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Fig. 1 Example of a multilevel hypernetwork representation (from bottom to top): Allplayersaretagged
by numbers: Those of the blackteamplay from leftto right: Players from the blue team play from right to
left. Goalkeepers are attached to theirrespective goals and thesimplices’ formationis basedon players’
proximity on field with the arrows depicting their direction of displacement. Level N is the simplest and
represents player locationonfield (black team is organisedaccordingtoa 1-4-3-3 configuration (one
goalkeeper, four defenders, three midfielders and three forwards) and the blue team in a 1-4-4-2
configuration (one goalkeeper, four defenders, four midfielders and two forwards)). LevelN+ 1 depicts
two consecutive timeframes of thematch (from leftto right) andrefers to proximity-based simplice
interactions, which are are foundations for defining the simplice sets identified forthe twotime frames.
LevelN + 2 represents emerging microstructures of play showing both numerical imbalance (3vs.2) and
numerical balance (1vs.1), with respect tofield location (LC — left corridor; CC —central corridor; RC —
right corridor). Level N + 3 represents the dynamic interaction between simplices, hereexemplified by
the interactionbetween players that form the simplex of the defensive line sector with players that form
the simplex of the midfield line sector of theblue team, without resorting to geographical proximity
criteria.

Fig. 2 Schematic representation of players’ simplices and the ball line (black dashed line). Players
composingtheblack team play from left to right, while players from the blue team play from right to left.
Simplice formationis based on geographical proximity between players with goalkeepers beingattached
to theirgoals. The playertagged with number 24 hastheball (B)and isinvolved ina simplex of 2vs.2
alongwith player 23 fromthe blackteam, and players 9 and 13 fromthe blue team. Behind the ball line
are located the goalkeeper (29), and two types of simplices (1vs.1composed by players26 and 6; 2vs.1
composed by players 18and 28 from the blackteam and player 3 from theblue team). Aheadof the ball
line are locatedthree types of simplices (1vs.1 composed by players 16 and5; 3vs.2 with players 15, 2, 12
from the blueteamandplayers 19 and 27 fromthe black team; 2vs.2composed by players 22 and 17
from the blackteamand players 8 and 11 fromthe blueteam), andthe goalkeeper from the blue team
coded by number 14.

Abstract Despite its importance in many academic fields, traditional scientific methodologies struggle to

cope with analysis of interactions in many complex adaptive systems, includingsports teams. Inherent
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features of suchsystems (e.g., emergent behaviours) require a more holistic approach to measurement and
analysis for understanding system properties. Complexity sciences encompass a holistic approach to
research on collective adaptive systems, which integrates concepts and tools from other theories and
methods (e.g., ecological dynamics and social network analysis) to explain functioning of such systemsin
natural performance environments. Multilevel networks, such as hypernetworks, comprise novel and
potent methodological tools for assessing team dynamics at more sophisticated levels of analysis,
increasingtheir potential to impacton understanding of competitive performance. Here, we discuss the
potential of concepts andtools derived from studies of multilevel networks for revealing key properties of
sportsteams as complex, adaptive social systems. This type of analysis can provide valuable information
on team performance, which can be used by coaches, sport scientists and performance analysts for
enhancing practice andtraining. We examinethe relevance of network sciences,asa sub-discipline of
complexity sciences, for studying dynamics of relational structures in sportsteamsduring practice and
competition. We explore benefits of implementing multilevel networks, in contrastto traditional network
techniques, highlighting future research opportunities. We conclude by recommending methods for

enhancing applicability of hypernetworks in analysing collective dynamics at multiple levels.

Key Points:

e Inherent properties of complex social systems require more holistic methodological approaches
forstudying adaptive system functioning.

e Complexity sciences provide a holistic and comprehensive approach for understanding
continuous interactions thatemerge betweenindividual competing athletes to explain team
dynamics.

o Use of multilevel networks suchas hypernetworks, circumscribed in the complexity sciences
paradigm, has the potential to overcome major limitations that exist in traditional network
analyses, enabling a more sophisticated and accurate method of understanding relational
structures underlying teamfunctioningatmultiple levels.

