mobility function of the 

instrument was not enabled. It was only possible to convert MSI raw files to 

imzML format by disabling the ion mobility function, which is the format 

supported by msIQuant software. 

 

3.5.2 Data processing  

 MALDI-MSI data were processed using the HDI 1.4 (Waters Corporation, U.K.) 

software tool. Using this software, MSI raw data files were converted to imzML 

format and imported into msIQuant software. With msIQuant software, region of 

interest (ROIs) were selected and peak intensities from them were extracted in 

order to perform quantitative investigation. 

 

Statistical analysis was performed using StatDirect software (StatsDirect, 

Cheshire, U.K.). 
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3.6  Histological analysis  

3.6.1  Haematoxylin and eosin staining  

Haematoxylin and eosin staining on the cell films was performed as reported in 

Chapter 2.6.1. 

 

3.7 Results and discussion 

3.7.1 Strategies for generating calibration curves 

3.7.1.1  Cell films 

The first method investigated consisted of generating a "cell array slide" made 

by spraying standards of terbinafine hydrochloride onto a microscope glass 

slide on which keratinocyte and fibroblast cells were cultured.  

The culture of cells directly on microscope slides is a technique widely used in 

cell biology since it offers the high advantage of performing studies on a small, 

accessible culture area, where the cells are fixed after being treated or 

manipulated (Koh, 2013). 

In the following work, the purpose of using this technique was to culture the 

main cells that constitute Labskin, keratinocytes and fibroblasts, onto slides in 

order to produce a "cell films" model able to mimic the histological framework of 

Labskin. This would, consequently, reproduce the "ion suppression effects" 

arising after a serial dilution of standards are sprayed onto it. 

Figure 3.1 shows the microscope view of keratinocyte and fibroblast cells 

cultured onto a poly-lysine glass slide in the same ratio composition present in 

the Labskin tissue (3:1). 
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Figure 3.1 Keratinocyte and fibroblast co-culture (ratio 3:1) on a poly-lysine 

glass slide viewed through light microscopy. 

 

To perform QMSI investigations a serial dilution of standards (from 1 ng/µL to 

500 ng/µL) were sprayed onto different areas of the “cell films” by using the 

SunCollectTM  automated sprayer.  

Figure 3.2 shows the MALDI-MS image of the TBF HCl in source generated 

fragment ion at m/z 141, which is derived from the parent compound [M+H]+ m/z 

292.2, recorded at 60 μm pixel size following the spraying of the drug dilution 

series.  
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Figure 3.2 MALDI-MS image showing the TBF HCl in source generated 

fragment ion (m/z 141), derived from the spraying of the drug dilution range 

onto different areas of a "cell films" model, made up of keratinocyte and 

fibroblast cells. Resolution image = 60 µm. 

 

Three regions of interest (ROIs) were selected for each drug concentration and 

processed using msIQuant software (Figure 3.3A).  

A calibration curve was also obtained by plotting the average intensity of the 

TBF HCl ion at m/z 141 (TIC normalisation) versus the concentration of 

terbinafine hydrochloride expressed in ng/mm2 (Appendix I). The calibration 

curve observed in Figure 3.3B showed a coefficient of linearity R2 of 0.9618; the 

limit of detection (LOD) and limit of quantitation (LOQ) was found to be 30.96 

ng/mm2 and 93.82 ng/mm2, respectively. The LOD and LOQ represent the 

analyte concentration giving a signal equal to the blank signal (only solvent 

without drug) plus 3.3 and 10 times (respectively) the standard deviation 

obtained from the replicate measurements of the blank. From the calibration 

curve, it is possible to estimate LOD and LOQ using the formulas LOD= 3.3s/b 

and LOQ= 10s/b, where s is the standard deviation of the blank and b is the 

slope of the curve. 

 

blank 1 ng/µL 10 ng/µL 

50 ng/µL 100 ng/µL 500 ng/µL 
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Figure 3.3 A) MALDI-MS image showing the TBF HCl in source generated 

fragment ion (m/z 141), derived from the spraying of the drug dilution range 

onto different areas of a "cell films" model. By using msIQuant software three 

ROIs were selected for each standard concentration and the peak intensity was 

extracted. B) A calibration curve obtained for terbinafine dilution ranges onto 

"cell films" model is presented. 

 

A good calibration curve was achieved (R2 = 0.9618) from the pilot experiment. 

This methodology offered the advantage of being simple and relatively cost-

effective, but it also presented several drawbacks. Firstly, it was not possible to 

obtain full homogenous coverage of the entire slide with cells. This aspect is 

due to the fact that keratinocytes, which represent the highest portion of cells 
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seeded onto the slide, prefer to grow in patches, leading to cell empty areas 

throughout the slide. The distribution of cells onto the slide was visualised using 

MALDI-MSI by plotting an endogenous lipid marker at m/z 184, attributed to the 

phosphocholine head group of phosphatidylcholines (PC), the most abundant 

lipids present in cell membranes (Hossen et al., 2015). As shown in Figure 

3.4A, the cells did not appear homogenously distributed throughout the slide, 

but they were found to be more confluent in certain areas than others; this 

aspect was also confirmed by H&E staining (Figure 3.4B). 

 

Figure 3.4 A) MALDI-MS image of the phosphocholine head group of the PC at 

m/z 184, used as histological marker to visualise the cells distribution onto the 

slide. B) Haematoxylin and eosin staining of "cell films" slide after MALDI-MSI 

(20X magnification). 

 

 

m/z 184 

A) 

B) 
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Additionally, there was a difficulty with controlling the cell films compactness 

onto the slide; the patches of cells could generate aggregates exhibiting 

different thicknesses. In the work conducted by Sugiura et al. the impact of 

section thickness on MALDI-MSI analysis was emphasised, reporting that 

thinner sections improved peak intensity and signal-to-noise ratio (Sugiura, 

Shimma and Setou, 2006).  

It is understandable that the lack of cells in some areas of the slide in addition 

with variable cell films thickness could affect the intensity of terbinafine 

standards, which would then no longer mimic matrix ion suppression effects of 

compound from the sample. This aspect could lead to the production of 

misleading results and the generation of an unreproducible calibration curve. 

Another disadvantage that could occur using this methodology was represented 

by the overlapping of standard solutions during the spraying. Although 

parameters, such as pressure, flow rate, distance of spray head to slide and 

speed of spray, were set to obtain a highly focused beam of small spray drops 

for each standard concentration, a risk of possible overlap was still possible due 

to the limited area in which each standard solution needed to be applied. As 

shown in Figure 3.5 the higher intensity of terbinafine peak at m/z 141 in the 

regions sprayed with 10 ng/µL and 100 ng/µL could be caused by the spread of 

the highest concentrated solution of terbinafine hydrochloride (500 ng/µL), 

which was sprayed last. 
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Figure 3.5 MALDI-MS image showing the TBF HCl in source generated 

fragment ion (m/z 141), derived from the spraying of the drug dilution range 

onto different areas of a "cell films" model. The inserts show a higher intensity 

of TBF HCl that could derive from the spread of the neighbour solution (500 

ng/µL). 

 

In light of all these considerations, it was decided that "cell films" model would 

not produce a suitable method for generating an accurate and precise QMSI 

analysis of terbinafine hydochloride in Labskin and other methodologies were 

explored. 

 

3.7.1.2  Application of standards onto tissue 

The second method investigated was based on the application of standards 

onto blank tissue sections by using two different techniques, spraying and 

microspotting.  

 

3.7.1.2.1 Application of standards by automated spraying 

The application of analytical standards by spraying was previously investigated 

for quantitative MALDI-MSI of cocaine on user hair samples. Using this 

 

blank 1 ng/µL 10 ng/µL 

50 ng/µL 100 ng/µL 500 ng/µL 
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technique, a dilution range of cocaine standards were applied onto blank hair 

sections and a calibration line was generated (Flinders et al., 2017). 

In this study, instead, it was decided to use blank sections of Labskin (12 µm) 

sprayed with a serial dilution of terbinafine hydrochloride (0.1-4000 ng/μL in 

MeOH/H2O (50:50)). To overcome the inconvenience of possible standard 

spray overlapping encountered with the “cell films” method, each standard was 

sprayed onto a separate serial section of Labskin. Between three and four 

Labskin sections were thaw mounted onto each glass slide after cryosectioning. 

After spraying of standards, the application of matrix by sublimation was 

performed for each glass slide at different times; for the imaging experiment, the 

areas of the glass slides containing the sprayed sections were cut, combined 

together onto the MALDI plate and imaged in the same run.  

Figure 3.6 shows the MALDI-MS image of the TBF HCl source generated 

fragment ion at m/z 141 in ten blank sections of Labskin recorded at 60 μm pixel 

size following the spraying of drug dilution series.  

 

 

Figure 3.6 MALDI-MS image showing the TBF HCl source generated fragment 

ion (m/z 141), following the spraying of the drug dilution range onto blank 

Labskin sections. Resolution image= 60 µm. TIC normalisation. 
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However, from qualitative investigation of the distribution of terbinafine 

hydrochloride in dosed tissue sections (discussed in Chapter 2) it was found 

that the presence of drug was restricted only into the epidermal layer of the skin 

without penetration into the dermis. Based on these observations, it was 

decided to calibrate the response specifically for calibrant signals arising from 

the epidermis to achieve "matrix matched standards".  

To distinguish the epidermis and stratum corneum from the dermis, two peaks 

from endogenous species at m/z 184 and m/z 264 were used, respectively 

attributed to a fragment ion of phosphocholine-type lipids, which was more 

apparent in the tightly packed cells of the epidermis and a ceramide fragment 

peak, primarily expressed in the stratum corneum. By superimposing the MALDI 

images of the peaks at m/z 184 and m/z 264, it was possible to visualise mostly 

the epidermis of the blank tissue sections (Figure 3.7A). However, different 

scale bar values were selected to make possible the visualisation of the 

endogenous lipid marker phosphocholine (m/z 184) in all blank sections (which 

can be noted from the colour scales near the images).  

Once identified the epidermis of the sprayed sections, ROIs were drawn only on 

at this level by using msIQuant software and an average intensity for the signals 

of each concentration of TBF HCl was extracted (Figure 3.7B).  
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Figure 3.7  A) MALDI-MSI of phosphocholine head group in blue (m/z 184) 

superimposed with ceramide fragment peak in green (m/z 264). By exploiting 

endogenous lipids it was possible to distinguish epidermis and stratum corneum 

from the dermis. B) MALDI-MSI of the TBF HCl source generated fragment ion 

in red (m/z 141) superimposed with phosphocholine head group in blue (m/z 

184) and ceramide fragment peak in green (m/z 264). Three ROIs for each drug 

concentration were drawn solely to the epidermal layer and the signal for TBF 

HCl in source fragment peak was extracted by using msIQuant software. TIC 

normalisation. 
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The calibration curve was obtained by plotting the average intensity of m/z 141 

(TIC normalisation) versus the concentration of terbinafine hydrochloride 

expressed in ng/mm2 (Appendix I). The calibration curve observed in Figure 3.8 

showed a coefficient of linearity R2 of 0.7767. The limit of detection (LOD) and 

limit of quantitation (LOQ) were 329.51 ng/mm2 and 998.52 ng/mm2, 

respectively. 

 

 

Figure 3.8 Calibration curve generated plotting the average intensity of m/z 

141, derived from standards sprayed onto blank Labskin sections, versus the 

concentration of terbinafine hydrochloride expressed in ng/mm2. TIC 

normalisation. 

 

The advantage of this technique was that the standard intensity was extracted 

solely from histology and MSI guided well-defined epidermal layer of blank 

sections, allowing to mimic cell type ionisation response of the analyte from the 

dosed tissue sections. In addition, the blank sections were cryosectioned 

keeping the same thickness of the dosed tissue sections and thus differences in 

terms of analyte peak intensity section thickness-dependent should not occur. 
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However, the main disadvantages of this technique were that it was time 

consuming and not cost-effective. Multiple sections of blank tissue were 

necessary to obtain a calibration array, making their analysis using MALDI-MSI 

time consuming. Although for all sections the data acquisition conditions were 

identical, the matrix application could not be performed at the same time, 

leading to possible differences in terms of matrix thickness influencing the 

results. In addition, before spraying each standard solution, washing of the 

capillary was required in order to remove the "carry-over" from the previous 

calibrant solution within it. The washing step was performed by flushing 

acetonitrile through the capillary for 30 min; making the spraying of all standard 

solutions very time consuming.  In light of these considerations, it was decided 

to proceed to investigate alternative QMSI techniques.  

 

3.7.1.2.2 Application of standards by microspotting 

The next approach investigated for generating robust and reproducible 

calibration curves was based on microspotting analytical standards onto a blank 

section of Labskin.  

For this purpose, the use of an acoustic picoliter droplet ejector, employed 

previously as a MALDI matrix deposition device (Aerni, Cornett and Caprioli, 

2006), was used to spot 3.4 nL of working standard (from 0.1 ng/μL to 4000 

ng/μL) in MeOH/H2O (1:1) onto the epidermis of a blank section of Labskin to 

create a calibration array.  

Figure 3.9 shows MALDI-MSI image of the terbinafine hydrochloride in source 

generated fragment ion at m/z 141 in a blank section of Labskin recorded at 60 

μm pixel size following the microspotting of drug dilution series. As shown, the 

application of working standards of terbinafine hydrochloride by using this 

methodology allowed a uniform distribution across the epidermis with minimal 

lateral diffusion. Assuming the high reproducibility of the spots size generated 

with the acoustic spotter, the appearance of increased spot area in Figure 3.9 

was attributed solely to an increment of drug concentration. Evidence of the 

reproducibility of the spot size using the acoustic spotter is reported in Chapter 

4.7.1. 
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Figure 3.9 MALDI-MS image showing the TBF HCl source generated fragment 

ion (m/z 141), following the microspotting of the drug dilution range directly on 

the epidermis of a blank section of Labskin. Resolution image = 60 µm. 

 

As previously described, by exploiting endogenous markers, the epidermis and 

the stratum corneum of the microspotted blank section was visualised and, 

thus, region of interests (ROIs) were selected for each drug concentration solely 

in the epidermis area by using msIQuant software. 

Figure 3.10 shows the MALDI-MS image of terbinafine hydrochloride in source 

fragment peak (m/z 141) superimposed with phosphocholine head group in blue 

(m/z 184) and ceramide fragment peak in green (m/z 264.2).  

 

Increment of 
Terbinafine 
hydrochloride 
concentration 

m/ =141 
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Figure 3.10 MALDI-MSI of the terbinafine hydrochloride source generated 

fragment ion in red (m/z 141) superimposed with phosphocholine head group in 

blue (m/z 184) and ceramide fragment peak in green (m/z 264). TIC 

normalisation. 

 

The average intensity of each ROI (TIC normalisation) was extracted and 

plotted against the respective standards expressed in ng/mm2 (Appendix I). The 

calibration curve observed in Figure 3.11 showed a coefficient of linearity R2 of 

0.9617. The LOD and LOQ were found to be 36.11 ng/mm2 and 109.44 

ng/mm2, respectively.  
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Figure 3.11 Calibration curve generated plotting the average intensity of m/z 

141, derived from standards microspotted onto a blank Labskin section, versus 

the concentration of terbinafine hydrochloride expressed in ng/mm2. TIC 

normalisation. 

 

The major advantage of the application of standards using the acoustic spotter 

was the possibility to apply sub-microliter volumes of standard solutions (3.4 nL) 

directly onto a small and well-defined epidermal area of a blank Labskin section 

with the same thickness of dosed sections, leading to mimic cell type-based 

ionisation response of the analyte from the treated tissue sections. In addition, 

this technique was relatively fast and time effective as only one section was 

necessary to generate a calibration curve. Unlike the sprayed sections, use of 

the microspotted section was beneficial as it could be placed directly next to 

treated sections and analysed under the same condition in terms of data 

acquisition and sample preparation.  
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3.7.1.3 Cell plug 

The last approach investigated involved the construction of a calibration array 

by spiking a known amount of terbinafine hydrochloride standard mixed into a 

non-homogenised “cell plug” of keratinocytes T0345. It was decided to use only 

keratinocytes since they are the dominant cell type within the epidermis of skin, 

which is the region of interest for the evaluation of tissue-based matrix effects.  

Moreover, it was thought that the incorporation of analytical standards with cells 

would have corrected not only the ion suppression effects, but also the 

extraction efficiency effects, leading to a more reliable calibration approach for 

QMSI analysis. 

 

Once prepared, the gelatine block including the cell plug array was presented 

as shown in Figure 3.12. 

 

 

Figure 3.12 Optical image showing the cell plug array. 

 

Cell plug design was thought to represent a remarkable alternative to previously 

employed techniques, such as homogenates and surrogate tissue models. 

