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A Framework of Hybrid Force/Motion Skills
Learning for Robots

Ning Wang, Member, IEEE, Chuize Chen, Alessandro Di Nuovo, Senior Member, IEEE

Abstract—Human factors and human-centred design philos-
ophy are highly desired in today’s robotics applications such
as human-robot interaction (HRI). Several studies showed that
endowing robots of human-like interaction skills can not only
make them more likeable but also improve their performance.
In particular, skill transfer by imitation learning can increase
usability and acceptability of robots by the users without com-
puter programming skills. In fact, besides positional information,
muscle stiffness of the human arm, contact force with the
environment also play important roles in understanding and
generating human-like manipulation behaviours for robots, e.g.,
in physical HRI and tele-operation. To this end, we present a
novel robot learning framework based on Dynamic Movement
Primitives (DMPs), taking into consideration both the positional
and the contact force profiles for human-robot skills transferring.
Distinguished from the conventional method involving only the
motion information, the proposed framework combines two sets
of DMPs, which are built to model the motion trajectory and
the force variation of the robot manipulator, respectively. Thus,
a hybrid force/motion control approach is taken to ensure the
accurate tracking and reproduction of the desired positional and
force motor skills. Meanwhile, in order to simplify the control
system, a momentum-based force observer is applied to estimate
the contact force instead of employing force sensors. To deploy
the learned motion-force robot manipulation skills to a broader
variety of tasks, the generalization of these DMP models in actual
situations is also considered. Comparative experiments have been
conducted using a Baxter Robot to verify the effectiveness of
the proposed learning framework on real-world scenarios like
cleaning a table.

Index Terms—Robot learning, skill transfer, dynamic move-
ment primitives, force observer, hybrid force/motion control,
generalization

I. INTRODUCTION

THE rapid development of artificial cognitive systems and
robotics is enabling increasingly intelligent robots to

physically operate into more demanding and wider application
domains, ranging from industrial manufacturing to social care
[1]. These new challenges require not only safer operation, but
also more precise motor control and fine manipulation skills
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for navigating and interacting within complex environments,
often populated by human beings. In many cases, cognition-
enhanced robot learning ability is required. In some scenarios,
robots are expected to work together with human beings,
where compliant performance and human-friendly user expe-
rience are desired, e.g., [2], [3]; while in others, robots are
expected to autonomously conduct tasks like human beings,
e.g., [4]. By using game theory and policy iteration, the human
being’s control objective can be estimated in the human-robot
interaction process [5]. In the future, robots will be deeply
integrated into more aspects of human life, which requires
robots to have more dexterous skills to provide more friendly
interaction and services [6].

In this context, it is crucial for the future generation of
robots to acquire the ability of flexbile interaction with human
beings. In fact, besides designing and building robotic sys-
tems that guarantee safe interaction, robots must be provided
with further qualities that are common for humans [7]. This
suggests that future robots should own human-like learning
and generalization ability without increasing the cognitive
workload of the user [8], [9]. At present, most commercial
robots require either specific computer knowledge or teaching
pendants to complete robot programming. When a robot meets
new environments or different users, all manipulation infor-
mation have to be updated accordingly in order to complete
the new task. However, reprogramming robots is a time-
consuming job and requires certain level of techniques, which
can be difficult for ordinary robot users, such as factory
workers, or elderly people in care home. This has been a
hurdle in popularizing and promoting robots for many years.
It is, therefore, crucial to develop a smart, intuitive and user-
friendly way to interact, to teach and to equip robots with new
skills.

For more intuitive human-robot interaction, it is essential
that the intention of the human partner can be inferred and
addressed naturally, like in human-human interaction [10].
In the long run, a robotic system will not be accepted as
a natural, human-like partner if it does not learn new tasks
by itself and adapt during the interaction. A good strategy is
to directly learn from the interaction partner, i.e., the human
being. This approach is called imitation learning [11], and aims
at overcoming the difficulty of transferring skills from humans
to robots, which is inspired by the way humans learning
skills via mirroring and practice [12]. Robot programming by
demonstration (PbD) is an efficient way to achieve robot learn-
ing in an intuitive manner, which simultaneously considers the
task and environment [13]. The main idea of skills transferring
is accomplished through reproducing the tasks from human
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demonstrator directly to the robot, or adapting prior learnt
motion models by generalization techniques. The former is
easy to understand but not always feasible because of the
mismatching between robot joints and human arm joints, as
well as the lack of scalability. Through modelling the human
demonstrations, the match between human skills and robots
can be improved, and the demonstrated manipulation can be
further generalized to suit various applications.

