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Abstract
Strain elastography was used to monitor response to neoadjuvant chemotherapy (NAC) in 92 patients with biopsy-
proven, locally advanced breast cancer. Strain elastography data were collected before, during, and after NAC. Relative
changes in tumor strain ratio (SR)were calculated over time, and responder statuswas classified according to tumor size
changes. Statistical analyses determined the significance of changes in SR over time and between response groups.
Machine learning techniques, such as a naïve Bayes classifier, were used to evaluate the performance of the SR as a
marker forMiller-Payne pathological endpoints.With pathological complete response (pCR) as an endpoint, a significant
difference (P b .01) in the SR was observed between response groups as early as 2 weeks into NAC. Naïve Bayes
classifiers predictedpCRwith a sensitivity of 84%, specificity of 85%, andareaunder thecurveof 81%at thepreoperative
scan. This study demonstrates that strain elastography may be predictive of NAC response in locally advanced breast
cancer as early as2weeks into treatment,withhighsensitivity and specificity, granting it thepotential tobeused for active
monitoring of tumor response to chemotherapy.
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troduction
ccording to the Canadian Cancer Society, an estimated 99,500
omen in Canada were diagnosed with cancer in 2016, with 26% of
ese cases being breast cancers. Breast cancer is the most common
ncer type diagnosed in females, with 1 in 9 Canadian females
timated to receive a diagnosis in their lifetime [1]. Approximately
% of breast cancer cases diagnosed in Canada will be locally
vanced breast cancers (LABCs) [2]. LABC refers to the most
vanced breast tumors with the absence of any distant metastases
]. Although the exact definition of LABC tends to vary across the
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Table 1. Patient Clinical Information.

Patient and Tumor Characteristics p C R
( n =
21)

N o n -
p C R
(n = 71)

Age (median, years) 55 50
Sex Male 1 1

Female 20 70
Menopause status Premenopausal 5 39

Postmenopausal 13 26
Perimenopasual 1 2
N/A 2 4

Pretreatment tumor size (largest diameter, cm) 3.53 ±
1.75

5 . 4 6 ±
2.53

Posttreatment tumor size (largest diameter, cm) N/A 2 . 9 7 ±
3.18

Molecular subtype Luminal 9
(10%)

52 (57%)

Basal-like 7 (8%) 14 (15%)
HER-2 positive 5 (5%) 5 (5%)

Stage
Primary tumor (T) T1 1 (1%) 1 (1%)

T2 8 (9%) 21 (23%)
T3 3 (3%) 20 (22%)
T4 0 1 (1%)
T4b 0 1 (1%)
T4d 0 2 (2%)
Unavailable 9

(10%)
25 (27%)

Node involvement (N) N0 2 (2%) 13 (14%)
N1 9

(10%)
29 (32%)

N2 0 3 (3%)
N3 1 (1%) 0
Unavailable 9

(10%)
26 (28%)

Chemotherapy regimen
FEC-D (fluorouracil, epirubicin and cyclophosphamide

followed by docetaxel)
6 (7%) 33 (36%)

AC-T (doxorubicin (Adriamycin) and cyclophosphamide
followed by paclitaxel (Taxol))

1 1
(12%)

34 (37%)

TC (paclitaxel (Taxol) and cyclophosphamide) 1 (1%) 4 (4%)
AC (doxorubicin (Adriamycin) and cyclophosphamide) 1 (1%) 0
AC-D (doxorubicin (Adriamycin) and cyclophosphamide

followed by docetaxel)
1 (1%) 0

Carboplatin and paclitaxel (Taxol) followed by
doxorubicin (Adriamycin) and cyclophosphamide

