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 1 

Fig. 1 Example of a multilevel hypernetwork representation (from bottom to top): All players are tagged  2 
by numbers: Those of the black team play from left to right: Players from the blue team play from right to 3 
left. Goalkeepers are attached to their respective goals and the simplices’ formation is based on p layers’ 4 
proximity on field with the arrows depicting their direction of displacement. Level N is the simplest  a nd 5 
represents player locationon field (black team is organised according to a 1 -4 -3-3 configurat ion (one 6 
goalkeeper, four defenders, three midfielders and three forwards) and the blue team in a 1-4-4-2 7 
configuration (one goalkeeper, four defenders, four midfielders and two forwards)). Level N + 1 dep icts 8 
two consecutive time frames of the match (from left to right) and refers to  p rox imity-based  sim plice 9 
interactions, which are are foundations for defining the simplice sets identified for the two tim e f rames. 10 
Level N + 2 represents emerging microstructures of play showing both numerical imbalance (3vs.2 ) a nd 11 
numerical balance (1vs.1), with respect to field location (LC – left corridor; CC – central corridor; RC –  12 
right corridor). Level N + 3 represents the dynamic interaction between simplices, here exemplif ied by  13 
the interaction between players that form the simplex of the defensive line sector with players that f orm 14 
the simplex of the midfield line sector of the blue team, without resorting to  geograph ical p rox imity 15 
criteria. 16 
 17 
 18 
Fig. 2 Schematic representation of players’ simplices and the ball line (black dashed line). Players 19 
composing the black team play from left to right, while players from the blue team play from right to left. 20 
Simplice formation is based on geographical proximity between players with goalkeepers being attached 21 
to their goals. The player tagged with number 24 has the ball (B) and is involved in a sim plex  of 2 vs.2 22 
along with player 23 from the black team, and players 9 and 13 from the blue team. Behind the ball line 23 
are located the goalkeeper (29), and two types of simplices (1vs.1 composed by players 26 and 6 ;  2vs.1  24 
composed by players 18 and 28 from the black team and player 3 from the blue team). Ahead of the ball 25 
line are located three types of simplices (1vs.1 composed by players 16 and 5; 3vs.2 with players 15, 2, 12 26 
from the blue team and players 19 and 27 from the black team; 2vs.2 composed by  p layers 22  an d 17 27 
from the black team and players 8 and 11 from the blue team), and the goalkeeper f rom the b lue team 28 
coded by number 14. 29 
 30 
 31 
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Abstract Despite its importance in many academic fields, traditional scientific methodologies struggle to  43 

cope with analysis of interactions in many complex adaptive systems, including sports teams. I nheren t 44 
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features of such systems (e.g., emergent behaviours) require a more holistic approach to measurement and 1 

analysis for understanding system properties. Complexity sciences encompass a  holist ic  a pproach to 2 

research on collective adaptive systems, which integrates concepts and tools  f rom o ther theories a nd 3 

methods (e.g., ecological dynamics and social network analysis) to explain functioning of such systems in 4 

natural performance environments. Multilevel networks, such as hypernetworks, comprise novel a nd  5 

potent methodological tools for assessing team dynamics at more sophisticated levels of analysis, 6 

increasing their potential to impact on understanding of competitive performance. Here, we d iscuss the 7 

potential of concepts and tools derived from studies of multilevel networks for revealing key properties of 8 

sports teams as complex, adaptive social systems. This type of analysis can provide valuable information 9 

on team performance, which can be used by coaches, sport scien tist s a nd performance analysts f or 10 

enhancing practice and training. We examine the relevance of network sciences, as a sub-discip line o f 11 

complexity sciences, for studying dynamics of relational structures in sports teams during pra ct ice a nd 12 

competition. We explore  benefits of implementing multilevel networks, in contrast to traditional network 13 

techniques, highlighting future research opportunities. We conclude by recommending methods for 14 

enhancing applicability of hypernetworks in analysing collective dynamics at multiple levels.  15 