In general, there are two approaches of PbD: probability-
based approach and dynamic system (DS)-based approach
[14]–[16]. The probability-based approach seeks to encode the
probability distribution of motions in space [17]–[19], while
the DS-based approach provides more flexible implementation,
where a DS is employed to encode the motion profiles.
Meanwhile, the motion will end up at the desired position
point. The dynamic movement primitives (DMPs) model is a
typical method in DS-based approach, which has been widely
applied in the field of PbD [20], [21]. The DMPs model a
motion primitive as the evolution of a spring damper system
that is driven by a virtual force. The end of the motion is
controlled by the spring damper system while the profile of
the motion depends on the virtual force. The superiority of this
method lies in its generalizability, meanwhile it regulates any
motion by parametrizing only the start and the end positions
of motion.

Human motor skills is conveyed by several other infor-
mation sources beside motion, i.e., positional information,
to name a few, the muscle stiffness, the contact force with
the environment, etc. In the efforts of human-to-robot skills
transfer, these multiple information sources should be in-
cluded as well. The DMPs have already been successfully
employed in building motion and stiffness profiles respectively.
Evidences show that by modelling and combining these two
information sources together, the robot learning outcome has
been improved [22]. The motion of a robot is easy to capture
considering most robots are equipped with position sensors.
On the other hand, contact forces are measured through force
sensors, however, a robot is not always fitted with one. Note
that muscle stiffness or electromyographic (EMG) signals
can only reflect contact force indirectly. This will inevitably
introduce noises, and cause robot control errors. To avoid in-
creasing system complexity, momentum-based force observers
have been introduced to replace force sensors in many cases.
Generally speaking, a momentum-based force observer usually
offers good accuracy, because it doesn’t require knowledge
of joint acceleration since its sensitivity is independent of
joint position [23]. Therefore, in this paper, we estimate the
contact force by a momentum-based force observer first, and
then simulate the estimated quantity by building DMP models.
Through combining these DMPs-modelled force profiles with
the widely used motion DMP models, we can achieve a
robot manipulation that benefits from both the motion and
force footprints simultaneously. This will be highly desirable
in force-related tasks like floor mopping, window cleaning,
etc. A Kalman filter is applied later on for curve smoothing
purpose, and a hybrid force/motion controller is introduced
in this framework to reproduce the demonstrated motion and
force skills. To our best knowledge, there is little research

work on modelling both the motion trajectories and contact
force profiles for skills transfer. To this end, the proposed
scheme not only can improve robot skills, but also will keep
the system complexity to the minimum without involving an
additional force sensor.

The contributions of this paper are summarized as follows:
• Motor skill representation: Along with the widely em-

ployed DMP models of motion, the framework simulta-
neously elaborates DMP models for the contact forces
to provide comprehensive representation of human motor
skills.

• Motion-force control scheme: A hybrid force/motion con-
troller is applied to reproduce the modelled motion and
force profiles, which results in higher success rate in
performing tasks than that with motion data only. This
includes a momentum-based force observer for the re-
duction of system complexity.

• Cognitive learning framework: A comprehensive frame-
work is built to support generalization and to equip robot
with multiple human skills from human demonstrations
in a simpler, user-friendly manner.

The rest of this paper is organized as follows: next section
introduces the related work of PbD and force observer. The
skill transfer framework and the methodology are introduced
in Section III. The experimental study is presented in Section
IV. Section V finally concludes this work.

II. RELATED WORK

Robot programming by demonstration has been proven to
be a well accepted way of transferring human motor skills to
a robot [11], where the robot gains skills by imitating what
the human tutor demonstrates. The research of PbD involves
the demonstration techniques, such as teleoperation [24], [25]
and shadowing [26] and policy derivation techniques [27].
Nowadays, most of works focus on the latter, which replies
on the demonstration data to estimate any unknown underlying
function mappings from human observation to robot action. In
[28], a template-based approach using minimum energy strate-
gies for robot movement imitation has been proposed. This
work has been further extended to incorporate some relative
merits of system models by decomposing the demonstration
and recording the associate constraints of a series of primitive
templates [29].