1 Introduction
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Traditionally, team interactions in sports performance contexts have been conceived as theaggregation of
individual performances. Typically, in an attempt to identify relevant properties of such collective
systems, sports scientists have applied a set of methodological tools that recursively decompose the parts
of the systemintoindividual units. Once gaining insights into how individual units (players) behave
within the system, sport practitioners recombine them again into a collective/whole system. Such a
reductionist approach is basedon linear thinking and models, consonant with analysis of reducible, linear
systems, whose behaviouris commonly depicted as resulting from the aggregate of individual actios
within the system [1]. This line of thinking is aligned with simple models of information processing,
resulting from linear input-transformation-output processes [2]. However, what happens when such
systemsdisplay dynamic, complex, non-linear, interdependent behaviours? Indeed, traditional science has
been challengedto describe and explain how novel coordination patterns spontaneously emerge within
complexadaptive systems, such as schools of fish, colonies of insects and sports teams [3]. Despite being
composed of individual members, sports teams operateas an integrated whole, producing anintertwined
and complexset of behaviours that are notentirely predictable atanindividual levelof analysis [4, 5].
Such behavioural patterns are emergent and not merely anaccumulation of individual performances per
se; instead, they arise from continuous, ongoing interactions amongst group members [6,4]. Contrary to
postulates of linear models, complexity sciences haveemerged as a holistic approach to understanding
behaviours of complex adaptive systems. Within the field of network sciences, an emergent
methodological approach is hypernetworks [7] thatinvestigate group dynamics at multiple levels of
analysis [8]. In this position paper, we outline the benefits of utilisinga multilevel approach, in contrast to
traditional network techniques, in analysing team dynamics during practice and competitive performance.
We start by briefly reviewing the importance of complexity sciences for studying complex social systems
in the realm ofteam sports performance. Next, we discuss the relevance of social network analysis (SNA)
(a sub-discipline utilised by complexity sciences) as a suitable framework for ascertainingthe relational
structures exhibited by interactions betweenagents in sports teams during competition. We discuss the
adoption of multilevel networks, in contrast to traditional network techniques, as novel and potent
methodological tools for overcoming some of the limitations encountered in previous analysis of social
networks. Finally, we propose future research possibilities and methodological alternatives for enhancing

the multilevelapproach.
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2 Complexitysciences: Amultidisciplinary approach for studying social interactions in team sports

A major question considered here is: Are theories and methods in complexity sciences relevant for
describing and analysing collective phenomena in sports? Complexity sciences have already
demonstrated, over pastyears [e.g., 9-13], effectivemethods foranalysing behaviours of non-linear
systems. An important point to note isthat, the more complexa systemis (i.e. havingmany interacting
parts), the lessamenable to linear, reductionist analyses it becomes. Previous studies have revealed that
the complexity sciences can provide profound insights on sports-related phenomena whichare inherently
complexand multidimensional by nature.

Complexity sciences investigations of behaviours in complex adaptivesystems have revealed
many interacting elements, whose behaviour is difficult to ascertain due to continuous interactions and
interdependencies between system components, and co-relations with their surrounding environments.
The delimitations of such opensystems tendto be based on operational definitions (e.g., skinasa barrier
between organism and environment), which is not theoretically driven. Such systems display properties
underpinning integrated behaviours, significantly differing from properties and behaviours of their
individual elements. A fundamental property of complex systemsisemergence. Emergent behaviours
cannot be simply irreducible to the behaviours of system elements. Rather, behaviour must be
contextualised according to howthe elements interact within thesystem and environment within which
they are embedded. Moreover, self-organisation, adaptive behaviours, variability, nonlinearity, and
complex networking, constitute other key properties of such systems [14, 6].

The key challenges when analysing behaviours of such systems are related to their formal
modelling and simulation. Current research on team sports performance analysis has witnessed a
progressive increase on investigations of performance behavioursbased on positional data (see, for
example, Agras et al. [15] and Sarmento et al. [16] for detailed reviews). Applications of novel and
sophisticated techniques, using non-linear statistical tools have supported capture of collective
behaviours, identified by variables suchas team centroids (geometric centre ofa group of players) and
teamdispersion (how far players areapart), as wellas team communication (e.g., networks underpinning
ball-passing sequences) and sequential patterns (predicting future passing sequences) [16]. Lately, there
hasbeen increasing interest in research onteam communication networks [e.g., 17-19].

Sportsteams are composed of players interacting through several communicational channels, revealing

specific relational ties (e.g., through ball-passing actions). These interactions can be depicted by a
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complex network with players representing the nodes of the network, and the link s reflecting their
interactions on field [18, 20-22]. Network approaches are extremely useful, since application of their
concepts and methods can illuminate dynamical properties in individual and team sports [23-26],
contributing to a specialised body of knowledge for understandingthe functioning of such complex
adaptivesocial systems.3 Social network analysis (SNA) as a paradigmfor modelling complex social

systems

Theories and methods underpinning SNA include, forexample, graph theory (mathematical
structures utilised for modelling pairwise relations between objects) and social structure analysis
pertainingto the field of sociology. Lately, SNA has extensively focused onsports performance data [18,
20,27-30]asameans of analysing complex relational/structural interactions. Theapplicability of such an
approachis predicated oninsights regarding interactions of structures that ultimately lead to emergent
complexphenomena[21, 31]. Indeed, re-conceptualisation of sports teams as complexsocial networks
[22,32]hasrevealed novel research opportunities for researchers, sports scientists and performance
analysts to investigate the structural properties of teams during practice and competition linked to
successful performance outcomes.