 16 

Key Points: 17 

• Inherent properties of complex social systems require more holistic methodological approaches 18 

for studying adaptive system functioning. 19 

• Complexity sciences provide a holistic and comprehensive approach for understanding 20 

continuous interactions that emerge between individual compet ing a thletes to  explain  team 21 

dynamics. 22 

• Use of multilevel networks such as hypernetworks, circumscribed in the complexity sciences 23 

paradigm, has the potential to overcome major limitations that exist  in  t ra d itional network  24 

analyses, enabling a more sophisticated and accurate method of understanding relational 25 

structures underlying team functioning at multiple levels. 26 

 27 

1 Introduction 28 
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Traditionally, team interactions in sports performance contexts have been conceived as the aggregation of 1 

individual performances. Typically, in an attempt to identify relevant properties of such collective 2 

systems, sports scientists have applied a set of methodological tools that recursively decompose the parts 3 

of the system into individual units. Once gaining insights into how individual un its  (p la yers) behave 4 

within the system, sport practitioners recombine them again into a collective/whole system. Such a 5 

reductionist approach is based on linear thinking and models, consonant with analysis of reducible, linear 6 

systems, whose behaviour is commonly depicted as resulting from the aggregate o f  ind iv idual a ctio s 7 

within the system [1]. This line of thinking is aligned with simple models of information processing, 8 

resulting from linear input-transformation-output processes [2]. However, what  happens when such 9 

systems display dynamic, complex, non-linear, interdependent behaviours? Indeed, traditional science has 10 

been challenged to describe and explain how novel coordination patterns spontaneously emerge with in  11 

complex adaptive systems, such as schools of fish, colonies of insects and sports teams [3]. Despite being 12 

composed of individual members, sports teams operate as an integrated whole, producing an intertwined 13 

and complex set of behaviours that are not entirely predictable at an individual level o f  a nalysis  [4 , 5 ]. 14 

Such behavioural patterns are emergent and not merely an accumulation of individual performances per 15 

se; instead, they arise from continuous, ongoing interactions amongst group members [6, 4]. Contrary  to 16 

postulates of linear models, complexity sciences have emerged as a  holistic approach to understanding 17 

behaviours of complex adaptive systems. Within the field of network sciences, an emergent 18 

methodological approach is hypernetworks [7] that investigate group dynamics at  multiple levels  o f 19 

analysis [8]. In this position paper, we outline the benefits of utilising a multilevel approach, in contrast to 20 

traditional network techniques, in analysing team dynamics during practice and competitive performance. 21 

We start by briefly reviewing the importance of complexity sciences for studying complex social systems 22 

in the realm of team sports performance. Next, we discuss the relevance of social network analysis (SNA) 23 

(a sub-discipline utilised by complexity sciences) as a suitable framework for ascertaining the relat ional 24 

structures exhibited by interactions between agents in sports teams during competition. We d iscuss the 25 

adoption of multilevel networks, in contrast to traditional network techniques, as novel and potent 26 

methodological tools for overcoming some of the limitations encountered in previous analysis o f  social 27 

networks. Finally, we propose future research possibilities and methodological alternatives for enhancing 28 

the multilevel approach. 29 

 30 
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2 Complexity sciences: A multidisciplinary approach for studying social interactions in team sports 1 

A major question considered here is: Are theories and methods in complexity sciences relevant for 2 

describing and analysing collective phenomena in sports? Complexity sciences have already 3 

demonstrated, over past years [e.g., 9-13], effective methods for analysing behaviours o f  non-linear 4 

systems. An important point to note is that, the more complex a system is (i.e. having many in teract ing 5 

parts), the less amenable to linear, reductionist analyses it becomes. Previous studies have revealed that  6 

the complexity sciences can provide profound insights on sports-related phenomena which are inherently  7 

complex and multidimensional by nature. 8 

Complexity sciences investigations of behaviours in complex adaptive systems  have revealed 9 

many interacting elements, whose behaviour is difficult to ascertain due to continuous interactions a nd 10 

interdependencies between system components, and co-relations with their surrounding env ironments. 11 