1 (1%) 0

Patient demographics, tumor characteristics, and treatment details prior to and after NAC. Patients,
whose data are presented in this table, were not consecutively recruited.
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erature, the U.S. National Comprehensive Cancer Network defines
as a tumor greater than 5 cm with regional lymphadenopathy, a
mor which involves the skin or chest wall regardless of size or nodal
atus, or the presence of regional lymphadenopathy irrespective of
mor stage [4]. LABC is typically inoperable and, despite aggressive
eatment, is associated with poorer prognosis than earlier-stage breast
ncer due to eventual metastasis [5].
The current recommended standard of care for LABC includes
oadjuvant chemotherapy (NAC), usually followed by modified
dical mastectomy, and then radiation therapy. When first-line
oadjuvant chemotherapy fails to achieve a suitable response, other
eatments must be considered, such as second-line therapy,
rmonal therapy, or immediate surgery [6]. The ideal outcome of
oadjuvant treatment, however, is pathological complete response
CR), in which there is no residual invasive tumor or node
etastases, although in situ carcinoma may still be present [7]. The
aluation of pCR after neoadjuvant therapy is associated with better
tes of long-term survival in breast cancer [8]. Additionally, pCR or
fficient downstaging in response to NAC may allow breast-
nserving surgery to be used as an alternative to radical mastectomy
part of the treatment regimen [9]. Knowledge of how a tumor is
sponding to treatment is essential to guiding further treatment
tions. When tumor response is ideal, more conservative treatment
tions may be explored, as in the case of opting for breast-conserving
rgery over radical mastectomy. Conversely, when a tumor fails to
spond to NAC, early knowledge of this could be used to halt
effective chemotherapy so that new chemotherapeutic options may
pursued and better tumor response may be achieved prior to

rgery. Currently, the response to NAC is determined pathologically
the time of surgery. Consequently, NAC may be optimized by

nding a modality which can gauge treatment response during NAC
ther than following its completion.
Currentmethods of monitoring tumor response toNAC includeMRI
d 18F-FDG PET/CT [10–13]. Sonography, mammography, and
lpation have also been used tomeasure response to neoadjuvant therapy
ith a lesser degree of success [14]. This study evaluated compression
astography as a means of monitoring tumor response to NAC. Previous
udies have indicated that there is a correlation between changes in tumor
echanical parameters and a favorable response to NAC [15].
ompression elastography measures deformations in a tissue in response
a static compression applied by the sonographer through the

trasound transducer [16]. Within a region of interest (ROI), the tissue
rain (ɛ), which is the change in length per unit length of tissue, can be
antified by measuring the tissue displacement across multiple frames
ter a stress has been applied by the operator [16,17]. Assuming the stress
) being applied by the operator is constant across all scans, Hooke's law
= Eɛ) can be used to derive Young'smodulus (E) (i.e., elasticmodulus)
tissue. Young's modulus is representative of the tissue's elasticity and its
ility to resist deformation in the presence of stress.
Ultrasound imaging has the advantage of being portable, accessible,
d inexpensive. Elastography has already been evaluated in terms of its
ility to detect prostatic, breast, and thyroid lesions [18–20]; as well as
ving utility in nononcologic practice. Shear-wave elastography,
other ultrasound-based modality, also seeks to determine a tissue's
iffness. The difference is that it uses acoustic radiation force to
troduce a disturbance as opposed to manual compression, and
easures the speed of propagation of shear waves as opposed to the
gree of tissue deformation [21]. Both methods have demonstrated
mparable performance in improving the diagnostic abilities of B-
ode ultrasound [21]. Monitoring response to neoadjuvant chemo-
erapy using elastography would prove less expensive and be more
ailable than the current standards of MRI and PET/CT.
Here, we investigate the use of ultrasound elastography to monitor
AC-induced changes in tumor stiffness. The study objective was to
fferentiate between pathological complete responders (pCRs) and
npathologic complete responders (npCRs) within a sample of 92
ABC patients. We collected compression ultrasound data prior to
e start of NAC treatment and at multiple times throughout the
eatment leading up to surgery. A comparison of the elastrography
sults with pathology acquired postoperatively indicates that the
rain ratio (SR), as calculated in this study, can differentiate
sponders from nonresponders.

