Sheffield
Hallam _
University

Physical disruption of intervertebral disc promotes cell
clustering and a degenerative phenotype

LAMA, P., CLAIREAUX, H., FLOWER, L., HARDING, 1.J., DOLAN, T., LE
MAITRE, Christine <http://orcid.org/0000-0003-4489-7107> and ADAMS, M.A.

Available from Sheffield Hallam University Research Archive (SHURA) at:
https://shura.shu.ac.uk/25878/

This document is the Published Version [VoR]
Citation:

LAMA, P., CLAIREAUX, H., FLOWER, L., HARDING, I.J., DOLAN, T., LE MAITRE,
Christine and ADAMS, M.A. (2019). Physical disruption of intervertebral disc
promotes cell clustering and a degenerative phenotype. Cell Death Discovery, 5 (1),
p. 154. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk


http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Lama et al. Cell Death Discovery (2019)5:154
https://doi.org/10.1038/541420-019-0233-z

Cell Death Discovery

Physical disruption of intervertebral disc promotes

cell clustering and a degenerative phenotype

Polly Lama@®', Harry Claireaux?, Luke Flower®, lan J. Harding®, Trish Dolan®, Christine L. Le Maitre® and
Michael A. Adams”

Abstract

To test the hypothesis that physical disruption of an intervertebral disc disturbs cell-matrix binding, leading to cell
clustering and increased expression of matrix degrading enzymes that contribute towards degenerative disc cell
phenotype. Lumbar disc tissue was removed at surgery from 21 patients with disc herniation, 11 with disc
degeneration, and 8 with adolescent scoliosis. 5 um sections were examined with histology, and 30-um sections by
confocal microscopy. Antibodies were used against integrin a5betal, matrix metalloproteinases (MMP) 1, MMP-3,
caspase 3, and denatured collagen types | and Il. Spatial associations were sought between cell clustering and various
degenerative features. An additional, 11 non-herniated human discs were used to examine causality: half of each
specimen was cultured in a manner that allowed free ‘unconstrained’ swelling (similar to a herniated disc in vivo),
while the other half was cultured within a perspex ring that allowed ‘constrained’ swelling. Changes were monitored
over 36 h using live-cell imaging. 1,9-Di-methyl methylene blue (DMMB) assay for glycosaminoglycan loss was carried
out from tissue medium. Partially constrained specimens showed little swelling or cell movement in vitro. In contrast,
unconstrained swelling significantly increased matrix distortion, glycosaminoglycan loss, exposure of integrin binding
sites, expression of MMPs 1 and 3, and collagen denaturation. In the association studies, herniated disc specimens
showed changes that resembled unconstrained swelling in vitro. In addition, they exhibited increased cell clustering,
apoptosis, MMP expression, and collagen denaturation compared to ‘control’ discs. Results support our hypothesis.

Further confirmation will require longitudinal animal experiments.

Introduction

Intervertebral discs are pads of fibrocartilage lying
between vertebral bodies in the spine. They allow some
intervertebral movement and distribute compressive
loading evenly on the adjacent vertebral bodies. Discs
comprise a soft centrally located nucleus pulposus sur-
rounded by a tough annulus fibrosus, with a thin hyaline
cartilage ‘endplate’ lying above the disc and each adjacent
vertebral body. Adult discs are normally avascular and
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aneural, and cellularity is very low except in the peripheral
annulus'?.

Disc ‘degeneration’ is common in the human spine. It
has been defined as a cell-mediated response to structural
failure, as the small cell population attempts vainly to
repair an extensive cross-linked>®. This concept has
widespread support®® and explains animal ‘injury’ models
of disc degeneration®’. Macroscopically, a degenerated
disc contains annulus fissures®, and/or endplate defects’,
and microscopic changes include accelerated loss of
water-retaining glycosaminoglycan (GAG) molecules'®,
nerve and blood vessel infiltration'!, cell clustering'?, and
upregulation of matrix-degrading enzymes'®. Major risk
factors include genetic inheritance'®, age, and excessive
physical activity'™'®. Structural features of disc degen-
eration are strongly associated with chronic back pain,
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including radial fissures in the annulus'’ and defects in
the endplates'®, although typical age-related changes
(such as GAG loss and minor bulging) are not'**’.