The delimitations of such open systems tend to be based on operational definitions (e.g., skin as a barrier 12 

between organism and environment), which is not theoretically driven. Such systems display p roperties 13 

underpinning integrated behaviours, significantly differing from properties and behaviours of their 14 

individual elements. A fundamental property of complex systems is emergence. Emergent  behav iour s 15 

cannot be simply irreducible to the behaviours of system elements. Rather, behaviour must be 16 

contextualised according to how the elements interact within the system and environment with in  which 17 

they are embedded. Moreover, self-organisation, adaptive behaviours, variability , nonlinearity, a nd 18 

complex networking, constitute other key properties of such systems [14, 6]. 19 

The key challenges when analysing behaviours of such systems are related to their formal 20 

modelling and simulation. Current research on team sports performance analysis has witnessed a 21 

progressive increase on investigations of performance  behaviours based on posit ional data (see, f or 22 

example, Agras et al. [15] and Sarmento et al. [16] for detailed reviews). Applications of novel and 23 

sophisticated techniques, using non-linear statistical tools have supported capture of collective 24 

behaviours, identified by variables such as team centroids (geometric centre of a group of  p layers) a nd 25 

team dispersion (how far players are apart), as well as team communication (e.g., networks underpinning 26 

ball-passing sequences) and sequential patterns (predicting future passing sequences) [16]. Lately , there 27 

has been increasing interest in research on team communication networks [e.g., 17-19]. 28 

Sports teams are composed of players interacting through several communicational channels, revealing 29 

specific relational ties (e.g., through ball-passing actions). These interactions can be depicted by a 30 
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complex network with players representing the nodes of the network, and the link s reflecting their 1 

interactions on field [18, 20-22]. Network approaches are extremely useful, since a pplication o f their 2 

concepts and methods can illuminate dynamical properties in individual and team sports [23-26], 3 

contributing to a specialised body of knowledge for understanding the f unctioning of  such  complex  4 

adaptive social systems.3 Social network analysis (SNA) as a paradigm for modelling complex social  5 

systems 6 

 Theories and methods underpinning SNA  include, for example, graph theory  (mathematical 7 

structures utilised for modelling pairwise relations between objects) and social structure  analysis 8 

pertaining to the field of sociology. Lately, SNA has extensively focused on sports performance data [18 , 9 

20, 27-30] as a means of analysing complex relational/structural interactions. The applicability of such an 10 

approach is predicated on insights regarding interactions of structures that ultimately lead to em ergent  11 

complex phenomena [21, 31]. Indeed, re-conceptualisation of sports teams as complex social networks 12 

[22, 32] has revealed novel research opportunities for researchers, sports scien tist s and performance 13 

analysts to investigate the structural properties of teams during practice and competition linked to 14 

successful performance outcomes. 15 

Beyond the unique terminology (e.g., nodes/vertices, links/edges) used for modelling social 16 

interactions within collectives, such an approach utilises specific conceptual and methodological tools for 17 

understanding and predicting team performance. Despite being a promising methodological a pproa ch, 18 

more coherent with the principles of complexity sciences in analysing complex social systems, traditional 19 

network techniques contain specific limitations that may eventually hinder or even conceal im portan t 20 

information regarding team functioning during competition. Such limitations have been carefully 21 

scrutinised in the works of Ribeiro et al. [22] and Ramos et al. [32], and researchers have proposed 22 

possible alternatives and/or methodological tools that can ultimately reinforce the network approach f or 23 

adequately analysing the relational properties of sports teams. 24 

4 Hypernetworks as innovative and potent methodological tools for analysing dynamic re lational  25 

structures of sports teams 26 

 27 

Hypernetworks have recently emerged as a major hot topic of research f o r many branches o f 28 

science, including sports science. Multilevel analysis and representing relations via  hypernetworks were 29 

originally introduced by Johnson and Iravani [7] for analysing the dynamics of complex systems of robot  30 
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football agents. More recently, such an approach was extrapolated to investigate the dynamics of human 1 

football players during competition [8]. Indeed, Johnson and Iravani [7] have proposed that a mult ilevel 2 

approach can be extended to analyses of other multiagent systems (e.g., football teams) where dynamics 3 

emerge from interactions between the agents. Research on hypernetworks is still fresh and much work is 4 

needed to continue development of multilevel analytics. Its potential is enormous since it  ca n  override  5 

most of the limitations found in traditional network techniques.  6 

For example, a  major limitation of traditional methods is that they only focus on binary relations 7 

between two players [33]. Potentially, multilevel hypernetworks are not restricted to analysis o f  dyadic 8 

relations; rather they support representation of simultaneous n-ary relations (n > 2) among sets of 9 

nodes/vertices (i.e., team players). Their properties are represented by a hyperedge supporting 10 

connections between more than two players (within and between teams) at the same time (called simplex, 11 

plural - simplices) [33-37]. Hyperedges shed light onphysical links (e.g., notation of who passes the ball 12 

to whom) established between players which facilitate information exchanges. Also informat ional links 13 