Considering the small thickness of the epidermal layer (the region of interest), a 

 

blank 

1 ng/µL 100 ng/µL 

500 ng/µL 1000 ng/µL 3000 ng/µL 

5000 ng/µL 7000 ng/µL 14000 ng/µL 
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large number of blank Labskin tissues would have been necessary for the 

generation of a serial homogenate dilution, resulting in an extremely expensive 

and laborious process. It might be thought that the use of a surrogate tissue 

could offer a solution to this problem. In the work reported by Takai et al.  blank 

liver homogenates spiked with a serial dilution of raclopride were used to 

generate a calibration curve from which the concentration of the drug could be 

extrapolated not only in liver but also in brain, lung, and kidney tissue sections 

with MALDI-MSI (Takai, Tanaka and Saji, 2014b), However, the use of a 

surrogate tissue should rely on the assumption that the extraction of the drug of 

interest from different organs is similar to that occurring from the surrogate 

model. A criticism of this assumption was discussed in the work by Hansen et 

al. (Hansen and Janfelt, 2016). The authors analysed the extraction efficiency of 

the drug amitriptyline spiked at the same concentration into different 

homogenised (liver, brain, kidney, lung and heart) by using DESI-MSI. The 

results showed a statistical decrease of the signal when the drug was extracted 

from brain and lung tissue, potentially due to the protein binding effect. It is 

understandable that a different extraction efficiency would compromise the 

reliability of quantitative results. However, independently from the issue relating 

to the protein binding effect, a broader concept of tissue-specific influence on 

analyte ionisation has been widely examined in literature; and  this seems to 

strengthen the inadequacy of using surrogate models to generate QMSI 

(Stoeckli, Staab and Schweitzer, 2007; Hamm, Bonnel, Legouffe, Pamelard, J.-

M. Delbos, et al., 2012). In line with these considerations, as discussed 

previously, cell plugs were generated by using only intact keratinocytes, the 

principal cells compositing the epidermis. It was believed that the use of intact 

cells, differently from homogenates, offered the advantage of avoiding the 

release of intercellular debris that could lead to a higher suppression of the 

analyte signal. In addition, assuming that the drug diffused within the cells, it 

was hypothesised that cell plug may represent a better model for resembling 

the ionisation efficiency/extraction of the analyte from dosed tissues.  

To reproduce the thickness of treated Labskin sections, the cell plug was 

cryosectioned at 12 µm. During the sectioning process, the cryostat cut the 

gelatin block smoothly, but as soon as the knife reached the cells, however 
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these were torn off the section completely. At the end of the process, a slide of 

gelatine block without cells within the holes was produced. 

Fisher et al. described a protocol for cryosectioning tissues and highlighted the 

possible problems that could occur during the process. In particular, the 

difficulty of cutting a tissue may be attributed to a blunt knife; this happens 

especially in the presence of support media used to embed the tissue (Fischer 

et al., 2008).   

In this regard, to troubleshoot the problem of cryosectioning the cell plug array, 

different approaches were tried, including replacing the blade as well as 

changing the temperature of the chamber and the angle of crysection, but no 

improvement in results was achieved. 

Another possible problem affecting the cryosection could be due to the nature of 

a tissue that makes it difficult to cut, such as in the case of watery or fatty tissue 

(Fischer et al., 2008). In the case of cell plug array the keratinocyte cells were 

mixed with solutions (50% MeOH) of standard and the poor sectioning could be 

because of the presence of this liquid mixed with cells which would compromise 

their consistency. However, removing liquid from the sample was not possible, 

since it was necessary to dissolve the drug in order to produce the calibration 

array. 

Since it was not possible to produce a calibration array, it was decided not to 

investigate the cell plug technique further. Beside the cryosection problems, it 

offered other challenges. Firstly, the entire method was extremely time 

consuming requiring the culture of at least 11,000,000 cells to obtain one 

calibration array. In addition, to reach such high amount of cells, multiple 

passages of cell culture were required; for this reason, immortalised primary 

keratinocyte cells were employed, which are very delicate and expensive, 

making the technique much less cost-effective than the cell films and on-tissue 

approaches previously investigated. 

Although prior to use, high expectations were put on the cell plug design, it 

turned out that this method was extremely complicated, long and not practical 

for quantitation in Labskin samples. 
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3.7.2 Quantitative analysis of terbinafine in Labskin 

The optimal methodology for performing QMSI analysis should be able to 

generate an accurate and precise calibration curve, which enables absolute 

quantitation. In addition, the technique should be advantageous in terms of time 

and cost as well as easy to perform.  

Among all procedures examined previously, the application of analytical 

standards on top of a blank Labskin section by microspotting appeared to be 

the most promising technique. In Figure 3.13 the main aspects of the different 

methods used for absolute quantitation via MALDI-MSI are compared.  

 

Figure 3.13 Comparison of several methods explored for performing absolute 

QMSI analysis.  The cell plug routine was not able to reproduce matrix matching 

since the cryosection of cell plug array was not obtained. The cell films 

technique was not able to reproduce accurately matrix ion suppression effects, 

since the cells were distributed throughout the slide with different density and 

thickness, leading to the formation of cell empty areas. 

 

By using an acoustic spotter it was possible to obtain a uniform distribution of a 

serial dilution of terbinafine hydrochloride directly across the epidermal layer of 

a blank section with minimal lateral diffusion. This aspect offered the enormous 

advantage of generating a calibration array directly onto a very thin and well-

defined epidermal region of Labskin matching the ionisation efficiency of analyte 

present in the dosed sample. In addition, by using this technique, aspects such 

as Labskin thickness reproducibility, effectiveness in time and cost were 
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sufficient and a good linearity in the calibration curve (as indicated by the R2 

value) was obtained (Figure 3.14). 

Based on all these considerations, the microspotting of standards in 

combination with matrix sublimation and recently developed software for 

quantitative mass spectrometry imaging was employed to obtain preliminary 

data of the levels of terbinafine hydrochloride in the epidermal region of a full 

thickness living skin equivalent model. In this study, issues in the use of 

sublimation over spraying as matrix deposition technique were observed. As 

previously described (Chapter 2.7.3), being a solvent-free method, sublimation 

can affect the analyte-matrix interaction and hence the method sensitivity. This 

is the main reason why this technique found mainly application in MSI of lipids, 

which are extracted even with solvent-free methods (Hankin, Barkley and 

Murphy, 2007; Kaletaş et al., 2009). However, in the study reported in this 

chapter, the main advantage of the sublimation technique in allowing the 

increase of spatial resolution was selected over the sensitivity. In fact, as well 

as the sensitivity, for QMSI experiments, the possibility of precisely monitoring 

the analyte distribution in the sample is a critical factor, since analyte 

delocalisation could generate variation in analyte ionisation, generating 

misleading ion intensity values. In line with these theories, an interest of also 

using sublimation for the detection of small molecules had increased. Jirásko et 

al. (Jirásko et al., 2014) decided to use sublimation technique to study the 

distribution of atorvastatin and its metabolites in rat tissues by using MALDI-

Orbitrap-MS. In this study 13 matrices for small molecules in both polarities 

were investigated by sublimation and DHB in MALDI-positive mode and DAN in 

MALDI negative mode represented the best matrices. In the work reported by 

Goodwin et al., based on the same principles as sublimation, a solvent-free dry 

CHCA matrix coating was employed to perform quantitative investigation  of 4-

bromophenyl-1,4- diazabicyclo(3.2.2)nonane-4-carboxylate in rat brain tissues 

(Goodwin et al., 2010).
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Figure 3.14 Calibration curves generated using different routines: A) cell films; B) application of standards by spraying; C) application of 

standards by microspotting; D) cell plug. 
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In order to perform QMSI analysis, a blank section of Labskin microspotted with 

working standard solutions was imaged alongside two sections of Labskin 

treated with 20 µL of terbinafine 1% (w/w) in 100% isosorbide dimethyl ether 

(DMI) for 24 hours. The image was performed using Water Synapt G2 without 

the ion mobility function enabled (Figure 3.15). 

 

 

Figure 3.15 MALDI-MS image at 60 µm X 60 µm spatial resolution of the TBF 

HCl source generated fragment ion ([C11H9]
+; m/z 141) A) microspotted directly 

on the epidermal layer of blank tissue section and B) present in two Labskin 

sections treated with terbinafine 1% (w/w) in 100% DMI for 24 hours. C) 

Average MALDI-MSI spectra showing the peak of the terbinafine hydrochloride 

fragment ion at m/z 141. 
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As previously discussed, regions of interest (ROIs) were selected for each drug 

concentration solely to the epidermis area (identified by using endogenous lipid 

markers) of the blank tissue section, the intensity of drug from each ROI was 

extracted and the calibration curve was generated by using msIQuant software. 

The coefficient of linearity (R2) was 0.9617 and the LOD was found to be 36.11 

ng/mm2 or 3.01 mg/g tissue, whereas the LOQ was found to be 109.44 ng/mm2 

or 9.12 mg/g tissue (Figure 3.16A-B). It is important to highlight that for every 

image to be quantified, an individual set of calibration points was imaged 

alongside the treated tissue sections. 

 

 

Figure 3.16 MALDI-MS image at 60 µm X 60 µm spatial resolution of the TBF 

HCl source generated fragment ion ([C11H9]
+; m/z 141) A) microspotted directly 

on the epidermal layer of blank tissue section and B) calibration curve 

generated plotting the average intensity of m/z 141 (TIC normalisation) versus 

the concentration expresses in ng/mm2. 

 

By resolving the equation, the amount of drug in the treated Labskin sections 

was obtained in ng/mm2. To calculate the quantitative concentration of 
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terbinafine hydrochloride in milligrams per grams of tissue, first, the amount in 

grams of tissue in 1 mm2 was calculated. The volume of tissue in 1 mm2 was 

calculated multiplying the area (1 mm2) by the thickness of the section (0.012 

mm). Then, the volume (0.012 mm3) was multiplied by the density of Labskin 

(assumed to be 1 mg/mm3) and the amount of tissue (g) in 1 mm2 was obtained 

(0.000012 g). By dividing in turn, the concentration of terbinafine from each ROI 

selected on treated sections (ng/mm2) to the gram of tissue in 1 mm2, the 

concentration of the drug was converted in milligrams per gram of tissue. The 

values derived from ROIs were averaged and the mean concentration of 

terbinafine hydrochloride was calculated.  

From these initial experiments the levels of drug were found to be 3.41 ± 0.62 

mg/g tissue within section 1 and 4.2 ± 0.81 mg/g tissue within section 2.  The 

levels of terbinafine detected in both sections were above the LOD, but below 

the formal LOQ (Figure 3.17). 
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Figure 3.17 MALDI-MS image of the terbinafine hydrochloride in source 

generated fragment ion ([C11H9]
+; m/z 141) in A) two Labskin sections treated 

with terbinafine 1% (w/w) at 100% DMI for 24 hours. Several ROIs were drawn 

around the epidermis of each section, the peak intensity of m/z 141 was 

extracted (TIC normalisation) from each ROI and compared to the calibration 

curve. B) Graph showing the QMSI levels of terbinafine from the sections of 

Labskin. 
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The data shown gave preliminary results for the levels of TBF HCl in Labskin 

tissue treated with a DMI based formulation. However, to perform investigation 

on the effects of the penetration enhancer DMI on levels of terbinafine in the 

epidermal layer of tissue, other formulations containing different percentages of 

DMI require examination. 

 

3.7.3 Effect of the penetration enhancer DMI on levels of 

terbinafine in the epidermal layers of Labskin 

To assess the potential of the penetration enhancer DMI to increase drug 

permeability into the upper epidermal layer of Labskin, Labskin tissue was 

treated with formulations containing levels of DMI similar to those present within 

commercially available formulations. 

A technical publication reported by Grant Industries Inc. indicates that there are 

no commercial drug formulations consisting of 100% DMI, but the 

recommended levels of DMI in skin care products usually ranges from 5% to 

50% in aqueous systems and from 40% to 90% in non-aqueous systems 

(https://www.univar.com/US/Industries/~/media/PDFs/US%20Corp%20Region

%20PDFs/PC/Naturals/Gransolve%20DMI%20from%20Univar%20Application

%20Guide.ashx) . 

In light of these considerations, experiments were conducted in which Labskin 

was treated with water based formulations containing either 10% or 50% DMI.  

In addition, for quantitative analysis the presence of a section derived from a 

negative control tissue (treated only with vehicle without drug) within the image 

set is necessary to confirm that the drug detection is specific and not a 

background peak interfering. 

For this reason, in this experiment a section of Labskin treated with vehicle 

water/olive oil (80:20) alone was also included.  

The vehicle and the treated sections were imaged alongside a blank Labskin 

section microspotted with a dilution range of terbinafine hydrochloride, from 

which a calibration curve could be generated by using msIQuant software. 

https://www.univar.com/US/Industries/~/media/PDFs/US%20Corp%20Region%20PDFs/PC/Naturals/Gransolve%20DMI%20from%20Univar%20Application%20Guide.ashx
https://www.univar.com/US/Industries/~/media/PDFs/US%20Corp%20Region%20PDFs/PC/Naturals/Gransolve%20DMI%20from%20Univar%20Application%20Guide.ashx
https://www.univar.com/US/Industries/~/media/PDFs/US%20Corp%20Region%20PDFs/PC/Naturals/Gransolve%20DMI%20from%20Univar%20Application%20Guide.ashx
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Figure 3.18 shows the MALDI-MS image of the distribution of the in source 

generated terbinafine fragment ion at m/z 141 on (A) a blank tissue section 

microspotted with working standards (B) vehicle control section and two Labskin 

sections treated with terbinafine 1% (w/w) in water/olive oil (80:20) with either 

(C) 10% or (D) 50% isosorbide dimethyl ether (DMI) for 24 hours.  

 

Figure 3.18 MALDI-MS image at 60 μm × 60 μm spatial resolution of the 

terbinafine hydrochloride fragment ion ([C11H9]
+; m/z 141) on (A) microspotted 

section, (B) vehicle control treated with emulsion water/olive oil (80:20) alone, 

two Labskin sections treated with terbinafine 1% (w/w) in water/olive oil (80:20) 

with either (C) 10% or (D) 50% isosorbide dimethyl ether (DMI) for 24 hours. E) 

Average MALDI-MSI spectra showing the peak of the terbinafine hydrochloride 

fragment ion at m/z 141. 

 

In this case, the values for the construction of the calibration curve were 

reduced to a smaller range spanning the expected values, in order to prevent 

distortion of the standard array due to presence of high concentrations. The 
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problem relating the distortion of the calibration curve in MALDI-MSI was 

previously experienced by Pirman et al. (Pirman et al., 2013); and such 

behaviour was suggested to be correlated to matrix-to-analyte ratio changes as 

the analyte concentration increased. However, in a recent work conducted by 

Sammour et al. the phenomenoum of non-linearity in MALDI-MSI was 

addressed differently (Abu Sammour et al., 2019). In this study the authors 

highlighted the difficulty of obtaining a linear calibration curve despite the effort 

of optimising the matrix-to-analyte ratios and, hence they introduced a novel 

nonlinear regression model to fit the data generated by MALDI-MSI. It was 

suggested that, by using this novel model, more accurate and reliable 

quantitative information of the uptake and distribution of the drug imitanib into 

gastrointestinal stromal tumor tissue was guaranteed. To support the superiority 

of this model, the comparison of the residual standard error (RSE) of the 

calibration generated by both linear and nonlinear regressions with MALDI-MSI 

was also performed. The results showed a much better fit when the generalised 

nonlinear calibration was used and, in addition, the quantitative data based on 

this model well compared the data obtained by UPLC-ESI-QTOF-MS. 

In the work reported here, it was instead decided to fit the data in a linear 

calibration curve; and in this regard, it was necessary to compromise to a 

limited concentration range. The coefficient of linearity (R2) was 0.9941 and the 

LOD was found to be 11.40 ng/mm2 or 0.95 mg/g tissue, whereas the LOQ was 

found to be 34.56 ng/mm2 or 2.88 mg/g tissue (Figure 3.19). 
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Figure 3.19 MALDI-MS image at 60 µm X 60 µm spatial resolution of the 

terbinafine hydrochloride source generated fragment ion ([C11H9]
+; m/z 141) A) 

microspotted directly on the epidermal layer of blank tissue section and B) 

calibration curve generated plotting the average intensity of m/z 141 (TIC 

normalisation) versus the concentration expresses in ng/mm2. 

 

In order to calculate the levels of terbinafine in the treated sections ROIs were 

drawn around the epidermis of the vehicle and treated Labskin sections. The 

intensity of the peak at m/z 141 was extracted and compared to the calibration 

curve using msIQuant software. In the vehicle control section, the levels of 

terbinafine were not detectable, at 10% DMI the levels were found to be 0.24 ± 

0.12 mg/g tissue (below the formal LOD), at 50% DMI the levels of drug were 

found to be 1.47 ± 0.74 mg/g tissue (above the LOD, but below the formal 

LOQ).  

A statistical unpaired t test was performed on the data from both tissues treated 

with terbinafine with either 10% DMI or 50% DMI. The concentration of the drug 

resulting statistically increased in the tissue when the percentage of DMI 

increased in the formulation (two sided P= 0.0201) (Figure 3.20). 
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Figure 3.20 MALDI-MS image of the terbinafine hydrochloride source 

generated fragment ion ([C11H9]
+; m/z 141) in A) vehicle control section and two 

Labskin sections treated with terbinafine 1% (w/w) at B) 10% or C) 50% DMI for 

24 hours. Five ROIs were drawn around the epidermis of each section, the peak 

intensity of m/z 141 was extracted (TIC normalisation) from each ROI and 

compared to the calibration curve. D) Graph showing the QMSI levels of 

terbinafine from the sections of Labskin. The error bars illustrate the standard 

deviation of the levels of drug in five different epidermal regions of each section. 

The concentration of the drug resulted statistically increased in the tissue when 

the percentage of DMI increased in the formulation (two sided P= 0.0201). 