A disc ‘herniation’ represents a particular type of
degeneration in which part of the nucleus is displaced
into, or through, a radial fissure in the annulus, often
taking some annulus or endplate with it. In life, this can
result from excessive or repetitive mechanical loading®>*,
and discs are intrinsically most vulnerable to herniation in
middle-age, following moderate (but not severe) degen-
erative changes®*”. Herniated tissue can impinge on
spinal nerves and cause distressing symptoms (‘sciatica’)
radiating to the buttock or leg. Disc herniation can initiate
further degenerative changes, because displaced nucleus
and annulus tissue swells by 100-300% within a few
hours, losing much of its GAGs*?*, Blood vessels and
nerves grow into this GAG-depleted and free-swelling
tissue especially inside annulus fissures®'"'*, Inflamma-
tory cells* and bacteria®® can similarly invade a herniated
disc and contribute to discogenic pain. Because these
adverse changes arise from initial swelling of displaced
tissue, they do not occur to such an extent in discs that
degenerate in situ without herniating >3,

Other characteristic changes in disc herniation, parti-
cularly cell clustering and upregulation of matrix-
degrading enzymes, may also be consequences of initial
tissue disruption and swelling. They follow disc injury in
animal models®?, although the small and young animals
used in such experiments are not always a reliable guide
to disc degeneration in humans**??, for whom no
equivalent data are available. Therefore, we sought evi-
dence that in mature human intervertebral discs, matrix
disruption and swelling can disturb cell-matrix binding
and lead to cell clustering, together with expression of a
degenerative cell phenotype.

Two complimentary studies were performed. The first,
on surgically retrieved human discs, aimed to show close
and consistent spatial associations between matrix fis-
sures, focal GAG loss, decreased cell-matrix binding, cell
clustering, and expression of matrix-degrading enzymes.
The second study involved tissue culture and aimed to
provide experimental evidence of a causal chain between
some of these features.

Results
Live-cell imaging in explants

During the first 6 h, unconstrained disc tissues swelled
rapidly, increasing the size of unconstrained disc explant
(viewed area) by ~100-150%. The swelling capacity of the
unconstrained and constrained IVD tissue was assessed
after 36 h by using the DMMB analysis which measured
the amount of GAG released during the process of tissue
swelling in the two conditions IVD tissue were placed.
Rapid swelling and release of GAGs prevented clear
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visualisation of cell nuclei. Tissues constrained by the
perspex ring showed minimal swelling. After 12h,
unconstrained tissue swelling slowed and allowed clearer
visualisation of cells and matrix. Time-lapse recording
showed rotational cell movements occurring at irregular
time points. Clusters of blue-stained cell nuclei were more
common in unconstrained than constrained tissue, but
this observation could not be quantified reliably within
the cubed tissue explants. At 36 h, unconstrained tissue
shrunk after losing its GAG content showing a loss of
volume which complimented DMMB analysis, cell/tissue
movements declined during this process and a typical
time-lapse recording from an unconstrained sample are
shown in the Supplementary Data.

DMMB assessments of GAG loss from explants

Curve-fitting of data from standard solutions yielded a
linear calibration, with r*=0.913 (P<0.001). This was
used to show (Table 1) that unconstrained explants were
free to swell and release almost twice as much GAGs into
the medium than constrained explants (P < 0.01).