Beyond the unigque terminology (e.g., nodes/vertices, links/edges) used for modelling social
interactions within collectives, suchanapproach utilises specific conceptual and methodological tools for
understanding and predicting team performance. Despite beinga promising methodological approach,
more coherent with the principles of complexity sciences in analysing complex social systems, traditional
network techniques contain specific limitations that may eventually hinderoreven conceal important
information regarding team functioning during competition. Such limitations have been carefully
scrutinised in the works of Ribeiro et al. [22] and Ramos et al. [32], and researchers have proposed
possible alternatives and/or methodological tools that can ultimately reinforce the networkapproach for
adequately analysingthe relational properties of sports teams.

4 Hypernetworks as innovative and potent methodological tools for analysing dynamic re lational

structures of sports teams

Hypernetworks have recently emergedasa major hot topic of research for many branches of
science, includingsports science. Multilevel analysis and representing relations via hypernetworks were

originally introduced by Johnsonand Iravani [7] foranalysing the dynamics of complex systems of robot
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footballagents. Morerecently, suchan approach was extrapolated to investigate the dynamics of human
football players during competition [8]. Indeed, Johnsonand Iravani[7] have proposedthata multilevel
approachcanbe extended toanalyses of other multiagent systems (e.g., football teams) where dy namics
emerge from interactions between the agents. Researchon hypernetworks is still fresh and much work is
needed tocontinue developmentof multilevel analytics. Its potential isenormoussince it can override
most of thelimitations found in traditional network techniques.

Forexample,a major limitation of traditional methods is that they only focus onbinary relations
between two players [33]. Potentially, multilevel hypernetworks are not restricted to analysis of dyadic
relations; rather they support representation of simultaneous n-ary relations (n > 2) among sets of
nodes/vertices (i.e., team players). Their properties are represented by a hyperedge supporting
connections between morethantwo players (within and betweenteams) at the same time (called simplex,
plural- simplices) [33-37]. Hyperedges shed light onphysical links (e.g., notationof who passes the ball
to whom) established between players which facilitate information exchanges. Also informational links
(e.g., values of interpersonal distances, velocity and acceleration) bound players* interactions. This is
particularly importantbecause, for instance, researchers cananalyse emergent interactions (by verifying
changesin the velocity and direction of each player's vectors) that led to the assembly and/or dissolution
of a specific simplexstructure (e.g., to balanceand/or unbalancethe simplex). These interactions are
important because previous research (e.g. Ramos et al. [8]) has suggested that changes in velocity near the
goalallowed players to improvetheir positioning to score goals and/or to unbalance opposition defensive
structures.

Ramosetal. [8] confirmedthe relevance of hypernetworks for extractingimportantinformation
from game performance data. Their data verified: i) the most frequently occurring simplices
configurations duringthematch; ii) dynamics of simplices' transformations (variations of players’ speed
and direction) near the goal thatled to the creation of goal-scoring opportunities, and:iii), dynamics of
interactions at higher complexity levels, i.e., interactions between simplices of simplices.

Next, we provide a detailed analysis of theconceptualand methodological implications of
applying multilevel hypernetworks in sport, addressing the main limitations of traditional network
techniques, asdiscussedin the article by Ribeiro etal. [22].

5 Application of multilevel hypernetworks to understanding sport performance
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5.1 The majority of studies employing social networkanalysis have observed information exchange

between players mainly through passing behaviours

Hypernetworks can include anelementR that describes relationshipsemerging within the set
(simplex) [36] composed bya given number of players in a sports team. Each simplex can be represented
by a convex hullcomputation (theminimum convexarea containing all players in the simplex) and
includes the velocity of each player (vector velocity regarding the instantt-1 andt), as well as the velocity
of the geometric centre of the simplices. The simplices canbe completed with information describing
othertypes of technicalactions (e.g., ballmanipulation (BM)) undertaken by players during performance.
Additionally, a computer procedure for calculating the simplices’ hyperedges, defined witha proximity
criterion, can be implemented using GNU Octaveandappliedto eachtime frame ofthe match. Such a
proximity criterion implies that interactions between players, as well as sets of these interactions
(simplices), are assessed based on interpersonal distance values, especially spatial proximity and instant
speed relational variables [8]. This signifies that each playeris connectedto his/her nearest player (or
goal, forgoalkeepers), while the same is verified athigher levels, where simplices canbe linked to their
closest simplices [8].