 

The data reported here has demonstrated the capability of the penetration 

enhancer DMI to increase terbinafine penetration into the upper epidermis of a 

living skin equivalent model.  
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Although the microspotting technique has shown to be able to generate a robust 

calibration curve and provide the detection of terbinafine levels in the tissue, an 

optimisation step of this method is required in order to increase its quantitative 

potential. 

One approach could concern the normalisation strategy to adopt. Over the past 

year, the normalisation to a stable isotope internal standard has been shown to 

increase the quantitative capabilities of MSI analysis (Pirman and Yost, 2011; 

Prentice, Chumbley and Caprioli, 2017). In this study, in the absence of an 

internal standard, the MSI data were normalised to total ion current (TIC). 

Although this approach has been widely used in the past, it may generate 

misleading conclusions from MALDI-MSI spectra, especially when the intensity 

of the analyte changes in different regions of the tissue (Deininger et al., 2011). 

For this reason, in order to increase the quantitative potential of the technique, 

the data needs to be assessed by using an internal standard molecule and, in 

addition, they need to be validated by using complementary reliable techniques, 

such as LC-MS/MS. 

In addition, to assess the reproducibility of the microspotting technique multiple 

technical replicates are necessary. 

 

3.8 Concluding remarks   

In this study, different calibration strategies have been investigated to assess 

the most valid and robust technique for the generation of accurate quantitative 

analysis by using MALDI-MSI.  

The methods reported here include cell films, on-tissue application of standards 

by either spraying or microspotting and cell plug. 

The use of an acoustic spotter for generating QMSI analysis turned out to be 

the most favourable approach for the determination of the amount of an active 

pharmaceutical ingredient, terbinafine hydrochloride, in a living skin equivalent 

model. This technique offered the enormous advantage of being practical, 

relatively fast and cost-effective; only one blank section was required to 
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generate a calibration array, allowing dosed tissue sections to be placed next by 

and imaged at the same time to perform quantitative investigations. 

In addition, in this study, a quantitative assessment of the effect of the addition 

of the penetration enhancer (dimethyl isosorbide (DMI)) added to the delivery 

vehicle at different percentages was also assessed. Preliminary QMSI data 

demonstrated an increase of concentration of terbinafine into the upper 

epidermis of Labskin in response to an increase of percentage of DMI in the 

delivery vehicle.  

However, the data obtained in this study requires assessment with an internal 

standard and validation using a complementary technique, such as LC-MS/MS.  
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Chapter 4: Quantitative investigation 

of terbinafine hydrochloride 

absorption into a living skin 

equivalent model by using MALDI-

MSI. 
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4.1 Introduction 

In Chapter 3 the main aspects hampering the use of MALDI-MSI for quantitative 

analysis have been discussed. The major limitations for performing QMSI are 

represented by the inhomogeneous distribution of the matrix and variation in ion 

suppression of the analyte of interest that could occur intra or inter tissue 

sample (Wang et al., 2016).  

The necessity for homogeneity of matrix coverage in MALDI-MSI has been 

debated in Chapter 2. Use of sublimation was shown to be an excellent 

methodology for the production of high-resolution images of the drug in the 

tissue Labskin, and for this reason, it has been chosen for qualitative as well as 

quantitative investigations.  

In Chapter 3 several strategies were compared for quantifying the amount of an 

antifungal agent, terbinafine hydrochloride, in the defined epidermal layer of a 

3D skin model, Labskin. It is important to note that the effect of the tissue 

composition on signal response in MSI has large implications when skin is the 

target organ for quantitative experiments. The layers of the skin comprise 

distinct cell types and hence each skin layer would be expected to give a 

slightly different response for the same amount of analyte. This implies that 

mimetic arrays created from skin homogenates would not be a suitable 

methodology for calibration in this instance. Instead, the use of acoustic 

microspotting (Aerni, Cornett and Caprioli, 2006) of analytical standards 

specifically onto the epidermal layer as a way of calibrating QMSI experiments  

resulted in being the optimum approach over all the different 

calibration/standardisation approaches investigated. 

Over the past years, the employment of an internal standard has been 

demonstrated to increase the quantitative capabilities of MSI analysis (Pirman 

and Yost, 2011; Prentice, Chumbley and Caprioli, 2017). The choice of an 

appropriate internal standard represents a crucial aspect for a successful 

MALDI quantitative investigation (Wilkinson et al., 1997). The internal standard 

must be a molecule with chemical and physical characteristics similar to the 

analyte under study as well as similar fragmentation pathway. Sleno and 

Volmer investigated the fundamental properties that a molecule should match 
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with the analyte to be selected as a suitable internal standard. In particular, 

affinity between the in-solution ionisation properties of the analyte and its 

internal standard, such as log D, pka, molecular weight and solubility, was 

emphasised (Sleno and Volmer, 2005).  

During MSI analysis the internal standard mimics the behaviour of the analyte of 

interest in terms of ionisation efficiency and compensates for the tissue-

dependent ion signal variations of the analyte. This aspect causes an 

improvement of relative signal ion reproducibility and image quality due to an 

increase of pixel to pixel precision (Pirman et al., 2013; Chumbley et al., 2016). 

For this reason, most commonly, a stable-isotope labelled (SIL) version of the 

analyte represents the first choice.  

The study reported by Pirman et al. introduced the employment of a stable 

isotope labelled internal standard in the MSI workflow. In this work, the authors 

used a deuterated version of acetyl-l-carnitine (AC) in order to assess the 

endogenous concentration of AC in piglet brain tissue (Pirman, Heeren and 

Yost, 2013). It was reported that the use of a deuterated labelled internal 

standard against which to normalise the analyte peak helped to correct for both 

signal variations and tissue specific ion suppression. 

However, in the absence of a labelled version of the analyte due to impractical 

synthesis, cost and time problems, structural analogues represent a valid 

alternative (Prideaux et al., 2011; Takai, Tanaka and Saji, 2014a). In a recent 

study, Rao et al. developed a method to quantify the drug octreotide, a synthetic 

somatostatin analogue, in mouse tissues (Rao et al., 2017). In this study, due to 

the impossibility of using labelled internal standards, multiple somatostatin 

analogues (native somatostatin-14, lanreotide, vapreotide) were investigated 

and it was found that lanreotide was the best candidate for its excellent stability.  

Whichever internal standard is decided to use, either a stable labelled or a 

structural analogue, it is essential that it is applied uniformly and is detected in 

the same MS scan as the analyte of interest, in order to guarantee reliable 

signal intensity correction in MSI (Pirman, Heeren and Yost, 2013). Different 

approaches for applying a constant concentration of internal standard uniformly 

to the tissue have been investigated. Most commonly, an automatic spray-

coating device is used to deposit an internal standard either premixed with 



  

163 
 

MALDI matrix (Källback et al., 2012; Lagarrigue et al., 2014; Poetzsch et al., 

2014) or prior to matrix deposition (Clemis et al., 2012; Buck et al., 2015; Sun et 

al., 2016) onto the tissue. An alternative approach was employed in the work 

reported by Chumbley et al., in a quantitative study of rifampicin in liver tissues. 

Here  the internal standard was applied using an acoustic spotter investigating 

four different strategies (Chumbley et al., 2016). These included: 1) application 

of the internal standard on top of the tissue prior to matrix deposition; 2) 

application of the internal standard under the tissue section; 3) application of ½ 

internal standard under the tissue and ½ onto the tissue (sandwich method); 4) 

application of matrix and internal standard simultaneously as a mixture. The 

effect of each method on the QMSI analysis of the drug in the tissue was 

analysed and it was reported that only the method involving the application of 

the internal standard on top of the tissue prior to matrix deposition offered 

quantitative data comparable to those obtained with LC-MS/MS performed on 

extracted tissue. 

In the study reported in this chapter further improvement and validation of the 

microspotting technique (described in Chapter 3) to obtain absolute quantitation 

of the amount of terbinafine hydrochloride in the epidermal layer of Labskin has 

been performed. Here, a deuterated version of terbinafine hydrochloride has 

been employed as an internal standard and the improvement of the quantitation 

capabilities of mass spectrometry imaging has been examined. QMSI data have 

been compared to data obtained from LC-MS/MS measurements of 

homogenates of isolated epidermal tissue. 

 

4.2 Aims of the chapter 

In the following chapter we aimed to determine absolute quantitation of 

terbinafine hydrochloride in the epidermal region of a full thickness living skin 

equivalent model. Validation of the data using LC-MS/MS technique was also 

performed. 
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4.3 Materials and methods 

4.3.1  Chemicals and materials 

Alpha cyano-4-hydroxycinnamic acid (α-CHCA), acetonitrile (ACN), phosphorus 

red, terbinafine hydrochloride standard (TBF HCl, MW 327.89), isosorbide 

dimethyl ether (DMI), haematoxylin, eosin, xylene substitute, ethanol (EtOH) 

and formic acid ≥ 96% (FA) were purchased from Sigma-Aldrich (Gillingham, 

UK). 

Pertex mounting medium was obtained from Leica Microsystems (Milton 

Keynes, UK). LC-grade methanol (MeOH) and LC-grade acetonitrile (ACN) 

were purchased from Fisher Scientific (Loughborough, UK). 18 MΩ water was 

obtained from an ELGA water purification system (Buckinghamshire, UK). The 

internal standard terbinafine-d7 hydrochloride (TBF-d7 HCl, MW 334.93) was 

obtained by Clearsynth (Maharashtra, India). Gentian violet 1% was purchased 

from De La Cruz Laboratories Inc. (Califiornia, USA). 

 

Labskin living skin equivalent (LSE) samples were provided by Innovenn (UK) 

Ltd (York, England). 

 

4.3.2  Living skin equivalent samples 

Living skin equivalent (LSE) samples were obtained and cultured as described 

in Chapter 2.3.2. For the experiment, three LSE samples were treated with 20 

μL of terbinafine hydrochloride (1% w/w) dissolved in an emulsion made up of 

water/olive oil (80:20 v/v) with either 10% or 50% DMI and incubated for 24 

hours. For the vehicle control group, three LSEs samples were treated with 20 

μL of the emulsion water/olive oil (80:20 v/v) alone and incubated for 24 hours. 

After incubation, the samples were taken and washed with LC-grade MeOH to 

remove excess formulation and, then, snap-frozen with liquid nitrogen cooled 

isopentane (2–5 min) and stored at −80 °C. 

For cryosectioning, LSEs were transferred into the cryostat (Leica 200 UV, 

Leica Microsystems, Milton Keynes, U.K.), mounted onto cork ring using diH2O 
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at −25 °C for 30 min to allow thermal equilibration. The 12 μm tissue sections 

were cryosectioned, thaw mounted onto poly-lysine glass slides, and stored at 

−80 °C. Before matrix application and imaging the samples were freeze-dried 

under vacuum (0.035 mbar) for 2 hours to avoid delocalisation of the analyte 

and preserve the integrity of the tissues. 

 

4.3.3  Preparation of standard curves 

For MALDI-MSI experiments, working standards were made to 0.01, 0.1, 1, 10, 

100, 500, 1000, and 1500 ng/μL of TBF HCl with 100 ng/μL of the internal 

standard TBF-d7 HCl in MeOH/H2O (50:50). Calibration standards were applied 

onto the epidermis area of 12 μm thick sections of blank tissue sections using 

an acoustic robotic spotter (Portrait 630, Labcyte Inc., Sunnyvale, CA). 

Nine microspots of internal standard TBF-d7 HCl (100 ng/μL in MeOH/H2O 

(50:50)) were deposited onto the epidermis of a vehicle control Labskin section 

treated with water/olive oil (80:20) alone and two Labskin samples treated with 

terbinafine hydrochloride 1% w/w in water/olive oil (80:20) with either 10% or 

50% DMI. 

For application of the standards and internal standard, the number of cycles for 

each spot was set to 20 for a total volume of 3.4 nL of each deposited solution. 

Five extra spots were applied outside the tissue to give a “drying time” between 

each cycle. 

For LC–MS/MS, calibration standards were made to 0.001, 0.01, 0.05, 0.1, 0.5, 

1, 10 ng/μL of terbinafine hydrochloride with 0.1 ng/μL of internal standard 

terbinafine-d7 hydrochloride in acetonitrile + 0.1% formic acid/ultrapure water + 

0.1% formic acid (80:20). 
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4.4 Matrix deposition 

4.4.1 Sublimation 

The matrix CHCA was applied by a sublimation technique as described in 

Chapter 2.4.2.1.2 

 

4.5 Instrumentation 

4.5.1 MALDI mass spectrometry  

All tissues were imaged using a Waters MALDI HDMS Synapt™ G2 mass 

spectrometer (Waters Corporation, Manchester, UK) equipped with a 

neodynium: yttrium aluminium garnet (Nd:YAG) laser operated at 1 KHz. The 

instrument calibration was performed using phosphorous red. MALDI-MS 

images were acquired in positive mode, in full scan “sensitivity” mode at a range 

of m/z 100-1500, (resolution 10,000 FWHM) at spatial resolution of 60 µm x 60 

µm, and with laser energy set to 250 arbitrary units. The ion mobility function of 

the instrument was not enabled. 

 

4.5.2  LC-MS/MS  

All LC–MS/MS experiments were performed using a Xevo G2-XS QTof (Waters 

Coorporation, Manchester, U.K.) with ionisation mode ESI+ with analyser in 

sensitive mode. The LC conditions were made of an ACQUITY UPLC HSS T3 

C18 1.7 μm, 2.1 × 100 mm (p/n 186003539) column. The mobile phase 

consisted of ultrapure water (solvent A) and acetonitrile (solvent B) containing 

both 0.1% formic acid. The flow rate and the injection volume were 0.2 mL/min 

and 2 μL, respectively. The gradient eluition was performed as follows: 0.0–2.0 

min (A, 95%; B, 5%), 2.0–12.0 min (A, 5%; B, 95%), 12.0–30.0 min (A, 5%; B, 

95%), 30.0–40.0 min (A, 95%; B, 5%), 40.0–44.0 min (A, 95%; B, 5%). 

The experimental instrument parameters used were capillary voltage, 3.0 kV; 

cone voltage, 35.0 V; source temperature, 140 °C; desolvation temperature, 
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250 °C; desolvation gas, 1000 L/h; and cone gas, 50 L/h. Argon was utilized as 

a collision gas and the collision energy was set at 19 eV. 

A multiple reaction monitoring (MRM) method was used to detect the product 

ion of terbinafine (292.3 → 141.1 m/z) and the product ion of terbinafine-d7 (IS) 

(299 → 148 m/z). The retention time was ∼10.6 min. 

 

4.5.3 Skin extraction  

The vehicle control and treated Labskin tissues were placed for 2 min in 1X 

PBS pre-heated at 60°C; then, the epidermis was separated from the dermis by 

using a forceps, transferred to tubes and weighted. 

The tissue homogenisation and drug extraction were performed by a small 

modification of previously published work carried out by Sachdeva et al 

(Sachdeva et al., 2010). The modification made was that after the second 

extraction, the back extraction was not performed; instead, the organic layer 

containing the extracted drug was evaporated under nitrogen and, then 

reconstituted in 1.8 mL of ACN/H2O (80:20) + 0.1% FA. The solution was 

filtered through a 0.22 µm filter and 0.2 mL of internal standard TBF-d7 HCl (0.1 

ng/µL in ACN/H2O (80:20) + 0.1% FA) was added to the solutions prior to 

analysis.  

 

4.5.4  Data processing  

MALDI-MSI data were processed using the HDI 1.4 (Waters Corporation, UK) 

software tool. Using this software, MSI raw data files were converted to imzML 

format and imported into msIQuant software for quantitative investigations. 

 

For LC-MS/MS data, the chromatograms peaks for terbinafine hydrochloride 

and terbinafine-d7 hydrochloride were integrated and processed using Mass 

Lynx (Waters Corporation, UK) software tool. 

Statistical analysis was performed using the StatDirectsoftware (StatsDirect, 

Cheshire, UK). F test and T test were used to evaluate the statistical 
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significance in terms of precision and accuracy, respectively, between the 

values obtained by MALDI-MSI and LC/MS/MS techniques. 

Three replicate measurements (n = 3) were used and the level of significance 

was set to 5%. 

Outlier point identifications were performed using Prism software. The method 

selected was Grubbs' test for outliers (α = 0.05). 

 

4.6 Histological analysis  

4.6.1  Haematoxylin and eosin staining 

Haematoxylin and eosin staining on LSE sections was performed as reported in 

Chapter 2.6.1. 

Optical images were obtained using a Cytation 5 imaging reader and analysed 

with Gen5 software (BioTek, Swindon, UK). 
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4.7  Results and discussion 

4.7.1 Reproducibility of droplet size of the Portrait 630 

Manually spotting of calibrants onto control tissues has constituted one of the 

major approaches for generating calibration arrays in previous QMSI 

experiments (Nilsson et al., 2010; Källback et al., 2012; Lagarrigue et al., 2014; 

Barré et al., 2016). Although widely practiced, this technique is not without 

limitations. One of the major drawbacks of manual pipetting is the difficulty in 

depositing sub-microliter volumes of solutions. This makes it difficult to localise 

standards to small defined regions of tissue. Furthermore, manually applied 

spots are susceptible to variations in size and, hence, the amount of standards 

in the spots is difficult to control. 