In general, policy derivation techniques can be catego-
rized into two types (classification-based and regression-based
approaches, respectively) according to the mapping output
(continuous or discrete). The classification-based methods are
applied at the motion primitives level, where various classifiers
such as Gaussian Mixture Models (GMMs) [30], decision
trees [31], Bayesian network [32] and k-Nearest Neighbors
(kNN) [33] are employed, to decide which primitive will be
adopted. The regression-based methods are generally taken in
presenting lower level motions. Pure regression-based methods
like Locally Weighted Projection Regression (LWPR) [34],
[35] have been successfully applied on robots performing the
ball seeking task [36] and on humanoid robots playing the
air hockey game [37]. However, this type of methods mainly
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Fig. 1. Illustration of the proposed skill transfer framework from human to robot.

focuses on repeating demonstrations in essence, having little
generalizability.

DMP models are capable of combining the merits of the
regression-based approach with the dynamic system to en-
hance the all important generalization ability. Thanks to its
desirable characteristics of one-shot learning and real-time
stability, many variants of DMPs have been developed. In [38],
a method called Compliant Parametric Dynamic Movement
Primitives (CPDMP) has extended DMPs, enabling it to per-
form parametric learning on complex motion. In [39], [40], a
method called DMP Plus has been proposed to achieve lower
mean square error and efficient modification at the same time.
The DMPs method has also been enhanced by reinforcement
learning (RL) technique in achieving motion tuning [41].

Only reproducing and generalizing the motion profile of
demonstrations could not meet the need of completing com-
plex tasks in various working environments. Therefore, meth-
ods involving other information sources in skills learning have
been proposed. The stiffness clues extracted from human EMG
signals have been modelled by DMPs to deliver stiffness-
specific skills [22]. In [42], the force-related information
was considered in adapting the weights of DMPs. In [43],
RL technique has been applied to fine-tune the discretized
force trajectories in order to better perform the given task.
Compared to the stiffness estimated from muscle EMGs, force
profiles are more direct to capture and closely connected
with human skill representation and modelling. Considering
the force modelling and generalization has not been well
discussed, and the merits of DMPs in tracking robot features,
in this work, we further extend the skills representation to
include force features modelled by DMPs, in addition to the
stiffness profiles as in [6]. This paper presents a framework
that enables a robot to learn both movement and force-related
characteristics from the human tutor all at once, and be able to
apply these learnt skills flexibly to accomplish tasks requiring
both force- and motion-specific skills.

During robot manipulation, contact forces endured by the
end-effector are not easy to measure considering tool inter-

ference. Indirect measurements like that from wrist-mounted
force sensors are likely to be contaminated by inertial forces.
Various approaches have been developed to estimate the con-
tact force between the robot and the environment. Among
them, the most straightforward method is to compute the
external torque from robot dynamics model directly. However,
this method requires knowledge about the joint acceleration.
Although the acceleration value is obtainable by using ac-
celeration sensors [44] or by double differentiating the joint
position, it might introduce large noises in this way. The torque
can also be acquired through analysing desired trajectories and
inverse dynamics of the robot, however, it requires great track-
ing performance of robots. In [45], a joint velocity observer
is proposed to estimate the external force. However, the filter
equation is nonlinear and coupled because of the calculation of
the inverse inertia matrix. Compared with methods mentioned
above, the momentum-based force observer requires neither
acceleration nor inverse inertia matrix, and the resultant filter
equation is linear [46]. Considering these advantages, in this
work, a momentum-based force observer is developed and
taken to estimate the incurred contact force.

III. METHODOLOGY

A. Overview of the Framework

The proposed framework is shown in Fig. 1, which can be
divided into three parts: a) demonstration, b) modelling and
generalization, c) reproduction.

Demonstration – In the demonstration phase, the skills to
complete the given task are demonstrated under the slave-
master mode, which will be introduced in details in Section
IV. The robot motion is measured by a position sensor, and
the contact force is estimated by the force observer.

Modelling and Generalization – In this phase, the motion
and the contact force obtained in the demonstration phase are
modelled by individual DMPs, respectively. The generalization
of the motion and contact force profiles can be achieved by
tuning the parameters of the learnt DMP models.
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Reproduction – Due to the joint usage of the motion and the
force, the hybrid force/motion controller is used to track the
desired motion and force (generated from their DMPs). The
force observer is employed to provide feedback information.