aterials and Methods

atients and Treatment

This study was approved by the institution's research ethics board.
articipants were informed of the study details prior to signing a
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ritten consent. Ninety-two (92) patients with biopsy-confirmed
ABC were enrolled in this study. Of the 92 LABC patients, 61
tients had luminal breast cancer, 21 had basal-like breast cancer,
d 10 had human epithelial growth factor receptor-2 positive
ER2+) type breast cancer. Twenty-one patients exhibited a pCR
d 71 exhibited npCR. As part of the patients' usual care,
etreatment assessment involved a physical examination, breast
aging (x-ray mammography and conventional ultrasound), and
ssue biopsy for diagnostic workup. All participants were given
andard treatment as per institutional guidelines. Patients received
AC, consisting of a combination of anthracycline and taxane-based
ugs, spanning over approximately 18 weeks (Table 1). Patients who
sted HER2+ received trastuzumab during taxane chemotherapy.
llowing NAC, patients underwent a radical mastectomy and
thological assessment.

ssessment of Tumor Response
As part of the patients' usual standard of care, a board-certified
east pathologist examined slide-mounted mastectomy specimens,
hich were stained using hematoxylin and eosin. For the study here,
mor characteristics, such as tumor size, histologic subtype, and
olecular features [estrogen receptor (ER), or HER2], were reported.
ecimens were examined microscopically for pathological response,
d this was in accordance with institutional guidelines. Results of the
thological response were recorded in the patient's medical record.
tients were classified using modified-RECIST criteria based on
mor size change [22]. Briefly, these criteria were categorically scaled
tween an RS (response score) of 1-5, where RS1 demonstrates no
ange or reduction in size, RS2 indicates minor reductions in size
p to 30%), RS3 demonstrates 30%-90% reduction in tumor size,
S4 indicates significant reduction in tumor size (more than 90% size
duction, though not a complete response), and RS5 indicates a
mplete absence of invasive tumor on imaging and confirmed via
thological examination. This incorporated standard, size-based
porting but in addition allowed the discernment of patients with a
bjectively very good response from those with a complete response.
r statistical purposes of the receiver operating characteristic (ROC)
rve, patients were categorized as either pathologically complete
sponders (RS5) or non–pathologically complete responders (RS1-
. Nodal response was not included in the analysis which focused on
imary tumor response only.

aging Study
Ultrasound elastography data were collected prior to the start of
emotherapy (baseline), during treatment (weeks 1, 4, 8, and 12, relative
the start of NAC), and a final scan 1 week prior to surgery (preop). A
nix RP system (Ultrasonix, Vancouver, Canada) with an L14-5, 60-
m transducer was used to collect brightness-mode (B-mode) images and
astography data (at a nominal center-frequency of 7 MHz). All imaging
ta in this study were collected by the same research sonographer. The
nographer followed standardized imaging protocols and maintained a
nsistent compression force during the scan series. To ensure consistency
tween imaging time points, the position and direction of the ultrasound
ansducer were noted in the patient's clinical notes at the first imaging
ssion and replicated at each subsequent session. Strain data were
llected using quasistatic compressions onto the breast to measure the
lative tissue distortions. The compression applied onto the subject's
east was adjustedwith reference to a built-in indicator on the ultrasound
vice that estimates the applied deformation [23]. Static scans were
quired at three fixed points that sampled tumor tissue and two
ditional points within the adjacent fatty breast tissue (nonmalignant) as
ntrols. The focal depth (fd = 1.75 cm) and scan size were kept constant
teral length = 6 cm, axial length = 4 cm) during the imaging series.
mpirical strain values were captured digitally and displayed on a 256-
lor map scale. Ultrasound B-mode images were co-registered to the
astography color maps to guide tumor segmentation.