Other comparisons of constrained and unconstrained
explants

Histological evaluations after 36 h (Fig. 1) indicated that
unconstrained tissues contained more fissures and tears,
lost more GAG (especially near fissures and surfaces), and
contained slightly more cell clusters, although this last
result did not reach significance (Table 1). Unconstrained
tissues exhibited a loss of matrix integrity that persisted as
wide displacements between collagen lamellae, with clear
loss of toluidine blue staining (Fig. 1b—e), which has a
high affinity for staining GAGs*"*’. In contrast, con-
strained samples, at the inner annulus/nucleus junction
showed closely packed collagen lamellae, well-aligned
fibroblasts, and rounded inner annular cells (Fig. 1la—d).
Confocal and immunostaining analysis showed increased
expression of matrix metalloproteinase 1 (MMP-1) in
unconstrained explants compared to constrained (Table
1). MMP-1 was located within the cytoplasm, cell mem-
branes, and pericellular matrix, suggesting its existence in
both activated and latent forms (Fig. 2d—f). In both con-
strained and unconstrained tissues, cells and cell clusters
positive for MMP-1 were mostly located within disrupted
and GAG depleted regions (Figs. 2d—f, 3a—d). Exposed
integrin a5B1 receptors in 30-pm-thick sections were
twice as frequent in unconstrained tissue as in con-
strained (Table 1). Groups of these exposed receptors
often surrounded a cell (Fig. 3¢)*®% in swollen uncon-
strained tissue but they were less evident in constrained
tissue (Fig. 3d). Denatured collagen (Types I and II) was
mostly located around the periphery of unconstrained
disc tissue that was free to swell and disrupt itself (Fig. 3e),
and the area occupied by denatured collagen (Fig. 3f) was
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Table 1 Summary of numerical results.
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Variable (scale/units) Explant— Explant— Variable (scale/ Non-degenerated (5) Herniated (6)
constrained (2) unconstrained (3) units)

Tears (0-3) 1.3 (0.3)* 1.9 (0.2)* Tears (0-3) 1.1 (0.3)** 2.2 (1.5)**
GAG loss (0-3) 1.4 (0.4)* 2.0 (0.2)* GAG loss (0-3) 1.3 (0.5)* 2.1 (0.4)*
Cell clustering (0-5) 1.2 (03) 1.5 (0.6) Cell clustering (0-5) 1.2 (0.9)* 2.5 (1.0)*
GAG loss (DMMB pl/ml) 0.048 (0.031)** 0.090 (0.030)** Blood Vessels (0-3) 0 (0)** 1.3 (1.1)**
MMP-1 (cells/mm?) 14.8 (12.0) 34.5 (29.2)* MMP-1 (cel/mm?)  13.5 (9.7)** 99.8 (71.5)**
Integrin a5@31 (cells/mm?) 17.5 (15.6)* 33.4 (20.4)* MMP-3 (cell/mm?) 11.1 (11.0)** 84.4 (79.1)**
Denatured collagen |, I 820 (1201)** 7716 (5426)** Caspase-3 (cell/mm?) 10.0 (6.3)** 67.2 (45.2)**
(area pm?)

Values refer to the mean (STD). Significant differences are shown in bold, with significance levels denoted

#Columns 2 and 3 compare constrained and unconstrained explants
bColumns 5 and 6 compare non-degenerated (‘control’) and herniated discs
*P < 0.05

**P < 0.01

Toluidine
blue

Scale bar =100 um.

\

Figure 1 Histological comparisons of np/iaf regions after 36 h with haematoxylin & eosin (H&E) and toluidine blue dye. Constrained (a-d)
and unconstrained disc (b—e) and its comparisons with herniated discs (c—f). Arrows show cells and clusters, especially around disrupted regions.

Herniated disc

increased ninefold in unconstrained compared to con-
strained explants (Table 1).

Comparison of herniated, degenerated, and scoliotic
(‘control’) discs

Differences between non-degenerated (control) and
herniated tissues were similar to differences (described
above) between constrained and unconstrained explants
(Figs. 4, 5). This was confirmed by semi-quantitative
histology scores, which clearly showed herniated discs
with increased matrix tears, GAG loss, cell clusters, and
blood vessels (Table 1, columns 5 and 6). Large cell
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clusters contained as many as 60 cells within herniated
discs (typically 5-30 cells). They were located near the
nucleus/inner annulus junction, especially in regions with
disrupted lamellae or fissures and loss of GAG staining
(Figs. 1c—f, 2a—c). Large cell clusters were not common in
scoliosis (‘control’) discs. MMP-1 and MMP-3 immuno-
positive cells and cell clusters were abundant in fissured
and disrupted regions in herniated and degenerated discs
(Fig. 2d—j) in comparison to (scoliosis) controls, and thus
were comparable to unconstrained explant tissues (Fig. 5).
Caspase-3 activity was seen in cell clusters and in single
cells (Fig. 2k-m) and was much more common in
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Figure 2 Immunohistochemistry images comparing herniated, degenerated, and non-degenerated (control) discs. Five-micrometre-thin
sections stained with H&E to show cell clusters in three conditions (a-c). Red-staining antibodies refer to: MMP-1 (d—f); MMP-3 (h-j); Caspase-3 (k-m).
Scale bar =50 um.

herniated discs compared to non-degenerated controls
(Table 1) and was similar to observations made in con-
strained and unconstrained explants (numerical data
excluded).