In this study we decided to measure and compare the perimeter and area of the 

droplet spots generated by the Portrait 630 in order to assess the reproducibility 

and accuracy of this device. In order to perform the experiment, a solution of 

0.1% of gentian violet in MeOH/H2O (1:1) was used as a spot size marker and 9 

microspots of the solution were deposited onto the epidermal layer of a 12 µm 

thick blank Labskin section. In each spot the number of cycles was set to 20, 

with a total deposited volume of 3.4 nL per spot. The experiment was performed 

twice and, after spotting, the sections were imaged with a Cytation 5 imaging 

reader equipped with Gen5 software, while the perimeter and area of each spot 

on recorded images was measured by using ImageJ software 

(https://imagej.nih.gov/ij/). 

As shown in Figure 4.1A the presence of the dye in the solution allowed easy 

visualisation of the spots onto the tissue. The average perimeter of spots for two 

Labskin sections was found to be 0.5 ± 0.041 mm and 0.53 ± 0.035 mm, 

respectively, while the average area was found to be 0.019 ± 0.003 mm2 and 

0.021 ± 0.028 mm2, respectively. The relative standard deviations of the 

measurements were as follow: 14.35% (area) and 8.21% (perimeter) from 

section 1; 13.5% (area) and 6.62% (perimeter) from section 2 (Figure 4.1B-C). 

These data demonstrate the high reproducibility in the size of the dye spots 

intra and inter sections when the Portrait spotter was used. The area and 

https://imagej.nih.gov/ij/
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perimeter values detected from the spots in two sections of Labskin tissue were 

not statistically different. The use of the Portrait 630 acoustic spotter to generate 

microspots with constant size and minimal lateral diffusion allowed better 

control of the concentration of analyte and also avoided the possibility of cross 

contamination that could occur for direct contact of the pipette with the 

substrate. 

 

Figure 4.1 A) Optical image of 9 spots of gentian violet dye solution across the 

epidermis of two blank Labskin sections performed using the Portrait 630. B) 

Graphs showing the results of spot size measurements with the error bars 

displaying the standard deviation of 9 spots for each Labskin section. C) Table 

displaying the arithmetic mean, standard deviation and relative standard 

deviation (RSD%) of either area or perimeter measurements from gentian violet 

spots in two sections of Labskin samples. Consistency between the size of 

spots intra and inter tissues was evidenced. No statistically significant difference 

was found between the spot parameters from two sections. 
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4.7.2  Method used for quantitation  

Figure 4.2A-C shows MALDI-MSI images of the distribution of the terbinafine 

fragment ion at m/z 141 in three sections of Labskin recorded at 60 µm pixel 

size following treatment with (A) 20 µL of emulsion water/olive oil (80:20) alone 

(vehicle control) and 20 µL of terbinafine 1% (w/w) in water/olive oil (80:20) with 

(B) 10% or (C) 50% isosorbide dimethyl ether (DMI) for 24 hours. It can be seen 

that the terbinafine signal appears to be localised to the epidermis and that 

there is an increase in its intensity with increasing amount of DMI, in agreement 

with the results shown in Chapter 3.   

In addition, from the spectra a unique signal belonging to DMI ([M+H]+ m/z 

175.1) could not be identified, as an isobaric  background peak was present in 

all of samples, including those without DMI. To obtain more details about the 

possible presence of DMI, it could be interesting to perform the experiment by 

using an ion mobility function or ultra-high mass resolution.   
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Figure 4.2 MALDI-MSI at 60 μm × 60 μm spatial resolution of the terbinafine hydrochloride fragment ion ([C11H9]
+; m/z 141) on (A) 

vehicle control section and two Labskin sections treated with terbinafine 1% (w/w) in water/olive oil (80:20) with either (B) 10% or  (C) 

50% isosorbide dimethyl ether (DMI) for 24 hours. (D) Average MALDI-MSI spectra showing the peak of the terbinafine hydrochloride 

fragment ion at m/z 141. (E) Haematoxylin & eosin stained optical image of the sublimated sections after MALDI-MSI (4X magnification).
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In order to quantify the amount of terbinafine in the epidermis from such images 

it is necessary to calibrate the response specifically for signals arising from the 

epidermis to achieve "matrix matched standards". Previous studies have shown 

that the epidermis of Labskin consists of a very thin differentiated layer with an 

average thickness of 32 µm (Mitchell et al., 2015; Harvey et al., 2016). As 

discussed previously, this makes preparing standards by tissue spotting 

challenging. Therefore in this work, the use of an acoustic picoliter droplet 

ejector, used previously as a MALDI matrix deposition device (Aerni, Cornett 

and Caprioli, 2006) was used to spot 3.4 nL of the working standards (from 0.01 

ng/µL to 1500 ng/µL) in MeOH/H2O (1:1) onto the epidermis of a blank section 

of Labskin to create a calibration array. Internal standard terbinafine-d7 

hydrochloride (100 ng/µL) was included into standard solutions prior to spotting. 

The application of analytical and internal standards onto an untreated section of 

Labskin by microspotting allowed a uniform distribution across the epidermis 

with minimal lateral diffusion (Figure 4.3A-B). In this study, it was considered 

beneficial to apply the internal standard onto the tissue by microspotting in order 

to preserve the localisation of the calibration analyte, whereas it was found to 

migrate when the solution of terbinafine-d7 hydrochloride was sprayed 

homogenously onto the tissue (data not shown). 
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Figure 4.3 MALDI-MSI at 60 µm X 60 µm spatial resolution of A) the dilution 

range of terbinafine fragment ion ([C11H9]+; m/z 141) mixed with B) a constant 

concentration of terbinafine-d7 hydrochloride fragment ion ([C11D7H2]
+; fragment 

ion; m/z 148) microspotted directly on the epidermis of an untreated section of 

Labskin. Volume of each spot = 3.4 nL. 

 

Additionally 9 spots of internal standard (100 ng/µL) were applied to the 

epidermal region of each treated sample for analysis (again using the acoustic 

picoliter droplet ejector). In this work, it was decided to use a deuterated 

analogue of terbinafine hydrochloride with seven deuterium ions on naphtalene 

group in order to distinguish the fragment of the internal standard from the 

fragment of analyte in the mass spectrum, leading to an increase of selectivity.  

Figure 4.4A-D shows the MS image of the distribution of the m/z 148 fragment 

ion of terbinafine-d7 on (A) untreated sample along with the calibration array, (B) 

vehicle control skin sample treated with 20 µL of the emulsion water/olive oil 

(80:20) alone and skin samples treated with terbinafine 1% (w/w) in water/olive 

oil (80:20) with either (C) 10% or (D) 50% isosorbide dimethyl ether (DMI) for 24 

hours. The distribution of the internal standard can be clearly seen for each spot 

on each section and hence these data are suitable for the definition of the area 

of spots created by the acoustic picoliter droplet ejector.  
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Figure 4.4 MALDI-MSI at 60 μm × 60 μm spatial resolution of the terbinafine-d7 hydrochloride source generated fragment ion ([C11D7H2]
+; 

m/z 148) microspotted directly on the epidermal layer of (A) untreated sample along with the calibration array, (B) vehicle control section 

and two Labskin sections treated with terbinafine 1% (w/w) in water/olive oil (80:20) with either (C) 10% or (D) 50% isosorbide dimethyl 

ether (DMI) for 24 hours.  
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The msIQuant software (Källback et al., 2016) allows a number of methods for 

the definition of regions of interest (ROI) and extraction of peak intensities from 

them for quantitative analyses. Here the methodology used was to exploit 

signals from endogenous species to define the epidermis and stratum corneum 

of the tissue section (m/z 184, the phosphocholine ion signal, to define the 

tightly packed cells of the epidermis and m/z 264, the ceramide fragment ion, to 

define the stratum corneum). Then using the software an average intensity for 

the signals of the terbinafine and the terbinafine-d7 of a ROI located to solely 

the epidermis for each spot could be extracted (Figure 4.5A-B). 

The generation of the calibration curve (n = 3) was obtained by plotting either 

the average intensity of m/z 141 (Figure 4.5C) or the average intensity ratio of 

m/z 141/148 (Figure 4.5D) versus the concentration of terbinafine expressed in 

ng/mm2
. In agreement with previous studies, we found that the normalisation of 

the analyte signal to its deuterated analogue caused a significant improvement 

in the calibration curve linearity with a correlation coefficient (R2) from 0.9968 to 

0.9992 upon normalisation. The limits of detection (LOD) and quantitation 

(LOQ) were calculated; from these calibration data the LOD was found to be 

1.30 ng/mm2 or 0.11 mg/g tissue, whereas, LOQ was found to be 3.93 ng/mm2 

or 0.33 mg/g tissue. By expressing the LOD and LOQ in mg/g tissue it is 

assumed that the droplets containing the analyte standards diffuse over the 

entire thickness (12 µm) of the blank Labskin section. Furthermore, in this study 

the values of LOD resulted to be higher than that typically found in literature, 

expressed in terms of µg/g tissue (Lagarrigue et al., 2014; Hansen and Janfelt, 

2016). However, it is thought that multiple factors could influence this increase 

value of LOD, such as the ionisation efficiency of the analyte, the tissue-specific 

ion suppression, the sensitivity of the analyser as well as the background noise 

derived from matrix ionisation and matrix clusters that have a critical impact on 

LOD and LOQ. 
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Figure 4.5 (A) MALDI-MSI of the terbinafine-d7 source generated fragment ion 

in red (m/z 148) superimposed with phosphocholine head group in blue (m/z 

184) and ceramide fragment peak in green (m/z 264). (B) Haematoxylin & eosin 

stained optical image of the sublimated section after MALDI-MSI (4X 

magnification). Calibration curve (n = 3) generated using (C) the average 

intensity of m/z 141 (no normalisation) and (D) the ratio average intensity of m/z 

141/148. Normalisation to the internal standard m/z 148 improved the linearity 

of the calibration curve. 

 

Considering the thin layer of the epidermis, for MALDI-MSI experiments ideally 

a pixel size smaller than 60 µm would have increased the spatial resolution in 

the imaging experiments. However, the Synapt instrument, unlike the Bruker 

Autoflex III instrument, does not offer the user the possibility of changing the 

laser focus diameter, which is set during installation. This aspect compromises 

the possibility of using the smallest pixel size for high resolution images without 

excessive oversampling and loss of signal occurring. In addition, considering 

the number of sections (4) which were imaged in each QMSI experiment, a 

smaller pixel size would have also resulted in a significant increase of both the 

throughput time as well as instrument contamination during the analysis. In light 
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of these considerations, 60 µm pixel size was chosen, although the possibility of 

a set-up with a smaller pixel size would be highly advantageous for future work. 

 

4.7.3 Quantitation of the drug within the tissue 

Using the method described above the concentration of terbinafine in the 

epidermis of (a) vehicle control Labskin and Labskin treated with 20 µL of 

terbinafine 1% (w/w) in water/olive oil (80:20) with either (b) 10% or (C) 50% 

isosorbide dimethyl ether (DMI) for 24 hours was determined. In order to 

perform the experiment, a total of nine microspots with a known concentration 

of terbinafine-d7 hydrochloride (100 ng/µL) was deposited onto the epidermal 

layer of the vehicle control and treated Labskin samples. ROIs for each 

microspot of the TBF-d7 fragment ion (m/z 148) were drawn in correspondence 

of the epidermal layer. Even in this case, the localisation of the microspots of 

the terbinafine-d7 fragment ion onto the epidermis and stratum corneum was 

visualised by superimposing the internal standard fragment ion signal (m/z 148) 

with the phosphocholine ion signal (m/z 184) and the ceramide fragment ion 

signal (m/z 264). Using msIQuant software, the average intensity of the 

terbinafine fragment ion on each ROI was extracted and normalised to the 

average intensity of the terbinafine-d7 fragment ion (m/z 141/148). Then, the 

average intensity ratio (m/z 141/148) from each spot was compared to the 

calibration curve, as shown in Figure 4.6A-C. 
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Figure 4.6 MALDI-MSI of the terbinafine-d7 fragment ion in red (m/z 148) 

superimposed with phosphocholine head group in blue (m/z 184) and ceramide 

fragment peak in green (m/z 264) in (A) vehicle control section and two Labskin 

sections treated with terbinafine 1% (w/w) at (B) 10% or (C) 50% DMI for 24 

hours. The intensity of the analyte normalised to the internal standard was 

extracted from each ROI and compared to the calibration curve. 

 

By resolving the calibration equation, the amount of drug from each spot was 

obtained in ng/mm2. As described in Chapter 3, to calculate the quantitative 

concentration of terbinafine hydrochloride in milligrams per gram of tissue, first, 

the amount in grams of tissue in 1 mm2 was detected. The volume of tissue in 

1mm2 was calculated multiplying the area (1 mm2) by the thickness of the 

section (0.012 mm). Then, the volume (0.012 mm3) was multiplied by the 

density of Labskin (1 mg/mm3) to obtain the value of grams of tissue in 1 mm2. 

By dividing in turn the concentration of terbinafine from each spot (ng/mm2) to 

the grams of tissue in 1 mm2, the concentration of terbinafine was converted in 

milligrams per gram of tissue. The concentration values derived from the spots 

applied onto each Labskin tissue was averaged and the main concentration of 

terbinafine hydrochloride in each Labskin tissue was calculated. 

In initial experiments the apparent levels of the drug were found to be 0.15 ± 

0.11 mg/g tissue in vehicle control, 0.35 ± 0.047 mg/g tissue within Labskin 
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treated with terbinafine at 10% DMI, and, 0.84 ± 0.14 mg/g tissue within Labskin 

treated with terbinafine at 50% DMI.  

On investigation it was found that the internal standard solution used contained 

a small amount of the unlabelled drug. Figure 4.7 shows the distribution of the 

average intensity ratio of the unlabelled drug (m/z 141) normalised to its internal 

standard (m/z 148) extracted from each microspot of the terbinafine-d7 

hydrochloride solution deposited onto the epidermal layer of three control 

Labskin sections at different times. It was noticed that the intensity average ratio 

increased over time, due to an increase of the unlabelled counterpart of the 

internal standard in the solution.  
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Figure 4.7 Distribution of the intensity ratio of terbinafine to its internal standard 

(m/z 141/148) extracted from each microspot of the internal standard solution 

(terbinafine-d7 hydrochloride (100 ng/µl) in MeOH/H2O (1:1)) deposited onto the 

epidermis of three control Labskin sections over time. 

 

It is interesting to note that, considering the structure of the terbinafine d7 

(Figure 4.8), the deuterium-hydrogen exchange happened on unusual sites, that 

not easily undergo to hydrogen-deuterium exchangeability (Englander et al., 

1996).  
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Figure 4.8 Structure of Terbinafine-d7. 

 

However, the problem related to deuterium-hydrogen exchange in deuterated 

compounds was previously described by Chavez et al. (Chavez-Eng, 

Constanzer and Matuszewski, 2002) and can lead to an overestimation of the 

concentration of unlabelled analyte. A number of ways were investigated to 

correct for this problem. Since the degradation of the internal standard in 

solution increased over time, the concentration of the analyte in the treated 

tissues could be affected in different percentage in each QMSI experiment. For 

this reason, it was decided that the optimum approach was to subtract the 

amount of terbinafine detected in the vehicle control from the amount of 

terbinafine detected in the treated tissues for each QMSI experiment. 

After this correction, at 10% DMI the concentration of TBF was found to be 0.20 

± 0.072 mg/g of tissue (below the formal limit of quantitation), and at 50% the 

level was found to be 0.69 ± 0.23 mg/g tissue (Figure 4.9A-B). 
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Figure 4.9  A) Graph showing the initial QMSI levels of terbinafine from the 

sections of Labskin. B) Graph showing the final levels of terbinafine from the 

sections of Labskin after correction for the degradation of the internal standard. 

 

After experiencing the degradation of the internal standard that occurred in 

solution, it was decided to investigate also the possible degradation of the 

internal standard on tissue. This experiment is described in the supplementary 

information (Appendix II).  

In order to validate the MALDI-MSI data LC-MS/MS experiments were 

performed using the methodology described by Sachdeva et al. (Sachdeva et 

al., 2010). LC-MS/MS is a high sensitivity technique, widely used in previous 

studies for quantitation of terbinafine hydrochloride (Brignol et al., 2000; 

Dotsikas et al., 2007). Although it is common knowledge that LC-MS/MS 

provides reliable quantitation, analysis using this technique cannot be carried 

out directly on the intact surface skin, but analytes of interest have to be 

extracted out of the tissue, increasing the complexity of sample preparation, 

time of analysis and loosing spatial information. In addition, another drawback 

of using LC-MS/MS is represented by the amount of tissue necessary for 

homogenisation (from 0.5 mg to 50 mg) compared to the small amount of tissue 

that can be analysed using MALDI-MSI (0.010-0.012 mg).  
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Furthermore, also in chromatographic analysis the purpose of using internal 

standards is to increase the quantitative performance of the technique. In this 

case, the internal standard is meant to correct mainly for random and 

systematic error of the detection, in LC-MS/MS principally (Wieling, 2002; 

Stokvis, Rosing and Beijnen, 2005). 

In this study, LC-MS/MS experiment was repeated three times per each tissue 

of Labskin. The calibration curve was generated by plotting the concentration of 

terbinafine hydrochloride versus the response ratio. The response ratio was 

calculated by dividing the peak area of the analyte by the peak area of the 

internal standard. 