B. Robot Programming by Demonstration

In this section, the DMPs that involve in modelling motion
and contact force are introduced. Since the modelling of force
is the same as that for motion (by regarding the variant of force
as a trajectory), we will introduce the motion modelling in
details and highlight only the points that should be considered
for force modelling.

1) DMPs for Motion Planning: The DMP model for task-
space motion is defined as follows [21],

τdv̇ = α(xg − x)− βv + α [f(s)− (xg − x0)s]

τdẋ = v
(1)

where x ∈ R is the position state in Cartesian space, v ∈
R and v̇ ∈ R are the Cartesian velocity and acceleration,
respectively. x0 and xg are the initial position and the goal
position, respectively. α, β ∈ R are the positive constants to
be specified, τd > 0 is the temporal-scaling factor, and s ∈ R
denotes the state of the canonical system [21], which is a DS
defined as in (2),

τdṡ = −γs (2)

where γ > 0 denotes the decay rate. The initial state of
the canonical system is set as s0 = 1. f(s) is a continuous
nonlinear function pre-defined as in (3) [21],

f(s) =

n∑
i=1

ωiψi(s)s (3)

with

ψi(s) =
exp

[
−(s− bi)2/(2ci)

]∑n
i=1 exp [−(s− bi)2/(2ci)]

(4)

where ψi(s) is the normalized Gaussian function with the
mean bi ∈ R and the variance ci ∈ R. n is the number of
Gaussian functions. ωi ∈ R is the weight of the i-th Gaussian
function.

The DMP model can be regarded as a spring-damper
system driven by a virtual external force, with the magnitude
described as in (5),

Kf = α [f(s)− (xg − x0)s] (5)

where (xg − x0) serves as the spatial-scaling factor. Since s
in (2) is monotonically decreasing and will converge to zero
with the initial value s0 > 0, f(s) and Kf will converge to
zero, and the position state x will evolve to the attractor xg ,
which means that the goal of the motion can be modified by
changing xg . Besides, the duration of the motion is determined
by the factor τd. These two characteristics are requisite for a
generalizable motion model.

Assuming that the demonstration is generated from the
DMP model, the parameters of the model can be learned by
solving a linear regression problem. The expected nonlinear
function of f(s) is defined as follows [21],

f∗(s) =
τdẍ(5s)+βẋ(5s)

α
−(xg−x(5s))+(xg−x0)s (6)

where x(·) denotes a given demonstration trajectory, which is
assumed as a function of time.5s denotes the inverse function
of s(t) = s0 exp(−γt/τd), which is the solution of (2). With
the data obtained from (6), the weight vector ω = {ω1, ..., ωn}
can be estimated by using the least squares method.

2) DMPs for Force Modulation: By regarding the variation
of contact force as a trajectory, we can use a similar DMPs
method to model contact force, like what we do for modelling
the motion. The process is described by (7)

τdḞv = α(Fg − F )− βFv + α [f(s)− (Fg − F0)s]

τdḞ = Fv

(7)

where F ∈ R is the contact force and Fv ∈ R is the rate
of change of F . F0 and Fg is the initial value and the final
value of the contact force, respectively. The setting of α and
β here are independent of (1). The DMPs for contact force
share the same temporal factor τd and the canonical system
(2) with the model of motion to keep synchronization of time.
Likewise, by tuning the temporal-scaling factor and the goal
position parameter, the variant of contact force can also be
generalized.

C. Momentum-based Force Observer

Fig. 2. Illustration of the momentum-based force observer.

In this section, the momentum-based force observer [23]
and the Kalman filter are introduced.

The dynamic model of a robot manipulator is defined as in
(8),

M(q)q̈ + C(q, q̇)q̇ + g(q) + τe = τc (8)

where M(q) ∈ Rn×n is the inertia matrix, C(q, q̇)q̇ ∈ Rn is
the centripetal and Coriolis vector and g(q) ∈ Rn is the gravity
vector. τc represents the control torque and τe represents the
external torque.