To exemplify (Fig. 1), imagine a first simplex identified by 51 and represented by the following
set o1 {a1s, a23, 224, do, d13}, Where aze, 223, and a4 represent three attacking players, while dand dis
represent defending players. The simplex set canbe enhanced by anelement R: [8] which, basically,
identifies the relationships (microstructures of play) within the set R1=(3vs.2). The second simplex o>
represents thefollowingset o2 {a 16, a24, do} identified by R,=(2vs.1), composed of twoattackersand one
defender. Finally, the third simplex a3 is represented by o3 {a23, d1s} identified by Rs=(1vs.1),composed
of one attackerand one defender. Hence, therespective microstructures of play are R1=(3vs.2), Ro=(2vs.1)
and Rs=(1vs.1), and the corresponding simplices are o1 {@16, 823, @24, dg, d13; (3vS.2)}, o2 {a1s, @24, dg;
(2vs.1)}andos{azs, dis; (1vs.1)}. Let ussay that these simplices'transformation (from o1 to o3) was
observedduring two consecutive timeframes (t:-t2) of the match in an attacking sequencethatresultedin
a goal-scoring opportunity. Now, let us suppose that the configuration of the simplices’ transformation
from o110 o3 was provoked by a movement of player azz from simplex o1 which ranwith the ballat speed

(BM) furtheraway from simplex 1. Thisaction performed by playerazz allowed him to dissociatealong
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with d13 (geographical proximity criteria) from previous simplex 61, thus originating the formation of
simplices 62and ca.

We canaddBM (BMazs-q13) t0 o1 {@16, 823, 24, o, d13; (3VS.2); BMas.q13} as an extra layer to
complete thedescription of the set. Hence, the sequence ofthe following sets of simplices is: o1 {a1s,az3,
a24,dg, d13; (3vS.2); BMazs.a13} -> 02 {a16, @24, do; (2vS.1)} + 03 {23, d1s; (1vs.1)}. Thisexample provides a
more complete descriptionof thebehaviours of bothteams and howtheyevolveovertime, which now
includes relevantinformationon other technical actions realized by theplayers. These actions might be
crucial for destabilising the numerical balance/imbalance of a given simplex, without focusing solely on
ball-passingevents.

However, beyond providing qualitative information regarding team performance, other relevant
information can be included to quantitatively express relational dynamics of competing teams. This could
be exemplified by counting the numberand types of microstructures of play (e.g., sub phases such as
1vs.1)emergingduring practice [8],and also the frequency of other technical actions performed by
players during competition. The conceptualisation of team sports performance with a hypernetworks
methodology mighthelp sports scientists and researchers develop novel performance metrics [8], capable
of capturing team synergies emerging between players. By using positional coordinates of players from
both teams and the ball, we can analyse, forexample, how players pertainingto a specific simplex (the
defensive line sector) synchronise their movements with other players pertainingto another simplex (the
midfield line sector). This canbe done, forexample, by computing the meanrelative phase of each player
to his/her corresponding simplices with which players interact throughout the match. Or, we may
ascertain how far both simplices (the defensiveand midfield line sectors) areseparated from each other
(e.g., through measurement of the simplices’ geometric centre), providing insights into teamcompactness
and/or spread. Here, hypernetworks support the provision of detailed information on the players

composing eachsimplex and how synchronised or far/near simplices are.

5.2 Variability of player performance outcomes is associated with specific events in competitive

performance

Ribeiro etal.[22] highlighted the over-emphasis on frequency counts of actions in performance