The calibration curve observed in Figure 4.10A showed a coefficient of linearity 

R2 of 0.9989. The limit of detection (LOD) and quantitation (LOQ) were 

assessed at 0.42 µg/mL and 1.27 µg/mL, respectively. In the vehicle control 

sample, the levels of terbinafine were below the limit of detection, whereas, at 

10% DMI and 50% DMI the levels were above the LOQ and they were found to 

be 0.28 ± 0.04 mg/g tissue and 0.66 ± 0.057 mg/g tissue, respectively (Figure 

4.10B). 

 

Figure 4.10 A) Calibration curve (n = 3) generated using the peak area ratio 

(analyte/internal standard) B) Graph showing the final levels of terbinafine 

obtained from LC-MS/MS measurements of homogenates of isolated epidermal 

tissue. 
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A statistical unpaired T test was performed on the data from both tissues 

treated with terbinafine with either 10% DMI or 50% DMI. The concentration of 

the drug resulted statistically increased in the tissue when the percentage of 

DMI increased in the formulation in both QMSI (two sided P = 0.0256) and LC-

MS/MS (two sided P = 0.0007) (Figure 4.11A-B). Furthermore, in order to 

compare the values obtained by QMSI and LC-MS/MS, F test and paired T test 

between the methods were performed. With the F test, the variances between 

the values of terbinafine at 10% DMI and 50% DMI were found to be not 

statistically different between the methods (at 10% DMI; two sided P = 0.478; at 

50% DMI, two sided P = 0.1116). When the paired T test was performed, also 

the means between the values of terbinafine at 10% DMI and 50% DMI were 

found to be not statistically different between the methods (at 10% DMI, two 

sided P = 0.0726; at 50% DMI, two sided P = 0.8361) (Figure 4.11C).  

These data have demonstrated the development of a QMSI method for the 

determination of the amount of an active pharmaceutical ingredient in skin. In 

addition the capability of the penetration enhancer DMI to increasing the drug 

penetration in the upper epidermis of living skin equivalent has been 

demonstrated. 
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Figure 4.11 A) Graph showing the final levels of terbinafine from the sections of Labskin by using MALDI-MSI. B) Graph showing the 

final levels of terbinafine from LC-MS/MS measurements of homogenates of isolated epidermal tissue. C) Graph showing comparison 

between the results obtained from MALDI-MSI and LC−MS/MS, the error bars illustrate the standard deviation of three repeats for each 

method. No significant differences between the two methods were found.  
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4.8 Concluding remarks   

In this chapter, a novel approach for quantitative mass spectrometry imaging 

(QMSI) of terbinafine hydrochloride in the epidermal region of a full thickness 

living skin equivalent model has been presented. The use of an acoustic spotter 

turned out to be ideal for applying precise and uniform analytical and internal 

standards onto a thin and well-defined epidermal layer of the Labskin tissue, 

leading to mimic cell-type based ionisation response of the analyte from the 

treated tissue sections. The combination of microspotting technique and matrix 

sublimation allowed preservation of the spatial distribution of the analyte and 

achieving better mass spectral quality and reproducibility. 

 

The study presented here also provided an innovative method to assess the 

performance of the penetration enhancer DMI added to the delivery vehicle. 

QMSI data demonstrated an increase in concentration of terbinafine into the 

upper epidermis of Labskin in response to an increase of percentage of DMI in 

the delivery vehicle. QMSI data were satisfactory in showing no statistically 

significant differences from LC–MS/MS measurements of homogenates of 

isolated epidermal tissue, leading accuracy and precision between the methods 

to be the same. 
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Chapter 5: An "on-tissue" 

derivatisation approach for 

improving sensitivity and detection 

of hydrocortisone by MALDI-MSI. 

 

(This data was obtained during a placement period spent in Croda US 

laboratories and the work was carried out in collaboration with Brian Malys). 

 

 

 

 

 

 

  



  

188 

 

5.1 Introduction 

In Chapter 4, a novel approach for the quantitation of terbinafine hydrochloride 

by using MALDI-MSI was illustrated. Terbinafine is a molecule easily detected 

using mass spectrometry due to the straightforward protonation of its amine 

group. However, when an analyte of interest contains functional groups with low 

protonation/deprotonation efficiency, detection by MS is compromised. A 

chemical derivatisation approach is often employed to overcome this drawback.  

Derivatisation offers the potential advantage of increasing analyte signal 

intensity by introducing groups with permanent charges or with high ionisation 

efficiency (Zaikin and Halket, 2006). Another advantage of this approach is that 

the molecular mass of the targeted analyte can be increased, resulting in 

analyte peaks shifted to a higher mass region. This aspect is particularly 

beneficial when low molecular mass compounds are analysed by MALDI-MS, 

since the derivatisation can help to avoid matrix-related background 

interference present in the lower mass range, which can be an issue with low 

mass resolution instruments (Tholey et al., 2002). A comprehensive review on 

the main reactions available for derivatisation of functional groups analysed by 

mass spectrometry techniques  was recently conducted by Huang et al. (Huang 

et al., 2019).  

Over the years, on-tissue derivatisation strategies have been reported for 

increasing the sensitivity and specificity of MSI analysis of exogenous and 

endogenous compounds, while preserving spatial localisation (Prideaux et al., 

2007; Flinders et al., 2015; Esteve et al., 2016; Schulz et al., 2019). On-tissue 

derivatisation approaches have also been used to improve identification of 

proteins from tissue sections by MALDI-MSI (Franck et al., 2009).  

An interesting aspect of derivatisation for the purpose of MALDI analysis is that 

often the tags used, in addition to derivatising the analyte, promote its co-

crystallisation with the matrix. Furthermore, reagents able to absorb at UV/IR 

wavelengths can be used for direct analysis without the aid of common MALDI 

matrices (Huang et al., 2019). In this capacity the reagents are considered as 

"reactive matrices" since they induce both derivatisation and ionisation of 

molecules. 2,4-dinitrophenylhydrazine (DNPH) is an example of a reactive 
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matrix commonly used for the derivatisation of carbonyl containing compounds 

(Brombacher, Owen and Volmer, 2003; Teuber et al., 2012; Flinders et al., 

2015). The typical derivatisation reactions of carbonyl compounds rely on the 

formation of oximes, by reaction with hydroxylamines, and hydrazones, by 

reaction with hydrazine derivatives (Zaikin and Halket, 2006). The formation of  

Schiff's bases, semicarbazones, and thiosemicarbazones has also been 

reported (Zaikin and Halket, 2009).  

Currently, multiple derivatisation agents are commercially available and their 

selection depends strongly on the targeted analyte. However, all of the chemical 

tags should satisfy several desirable characteristics: 1) they have to contain a 

charge or an "easily" ionisable group; 2) they have to contain an appropriate  

reactive group; and 3) they have to be available to purchase or, at least, their 

synthesis should be cost-effective (Cartwright et al., 2005; Zaikin and Halket, 

2006; Flinders et al., 2015). 

In this study the attention was moved from MALDI-MSI analysis of an "easily" 

detectable molecule, terbinafine hydrochloride, to the analysis of a molecule 

with low ionisation efficiency, hydrocortisone. Hydrocortisone is a steroid 

medicine widely used in dermatologic therapy due to its potent anti-

inflammatory and antiproliferative activities (Hengge et al., 2006). The 

application of mass spectrometry techniques for analysis and measurements of 

steroid hormones represents an important aspect for clinical research, public 

health assessments and patient care (Cook-Botelho, Bachmann and French, 

2017). However, steroid hormones are characterised by a chemical structure 

with multiple carbonyl groups, which make difficult their detection by mass 

spectrometry. To date, in literature there has been multiple studies reported that 

employ chemical derivatisation strategies for steroid hormones to improve the 

sensitivity of mass spectrometry analysis (Díaz-Cruz et al., 2003; Xu et al., 

2007; Rangiah et al., 2011). 

In this chapter an in-solution and on-tissue derivatisation approach have been 

investigated to enhance the detection of hydrocotisone in ex-vivo skin by using 

MALDI-MSI. 
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5.2 Aims of the chapter 

The aim of this chapter was to improve the detection of hydrocortisone in ex-

vivo skin tissue by MALDI-MSI using a hydrazine-based derivatisation approach 

investigation. 

 

5.3 Materials and methods 

5.3.1 Chemicals and materials  

2,5-dihydroxybenzoic acid (DHB), phosphorus red, methanol (MeOH), 

trifluoroacetic acid (TFA), Girard's reagent T (GirT), hydrocortisone (HC) and 

conductive indium tin oxide (ITO)-coated microscope glass slides were 

purchased from Sigma-Aldrich.  

 

5.3.2 Ex-vivo skin samples 

Ex-vivo human skin (obtained under licence from the New York Firefighters Skin 

Bank) was  treated  for 48 hours with 800 μL of hydrocortisone at concentration 

0.1% (w/w) dissolved in ethanol/water solution (15:85) using Franz-type 

diffusion cells (Seo, Kim and Kim, 2016). (This tissue already treated was kindly 

provided by Croda Inc. (Delaware) and these experiments were conducted in 

Croda's US Laboratories in Delaware USA). 

The tissue was transferred into the Leica Cryostat (Leica CM3050 S) and 12 μm 

tissue sections were cryosectioned, thaw mounted onto ITO glass slides, and 

stored at −80 °C. 

 

5.3.3 In-solution derivatisation 

The in-solution derivatisation was performed by mixing 100 μL of hydrocortisone 

standard (200 μg/mL in MeOH 70%) with 100 μL of GirT (5 mg/mL in MeOH 
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with 0.2% TFA); the final concentration of HC was 0.28 mM. The reaction was 

left at room temperature for 30 minutes.  

5.3.4  Mass spectrometric profiling  

Standard hydrocortisone (100 μg/mL in MeOH 70%; the final concentration of 

HC was 0.28 mM) and derivatised hydrocortisone with Girard's reagent T (GirT-

HC) (prepared as previously described), were mixed with DHB matrix (10 

mg/mL in 70% MeOH with 0.2% TFA) in ratio 1:1 by using the dried droplet 

method. Then, three spots (0.5 μL) from each mixture were deposited across 

the length of the MALDI stainless steel plate and then allowed to dry at room 

temperature prior to mass spectrometric analysis. 

 

5.3.5 On-tissue derivatisation 

On-tissue derivatisation was performed following the protocol by Barré et al. 

(Barré et al., 2016). Briefly, 18 layers of GirT (5 mg/mL in MeOH with 0.2% 

TFA) were sprayed onto 12 μm thick ex-vivo skin sections by using a 

SunCollectTM automated sprayer (SunChrom, USA). The flow rate was set at 10 

μL/min for the first layer, at 15 μL/min for the second layer and at 20 μL/min for 

the remaining layers.  Prior to matrix deposition, the tissue sections were placed 

in a pipette tip box containing 60 mL of 50% MeOH with 0.2% TFA and 

incubated at 40 °C for 150 min.  

 

5.3.6 Matrix deposition 

After spraying the derivatisation reagent, the matrix (10 mg/mL DHB in 70% 

MeOH with 0.2% TFA) was deposited onto the tissue sections surface using the 

SunCollectTM automated sprayer (SunChrom, USA). 29 layers of matrix were 

sprayed with a flow rate of 10 μL/min for the first layer, 15 μL/min for the second 

layer and 20 μL/min for the following 27 layers. 
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5.3.7  Instrumentation 

5.3.7.1  MALDI mass spectrometry profiling (MALDI-MSP) 

The MALDI-MSP spectra were manually acquired in positive mode using an 

Autoflex III (Bruker Daltonik GmbH, Germancy) equipped with a 200-Hz 

SmartbeamTM laser. The mass range was set at 100-1000 m/z and six hundred 

laser shots were acquired for each spectrum. External mass calibration was 

achieved using a phosphorus red standard at approximately 200 ppm. 

 

5.3.7.2  MALDI mass spectrometry imaging (MALDI-MSI) 

For MALDI-MSI, the experiments were performed using an Autoflex Speed 

equipped with SmartbeamTM II laser (Bruker Daltonik GmbH). MALDI-MS 

images were acquired in positive mode at a range of m/z 100-700. The spatial 

resolution was set to 50 μm. 

 

5.3.7.3  Data processing  

MALDI-MSP data were acquired using FlexControl (Bruker Daltonics, 

Germany), converted to .txt file format using FlexAnalysis (Bruker Daltonics, 

Germany) and analysed using Mmass v5 open source software (Strohalm et al., 

2010) 

For MALDI-MSI, the data were processed using FlexImaging 4.1 software 

(Bruker Daltonics, GMbH) and were normalised to the total ion current (TIC).  
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5.4 Results and discussion 

5.4.1  MALDI-MS profiling 

To illustrate the low ionisation efficiency of the targeted analyte, a standard 

solution of hydrocortisone (100 μg/mL) was first examined by MALDI-MS 

profiling using DHB matrix. As shown in Figure 5.1 a low signal intensity of the 

protonated peak of HC [M+H]+ at m/z 363 was observed. The MALDI-MS 

spectrum displayed, instead, an abundance of matrix related peaks, including 

the [M+H2O+H]+ peak at m/z 137; the [M]+ peak at m/z 154; [M+H]+ peak at m/z 

155; the [M+Na]+ peak at m/z  273; and the [2M-2H2O+H]+ peak at m/z 273. The 

peaks at m/z 304 and at m/z 332 could derive from the stainless steel MALDI 

plate, as described by Yang et al. (Yang et al., 2010). 

 

 

Figure 5.1 MALDI-MS spectrum of hydrocortisone standard (100 μg/mL) in 

positive mode using DHB as matrix. The protonated HC peak [M+H]+ at m/z 363 

was detected at low intensity. 
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5.4.2 In-solution chemical derivatisation 

Because of its hydrophobic properties, the detection of hydrocortisone by 

MALDI-MS was highly challenging and, for this reason, a chemical 

derivatisation approach was tested. The target for the reaction was the carbonyl 

group and the Girard's reagent T (GirT) was chosen as reagent for the 

derivatisation. GirT is a hydrazine derivative that reacts with carbonyl 

compounds to form hydrazones. Figure 5.2 illustrates the reaction scheme of 

GirT with HC. 

 

Figure 5.2  Reaction scheme for GirT reagent reaction with HC 

 

The permanent positive charge of this reagent leads to a highly abundant [M]+ 

ion for the derivatised product, detected in mass spectra (Griffiths et al., 2003). 

Generally, the GirT reaction with carbonyl functionalities takes place in organic 

solvents in the presence of an acidic catalyst at high temperatures (Naven and 

Harvey, 1996; Cobice et al., 2016). In this study, the reaction was performed at 

room temperature for 30 minutes. 

Figure 5.3 shows the spectrum of hydrocortisone following the in-solution 

derivatisation reaction with GirT analysed with DHB as matrix. The MALDI-MS 

spectrum displayed the hydrazone derivative ([M]+) peak at m/z 476 and the un-

reacted Girard's reagent T ([M]+) at m/z 132, which represented the highest 

peak. 
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Figure 5.3 MALDI-MS spectrum displaying hydrocortisone following the in-

solution derivatisation reaction with GirT. The spectrum shows the derivatised 

hydrocortisone [M]+ at m/z 476 and the un-reacted GirT [M]+ at m/z 132. 

 

Although HC contains two carbonyl functionalities only the derivatisation of one 

carbonyl group was detected potentially due to the steric accessibility. As 

shown in Figure 5.4A-B the derivatisation reaction successfully increased the 

sensitivity and detection of the derivatised hydrazone ion (m/z 476) by 

approximately 11 fold compared to the un-derivatised HC (m/z 363) using 

MALDI-MS. The greatly increased signal intensity for GirT-HC was also 

confirmed when the relative intensity was investigated (intensity peak of 

targeted analyte/intensity peak of matrix) (Figure 5.3C).  
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Figure 5.4 A) Comparison of positive ion MALDI MS spectra of  hydrocortisone 

(HC) standard (without derivatisation) and derivatised hydrocortisone with 

Girard's reagent T (GirT-HC). Graph showing absolute B) and relative intensity 

C) of HC (I) and GirT-HC (II). For relative intensity, the peaks of HC ([M+H]+; 

m/z 363) and GirT-HC ([M]+; m/z 476) were normalised with the [DHB+H]+ peak 

at m/z 155. The error bars illustrate the standard deviation of nine spectra per 

analyte. 

 

5.4.3 On-tissue chemical derivatisation 

Once the derivatisation reaction had shown successful results in solution, the 

GirT reagent was used for on-tissue derivatisation experiments to facilitate the 
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detection of hydrocortisone in ex-vivo skin samples by using MALDI-MS 

imaging. Previous MALDI-MS imaging experiments reported the use of GirT 

derivatisation to improve the detection of endogenous androgens in mouse 

testis (Cobice et al., 2016), and corticosterone in rat adrenal and mouse brain 

sections (Cobice et al., 2013). In a more recent work, instead, Barré et al. used 

GirT derivatisation to localise and quantify the levels of triamcinolone acetonide 

in cartilaginous tissue by using MALDI-MSI (Barré et al., 2016). It is 

understandable that for a molecule with poor ionisation efficiency, detection in 

tissue is increasingly difficult, since its ionisation will also be affected by ion 

suppression effects from the presence of other compounds in the tissue. 