Discussion
Summary of results

Human intervertebral disc explants swelled rapidly in
saline, distorting the matrix and creating relative move-
ment between disc cells. After 36 h, free-swelling explants
showed greater loss of GAGs, increased exposure of
integrin binding sites, greater production of MMP-1 and
MMP-3, and increased collagen denaturation, compared
to explants whose swelling was partially constrained.
Comparisons between herniated and non-degenerated
(scoliotic) disc tissues showed differences that resembled
those between ‘free swelling’ and ‘partially constrained’
explants (Figs. 2, 3), suggesting close parallels between
the processes of disc herniation and unconstrained
swelling. In addition, herniated discs showed more cell
clustering and apoptosis than even degenerated discs.
Overall, results indicate that physical disruption of the
disc matrix can lead to focal swelling, GAG loss,
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disturbed cell-matrix binding, cell clustering, and a
degenerative cell phenotype.

Justification for primary antibodies used

MMPs 1 and 3 play an essential role in local proteolysis
of the extracellular matrix, including collagens''. MMPs 1
and 3 in particular are associated with disc collagen
damage®'*°. Collagen types I & II are abundant in the disc,
and their denaturation is indicative of proteolytic cleavage’
and mechanical overloading®®. Uncoiled, fragmented, and
denatured collagens can also initiate inflammation in
wounded tissue?®. Therefore, increased collagen dena-
turation following free swelling can be interpreted as
indicative of matrix disruption and a degenerative phe-
notype”®'. Integrin a5B1, a receptor for fibronectin,
mediates interactions between the cell surface (through
actin filaments) and the immediate surrounding matrix,
and is involved in the initiation of mechanotransduction in
intervertebral disc cells’”. Identifying exposed a5B1
receptors in free swelling tissue is therefore indicative of
disrupted cell-matrix interactions and may indicate a
degenerative cell phenotype. Caspase-3 is involved in the
activation cascade in apoptosis, so increased caspase-3
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activity can act as a marker for DNA fragmentation and
apoptosis in injured and degenerated disc tissue™.

Strengths and weaknesses of the study
Comparisons between herniated, degenerated, and non-
degenerated (scoliotic) discs benefited from the use of

Constrained

Unconstrained

MMP -1

Integrin
a5p1

Collagen Type Il (Unconstrained)

Figure 3 Immunofluorescence staining of thick (30 um) sections
viewed on a confocal microscope, comparing constrained (right)
and unconstrained (left) disc explants. Red-staining for antibodies
refer to: MMP-1 (a, b), integrin a5B31 (c, d), and denatured collagen
type Il (e). Cell nuclei are stained blue with Dapi. In f, ‘Volocity’ image
analysis software was used to measure the areas of denatured
collagen, which colour coded and analysed positive stained area in
30-um-thick section as clear blue, red, green, and blue colour. Scale
bar =50 um.
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human tissues that were believed to be painful, and they
were examined using techniques (including immuno-
fluorescence and confocal microscopy) that yielded high-
resolution images of degenerative features, including
exposed integrin binding sites (Fig. 3), deep within the
tissues. Because this comparison was cross-sectional, it
could only infer causation from spatial associations.
However, the controlled experiment on disc explants,
although limited in scope, showed that unconstrained disc
swelling can disturb integrin binding and lead to
increased expression of matrix-degrading enzymes, pro-
viding support for two key steps in our hypothesis. The
perspex ring reduced but did not eliminate disc swelling,
but this is not a problem because vertical disc swelling in
life is only modified (but not eliminated) by applied
mechanical loading®*. Elimination of disc swelling would
have required the perspex ring to restrain the disc spe-
cimens on all sides, and this would have interfered with
metabolite transport to cells within the explant®®, The
DMMB assay>” provided precise measures of GAG release
which complemented the semi-quantitative grading of
GAG loss used in the cross-sectional comparison of
herniated and degenerated discs. Similarly, the Volocity
image analysis software allowed precise quantification of
several histological variables, including collagen
denaturation.