lastography Analysis
Strain images were generated by the Ultrasonix native motion
timation algorithm. This method relies on a one-dimensional,
rmalized, cross-correlation where the shift in the peak of the cross-
rrelation curve is used to estimate tissue deformation [24,25]. The
timated strain values were further analyzed offline using a C++-based
ftware (Evrika Research Technologies, Toronto, Canada) to calculate
sue SRs based on the Ultrasonix elastography data. A breast radiologist
as consulted for tumor segmentation based on the B-mode images
tained within each scan.
For analysis, ROIs were selected from the tumor and the
rrounding normal breast tissue on B-mode images. A dynamic
OI corresponding to the tumor was identified using a low-pass
tered threshold to detect the tumor edge in the pretreatment scan.
hese ROIs were then adjusted for subsequent scans based on the
ape and size of the tumor. Next, B-mode ROIs were co-registered
ith the strain maps. Finally, the mean strain values within the tumor
OIs and normal breast tissue ROIs were calculated (Figure 1). SRs
ere calculated by dividing the mean strain measured in an ROI
ntained within normal breast tissue by the mean strain measured in
ROI contained within tumor tissue as in Eq. [1] [26,27] below.

¼ Mean strainBreast normal tissue ROI;dx cmð Þ
Mean strainTumor ROI; dx cmð Þ

ð1Þ

here dx(cm) represents ROIs selected at equal depths within the
sue. The mean SRs were calculated over the whole tumor, and
anges over time were computed as percentage decrease (%) relative
the baseline.

atistical Analysis
Statistical analysis was conducted to test for significance in
easured changes in strain parameters (strain) over time using a
peated-measures ANOVA (95% CI, α = 0.05). Additionally, pCR
d npCR groups were compared for statistically significant
fferences in SR% decrease at each time period using independent
tests. Differences were considered significant at an alpha level of
05 or less (P b .05). Further analysis comparing responders to
nresponders was also performed using alternative definitions of
sponse (RS4-5 and RS3-5). Finally, ROC analysis (SPSS, Chicago,
) was carried out to estimate the sensitivity and specificity using the
index — the point on the ROC where the sensitivity and the
ecificity are equal. This was only done on the groups using the
thologically complete definition of response (RS5). In order to
edict tumor response, classification analyses were performed on
timated SR parameters using naive Bayes and k-nearest neighbor (k-
N) classifiers. A naive Bayes classification algorithm assumes that
e features are independent of each other within the class. The k-NN
assifier classifies a test sample based on frequency and distance to k-
arest training samples. In this study, the class imbalance problem
as circumvented by subsampling the original data sets into 20
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Figure 1. Representative B-mode and elastography images acquired during and after completion of chemotherapy. (A) Representative
ultrasound B-mode and elastography images from a pCR patient's tumor taken at baseline; weeks 1, 4, and 8; and after completion of
chemotherapy (preop). The responding patient demonstrated progressive changes in both tumor morphology and tumor strain. (B)
Representative ultrasound B-mode and elastography images from an npCR patient's tumor taken at baseline; weeks 1, 4, and 8; and after
completion of chemotherapy (preop). SR changed significantly for the nonresponder over the course of treatment, however, to a lesser
degree than the change seen with the pCR patient. Static (fixed-sized) ROIs were used in selecting the tumor region to estimate strain
values for each patient. Scale bar = 1 cm, color bar = hard (blue) to soft (red) (0 to 255).
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bsets such that each subset had an equal number of pCR and
CR, and also all patients in the classes were selected at least once
er all subsets. Sensitivity, specificity, accuracy, and area under the
rve (AUC) were calculated to determine the performance of the
assification, and the results were validated using leave-one-out cross-
lidation. A subanalysis was conducted as well using patients with
minal (ER+/PR+/HER-2 ±), basal (ER−/PR−/HER-2−), and HER-
enriched (ER−/PR−/HER-2+) molecular subtypes.