The momentum of the robot is defined as in (9),

p = M(q)q̇ (9)

Then, the derivative of the momentum can be written as
follows,

ṗ = Ṁ(q)q̇ − C(q, q̇)q̇ − g(q) + τc + τe

= CT (q, q̇)q̇ − g(q) + τc + τe
(10)
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In (10), the i-th component of ṗ is defined as follows,

ṗi = −1

2
q̇T
∂M(q)

∂qi
q̇ − gi(q) + τc,i + τe,i (11)

for i = 1, ..., n, which means that each component is only
affected by the corresponding component of the torques.

The generalized momentum-based observer monitoring
method introduced in [46] and [47] is designed to avoid the
inversion of the robot’s inertia matrix, to decouple the estima-
tion results, and to avoid the estimation of joint acceleration.
Define the quantity as in (12),

Γ(q, q̇) := C(q, q̇)q̇ − Ṁ(q)q̇ + g(q)

= −CT (q, q̇)q̇ + g(q)
(12)

The momentum observer dynamics can be written as in (13),

˙̂p = τc − Γ̂(q, q̇) + r

ṙ = Ke(ṗ− ˆ̂p)
(13)

where Ke = diag {ke,i} > 0 is the gain matrix of the observer.
r is the output of the observer, and it can further defined as
below,

r = Ke

(
p(t)−

∫ t

0

˙̂p(s)ds− p(0)

)
= Ke

(
p(t)−

∫ t

0

(
τc − Γ̂(q, q̇) + r

)
ds− p(0)

) (14)

with p = M̂(q)q̇. Assuming that M̂ = M and Γ̂ = Γ, the
dynamic relation between the output r and the external joint
torque τe can be written as in (15),

ṙ = Ke (τe − r) (15)

By applying the Laplace transformation, we have:

ri =
ke,i

s+ ke,i
τe,i =

1

1 + Te,is
τe,i, i = 1, . . . , n (16)

Thus, large values of ke,i give small time constants Te,i =
1/ke,i in the transient response of the component of r, which
is associated with the same component of the external torque
τe. Within the limit, we can obtain r ≈ τe when Ke → ∞.
The diagram of the force observer is shown in Fig. 2.

As analyzed above, this good characteristic makes the mo-
mentum observer a virtual sensor for external joint moments
acting on the robot structure. By using the Jacobian matrix,
the external force Fe can be transformed from the external
torque.

Since the external force estimate contains some noises, the
Kalman filter is applied to smooth the force estimate Fe, which
can be written as below,

Fe(t) = h(t)θ̂(t) (17)

where θ̂(t) is the estimated parameter vector of Wiener filter
coefficients and h(t) is the virtual input. The Kalman filter
estimation law is described as follows [48],

K(t) = P (t)hT (t)R−1(t)

Ṗ (t) = −K(t)h(t)P (t)
˙̂
θ(t) = K(t)

[
Fe(t)− h(t)θ̂(t)

] (18)

where K(t) is the filter gain, P (t) is the covariance, θ̂(t)
is the estimated filter parameter vector. The Kalman filter is
initialized by setting θ̂(0) = 0 and P (0) = δI , where I is a
identity matrix.

D. Hybrid Force/Motion Control

Fig. 3. Block diagram of the hybrid force/motion controller.

In order to reproduce the contact force profile, a hybrid
force/motion controller is developed, which is shown in Fig.
3. The original controller of the Baxter includes a position
controller and a PD controller with gravity compensation. This
controller is stable and is easy to use. Therefore, we implement
the hybrid force/motion controller based on it, simply adding a
outer force control loop on the original control loop. As shown
in Fig. 3, the error between the actual contact force and the
desired force is taken as the input of the PI controller, then the
output of the PI controller is double integrated, transformed
into the same unit of position. Finally, this signal is used to
compensate for the position. This newly developed controller
is easy to implemented and won’t destroy the stability of the
original position controller.

IV. EXPERIMENT

A. Experimental Setup

Fig. 4. The Baxter robot.

In this paper, the Baxter robot (Fig. 4) built by Rethink
Robotics is employed to verify the proposed framework. The
Baxter robot is a dual-arm robot that has seven joints in each
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arm, including two joints in the shoulder, two joints in the
elbow and three joints in the wrist. It provides the Python
application programming interface (API) for users to easily
program and use. The Baxter is equipped with various sensors,
e.g., position sensor, camera in its head, etc. However, it isn’t
equipped with any force sensor and its force measurement API
is implemented by computing the inverse dynamics model,
which is usually inaccurate and subject to relatively large
error. Besides, adding a force sensor will increase the system
complexity and cost. Therefore, in this paper, the momentum-
based force observer is applied as an alternative solution.