(e.g., values of interpersonal distances, velocity and acceleration) bound players ' in teractions. Th is is 14 

particularly important because, for instance, researchers can analyse emergent interactions (by verif ying 15 

changes in the velocity and direction of each player's vectors) that led to the assembly and/or dissolu tion 16 

of a specific simplex structure (e.g., to balance and/or unbalance the simplex) . These in teractions a re 17 

important because previous research (e.g. Ramos et al. [8]) has suggested that changes in velocity near the 18 

goal allowed players to improve their positioning to score goals and/or to unbalance opposition defensive 19 

structures.  20 

Ramos et al. [8] confirmed the relevance of hypernetworks for extracting important information 21 

from game performance data. Their data verified: i) the most frequently occurring simplices 22 

configurations during the match; ii)  dynamics of simplices' transformations (variations of players’ speed  23 

and direction) near the goal that led to the creation of goal-scoring opportunities, and: iii), dynamics o f  24 

interactions at higher complexity levels, i.e., interactions between simplices of simplices. 25 

Next, we provide a detailed analysis of the conceptual and  methodological im plicat ions o f  26 

applying multilevel hypernetworks in sport, addressing the main limitations of traditional network 27 

techniques, as discussed in the article by Ribeiro et al. [22].  28 

5 Application of multilevel hypernetworks to understanding sport performance 29 

 30 
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5.1 The majority of studies employing social network analysis have observed in format ion exchange 1 

between players mainly through passing behaviours 2 

 3 

Hypernetworks can include an element R that describes relationships emerging with in  the set  4 

(simplex) [36] composed by a given number of players in a sports team. Each simplex can be represented 5 

by a convex hull computation (the minimum convex area containing a ll p la yers in  the sim plex) a nd 6 

includes the velocity of each player (vector velocity regarding the instant t-1 and t), as well as the velocity 7 

of the geometric centre of the simplices. The simplices can be completed with in f ormat ion describ ing 8 

other types of technical actions (e.g., ball manipulation (BM)) undertaken by players during performance. 9 

Additionally, a  computer procedure for calculating the simplices’ hyperedges, defined with a  p roximity 10 

criterion, can be implemented using GNU Octave and applied to each time frame of the match. Such  a 11 

proximity criterion implies that interactions between players, as well as sets of these interactions 12 

(simplices), are assessed based on interpersonal distance values, especially spatial proximity and instant 13 

speed relational variables [8]. This signifies that each player is connected to his/her nearest  p layer (o r 14 

goal, for goalkeepers), while the same is verified at higher levels, where simplices can be linked to their 15 

closest simplices [8]. 16 

To exemplify (Fig. 1), imagine a first simplex identified by σ1 and represented by the following 17 

set σ1 {a 16, a 23, a 24, d9, d13}, where a 16, a 23, and a 24 represent three attacking players, while d9 and d13 18 

represent defending players. The simplex set can be enhanced by an element R1  [8 ] which , ba sically , 19 

identifies the relationships (microstructures of play) within the set R1=(3vs.2). The second sim plex σ2  20 

represents the following set σ2 {a 16, a 24, d9} identified by R2=(2vs.1), composed of two attackers a nd one 21 

defender. Finally, the third simplex σ3 is represented by σ3 {a 23, d13} identified by R3=(1vs.1), composed  22 

of one attacker and one defender. Hence, the respective microstructures of play are R1=(3vs.2), R2=(2vs.1) 23 

and R3=(1vs.1), and the corresponding simplices are σ1 {a 16, a 23, a 24, d9, d13; (3vs.2)}, σ2 {a 16, a 24, d9; 24 

(2vs.1)} and σ3 {a 23, d13; (1vs.1)}. Let us say that these simplices' transformat ion  (f rom σ1  to  σ3) wa s 25 

observed during two consecutive time frames (t1-t2) of the match in an attacking sequence that resulted in  26 

a goal-scoring opportunity. Now, let us suppose that the configuration of the simplices’ t ransformation 27 

from σ1 to σ3 was provoked by a movement of player a23 from simplex σ1 which ran with the ball at speed  28 