esults
he study included 21 pCRs and 71 npCRs. All patients received
emotherapy. Details of the treatment regimens are provided in
able 1. The majority of patients received anthracycline and taxane-
sed treatments. Representative B-mode and elastography images are
esented in Figure 1 for a pCR (Figure 1A) and an npCR (Figure 1B).
hese demonstrated clearly definable hypoechoic breast cancer masses.
lastographic images were noisy and typical of other studies on patients
ith locally advanced breast cancer [23].
Figure 2 presents the results of a quantitative analysis of the
anges in SR for all patients (n = 92) with different treatment times
d using different associations of response scores as “responders” and
onresponders.” Changes between responders and nonresponders
gan early on after the administration of chemotherapy. The
agnitude of difference between responder and nonresponder classes
as dependent on the response definitions used (pCR versus npCR,
S score). The SRs obtained from the elastography data were
mpared using the relative change of the SR, at a given time,
mpared to the baseline values. As indicated in Figure 2A, both the
R and npCR outcome groups exhibited a significant decrease in
over the course of treatment (P b .001 for both) by week 4.
gnificance testing was conducted to compare the pCR and npCR
oups. Significant differences in the change from the baseline value
peared by the second week of treatment (P b .05). By the second
eek of treatment (Table 2), the pCR outcome group had already
perienced a 12% ± 13% decrease in SR, whereas the non-pCR
tcome group had only experienced a 3% ± 11% decrease
able 2). The decrease from baseline continued to increase in
agnitude with continued cycles of chemotherapy. By weeks 8 and
, the pCR group experienced a 25% ± 16% and 30% ± 17%
crease from baseline, respectively, whereas the npCR group only
perienced a 16% ± 11% and 17% ± 13% decrease at the same
me periods, respectively (Table 2). These results suggest that tumors
at maintain a consistent SR and remain stiff over the course of NAC
e less likely to achieve a pathologically complete response. Supplemen-
ry Figure 1 presents the results of a subgroup analysis based on
olecular subtypes of the LABC tumors. Corresponding values, statistical
easures, and results are found in Supplementary Table 1.
The results of ROC analysis comparing pCR to npCR are
esented in Table 3. Results indicate the sensitivity (%Sn),
ecificity (%Sp), and AUC that were produced using naïve Bayes
k-NN classifiers. Data analysis was performed using the difference
SR from baseline at weeks 1, 4, and 8 and preoperatively.

ollowing 1 week of treatment, classification was poor with a %Sn/%
/AUC of 80%/64%/64%. However, by week 4, this improved to
%/83%/75%. The %Sn/%Sp/AUC further improved to 87%/
%/77% by week 8 and were the most adequate predictors of
thological response preoperatively with %Sn and %Sp of 84% and
%, respectively, and an AUC of 81% (Table 3).
The same statistical analysis used to compare pCR to npCR was
so performed to compare alternative definitions of response,

Image of Figure 1
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Figure 2. Changes in SR, as monitored during and at the
completion of neoadjuvant chemotherapy. (A) SRs for pathologi-
cally complete responders (RS5) and non–pathologically complete
responders (RS1-4). Corresponding representative mastectomies
(not shown) of responders and nonresponders demonstrate
differences in the overall tumor morphology between response
groups. (B) SRs for tumors with response scores 4-5, representing
responders, and response scores 1-3, representing nonre-
sponders. (C) SRs for tumors with response scores 3-5, represent-
ing responders, and response scores 1-2, representing
nonresponders. * indicates statistical significance (P b .05) and
** indicates statistical significance (P b .001).

Table 2. Summary of Statistical Measures and Results.