Relationship to previous work

Cell clusters are common in degenerated discs, espe-
cially those that are herniated®®, and are associated with
cell proliferation'**” and with progenitor cells*®. Cluster
formation can be influenced in vitro by cell density and
availability of nutrients®. Cell clusters may represent a
repair response because they are usually found within
disrupted nucleus or inner annulus tissue® where in-
growing nerves and blood vessels also are present®'.
Clustering cells increase the expression of matrix-

( a b

LN

-

—

Surgically S
removed Perspexring Constrained Unconstrained
samples tissue after tissue after 36
36 hours hours

Figure 4 Visual comparisons between constrained and unconstrained disc tissue. a Surgically removed intervertebral disc tissue. b Perspex ring
used for constraining the 5 mm? disc tissue blocks. ¢ Disc tissue in the perspex ring as ‘constrained tissue’ that was refrained from swelling for 36 h. d
‘Unconstrained’ free swelling disc after 36 h.

\. J
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Figure 5 Histological variables are compared between
‘constrained’ and ‘unconstrained’ disc explants, and also
between ‘non-degenerated’ (control) and ‘herniated’ tissues.
Variables are GAG loss (scored 0-3), matrix tears (0-3), and cell
clustering (0-5). Error bars indicate the SEM. Comparisons suggest that
the processes of disc swelling in vitro and herniation in vivo have
similar effects on tissue histology. Summary of significance between
the variables assessed is shown in Supplementary Table 1.

Herniated

GAG's loss
u Tears

u Cell-clusters

degrading enzymes'"*"*! and a relatively high proportion

of them are senescent*>**. A previous comparison of
degenerated and herniated disc tissues showed the latter
to have greater GAG loss, neovascularisation, innervation,
cellularity, and expression of MMPs than discs that
degenerated without herniating®".

Explanation of results

The living human spine is habitually loaded by gravity
and/or by tension in muscles and ligaments***!
natural tendency for intervertebral disc GAGs to swell up
in tissue fluid® is largely restrained. This balance between
tissue swelling and mechanical restraint explains why
diurnal variations between night-time rest and daytime
activity cause a 20% variation in disc hydration**. Disc
herniation, however, permanently unloads any displaced
tissue fragments, allowing them to swell by 200-300% in
just a few hours**>. Gross swelling is typically followed
by rapid shrinking during the following days as GAGs (or
their fragments) diffuse out of the disrupted and swollen
tissue. At a cellular level, these changes may slow down
anabolic processes such as GAG synthesis****™*° and
upregulate catabolic processes including the synthesis of
matrix-degrading enzymes such as the MMPs***’. A
combination of focal matrix distortion and activated
MMPs could cause some disc cells to lose their weak
integrin binding: for example, in the present study
exposing receptors for a5p1 integrin (Fig. 3c) which bind
disc cells to fibronectin in the matrix*’. Impaired binding
could explain altered integrin mechanotransduction in
degenerated discs®®, and also the presence of fibronectin
fragments in the matrix which have been shown to induce
catabolic changes in disc cells**. Cell-cell binding can
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promote clustering in some disc cells***° so it is con-

ceivable that disturbed cell-matrix binding could have a
similar effect. Cell clusters have the potential to regen-
erate and repair a damaged disc, although the heavily
cross-linked matrix in adult human discs®® may frustrate
even the largest clusters and lead instead to increased cell
senescence®”*® and apoptosis as represented here by the
cell death marker Caspase-3°>*°. Increased antibody
binding to denatured collagen in unconstrained (or her-
niated) tissue (Fig. 3e, f) may be attributable to MMPs
(and possibly abnormal swelling) degrading the triple
helical regions of fibrillar collagens®®, and to increased
exposure of collagens to MMPs following GAG loss.