Figure 5.5A-B shows MALDI-MSI of the distribution of the un-reacted Girard’s 

reagent T (GirT [M]+; m/z 132) and the derivatised hydrocortisone (GirT-HC 

[M]+; m/z 476) recorded at 50 μm pixel size following a derivatisation reaction on 

2 of 6 sections of ex-vivo skin treated with hydrocortisone 0.1% (w/w) for 48 

hours. A defuse signal was observed for the un-reacted Girard's reagent T, 

whereas a very clear signal for the derivatised HC appeared localised only onto 

the epidermal layer of the skin.  

The on-tissue derivatisation approach was successful therefore in increasing 

the sensitivity of the drug in an imaging experiment, when otherwise it could not 

be detected (data not shown). 
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Figure 5.5 MALDI-MS images displaying the localisation of A) the un-reacted 

Girard’s reagent T ([M]+; m/z 132) and B) the derivatised hydrocortisone (HC-

GirT, [M]+; m/z 476). Spatial resolution = 50 µm; TIC normalisation. 
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5.5 Concluding remarks   

In this chapter, an in-solution and on-tissue derivatisation approach for the 

detection of hydrocortisone (HC) in ex-vivo skin tissue were tested.  

The derivatisation reaction using the Girard reagent T, a hydrazine based 

reagent, led to greatly increased sensitivity and detection of the respective 

hydrazone derivative ([M]+) over the non-derivatised HC. To our knowledge, this 

is the first study to report the localisation of hydrocortisone in ex-vivo skin 

samples by using MALDI-MSI. This represents a notable advantage over the 

traditional techniques since the spatial information is preserved. The localisation 

of hydrocortisone-derivative was found to be only in the epidermal layer of ex-

vivo skin tissue after 48 hours of treatment. Future experiments are necessary 

to optimise the derivatisation method to generate a further increase of the 

derivatised analyte. These include changing the temperature and time of 

derivatisation reaction as well as selection of an optimal matrix for analysis. 
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Chapter 6: Investigation of 

xenobiotic metabolising enzymes in 

Labskin using MALDI-MSI.   
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6.1 Introduction 

In Chapter 1 the role of skin as a protective barrier to the environment and 

valuable site for drug administration was comprehensively investigated. 

Although skin biology has been widely studied over the years, the current state 

of knowledge regarding metabolic activity of this organ is still poor (van Eijl et 

al., 2012; Oesch et al., 2014; Manevski et al., 2015). Understanding of the 

metabolic activity of skin is extremely important in order to assess the 

pharmacological as well as toxic effects of exposure to xenobiotic compounds, 

such as environmental chemicals, cosmetics and pharmaceuticals. In this 

regard, a pivotal role is represented by xenobiotic-metabolising enzymes 

(XMEs) and information about their expression in the skin is crucial.  

 

The European Legislation, Directive 76/768 ECC prohibited the use of animal 

models for the toxicity testing of cosmetics and cosmetic ingredients; leading to 

an increased interest in the use of reconstructed 3D skin models (EU, 2003). In 

addition, given the difficulties in reliably obtaining human skin for metabolism 

studies (and sufficient skin for a representative study given issues including 

race, gender, age, and genetic polymorphisms) there has been interest in the 

use of 3D models in this area. In the United Kingdom, the NC3Rs (National 

Centre for the Replacement, Refinement, and Reduction of Animals in 

Research) instigated in 2016 a challenge to researchers “To establish, both 

qualitatively (which metabolites are produced) and quantitatively (concentration 

of the metabolites produced), the extent to which skin metabolism determines 

xenobiotic availability in human skin” (https://crackit.org.uk/challenge-20-

metaboderm). 

In this regard, a growing interest in using 3D skin models to investigate the 

metabolic activity of human skin has spread rapidly (Sugibayashi et al., 2004; 

Wiegand, Hewitt and Merk, 2014). A detailed review comparing the xenobiotic-

metabolising enzymes in human skin and reconstructed skin models was 

recently published by Oesch et al. (Oesch, Fabian and Landsiedel, 2018). 

Contradicting the earlier published work in the field  (Ahmad and Mukhtar, 2004; 

Baron et al., 2008), more recent studies have reported a low expression of 

cytochrome P450 (CYP) enzymes in human skin and stated that they have an 

https://crackit.org.uk/challenge-20-metaboderm
https://crackit.org.uk/challenge-20-metaboderm
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insignificant role in the metabolism of substances.  In the work described by van 

Eijl et al. a detailed proteomic study was performed to investigate phase 1 and 

phase 2 enzymes in whole ex-vivo human skin (10 donors) and in 4 in-vitro 

epidermal models (Epiderm, Episkin, RHE, and HaCat cells) (van Eijl et al., 

2012). Results from this study indicated that low levels of CYP enzymes were 

detected in the skin and the main metabolic activity of the skin was due to the 

presence of other enzyme families. The enzymes detected belonged to the 

families of: alcohol dehydrogenases, aldehyde dehydrogenases oxidases, e.g. 

amine oxidase, carbonyl reductases, epoxidases and carboxylesterase 

hydrolyses (from phase 1 enzymes) and several isoforms of glutathione S 

transferase (from phase 2 enzymes). Similarly, Hewitt et al. (Hewitt et al., 2013) 

and Wiegand et al. (Wiegand, Hewitt and Merk, 2014) also reported no or a low 

expression of CYP enzymes in ex-vivo human skin and in-vitro skin models. In 

all of these studies in-vitro skin models highly mirrored the enzymatic profiles of 

whole ex-vivo skin, indicating that these are a valuable alternative to human or 

animal skin for experimentation in this area. 

Working towards this aim, mass spectrometry imaging (MSI) has been 

employed to localise the presence of metabolising enzymes in full thickness ex-

vivo human skin and a commercial skin model. In order to achieve this, the 

Clench group developed “substrate-based mass spectrometry imaging” 

(SBMSI) (Newton et al., 2017). In the work reported by Newton et al. the 

surface of the skin or model was treated with a known substrate for a specific 

metabolising enzyme, left to incubate for 48 hours before a section through the 

skin model was examined by MALDI-MSI. Results indicated a presence of 

esterase activity in a full thickness skin model using methylparabens as a probe 

(Abbas et al., 2010).  

There are several reports in the literature which highlight the expression of 

esterases in skin, with predominant levels in the epidermal layer and hair 

follicles (Müller et al., 2003). In the work reported by Tokudome et al. the levels 

of carboxylesterase activity in human epidermal cultured skin models (LabCyte 

EPI-MODEL and EPI-DERM) were deemed comparable to those detected in 

human and rat epidermis (Tokudome, Katayanagi and Hashimoto, 2015).  



  

203 

 

Carboxylesterases act by adding water to an ester group leading to the release 

of a carboxylic acid and an alcohol, increasing in this way the polarity of the 

molecule and facilitating its elimination (Laizure et al., 2013). Two main 

carboxylesterase isozymes have been found in humans: carboxylesterase 1 

(CES1) and carboxylesterase 2 (CES2). The activity of these strongly depends 

on the substrate structure: esters with a large acyl group and a small alcohol 

group are preferentially hydrolysed by CES1, whereas esters with a small acyl 

group and a large alcohol group are preferentially hydrolysed by CES2 

(Taketani et al., 2007). 

In the following chapter, two CES1 substrates, methylparaben and 

methylphenidate, have been chosen in order to investigate the esterase activity 

in a commerical living skin equivalent model, Labskin (Innovenn Ltd York UK), 

by using MALDI-MSI following the SBMSI approach. A chemical derivatisation 

approach was additionally performed in order to increase the sensitivity of both 

methylparaben and its metabolite 4-hydroxybenzoic acid and allow their 

detection by MALDI mass spectrometry. As described in Chapter 5, molecules 

containing functional groups with low protonation efficiency are challenging to 

analyse by mass spectrometry tools and a chemical derivatisation strategy is 

often employed as solution to overcome this drawback. Furthermore, LC-

MS/MS analysis on extracts of epidermis and dermis derived from substrate-

treated Labskin was performed for comparison with the MALDI-MSI data. 
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6.2 Aims of the chapter 

The aim of this chapter was to investigate the metabolic esterase activity of 

Labskin using MALDI-MSI by employing the approach of “substrate-based mass 

spectrometry imaging” (SBMSI). 

 

6.3 Materials and methods 

6.3.1 Chemical and materials  

Alpha cyano-4-hydroxycinnamic acid (α-CHCA), N-(1-naphthyl) 

ethylenediamine dihydrochloride (NEDC), trifluoroacetic acid (TFA), phosphorus 

red,  methylphenidate hydrochloride (MPH HCl), ritalinic acid (RA), 

methylparaben (MP), 4-hydroxybenzoic acid (4-HBA) and isosorbide dimethyl 

ether (DMI), ethanol (EtOH), formic acid ≥ 96% (FA), 2-fluoro-1-

methylpyridinium p-toluenesulfonate (FMPTS), and triethylamine (TEA) were 

purchased from Sigma Aldrich (Gillingham, UK). Acetonitrile (ACN) and 

methanol (MeOH) were purchased from Fisher Scientific (Loughborough, UK). 

 

6.3.2 Living skin equivalent samples 

Living skin equivalent (LSE) samples were obtained and cultured as described 

in Chapter 2.3.2. For the experiment, three LSE samples were treated with 20 

μL of methylphenidate hydrochloride (0.5% w/w) dissolved in an emulsion made 

up of water/olive oil (80:20 v/v) with 10% DMI; three LSE samples were treated 

with 20 μL of methylparaben (0.5% w/w) dissolved in acetone/olive oil (80:20) 

with 10% DMI. The samples were incubated for 24 hours. After incubation, the 

samples were taken and washed with LC-grade MeOH to remove the excess 

formulation and, then snap-frozen with liquid nitrogen cooled isopentane (2-5 

min) and stored at - 80 °C. 

For cryosectioning, LSEs were transferred into the cryostat (Leica 200 UV, 

Leica Microsystems, Milton Keynes, U.K.), mounted onto a cork ring using 

diH2O at −25 °C for 30 min to allow thermal equilibration. Tissue sections were 
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cryosectioned at 12 μm, thaw mounted onto poly-lysine coated glass slides, and 

stored at −80 °C.  

 

6.3.3 In-solution derivatisation  

The in-solution derivatisation was performed on the hydroxyl group of MP and 

4-HBA by following previously published work carried out by Beasley et al. 

(Beasley, Francese and Bassindale, 2016). 40 μL of FMPTS (10 mg/mL in 

acetonitrile) and 10 μL of triethylamine were mixed by vortexing. Then, 20 μL of 

MP and 4-HBA solution, both at concentration of 350 μg/mL in MeOH/H2O (1:1, 

v/v)) was added. The reactions were left for 5 min at room temperature. The 

final concentration of MP and 4-HBA was 0.66 mM and 0.72 mM, respectively.  

 

6.3.4 Mass spectrometric profiling 

Standard methylparaben (MP), methylphenidate (MPH), 4-hydroxybenzoic acid 

(4-HBA), ritalinic acid (RA) prepared at 100 µg/mL in MeOH/H2O (1:1, v/v)), as 

well as derivatised MP and 4-HBA with FMPTS reagent (prepared as previously 

described), were analysed by using MALDI-MS profiling. For positive mode the 

matrix used was 5 mg/mL of α-CHCA in ACN/0.5%TFA (7:3, v/v), whereas for 

negative mode the matrix used was 7 mg/mL of NEDC in MeOH/H2O (7:3, v/v). 

Each standard and derivatised compound (FMPTS-MP and FMPTS-4-HBA) 

were mixed with matrix solution (ratio 1:1) by using the dried droplet method.  

Then, three spots (0.5 μL) from each mixture were deposited across the length 

of the MALDI stainless steel plate and then allowed to dry at room temperature 

prior to mass spectrometric analysis. 
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6.4 Instrumentation 

6.4.1 MALDI mass spectrometry profiling (MALDI-MSP) 

The MALDI-MSP spectra were manually acquired in both positive and negative 

mode using a Waters MALDI HDMS SynaptTM G2 operated with a 1 KHz 

Nd:YAG laser (Waters Corporation, Manchester, UK) and an Autoflex III (Bruker 

Daltonik GmbH, Germancy) equipped with a 200-Hz SmartbeamTM laser.   

The mass range was set at 100-1500 m/z and external mass calibration was 

achieved using a phosphorus red standard at approximately 200 ppm. 

 

6.4.2 MALDI mass spectrometry imaging (MALDI-MSI) 

All tissues were imaged using the Synapt™ G2. MALDI-MS images were 

acquired in positive mode, in full scan “sensitivity” mode at a range of m/z 100-

1500, (resolution 10,000 FWHM) at spatial resolution of 60 μm x 60 μm, and 

with laser energy set to 250 arbitrary units. The ion mobility function of the 

instrument was not enabled. 

 

6.4.3 LC-MS/MS  

All LC–MS/MS experiments were performed using a Xevo G2-

XS QTof (Waters Coorporation, Manchester, U.K.) set to ionization mode ESI+ 

with analyzer in sensitive mode. The mobile phase composition, the gradient 

elution, as well as the flow rate and the injection volume were set as described 

in Chapter 4.6.2.  

 

The experimental instrument parameters used were capillary voltage, 3.0 kV; 

cone voltage, 30.0 V; source temperature, 150 ºC; desolvation temperature, 

500 ºC; desolvation gas, 1000 L/h; and cone gas, 150 L/h. Argon was utilised 

as a collision gas and the collision energy was set at 15 eV. 
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A multiple reaction monitoring (MRM) method was used to monitor the following 

transitions for methylphenidate (m/z 234.2  84) and for ritalinic acid (m/z 

220.1 84). The retention time for methylphenidate was ~ 7.88 mins, whereas 

for ritalinic acid it was ~ 7.34 mins 

 

6.4.4 Skin extraction 

The extraction of CES1 substrates and metabolites from Labskin was 

performed as reported in Chapter 4.5.3. 

 

6.4.5 Data processing 

MALDI-MSP spectra on the Bruker Autoflex III were acquired using FlexControl 

(Bruker Daltonics, Germany) and converted to .txt file format using FlexAnalysis 

(Bruker Daltonics, Germany).  

MALDI-MSP spectra on the Waters Synapt G2 were acquired and converted to 

.txt file format using MassLynx™ software (Waters Corporation, UK).  

The spectra exported as .txt files were analysed using Mmass v5 open source 

software (Strohalm et al., 2010). 
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6.5 Results and discussion 

6.5.1 MALDI-MS profiling of carboxylesterase 1 probes and 

metabolites 

6.5.1.1  Methylparabens/4-hydroxybenzoic acid 

Methylparaben belongs to the parabens class and it is widely included as 

preservative in food and cosmetic formulations (Tahan et al., 2016). It is 

metabolised by CES1 enzyme to 4-hydroxybenzoic acid, as shown in Figure 

6.1. 

 

 

Figure 6.1 Metabolism of methylparaben. 

 

Prior to investigating the metabolic activity in Labskin tissue, standards of 

methylparaben and its metabolite 4-hydroxybenzoic acid (100 µg/mL) were first 

analysed by MALDI-MS profiling using CHCA as matrix. As shown in Figure 6.2 

from MALDI MSP spectra no protonated peaks were detected for both analytes 

(methylparabens [M+H]+, m/z 153.05; 4-hydroxybenzoic acid [M+H]+, m/z 

139.04). 
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Figure 6.2 MALDI-MS spectrum acquired in positive mode on A) the spot of 

methylparaben (100 µg/mL) and B) 4-hydroxybenzoic acid mixed with the matrix 

α-CHCA. There was no evidence of the expected protonated peaks [M+H]+ at 

m/z 153.05 and at m/z 139.04 for methylparabens and 4-hydroxybenzoic acid, 

respectively. 
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The difficulty of detecting MP and 4-HBA analytes in positive mode was due to 

the low protonation efficiency of their functional groups: hydroxyl and carboxyl 

acid groups. Compounds containing hydroxyl groups bonded to an aliphatic 

structure (alcohols) are neutral molecules, and hence, they are not easily 

ionised in either positive or negative mode; instead, compounds containing the 

hydroxyl group bonded to a phenyl group (phenols) are slightly acidic and, 

hence, they are more likely to ionise in negative mode (Quirke, Adams and Van 

Berkel, 1994; Bajpai et al., 2005). Similarly, compounds containing carboxylic 

groups have been previously shown to be  more suited to ionisation in negative 

mode (Shroff and Muck, 2007). In this regard, MP and the metabolite 4-HBA 

(100 µg/mL) standards were also analysed with negative polarity by using 

NEDC as matrix. The signals of the deprotonated peak of MP (m/z 151.04) and 

4-HBA (m/z 137.02)  were detected exclusively when the MALDI-MSP spectra 

were acquired by using an Autoflex III mass spectrometer (Bruker Daltonik 

GmbH, Germany) (Appendix III Figure 1-Figure 2). This finding is due to the fact 

that a Smartbeam laser, unlike conventional Nd:YAG lasers is more suitable to 

work with a wider range of matrices; hence, it is more likely to perform better 

analysis in negative mode (Holle et al., 2006). The Smartbeam laser in the 

Bruker is a Nd:YAG laser and, as the Nd:YAG laser present in the Synapt, the 

laser wavelengh in both instruments is of 355 nm; however, the better  

performance of the Smartbeam laser for several MALDI matrices is due  to the 

laser beam profile. The Nd:YAG laser (in Synapt) is characterised by a very 

focused Gaussian profile whereas, Smartbeam laser (in Bruker) presents a 

structured beam profile, similar to that of N2 laser. In the work reported by Holle 

et al. the influence of the laser beam profile, more than the wavelength, on the  

MALDI performance was highlighted; and, a comprehensive description of the 

modulation of the Nd:YAG in the Bruker was offered (Holle et al., 2006). As 

consequence of this modulation, the Smartbeam laser "mimics" the beam 

profile, and hence the distribution of the intensity over the target surface, of the 

N2 laser.  