Decrease in SR from Baseline (% ± SD)

pCR: RS5 (n = 21) Non-pCR: RS1-4 (n = 71)

Week 1 4 ± 13 −1 ± 9
Week 2 12 ± 13* 3 ± 11*
Week 4 19 ± 13** 6 ± 11**
Week 8 25 ± 16** 9 ± 11**
Week 12 30 ± 17** 14 ± 13**
Preoperative 29 ± 15** 12 ± 13**

Decrease in SR from Baseline (% ± SD)
RS4-5 (n = 37) RS1-3 (n = 39)

Week 1 3 ± 11 −1 ± 9
Week 2 7 ± 13 2 ± 9
Week 4 11 ± 15 6 ± 10
Week 8 17 ± 16* 9 ± 11*
Week 12 21 ± 18* 14 ± 13*
Preoperative 20 ± 16* 13 ± 13*

Decrease in SR from Baseline (% ± SD)
RS3-5 (n = 66) RS1-2 (n = 10)

Week 1 0 ± 10 0 ± 7
Week 2 5 ± 12 1 ± 8
Week 4 9 ± 13 4 ± 10
Week 8 14 ± 15 7 ± 10
Week 12 18 ± 15 15 ± 23
Preoperative 17 ± 15 12 ± 14

SRs for each response group, as categorized by the indicated Miller-Payne criteria, were analyzed for
statistical differences over time using a repeated-measures ANOVA. Responders and nonresponders
were compared to each other at each time interval to test for statistically significant differences
following a test for normality (Shapiro-Wilk Test). Statistically significant, *P b .05; very
statistically significant, **P b .001.

Table 3. ROC Analysis of SRs at Weeks 1, 4, and 8 and Preop.

Naive Bayes Classification of pCR Versus Non-pCR

Week 1 Week 4 Week 8 Preoperatively

Accuracy 72 ± 5 84 ± 4 83 ± 4 84 ± 4
Sensitivity (%) 80 85 87 84
Specificity (%) 64 83 80 85
AUC 0.64 0.75 0.77 0.81

k-NN Model Classification of pCR Versus Non-pCR
Week 1 Week 4 Week 8 Preoperatively

Accuracy 60 ± 3 73 ± 5 74 ± 3 72 ± 4
Sensitivity (%) 84 81 95 85
Specificity (%) 36 65 54 55
AUC 0.44 0.72 0.66 0.64

Sensitivity (%Sn), specificity (%Sp), accuracy (%), and AUCs are presented for SRs corresponding
to the measured time intervals.
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mparing RS1-3 to RS4-5, and RS1-2 to RS3-5. Using RS5 as the
toff (Figure 2A) for response yielded a significant difference in the
rcentage decrease between response groups as early as week 2
b .05); using RS4-5 as a cutoff (Figure 2B) required waiting until

eek 8 for a significant difference (P b .05) between response groups.
sing RS3-5 as the cutoff (Figure 2C) for response resulted in no
gnificant difference, although this is likely due to the limited sample
ze of the RS1-2 group (n = 10).

iscussion and Conclusion
his study evaluated tumor strain as a measure of NAC response in
locally advanced breast cancer patients. The images obtained were
nsistent with previous studies of locally advanced breast cancer [23]
d appeared noisier than typical correlational elastography images
om studies of much smaller breast masses. These patients have large
cally advanced tumors, and their breasts are often grossly enlarged
d taut to the touch. These tumors have a great deal of associated
ema, and inflammation of the whole breast is often apparent
inically. The breasts are often clinically “rock hard,” “red,” and
ot” to the touch. This also makes elastography imaging more
fficult with the tumor tissue being not that different from the
rrounding tissue in terms of stiffness. Unlike in classic strain
aging of small tumors, where tumors are readily identifiable, the
asses here are very large (over 5 cm and typically 10-15 cm in
ngest diameter) and may occupy over 60% of the field of view.
verall, this results in differences between nonmalignant and
alignant breast tissue being less evident in elastographic images
spite apparent differences in the B-mode images.
Both the pCR and npCR patient groups demonstrated a significant
ange in tumor stiffness, with a decrease in stiffness from baseline