Clinical relevance

This study suggests how focal damage to an inter-
vertebral disc might lead to loss of proteoglycans, collagen
disruption and denaturation, and disturbed cell-matrix
binding. These changes in turn could lead to cell clus-
tering, and a degenerative disc cell phenotype (Fig. 5).
Disc damage may be hard to avoid, especially in some
occupations, but it should be possible to modulate cellular
responses to this damage, and in particular, to block the
formation of large cell clusters or the matrix-degrading
enzymes synthesised by them.

Conclusions

Disrupted and herniated disc tissue swells and loses
GAGs. The resulting distortion of the matrix can disturb
cell-matrix binding, leading to cell cluster formation and a
degenerative disc cell phenotype.

Materials and methods
Specimen collection

After ethical clearance (NReS, Frenchay Hospital, Bris-
tol, UK), disc samples were removed at surgery from 11
patients undergoing spinal fusion for back pain believed
to originate from non-herniated discs. Additional disc
specimens were obtained from 40 patients undergoing
surgery at Southmead, Frenchay or Spire hospitals in
Bristol: 21 of these patients had a disc herniation, 11 had
severely degenerated but non-herniated discs, and 8 had
adolescent idiopathic scoliosis (AIS) with spinal curvature
<48°. These latter discs served as young ‘non-degenerated’
controls. An anonymous clinical data sheet was obtained
for each patient, as well as an MRI scan which allowed
Pfirrmann** grade of disc degeneration to be assessed.
Clinical data are summarised in Supplementary Table a.

Tissue culture

Each of the 11 non-herniated samples was divided into
two small tissue blocks (~5mm?®), which were cultured
(37°C, 5% CO,) in a Mat-Tek petridish containing Dul-
becco’s Modified Eagle Medium (DMEM) with 5ml/l
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penicillin (Thermo Fisher Scientific, UK) and 2.5 ml/l
Gibco amphotericin B (Thermo Fisher Scientific, UK).
One block of each pair was allowed to swell without
restraint; the other was restrained in a sterile perspex ring
(Fig. 4a—d) that allowed vertical but not radial swelling,
which is similar to the restraint imposed by a healthy
annulus. The perspex rings were provided by Professor
Christine Le Maitre, Sheffield Hallam University, UK>?,

Live cell imaging

Nuc-Blue live cell nuclear stain (Invitrogen, UK) was
applied to the constrained and unconstrained tissue
blocks in order to visualise cell nuclei. A phase contrast
background was used to locate cell nuclei within the
surrounding matrix. Tissue blocks were observed under
20x objective in a wide-field microscope with incubator
for maintaining the standard culture conditions. ‘Volocity’
3D image analysis software was used to record time-lapse
video of all disc samples at 6, 12, and 36 h.

DMMB assay for tissue GAG loss

The total GAG content of the tissue medium following
constrained or unconstrained swelling was quantified
using the 1,9-di-methyl methylene blue (DMMB) colori-
metric assay®”. The assay served as a surrogate measure
for assessing tissue swelling, as intervertebral disc has
high content of GAG, it is known that structural changes
result in degeneration of disc which is preceded and
accompanied by loss of GAG’s. In unconstrained explants,
GAGs readily leach out into the tissue medium when they
lose their structural integrity after rapid swelling. Thus, to
assess the loss of GAGs, bovine chondroitin sulphate
standards from 0 to 300 pl/ml concentrations were used
for calibrations. 10 ul of the chondroitin sulphate was
added to 100 pl of the DMMB dye with suitable blanks. A
total of 2.5 ml of the constrained and unconstrained tissue
medium collected after 36h of the experiment was
digested with papain and diluted in phosphate buffer with
ethylene-di-amine tetra acetic acid (EDTA). Formic acid
was used to adjust the pH to 3. Ten microlitres of the
digested tissue medium was then mixed with 100 pl of
the DMMB dye. Five minutes after adding the DMMB
dye, absorbance was measured at Asysnm with a
spectrophotometer.