Besides NEDC matrix, in this study it could have been interesting to investigate 

a larger number of negative mode matrices in order to assess the potential 

detection of MP and 4-HBA also with Synapt. However, considering the high 

performance of Nd:YAG laser in Synapt instrument with CHCA matrix in positive 
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mode, a derivatisation strategy, fast and cost-effective, seemed to be a valid 

alternative over the matrix optimisation step, that could have been extensive 

and time consuming.    

 

6.5.1.1.1 In-solution derivatisation 

To increase the sensitivity of the methylparaben and 4-hydroxybenzoic acid in 

positive mode a derivatisation approach was investigated. The hydroxyl group 

was chosen as target group for the derivatisation, since it was a common 

functional group for both compounds. 2-fluoro-1-methylpirydinium p-

tolunesulfonate (FMPTS) was selected as derivatisation reagent, which reacts 

with hydroxyl groups, in the presence of the basic catalyst triethylamine to form 

the corresponding N-methylpyridinium ether derivative, as shown in Figure 6.3.  

 

Figure 6.3 Reaction scheme for 2-fluoro-1-methylpyridinium p-toluensulfonate 

(FMPTS) with a generic hydroxyl containing compound. 

 

In previous studies FMPTS has been reported to increase the detection of 

hydroxyl containing compounds, due to its positive permanent charge, by using 

LC-MS (Dunphy et al., 2001; Thieme, Sachs and Thevis, 2008), LC-MS/MS 

(Faqehi et al., 2016; Baghdady and Schug, 2018) and MALDI-MS profiling 

(Hailat and Helleur, 2014). Furthermore, by using this reagent the derivatisation 

reaction could be performed rapidly at room temperature, making it extremely 

straightforward. 
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As shown in Figure 6.4 the in-solution derivatisation approach using FMPTS 

resulted in an  increase in  sensitivity for the  MP and 4-HBA peaks, which were 

detected in the derivative forms [M]+, FMPTS-MP (m/z 244.10) and FMPTS-4-

HBA (m/z 230.08). 
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Figure 6.4 MALDI-MS spectra showing MP and 4-HBA following the in solution 

derivatisation reaction with FMPTS. The spectra show the derivatised MP [M]+ 

at m/z 244.10 (A) and the derivatised 4-HBA at m/z 230.08 (B). 
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6.5.1.2  Methylphenidate/ritalinic acid 

Another substrate chosen to investigate metabolic activity in the skin was 

methylphenidate. Methylphenidate is a central nervous system stimulant, used 

as medication for the treatment of attention-deficit/hyperactivity disorder 

(ADHD); it is commercially available in oral formulations in the forms of tablets, 

chewable tablets and liquid (Challman and Lipsky, 2000; Guzman, 2019). 

Although it is not possible to find a methylphenidate based topical formulation, 

in this study it was decided to treat Labskin with this substrate to analyse the 

expression of carboxylesterase enzymes in the skin. Like methylparabens, 

methylphenidate is metabolised by CES1 enzyme activity and its major 

metabolite is represented by ritalinic acid (Figure 6.5). 

 

 

Figure 6.5 Metabolism of methylphenidate. 

 

Standard solutions of methylphenidate (100 µg/mL) and its metabolite ritalinic 

acid (100 µg/mL) were analysed by MALDI-MS profiling using CHCA as matrix. 

MALDI-MS spectra showed the protonated peak of methylphenidate at m/z 

234.14 and ritalinic acid at m/z 220.13 (Figure 6.6). The easy detection of these 

compounds by MALDI-MS can be attributed to the protonation efficiency of the 

amine group on the piperidine moiety. Although ritalinic acid contains two 

functional groups (amine and carboxylic acid) only the peak arising from 

monoprotonation was detected [M+H]+. As discussed previously this aspect is 

due to the low protonation affinity of carboxylic groups in positive mode, which, 

instead, ionise preferably in negative mode.  

 



  

215 

 

 

Figure 6.6 MALDI-MS spectrum acquired in positive mode on a) the spot of 

methylphenidate (100 µg/mL) and B) ritalinic acid mixed with the matrix α-

CHCA. MALDI-MSP spectra showed expected protonated peaks [M+H]+ at m/z 

234 and at m/z 220 for methylphenidate and ritalinic acid, respectively. 
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6.5.2 Analysis of skin metabolism by MALDI-MSI 

Following MALDI-MSP, MALDI-MSI experiments were performed to examine 

the carboxylesterase activity in Labskin by using the "substrate-based mass 

spectrometry imaging” (SBMSI) approach. For this purpose, Labskin tissue was 

treated with 0.5% w/w of CES1 substrates (methylparaben and 

methylphenidate) for 24 hours. 

As previously discussed, an in-solution derivatisation with FMPTS was essential 

to increase the detection of methylparaben and its metabolite 4-hydroxybenzoic 

acid by using MALDI-MSP. In the work reported by Beasley et al. an in-situ 

derivatisation using FMPTS was exploited to detect cannabinoids in hair 

samples by MALDI-MSI (Beasley, Francese and Bassindale, 2016). For this 

experiment, the authors airbrushed FMPTS onto hairs derived from cannabis 

users and nonusers before spraying CHCA matrix. Six different cannabinoids, 

previously undetectable, were detected in hair samples by using this approach.  

Following the same principle, in this study, an on-tissue derivatisation approach 

onto Labskin treated with methylparaben for 24 hours was attempted. The 

FMPTS reagent was manually sprayed onto treated Labskin sections and 

CHCA matrix was applied by sublimation. However, no successful images were 

achieved (data not shown). Lack of signal was most likely because an 

insufficient matrix coverage of derivatised Labskin sections was obtained with 

the sublimation method and hence further sample optimisation is required. 

Experiments were then focused on the metabolic analysis by using 

methylphenidate substrate. A Labskin section treated with methylphenidate 

0.5% (w/w) in water/olive oil (80:20) for 24 hours was imaged alongside a blank 

Labskin section (without treatment). The epidermal layer in the Labskin was 

identified by selecting an endogenous peak at m/z 186.91 (Figure 6.7A). 

Figure 6.7B-C shows MALDI-MSI images of the distribution of methylphenidate 

ion at m/z 234 and ritalinic acid ion at m/z 220 in both blank and treated Labskin 

sections recorded at 60 µm spatial resolution.  Standard methylphenidate and 

ritalinic acid (1 mg/mL) were spotted alongside the Labskin sections as 

references. It can be seen that the metabolite ritalinic acid signal appeared to 
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be localised in the outer layer of skin, epidermis. This suggests that the CES1 

enzymes are potentially located in the epidermal layer of Labskin.  

Additional work now needs to be performed in order to assess the levels of 

CES1 detected in Labskin and their comparability with those present in human 

skin.   
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Figure 6.7 MALDI-MSI on blank Labskin section and a section of Labskin 

treated with methylphenidate (0.5% w/w) for 24 hours showing the distribution 

of A) an endogenous peak at m/z 186 for the detection of epidermal layer; B) 

methylphenidate peak at m/z 234; C) ritalinic acid peak at m/z 220. 

blank section 

blank section 

blank section 

treated section 

treated section 

treated section 
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6.5.3 LC-MS/MS 

LC-MS/MS was used to enhance the sensitivity and selectively for the 

simultaneous determination of methylphenidate (MPH) and ritalinic acid (RA) in 

epidermal and dermal tissue extracts. Previous studies have reported the use of 

LC-MS/MS for the detection of MPH and RA in hair (Jang et al., 2019) and urine 

samples (Danaceau, Freeto and Calton, 2018).  

Figure 6.8 shows a representative MRM chromatogram of MPH and RA 

standards (10 ng/mL) obtained by selecting the transition of 234.2  84 for 

MPH (A) and 220.1  84 for RA (B). The retention time for MPH and RA was ~ 

7.88 min and 7.34 min, respectively.  

 

 

Figure 6.8 Extracted ion chromatogram (XIC) for A) 10 ng/mL of 

methylphenidate and B) 10 ng/mL of ritalinic acid. 

 

It is important to note that higher concentrations of methylphenidate standard 

appeared to contain a percentage of ritalinic acid, probably as a degradation 

product.  Furthermore, an insistent interfering MPH peak was observed in the 

following chromatograms (reagent blanks and ritalinic acid standards), due to 

the problem of an extended carry-over. Analyte carry-over is one of the most 

common drawbacks for LC-MS/MS during method development (Weng and 
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Hall, 2002). It mainly depends on the analyte contamination which can be 

selectively retained in the column as well as in the system. To troubleshoot this 

problem multiple investigations are necessary, such as changing the 

composition and the elution type of the mobile phase; using a strong needle 

washing solvent, increasing the number of blanks from one run to another; 

reducing the contact surface between analyte and needle.  

In this case, as shown in Figure 6.9A to obtain a reagent blank chromatogram 

entirely free of MPH and RA an intense flushing of the column for several hours 

with acetonitrile was necessary. Figure 6.9 shows representative 

chromatograms of B) epidermis and C) dermis extracts derived from Labskin 

treated with MPH 0.5% (w/w) for 24 hours. 
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Figure 6.9 Representative MRM ion chromatograms of methylphenidate (MPH) and ritalinic acid (RA) in reagent blank (A), epidermis (B) 

and dermis (C) extracts derived from Labskin treated with MPH (0.5% w/w) for 24 hours 
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The MPH peak was detected at low intensity in the extracts of both epidermis 

and dermis of treated Labskin. However, it was not possible to associate 

completely this peak to the presence of MPH in the tissue; this is because a 

small interfering MPH peak was also detected in extracts of dermis derived from 

untreated Labskin (blank matrix) (data not shown).  

In contrast to the MPH peak, a slightly more intense and clear signal for ritalinic 

acid was detected only in extracts derived from the epidermis of treated 

Labskin. Even in this case, this finding seemed to suggest that the presence of 

CES1 and, hence, the majority of MPH metabolism occurred in the epidermal 

region of skin, supporting MALDI-MSI data. 

 

6.6 Concluding remarks 

In this chapter, a commercial living skin equivalent model, Labskin, was used to 

investigate the localisation of carboxylesterase 1 (CES1) activity by MALDI-MSI. 

Substrate based mass spectrometry imaging (SB-MSI) was chosen as the 

technique to perform the experiments, which included the treatment of Labskin 

tissue with 2 substrates enzymes, methylparaben and methylphenidate. 

A derivatisation strategy using FMPTS reagent was assessed in order to detect 

MP and its metabolite 4-HBA by mass spectrometry. An in-solution 

derivatisation with FMPTS resulted in a significant increase in signal of MP and 

4-HBA analytes, which were detected in the derivatised form [M]+ in MALDI-

MDP spectra. In contrast, an on-tissue derivatisation approach involving the 

application of FMPTS reagent onto Labskin sections treated with MP for 24 

hours, did not show successful results, leading to the inopportunity of using this 

substrate for metabolic analysis before more optimisation of the technique is 

performed.  

 

In this regard, MALDI-MSI was performed on Labskin sections treated with the 

alternative substrate MPH, which with its metabolite RA was easily detected by 

mass spectrometry. The localisation of carboxylesterase 1 was detected mainly 

in the epidermal layer of the tissue. This data was compared with LC-MS/MS 
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analysis, which displayed a peak belonging to MPH metabolite (ritalinic acid) 

only on the extract of isolated epidermis derived from treated Labskin tissue.  

 

Additional future work is necessary to investigate reproducibility of the results. 

These include: optimising sample preparation steps for both MALDI and LC-

MS/MS analysis; increasing the number of technical and biological repeats; and 

increasing the number of CES1 substrates tested. Furthermore, a comparison 

of the metabolic enzyme distribution found in Labskin to those found in human 

skin is required in order to assess the pharmacokinetic similarities between 

these two models.  
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Chapter 7: Conclusion and future 

work 
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Conclusion  

3D in-vitro tissue models of human skin represent a valid alternative to 

monolayer 2D cell culture, ex-vivo human and animal skin models, and, at the 

present time, their application finds a place in many skin research fields 

(Schäfer-Korting, Mahmoud, et al., 2008; Xie et al., 2010; Ali et al., 2015; De 

Vuyst et al., 2017; Lewis et al., 2018; Bataillon et al., 2019). 3D in-vitro skin 

models offer several advantages; they have a higher resemblance to the in-vivo 

human skin microenvironment compared to monolayer 2D cell culture, they 

guarantee a higher quality of preservation compared to ex-vivo skin, as they are 

still living systems they are easy to obtain without requiring an individual ethical 

licence, and they represent a valid replacement to animal testing in line with the 

principle of the UK organisation 3Rs (Replacement, Reduction and 

Refinement). For years ex-vivo and animal skin models have represented the 

gold standards for skin research but not without problems. The major issues 

related to ex-vivo skin are the short viability period (< 24h), donor variability 

(race, gender, age) and genetic polymorphism, making a standardised assay 

complicated (Rodrigues Neves and Gibbs, 2018). Similarly, when using animal 

models, inter-species differences (animal versus human), such as thickness of 

the stratum corneum (SC), composition of intercellular SC lipids, density of hair 

follicles, could generate misleading results (Bronaugh, Stewart and Congdon, 

1982; Netzlaff et al., 2006).  Considering all of these factors in addition to ethical 

problems relating to the use of ex-vivo and animal skin models, there are great 

benefits to transitioning to 3D in vitro skin equivalents. 

However, it is important to consider that differences between 3D skin models 

and native skin inevitably are present, due to the simplified structure of the 

models. For this reason, currently, technology and progress are focused on 

improving 3D skin models in order to increase their similarity to human skin.  

The work presented in this thesis demonstrates the success of the combination 

of MALDI mass spectrometry imaging (MSI) with a full thickness living skin 

equivalent model, Labskin, for a label-free investigation of either drug 

absorption or drug biotransformation in skin.  
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The development of quantitative methodologies for the detection of an 

antifungal agent, terbinafine hydrochloride, in Labskin, by MALDI-MSI has been 

reported, and the performance of the penetration enhancer (dimethyl isosorbide 

(DMI)) added to the delivery vehicle has also been assessed. Furthermore, 

approaches to improve the detection of pharmaceutical agents with low 

protonation/deprotonation efficiency and preliminary analysis of the metabolic 

activity of Labskin was also described.  

In the study reported in this thesis only technical replicates were carried out, 

and, in future work, it would be interesting to perform biological repeats in order 

to assess the reproducibility of the model. In fact, although Labskin has already 

been studied extensively, more validation studies are necessary to test the 

robustness of the model and its ability to represent human skin. 

 

7.1 MALDI-MSP method optimisation 

In MALDI analysis the choice of the matrix represents a fundamental factor 

since it strongly influences the desorption/ionisation process and the spectral 

quality (Lemaire et al., 2006). In Chapter 2 a "trial and error" approach was 

employed both in positive and in negative mode in order to determine the ideal 

matrix able to enhance the signal of the standard terbinafine hydrochloride. With 

negative polarity no signal was detected, whereas in positive mode a variety of 

matrix compositions, including also binary matrices and liquid matrices were 

investigated. The spectral quality of terbinafine hydrochloride was enhanced 

when the liquid ionic matrix aniline-CHCA was employed; both when the 

absolute and relative intensity of the analyte under investigation was 

considered. However, there are a variety of matrices and solutions which were 

not tested in this work, and further investigations into a more ideal matrix could 

be appropriate to enhance further analyte signal by MALDI-MSP. 

 

7.2  MALDI-MSI method optimisation  

In Chapter 2, to detect the localisation of terbinafine hydrochloride in Labskin by 

using MALDI-MSI, two different matrix deposition techniques, automated 
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spraying and sublimation, were investigated. The localisation of drug after 24 

hours treatment was found to be solely in the epidermal layer of skin using both 

approaches. However, the sublimation method ensured a more uniform coating 

of matrix and smaller crystals as well as a better spatial resolution and limited 

analyte delocalisation compared to spraying technique. The permeation of 

terbinafine hydrochloride solely in the epidermal layer of Labskin was also 

visualised with MALDI-MSI when the chemical enhancer (dimethyl isosorbide 

(DMI)) was included in the formulation used for the treatment of Labskin for 24 

hours. In future work, it would be useful also to optimise a recrystallisation step 

after sublimation as well as test an acoustic droplet ejector, as matrix deposition 

technique, alongside spraying and sublimation, to investigate an increase of 

analyte signal, while preserving the analyte localisation.  

 

7.3 Quantitative mass spectrometry imaging (QMSI) 

Although MALDI-MSI has been widely used for qualitative analysis, its 

application for quantitative analysis represents one of the major critical 

challenges in the field. The possibility of identifying and quantifying 

pharmaceutical agents in specific locations within skin by MALDI-MSI 

represents a potential advantage over traditional quantitative techniques.  

All of QMSI analysis were performed by using a Water Synapt G2 instrument. 