Image of Figure 2
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parent by weeks 2 (P b .05) and 4 (P b .001). The SR decrease
om baseline was significantly different between the two groups by
eek 2 (P b .01). Using alternative definitions of responsiveness,
S4-5 and RS3-5 classifications instead of pCR (RS5), was not as
fective in differentiating the two groups, with the former only
hieving a significant difference between response groups by week 8
d the latter not achieving any significant difference (although this is
ely a result of limited sample size). Preoperatively, data indicated
at measures of tumor stiffness achieved a classification of pCR and
CR with a sensitivity of 84%, a specificity of 85%, and AUC of
%.
The results of this study suggest that changes in tumor stiffness in
sponse to NAC can be used as an early-response marker during
eatment, with significant results detected by week 2 of treatment
d the best results obtained preoperatively. Preoperative elastogra-
y data would likely have minimal effect on guiding further
eatment and little benefit aside from potentially being used as a
nfirmatory test. However, being able to assess NAC response as
rly as 2 weeks into treatment could be beneficial for treatment
anning, as ineffective chemotherapy regimens could be halted and
w therapeutic options pursued. Changing the course of treatment
r a nonresponding patient would spare them the adverse effects
sociated with the ineffective chemotherapy while offering the
ssibility of an improved outcome by switching to a more effective
erapy earlier.
Characterizing a tumor's mechanical properties enables the
sponse to NAC to be assessed even when it may not be visually
parent using traditional anatomical imaging methods. Cancerous
ssues have complex mechanical properties. Here we have made the
mplifying assumption that the tissue is linearly elastic and isotropic,
hich is not always the case for tumors. This assumption may result
strain values that are not entirely accurate. However, we are
rticularly interested in evaluating changes in the relative stiffness in
e same tissues before and after treatment rather than the actual
rain values measured. Stiffness in tumor extracellular matrix has
en associated with increased progression and chemotherapeutic
sistance in breast lesions and in other types of malignancies
8–30]. A prior study by Hayashi et al. found greater rates of
thologically complete response to NAC among tumors with lower
iffness as categorized by the Tsukuba elasticity scoring system [31].
ltrasound elastography, as an imaging modality, has already been
own to be effective in characterizing breast lesions. Most notably, it
n be used in combination with B-mode ultrasound to differentiate
tween malignant and benign lesions [32,33]. Shear-wave ultra-
und, another ultrasound-based modality which characterizes tissue
iffness, has been used to establish a relationship between stiffness
d the histological grade and molecular subtype of breast lesions
4–36]. Several studies have relied on the SR, as defined in the study
re to characterize breast lesions [23,27,37–40]. We demonstrated
at changes in the SR correlate with tumor response to treatment.
We performed a subanalysis (Supplementary Figure 1, Supple-
entary Table 1) and found no difference between luminal, basal,
d HER-2–enriched groups. It was difficult to conclude at which
eek during treatment the absolute SR value was significantly
fferent from the initial SR baseline value. Luminal cancers exhibited
anges as early as week 1, whereas basal cancers exhibited changes in
at week 8 only. How early a change was apparent seemed to be

ore dependent on the sample size of the study rather than the
agnitude of the change. The HER-2–enriched group saw no
gnificant decrease from baseline in either the pCR group or npCR
oup, most likely due to a small sample size (n = 5 for each).
dditionally, a lack of access to Ki-67 data limited the degree to
hich tumors could be classified. For example, luminal A and luminal
subtypes could not be distinguished from each other and had to be
ouped together.
A study by Falou et al. which examined a smaller patient
pulation of 13 indicated a change in stiffness in tumors that
sponded to NAC. However, contrary to our study, there was no
gnificant change in the SR in nonresponding tumors [23]. The
fference seen in the study here can likely be attributed to the larger
tient population examined or to the fact that the other work
mpared patients using a broad definition of nonresponders to
sponders, whereas this study compares pCR to npCR. The study by
alou et al. also demonstrated that the SR was superior to the strain
fference with respect to evaluating response to NAC via
astography. For that reason, SR was chosen as the variable used in
r analysis. Pathological complete response (RS5) was chosen as the
sis of comparison rather than overall response (RS3-5) because it is
better indicator of overall clinical outcome [8]. The predictive
wer of compression elastography is limited in that both npCR and
R response groups experience a decrease in SR in response to NAC
it is only the magnitude of that change which differs. With that