Histology

All tissues samples, including constrained and uncon-
strained explants after swelling, were snap frozen by
immersing in chilled iso-pentane that was cooled with
liquid nitrogen. This step minimised the risk of tissue
damage from freeze fracture. Samples were then stored at
—80°C. When required, the samples were embedded in
optimal cutting tissue medium before sectioning in a
Leica CM1900 cryostat (Heidelberger, Nussloch,
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Germany) at a thickness of 5 pm. Thin sections were post-
fixed in 10% neutral buffered formalin. Haematoxylin &
eosin (H&E) stain was used for scoring degenerative
changes, while toluidine blue stain was used for assessing
GAG (proteoglycan) loss. Three fields of views from each
sample were graded according to the modified Boos
method, using ordinal scales of 0-3 or 0-5%°*,

Immunohistochemistry and immunofluorescence

Parts of each snap-frozen tissue block (including con-
strained and unconstrained explants) were sectioned at
5 um and 30 um thickness in the same cryostat, and post-
fixed in acetone for 10 min at —20 °C. Both thick and thin
sections were used to facilitate the identification and
follow up on fine linear matrix structures, and cell clus-
ters, respectively.

Thick sections were incubated overnight at 4 °C, washed
in PBS, and non-specific binding sites were blocked by
application of donkey serum (Sigma Aldrich, UK) at 4°C
for 1h, at 1:5 dilutions, in PBS. Sections were washed
again in PBS and the following primary antibodies were
applied: MMP-1 (Abcam, UK), integrin o581 (Abcam,
UK), denatured collagen types I and II (EndMillipore,
USA), and caspase-3 (Invitrogen, UK). All antibodies were
used at 1:50 dilutions in PBS, and PBS alone was used for
controls. Choice of primary antibodies is justified in the
Discussion. Donkey anti-mouse alexa 594 secondary
antibody (Invitrogen, UK) was applied for 1h at 1:250
dilution, and auto-fluorescence was quenched using
0.01% Sudan Black B. Nuclei were counter-stained with
Vecta Shield Dapi (Vector, UK).

Thin sections were fixed in neutral buffered formalin,
blocked in rabbit serum (Dako, UK) and washed in PBS.
Sections were then applied with primary antibodies to
MMP-1 (Abcam, UK) and MMP-3 (Millipore, UK) at 1:50
dilutions in PBS, and with caspase-3 (Invitrogen, UK) at
1:100 dilutions in PBS. Antibodies were omitted from
controls. Thin sections were incubated overnight, washed
in PBS, and incubated with biotinylated rabbit anti-mouse
secondary antibody (Dako, UK) at 1:200 dilutions for 1 h.
Following washes in three changes of PBS,
antigen—antibody signal was amplified with extra avidin
alkaline phosphatase conjugate (Sigma Aldrich, UK)
applied at 1:100 dilution for 1 h. After three more rinses in
PBS, fast red chromogen (Sigma Aldrich, UK) was applied,
diluted in distilled water. Nuclei were counterstained with
Mayer’s Haematoxylin, and sections were mounted with
aqueous faramount mounting medium (Dako, UK).

Quantitative analysis of confocal microscope images

30 um sections were sequentially scanned with a Leica
SP5-AOBS confocal laser scanning microscope attached
to a Leica DM 16000 inverted epifluorescence micro-
scope. To prevent crosstalk between different secondary
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fluorophores, and photo bleaching, a 4-line average was
used for each image. Four thick sections were analysed for
each tissue block (11 constrained, 11 unconstrained).
Volocity 3D image analysis software (Perkin Elmer, UK)
was used to count the number of positively stained cells,
to identify exposed integrin receptors, and to calculate the
total cross-sectional areas occupied by denatured collagen
types I and I

Eight thin (5um) sections were analysed from each
block. Positively stained cells were counted using a Leica
DM6000B fluorescence microscope (Leica, UK) attached
with an Olympus DP72 12.8 megapixels camera with a
fixed frame view of 650 um x 500 um. The number of cells
and cell clusters, which stained for MMP1, MMP3, and
caspase-3, were counted across the entire section at 20x
magnification, following a frame by frame shift from left
to right. An average of eight fixed frames were viewed per
thin section. Total numbers of immunoreactive cells were
counted manually and re-analysed using the volocity
image analysis software.

Statistical analysis

Scores from individual fields of view and sections were
averaged to yield quantitative data. Differences between
herniated, degenerated, and scoliosis tissues were assessed
by ANOVA. Constrained and unconstrained tissues were
compared using matched-pair ¢-tests. All the statistical
tests were performed using SPSS software v.18, and a P <
0.05 was considered statistically significant.
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