(BM) further away from simplex σ1. This action performed by player a23 allowed him to dissociate along 29 
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with d13 (geographical proximity criteria) from previous simplex σ1, thus origina ting the f o rmat ion of 1 

simplices σ2 and σ3.  2 

We can add BM (BMa23-d13) to σ1 {a 16, a 23, a 24, d9, d13; (3vs.2); BMa23-d13} a s a n ex tra la yer to  3 

complete the description of the set. Hence, the sequence of the following sets of simplices is:  σ1 {a 16, a 23 , 4 

a 24, d9, d13; (3vs.2); BMa23-d13} -> σ2 {a 16, a 24, d9; (2vs.1)} + σ3 {a 23, d13; (1vs.1)}. This example provides a 5 

more complete description of the behaviours of both teams and how they evolve over t im e, which  now 6 

includes relevant information on other technical actions realized by the players. These actions m igh t be  7 

crucial for destabilising the numerical balance/imbalance of a given simplex, without focusing solely  on  8 

ball-passing events.  9 

However, beyond providing qualitative information regarding  team performance, other relevant  10 

information can be included to quantitatively express relational dynamics of competing teams. This could 11 

be exemplified by counting the number and types of microstructures of play (e.g., sub  phases such  as 12 

1vs.1) emerging during practice [8], and also the frequency of other technical a ct ions perf ormed  by 13 

players during competition. The conceptualisation of team sports performance with  a  hypernetworks 14 

methodology might help sports scientists and researchers develop novel performance metrics [8], capable 15 

of capturing team synergies emerging between players. By using positional coordinates of players f rom 16 

both teams and the ball, we can analyse, for example, how players pertaining to a specific sim plex (the 17 

defensive line sector) synchronise their movements with other players pertaining to another simplex (the 18 

midfield line sector). This can be done, for example, by computing the mean relative phase of each player 19 

to his/her corresponding simplices with which players interact throughout the match. Or, we may 20 

ascertain how far both simplices (the defensive and midfield line sectors) are separated from each o ther 21 

(e.g., through measurement of the simplices’ geometric centre), providing insights into team compactness 22 

and/or spread. Here, hypernetworks support the provision of detailed information on the players 23 

composing each simplex and how synchronised or far/near simplices are. 24 

 25 

5.2 Variability of player performance outcomes is associated with specific events in competitive 26 

performance 27 

 28 

Ribeiro et al. [22] highlighted the over-emphasis on frequency counts o f a ctions in  perf ormance 29 

analysis, suggesting that “Most studies analyse results according to the total  number o f  in teract io ns 30 
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displayed by the adjacency matrix, which does not reflect the inherent dynamics o f  team games”  (pp . 1 

1694). Implementation of multilevel hypernetworks can consider both space and time in analysis of team 2 

dynamics since, for example, it can use geographical proximity criteria (if previously defined for creating 3 

the simplices’ sets of nodes) and capture temporal changes by considering players’ geographical positions 4 

over time (t1, t2,…..,tn) [8]. Furthermore, Johnson [35] introduced the concepts of backcloth and traffic to 5 

emphasise the study of dynamics in multilevel analysis. The network is the backclo th  involv ing f ewer 6 

dynamic structures, while the traffic relates to the network flows, thus considering higher rates of change 7 

emerging within the backcloth [35]. Application of these novel ideas to team sports performance analysis,  8 

might consider, for example, the disposition of players on field in football. Pplayers organised according 9 

to positions in a 1-4-3-3 formation with one goalkeeper, four defenders, th ree m idfielders a nd th ree 10 

forwards, for example), with typical adjustments, can be the backcloth, and player displacements on field  11 

(both off- an on-the-ball) is the traffic. Hence, each pre-defined team disposition on field may afford the 12 

emergence of certain relational dynamics specific to that configuration. Playing in a configuration of 1-4-13 

3-3 is not the same as playing in a 1-4-4-2 configuration. Relational dynamics of players in both systems 14 

may differ significantly. For example, the first configuration has only three midfielders and one cent ral 15 

forward, the latter has four midfielders and two forwards. These and other team properties might 16 

constrain team dynamics, and thus promote specific individual and team behaviours.  17 