id, it is important to consider that the npCR response group
ntains partial responders. Partial response is still important as it is
ked to good outcomes among certain subtypes, and it may enable
tients to have achieved sufficient downstaging to sanction breast-
nserving surgery as a treatment option, [8]. Other studies have
und a benefit in combining other measures of tumor response with
astography data to improve its predictive power, such as Ki-67
dices [41].
Unlike previous studies, which were able to establish a relationship
tween tumor stiffness and molecular subtype using shear-wave
astography [35], no significant differences between molecular
btypes were seen in this study. This may be explained by the low
wer that resulted from only 10 HER-2–enriched tumors being
amined. Obtaining significant results at low sample sizes is
allenging using this imaging modality due to a large degree of
terpatient variability in SR measurements.
An imaging modality capable of assessing tumor response to NAC
rly in the course of treatment could help optimize therapy in cases
here NAC is ineffective. A systematic review by Gu et al. stated that
ffusion-weighted MRI and contrast-enhanced MRI combined with
ET/CT were both superior modalities compared to standard
trasonography in the detection of pCR [32,42]. However,
trasound still has the advantage of being more accessible for use
frequent intervals during the course of NAC. Throughout our

udy, most patients were scanned at six time intervals following the
seline scan, with a significant difference seen between pCR and
CR groups by week 2. The use of compression elastography
rmits accessible noninvasive imaging, which is sensitive to
omolecular changes that may occur prior to anatomical changes
en in tumors by clinical imaging. Prior studies have shown
antitative ultrasound to also have the potential to evaluate response
NAC [22,43], with further promising results seen when used in
njunction with other modalities such as diffuse optical spectroscopy
4]. Future studies could involve using elastography as part of a
ultiparametric analysis of tumor response in addition to quantitative
trasound.
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Although strain ultrasound would be a practical and resource-
ficient imaging modality to monitor response to NAC, there are
rious limitations to its implementation in clinical practice. Strain
trasound involves the operator applying a manual compression force
a the transducer. Although the ultrasound apparatus determines
at adequate compression is applied between scans, this practice is
nquantitative and has an inherent lack of consistency and
producibility. Freehand elastography, in which the tissue compres-
on is generated by hand via the ultrasound transducer, has the main
vantage of being practical in a clinical setting. Since elastography
ages are generated by comparing the axial displacement of the
ssue before and after compression, any out-of-plane motion will
sult in reduced signal to noise ratio (SNR) [45]. Mechanical
tachments to the transducer, such as compression applicators, can
gnificantly reduce out-of-plane motion; however, they require
ditional hardware and make the imaging transducer more bulky
d difficult to handle. The native software of the Ultrasonix system
es a least squares strain estimator to improve SNR [46]. This
ethod does not directly correct for the interframe decorrelation
used by out-of-plane motion. Several methods to correct for this
pe of motion have been investigated including guiding data
quisition through real-time feedback [47] as well as postprocessing
gorithms [48,49]. The implementation of such methods could
ovide some improvement in the SNR and consistency of the
rain images.
In conclusion, the magnitude of a tumor's change in stiffness in
sponse to NAC may be used as a predictor of pathologically
mplete response. Compression elastography is a readily available
aging modality; therefore, improving its utility in the clinical
tting would be highly beneficial. Real-time monitoring of tumor
sponse to NAC has the potential to spare unresponsive patients
om prolonged unsuccessful treatment regimens. Compression
trasound should be further investigated as it shows potential to
rve as an imaging modality that would achieve this in a practical
tting.
Supplementary data to this article can be found online at https://
i.org/10.1016/j.tranon.2019.05.004.
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