The main reason for the decision to use the Synapt instrument instead of the 

Bruker instrument (Chapter 2) was related to the possibility of processing MSI 

data with msIQuant software, specific for MSI quantitative analysis. To import 

the data into msIQuant software it was necessary to convert MSI raw data files 

to imzML format; this conversion was enabled by only the software tool present 

in the Synapt (HDI 1.4. software), but was absent in the Bruker software 

(FlexImaging 3.0), limiting, hence, its application.  

In the work presented in Chapter 3 different approaches to generate robust and 

sensitive quantitative mass spectrometry imaging (QMSI) data were developed. 

The first method included the application by automatic sprayer of a serial 

dilution of standards onto keratinocytes and fibroblasts, co-cultured directly onto 

a glass slide. The second method included the application of a serial dilution of 
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terbinafine standards onto untreated sections of Labskin using an automated 

sprayer. The third method included the microspotting of serial dilution of 

standards solely onto the epidermis of an untreated Labskin section by using an 

automated acoustic spotter Portrait 630. The last method included the 

construction of a cell plug, consisting of the spiking of serial dilution of 

standards within intact keratinocyte cells embedded in frozen gelatin. MsIQuant 

software, recently developed for quantitative mass spectrometry imaging, was 

used to create calibration curves from MSI data. However, the impossibility of 

generating the calibration curve with the cell plug method made it impracticable 

for QMSI investigations and it was not considered further. Among the other 

methods, the application of analytical standards on top of an untreated Labskin 

section by microspotting was the most favourable technique, since it offered the 

enormous advantage of generating a linear calibration curve, being practical, 

relatively fast and cost-effective; only one blank section was required to 

generate a calibration array, allowing treated tissue sections to be located next 

to sample sections and imaged at the same time to perform quantitative 

investigations. From preliminary quantitative analysis an increase of 

concentration of terbinafine into the upper epidermis of Labskin in response to 

an increase of percentage of DMI in the delivery vehicle was shown. 

The further work presented in Chapter 4 emphasised the success of including 

an internal standard (deuterated terbinafine) in the analysis to enhance the 

quantitative capabilities of MSI. QMSI data was also validated with a traditional 

and widely accepted quantitative LC-MS/MS method; no statistical difference in 

the levels of drug detected in Labskin by the two techniques was detected.  

However, in the work reported in Chapter 4 problems related the degradation of 

the deuterated internal standard were experienced and future work in this area 

to investigate a more suitable internal standard as well as the optimal conditions 

in which to conserve the internal standard could be useful in order to avoid 

degradation. 
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7.4 Derivatisation  

Pharmaceutical compounds containing functional groups with low 

protonation/deprotonation efficiency are challenging to investigate with mass 

spectrometry techniques. In Chapter 5 the problems relating to the low 

sensitivity and detection of hydrocortisone hydrochloride in ex-vivo skin samples 

after treatment were raised. In Chapter 5 the success of a chemical 

derivatisation approach to overcome this problem was presented. The target for 

the reaction was the carbonyl group of the hydrocortisone and Girard's reagent 

T (GirT), a hydrazine based agent, was chosen as reagent for the derivatisation. 

An increase of signal of the derivative hydrocortisone was obtained using both 

an in-solution and on-tissue derivatisation approach; the on-tissue derivatisation 

allowed visualisation of the localisation of the derivatised drug in the epidermal 

layer of ex-vivo skin tissue, when otherwise it could not be detected. More 

experiments are necessary to optimise the derivatisation method to examine a 

further increase of the derivatised analyte using MALDI-MSI. These include 

investigating different derivatisation agents, changing the temperature and time 

of derivatisation reaction as well as choosing the optimal matrix for analysis. 

 

7.5 Metabolic activity in Labskin 

As well as investigating drug absorption in the skin, it is important to investigate 

drug biotransformation in order to assess the pharmaceutical as well as toxic 

effects of pharmaceuticals. In Chapter 6, the metabolic esterase activity of 

Labskin using MALDI-MSI was assessed by employing the approach of 

"substrate-based mass spectrometry imaging" (SBMSI). This approach included 

the treatment of Labskin tissue with 2 substrates carboxylesterase 1 enzyme, 

methylparaben (MP) and methylphenidate hydrochloride (MPH). Methylparaben 

and its metabolite 4-hydroxybenzoic acid (4-HBA) could not be detected in 

MALDI-MSP spectra in positive mode, due to the low protonation efficiency of 

the hydroxyl and carboxyl acid groups. As reported in Chapter 5, to enhance the 

signal a derivatisation approach was investigated using the hydroxyl group as 

target, since it was present in both analytes (MP and 4-HBA) and 2-fluro-1-

methypyridinum p-tolunesulfonate (FMPTS) was selected as a derivatisation 
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agent to give the corresponding N-methylpyridinium ether derivatives. The in-

solution derivatisation showed a significant increase in the signal of MP and 4-

HBA derivatives, whereas an on-tissue derivatisation was not successful. 

Further work is necessary to optimise the on-tissue derivatisation of MP and, 

attempt to observe the metabolite 4-HBA; this includes investigating the amount 

of derivatisation reagent to use for the reaction, the deposition technique, as 

well as time and reaction conditions. Attention in future work could be also be 

focused on investigating different reagents selective for the hydroxyl functional 

group. 

On the other hand, it was possible to investigate the metabolic activity of skin 

using methylphenidate (MPH) and its metabolite ritalinic acid (RA) due to the 

presence of the easily ionisable amine group in the molecules. Using MALDI-

MSI the localisation of probe (MPH) and metabolite (RA) was detected only on 

the epidermal layer of Labskin, suggesting an enzymatic activity of 

carboxylesterase 1 at this level. The results were compared with LC-MS/MS 

analysis performed on the extract of isolated epidermis and dermis of treated 

Labskin. LC-MS/MS data supported MALDI-MSI findings, displaying a peak 

belonging to RA only on the extract of isolated epidermis of Labskin. However, 

more technical and biological repeats are necessary to validate the reliability 

and the reproducibility of the experiment. More probes of carboxylesterase 1 

can be investigated to validate the results. In addition an optimisation step is 

required for both MALDI-MSI and LC-MS/MS techniques to enhance the signal 

intensity, and; finally, a comparison of the metabolic enzyme distribution found 

in Labskin to those found in human skin is required in order to assess the 

pharmacokinetic similarities between these two models. 
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Appendix I 

Table of contents  

1) Cell films  

 

Table displaying the results of the concentration of terbinafine hydrochloride 

(ng) per mm2. Firstly, the time requested for spraying two layers of each 

standard solution was tracked. The flow rate was set at 4 µL/min for spraying all 

standard solutions. By knowing the flow rate and the total time employed for 

spraying, the total volume (µL) applied was calculated for each standard 

solution. The area sprayed was calculated for each standard solution by 

multiplying the coordinates selected for the spraying (x and y). The amount of 

terbinafine (ng) within the volume sprayed was divided by the area sprayed for 

each standard solution and the amount of drug in ng/mm2 was calculated. 
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2) On-tissue application of standards by spraying 

 

Table displaying the results of the concentration of terbinafine hydrochloride 

(ng) per mm2. Firstly, the time requested for spraying two layers of each 

standard solution was tracked. The flow rate was set at 5 µL/min for spraying all 

standard solutions. By knowing the flow rate and the total time employed for 

spraying, the total volume (µL) applied was calculated for each standard 

solution. The area sprayed was calculated for each standard solution by 

multiplying the coordinates selected for the spraying (x and y). The amount of 

terbinafine (ng) within the volume sprayed was divided by the area sprayed for 

each standard solution and the amount of drug in ng/mm2 was calculated. 
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3) On-tissue application of standards by microspotting  

 

Table displaying the results of the concentration of terbinafine hydrochloride 

(ng) per mm2. Firstly, the amount of drug in each spot (3.4 nL) was calculated. 

To determine the spot size, ROI of the terbinafine fragment ion (m/z 141) was 

drawn around the spot at highest concentration (4000 ng/µL) and the area 

(mm2) was extracted by using msIQuant. The area of the spot was 0.09263 

mm2. Assuming the droplet size spot of the Portrait 630 is reproducible, the 

concentration of terbinafine from each spot was divided by the spot area 

(0.09263 mm2) and the concentration of drug was found in ng/mm2. 
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Appendix II 

 

Degradation of the Internal Standard on Tissue 

In Chapter 4 the degradation of the internal standard terbinafine-d7 

hydrochloride in solution has been reported. In this Appendix data from an 

investigation of the rate of degradation of the internal standard terbinafine-d7 

hydrochloride on tissue is reported.  

Materials  

Alpha cyano-4-hydroxycinnamic acid (α-CHCA), phosphorus red, terbinafine 

hydrochloride standard (TBF HCl, MW 327.89) were purchased from Sigma-

Aldrich (Gillingham, UK). The internal standard terbinafine-d7 hydrochloride 

(TBF-d7 HCl, MW 334.93) was obtained by Clearsynth (Maharashtra, India).   

 

Labskin living skin equivalent (LSE) samples were provided by Innovenn (UK) 

Ltd (York, England).  

 

Methods 

For this experiment, 9 microspots of a solution of terbinafine hydrochloride (100 

ng/µL) with terbinafine-d7 hydrochloride (100 ng/µL) in MeOH/H2O (50:50) were 

deposited on the dermis of 6 sections (12 µm thick) of blank Labskin using an 

acoustic robotic spotter (Portrait 630, Labcyte Inc., Sunnyvale, CA). The 

number of cycles for each spot was set to 20 for a total volume of 3.4 nL. Five 

extra spots were applied outside the tissue to give a "drying time" between each 

cycle. The microspotting of all sections was performed at the same time.  

 

The organic matrix CHCA was applied onto all six blank sections by sublimation 

as described in Chapter 2.4.2.1.2 and the sections were kept in the fridge at + 4 

ºC. 
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Instrumentation 

The sections were imaged using a Waters MALDI HDMS Synapt G2 mass 

spectrometer (Waters Coorporation, Manchester, U.K.) equipped with a 

neodynium: yttrium aluminium garnet (Nd:YAG) laser operated at 1 KHz, as 

reported in Chapter 4.6.1. Although all sections were prepared at the same 

time, they were imaged on different days in order to assess the degradation of 

the internal standard on the tissue over time. The ion mobility function of the 

instrument was not enabled in order to use the msIQuant software. 

 

Results  

By plotting the terbinafine-d7 hydrochloride source generated fragment ion peak 

([C11D7H2]
+; m/z 148)  it was possible to visualise each spot applied onto the 

dermis of blank Labskin sections. MsIQuant software was used to define 

regions of interest (ROIs) with equal area (4 pixels) for each spot and from them 

the average intensity for the signal of the terbinafine (m/z 141) and the 

terbinafine-d7 was extracted (Appendix Figure 1). 

 

Appendix II Figure 1.  MALDI-MSI at 60 µm X 60 µm spatial resolution of a 

constant concentration of terbinafine-d7 hydrochloride fragment ion in green 

([C11D7H2]
+; fragment ion; m/z 148) microspotted directly on the dermis of an 

untreated section of Labskin. Volume of each spot = 3.4 nL. 
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To assess the degradation of the internal standard on tissue, the average 

intensity ratio of the unlabelled drug (m/z 141) to its internal standard (m/z 148) 

was extracted from each microspot deposited onto the dermis of six Labskin 

sections and compared (Appendix Figure 2).  

 

 

Appendix II Figure 2. Distribution of the intensity ratio of terbinafine to its 

internal standard (m/z 141/148) extracted from each microspot of the solution 

(terbinafine (100 ng/µL) mixed with terbinafine-d7 (100 ng/µL) in MeOH/H2O 

(1:1)) deposited onto the dermis of six control Labskin sections. The sections 

were microspotted at the same time and imaged on different days. 

 

When the internal standard was kept onto the tissue over time, an increased 

amount of the unlabelled drug, due to hydrogen-deuterium exchange effect, 

was not observed. This was demonstrated by the comparison of the average 

intensity ratio (m/z 141/148) that was found to be similar in all sections. These 

results were in contrast with the data reported in Chapter 4, in which a 

significant loss of the deuterium from the internal standard kept in an aqueous 

solution over time was reported.  

The difference in the degree of internal standard degradation, in solution and on 

tissue, could be attributed to the different environment in which the internal 
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standard is kept. As reported by Chavez-Eng et al. the presence of water 

containing solvents favours the deuterium-hydrogen exchange. The authors 

reported the loss of deuterium from the internal standard of rofecoxib (13CD3-

rofecoxib) dissolved in acetonitrile (ACN) due to the trace of water usually 

present in ACN solvent (Chavez-Eng, Constanzer and Matuszewski, 2002).  

In this case, it is thought that the increased stability of the internal standard 

located on the tissue over time is due to a reduction of the solvent component.  

 

Conclusions 

In this Appendix the evaluation of an isotope exchange on tissue has been 

investigated. The results presented here showed the absence of a deuterium-

hydrogen exchange occurring from the internal standard terbinafine-d7 

hydrochloride on tissue over time. The stability of the internal standard on tissue 

could be explained by the absence of the solvent that is reported to increase the 

efficiency of deuterium-hydrogen exchange process. 
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Appendix III 

 

Appendix III Figure 1. MALDI-MSP spectra acquired in negative mode of 

methylparaben standard (100 μg/mL) mixed with the matrix NEDC. The 

methylparaben peak [M-H]- at m/z 151.04 was not detected using the Synapt 

G2 mass spectrometer instrument (A), whereas it was detected (indicated with 

a star) at low intensity when the Bruker mass spectrometer was used (B). 
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Appendix III Figure 2. MALDI-MS spectra acquired in negative mode of 4-

hydroxybenzoic acid standard (100 μg/mL) mixed with the matrix NEDC. The 4-

hydroxybenzoic acid peak [M-H]- at m/z 137.02 was not detected using the 

Synapt G2 mass spectrometer instrument (A), whereas it was detected 

(indicated with a star) at high intensity when the Bruker mass spectrometer was 

used (B). 
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Appendix IV 

 Scientific Publications 

Russo, C., Lewis, E. E. L., et al. (2018) ‘Mass Spectrometry Imaging of 3D 

Tissue Models.’, Proteomics, 1700462, p. e1700462. doi: 

10.1002/pmic.201700462. 

Russo, C., Brickelbank, N., et al. (2018) ‘Quantitative Investigation of 

Terbinafine Hydrochloride Absorption into a Living Skin Equivalent Model by 

MALDI-MSI’, Analytical Chemistry. American Chemical Society, 90(16), pp. 

10031–10038. doi: 10.1021/acs.analchem.8b02648. 
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 Conference Presentations 

Oral presentations 

Method development for quantitative investigation of Terbinafine hydrochloride 

in a 3D skin model by MALDI-MSI. 38th BMSS Annual Meeting, Manchester, 

UK, 2017. 

 

Method development for quantitative investigation of Terbinafine hydrochloride 

in a 3D skin model by MALDI-MSI. Drug Metabolism Discussion Group, 

Cambridge, UK, 2017. 

 

Tissue specific Regions Of Interests (ROIs).How to generate them? / How to act 

when internal   standard contain unlabeled counterpart?. ASMS Imaging MS 

Workshop. 66th ASMS Conference on Mass Spectrometry and Allied Topics, 

San Diego, CA, USA, 2017. 
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Poster presentations 

Optimisation of imaging the distribution of terbinafine hydrochloride in a 3D skin 

model. BMSS  Mass Spectrometry Imaging Symposium, Sheffield, 2016 (1st 

Poster Prize). 

 

Optimisation of Matrix Condition for the Analysis of the Antifungal Agent 

(Terbinafine hydrochloride) in a Living Skin Equivalent Model. 64th ASMS 

Conference on Mass Spectrometry and Allied Topics, San Antonio, TX, USA, 

2016. 

 

Optimisation of imaging the distribution of terbinafine hydrochloride in a 3D skin 

model. 37th BMSS Annual Meeting, Eastbourne, UK, 2016. 

 

Optimisation of imaging the distribution of Terbinafine hydrochloride in a 3D skin 

model. OurCon IV: Imaging Mass Spectrometry Conference, Ustron, Poland, 

2016. 

 

Method development for quantitative investigation of Terbinafine hydrochloride 

in a 3D skin model by MALDI-MSI. 65th ASMS Conference on Mass 

Spectrometry and Allied Topics, Indianapolis, IN, USA, 2017. 

 

Quantitative Determination of Terbinafine Hydrochloride in a 3D Skin Model by 

MALDI-MSI. OurCon V: Imaging Mass Spectrometry Conference, Doorn, The 

Netherlands, 2017. 

 

Quantitative Determination of Terbinafine Hydrochloride in a 3D Skin Model by 

MALDI-MSI. BMRC/MERI Christmas poster event, Sheffield Hallam University, 

Sheffield, UK, 2017 (1st Poster Prize). 

 

Detection of drug absorption in living skin equivalent models by using MALDI-

MSI. BMSS Mass Spectrometry Imaging Symposium, Sheffield Hallam 

University, Sheffield, UK, 2018 (1st Poster Prize). 
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Detection of drug absorption in living skin equivalent models by using MALDI-

MSI. 66th ASMS Conference on Mass Spectrometry and Allied Topics, San 

Diego, CA, USA, 2018. 

 

A quantitative method for the detection of drug absorption in living skin 

equivalent models using MALDI-MSI. 38th BMSS Annual Meeting, Cambridge, 

UK, 2018. 
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