Developing mathematical formalisms underlying the hypernetworks approach enable s the 18 

representation of a multilevel model for describing team behaviour dynamics, where micro–to–meso– to-19 

macro levels of relational structures are considered in a holistic analysis [8, 38], allowing us to investigate 20 

higher complexity levels inherent to team sports competition (Fig. 1). 21 

 22 

 23 

 24 

 25 

**Please insert Figure 1 near here** 26 

 27 

 28 

 29 

5.3 Research over-emphasises analysis of attacking behaviours in performance analysis, ra ther than 30 

defensive behaviours 31 

 32 
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A major advance, compared to traditional network analysis, is that use of simplices can ca pture 1 

interactions of sets of players that may involve an arbitrary number of teammates a nd opponents [8]. Such 2 

an advance signifies permits analysis of both cooperative and competitive interactions emerging between  3 

players simultaneously. This approach ensures that both attacking and defending patterns of coordination 4 

are considered in analysis of team dynamics, providing insights regarding team functionality and 5 

adaptability during competitive performance. Adding information about  ball loca tion (e.g., posit ion  6 

coordinates acquired though match analysis statistical reports, such a s Opta Sports (London, United 7 

Kingdom) can furnish novel and rich insights regarding  functional dynamics o f  both a ttacking a nd 8 

defending teams. Arguably, ball location onfield constitutes a major constraint which continually shapes 9 

how players from both teams continuously co-adapt their positioning on field. This could affect individual 10 

and team dynamics, which should be addressed in future investigations of hypernetworks. For example, 11 

by including information from ball location in hypernetworks analysis (Fig. 2) resea rchers a re ab le to 12 

identify the player with the ball (B) in a given simplex n (σn {a 24B, a 23, d9, d13}), while invest iga t ing the 13 

number and types of simplices formation (e.g., 2vs.1), as well as the attacking a nd defending p la yers  14 

located behind and ahead of the ball line. Such an analysis may provide coaches and performance analysts 15 

with relevant information regarding  offensive and defensive patterns of team play. 16 

 17 

**Please insert Figure 2 near here** 18 

 19 

 20 

 21 
 22 

5.4 Most of the metrics used to model social interactions are based on paths, which can be inappropriate 23 

for sports contexts 24 

 25 

An imperative step of the hypernetworks approach is to define, at each level of analysis, the 26 

significant relations that govern dynamics of competitive performance , and represent  them u t ilising 27 

different criteria (e.g., modelling team dynamics through values of players’ interpersonal distances) f or 28 

selecting the players in each set (i.e., linked by a hyperedge) [34, 36]. A m a jor concern  with  such a n 29 

analysis is geographical proximity currently utilised for modelling team dynamics in hypernetworks. The 30 

definition of such criteria will considerably limit all data analyses and interpretations of team sport 31 

performance. It is an arduous and challenging task for researchers a nd sports scien tist s to  seek a nd  32 
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explore novel ways of conceptualising and (re)defining such criteria, theoretically and mathematically , 1 

based on characteristics of each team sport subjected to a multilevel approach. Another relevan t issue is 2 

the use of metrics that consider more than single relationships (either dyadic or hyperedges). Prev ious 3 

studies (e.g. Borgatti [39]) have presented examples where using metrics based on shortest paths may not  4 

be adequate. Using walks instead of paths [39] or even applying random walk Monte Carlo methods (e.g. 5 

Cheng et al. [40]) for modelling social interactions may be worth considering.  6 

 7 

6 Conclusions and practical applications 8 

In this position paper, we highlighted how the multidisciplinary nature of complexity sciences, in contrast 9 

to traditional sciences, supports explanations of complex phenomena emerging in  sports perf ormance  10 

contexts. Under the umbrella of complexity sciences, and particularly SNA, multilevel hypernetworks 11 

constitute promising frameworks for scrutinising the dynamical relations emerging in collective 12 

interactions of competitive sport performance at several levels of analysis. Mult ilevel networks can 13 

overcome major limitations of traditional network techniques, having the potent ial f o r expanding the 14 

scope of analysis for studying team dynamics. They could provide more accurate information by 15 

representing and understanding multilevel team behaviour dynamics, including micro (e.g., intera ctions 16 

between players), meso (e.g., dynamics of a given critical event, e.g., a  goal being scored ), a nd m acro 17 

(e.g., interaction between sets of players) levels.  18 

 19 
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