analysis, suggesting that “Most studies analyseresults accordingto the total number of interactions
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displayed by the adjacency matrix, which does notreflect the inherent dynamics of team games” (pp.
1694). Implementation of multilevel hypernetworks can consider both space and time in analysis of team
dynamics since, forexample, it can use geographical proximity criteria (if previously defined for creating
the simplices’ sets of nodes) and capture temporal changes by considering players’ geographical positions
overtime (ti, to,......,tn) [8]. Furthermore, Johnson [35] introduced the concepts of backcloth and traffic to
emphasise the study of dynamics in multilevel analysis. The networkis the backcloth involving fewer
dynamic structures, while the traffic relates to the network flows, thus considering higher rates of change
emerging within the backcloth [35]. Application ofthese novel ideas to team sports performanceanalysis,
might consider, forexample, the disposition of players on field in football. Pplayers organised according
to positionsin a 1-4-3-3 formation with one goalkeeper, four defenders, three midfielders and three
forwards, forexample), with typical adjustments, can be the backcloth, and player displacements onfield
(both off-anon-the-ball) is the traffic. Hence, each pre-defined teamdisposition on field may afford the
emergence of certain relational dynamics specific to that configuration. Playingin a configuration of 1-4-
3-3is notthe same as playingin a 1-4-4-2 configuration. Relational dynamics of players in bothsystems
may differ significantly. Forexample, the first configuration has only three midfieldersand one central
forward, the latter has four midfielders and two forwards. These and other team properties might
constrain teamdynamics, and thus promote specific individual and team behaviours.

Developing mathematical formalisms underlying the hypernetworks approach enables the
representationofa multilevel model for describing team behaviour dynamics, where micro-to—meso—to-
macro levels of relational structures are considered in a holistic analysis [8, 38], allowing us to investigate

higher complexity levels inherent to team sports competition (Fig. 1).

**Please insertFigure 1 nearhere**

5.3 Research over-emphasises analysis of attacking behaviours in performanceanalysis, rather than

defensive behaviours

10
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A majoradvance, comparedto traditional network analysis, isthat use of simplices can capture
interactions of sets of players thatmay involve an arbitrary number of teammates a nd opponents [8]. Such
an advance signifies permits analysis of both cooperative and competitive interactions emerging between
playerssimultaneously. This approach ensures that both attacking and defending patterns of coordination
are considered in analysis of team dynamics, providing insights regarding team functionality and
adaptability during competitive performance. Adding informationabout ball location (e.g., position
coordinates acquired though match analysis statistical reports, suchas Opta Sports (London, United
Kingdom) can furnish noveland rich insights regarding functional dynamics of both attacking and
defendingteams. Arguably, ball location onfield constitutes a major constraint which continually shapes
how players from both teams continuously co-adapt their positioning on field. This could affect individual
and team dynamics, which should be addressed in future investigations of hy pernetworks. For example,
by including information from ball location in hypernetworks analysis (Fig. 2)researchers are able to
identify the player with the ball (B) in a given simplex n (on {a248, @23, dg, d13}), while investigating the
numberandtypes of simplices formation (e.g., 2vs.1),aswellasthe attacking and defending players
locatedbehindand ahead of the ball line. Such an analysis may provide coaches and performance analysts

with relevant information regarding offensive and defensive patternsof teamplay.

**Please insertFigure 2 near here**

5.4 Most of the metrics used to model social interactions arebased on paths, which can be inappropriate

for sports contexts

An imperative step of the hypernetworks approach is to define, at each level of analysis, the
significant relations that govern dynamics of competitive performance, and represent them utilising
differentcriteria (e.g., modellingteam dynamics through values of players’ interpersonal distances) for
selectingthe playersin eachset (i.e., linked by a hyperedge) [34,36]. Amajor concern with such an
analysis is geographical proximity currently utilised for modelling team dynamics in hypernetworks. The
definition of such criteria will considerably limit all data analyses and interpretations of team sport

performance. Itisan arduous and challenging task for researchers and sports scientists to seek and
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explore novelways of conceptualisingand (re)defining such criteria, theoretically and mathematically,
based oncharacteristics of eachteam sport subjected to a multilevel approach. Another relevant issue is
the use of metrics that consider more thansingle relationships (either dyadic orhyperedges). Previous
studies (e.g. Borgatti [39]) have presented examples where using metrics based onshortestpaths may not
be adequate. Usingwa ks instead of paths [39] oreven applying random walk Monte Carlo methods (e.g.

Chengetal. [40]) formodelling social interactions may be worth considering.

6 Conclusions and practical applications

In this position paper, we highlighted how the multidisciplinary nature of complexity sciences, in contrast
to traditional sciences, supports explanations of complex phenomenaemergingin sports performance
contexts. Under the umbrella of complexity sciences, and particularly SNA, multilevel hypernetworks
constitute promising frameworks for scrutinising the dynamical relations emerging in collective
interactions of competitive sport performance at several levels of analysis. Multilevel networks can
overcomemajor limitations of traditional network techniques, havingthe potential for expanding the
scope of analysis for studying team dynamics. They could provide more accurate information by
representingand understanding multilevel team behaviour dynamics, including micro (e.g., interactions
between players), meso (e.g., dynamics of a given criticalevent, e.g.,a goal being scored), and macro

(e.g., interaction between sets of players) levels.
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