The Baxter robot has three control modes: torque control
mode, velocity control mode and position control mode. Under
the position control mode, a PD controller with gravity com-
pensation is activated to achieve stable control. Our hybrid
force/motion control framework is implemented based on
the position control mode. Extra input computing by a PI
controller is added to the original position control input to
achieve force reproduction.

Fig. 5. The master-slave control mode.

The experiment includes the demonstration phase, the mod-
elling and skill generalization phase and the skill reproduction
phase. In the demonstration phase, the robot is operated in
the G-Zero mode of the Baxter robot, which enables users
to demonstrate a motion task by directly moving the arm of
robot. Considering that the motion of robot arm will affect
the performance of the force observer, the arm-moving and the
running of force observer are therefore undertaken on different
robot arms. Thus, the master-slave control mode is taken in the
demonstration phase. The left arm of the Baxter robot serves
as master arm and the right arm as slave arm (see Fig. 4). The
demonstrator moves the master arm to demonstrate, and the
velocities of each joint of the master arm are applied to control
the motion of the slave arm, i.e., the task is actually performed
by the slave arm, as shown in Fig. 5. The motion trajectories of
the slave arm are recorded and meanwhile the force observer
is used to estimate the contact force between the slave arm and
the environment. Then the recorded trajectories and force are
modelled by DMPs simultaneously for the purpose of skills
transfer.

B. Robot Learning Task – Table Cleaning

A cleaning task is carried out in our experiment to verify
the proposed skill transfer framework. As shown in Fig. 6, a
soft plastic board is clamped on the gripper of the slave arm,

Fig. 6. The setup of the cleaning task experiment: a soft plastic board is
clamped on the gripper of the slave arm, which serves as the cleaning tool.
The Baxter robot is expected to clean the assembly parts off the table on the
left hand side.

Fig. 7. The conduction of the cleaning task, composed of a ‘MOVE’ motion
and a ‘CLEAN’ motion.

which serves as the cleaning tool. The Baxter robot is expected
to clean the assembly parts off the table. To perform this task,
the Baxter robot need to move its slave arm to the right hand
side of the assembly parts (called the ’MOVE’ motion), and
then push the parts off the table from the left hand side (called
the ’CLEAN’ motion). The process is illustrated by Fig. 7.

The demonstration of the cleaning task is performed under
the master-slave mode as mentioned in Section IV-A. In this
process, the motion of the end-effector of the slave arm is
recorded. Meanwhile, in the ’CLEAN’ phase, the momentum-
based force observer is used to estimate the contact force
between the end-effector and the table, and the Kalman filter
is applied to smooth the estimate. Fig. 8 displays the force
measured with sensor, the estimated force and the smoothed
curve after Kalman filtering. It is found that the contact force
rises at first when the end-effector presses the table and moves,
and then goes down when the end-effector is going to leave the
table. On the other hand, the difference between the measured
force by the observer and the estimated force by a force sensor
is viewed as the error of estimation. However, it is found in
Fig. 8 that the error is relatively small.
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In the reproduction phase, we first design a set of compar-
ative experiments to confirm the effectiveness of the hybrid
force/motion control method. In the first experiment, the
demonstration is directly reproduced by the position con-
trol mode, without exploiting the estimated contact force.
In the second experiment, the hybrid force/motion controller
is employed to reproduce the motion and the contact force
as well. Fig. 9 illustrates the experimental outcomes. It is
seen that the robot fails to perform the cleaning task under
the position control only mode because the contact force is
not large enough to avoid any leakage of the small parts
during the CLEAN phase. While, in the hybrid force/motion
control mode, the robot can successfully perform the task as
demonstrated.

Fig. 8. Contact force between the end-effector and the table in the CLEAN
phase.

Fig. 9. Experimental results of the comparative experiments: the robot fails
to perform the cleaning task by taking the position control only mode; and
then successfully conduct the task by involving the contact force information
in robot control.

C. Generalization

We then consider a new situation to verify the motion and
force generalization. In particular, we change the location
of the particle parts to a new place as shown in Fig. 10.
In this case, the motion trajectory need to be rescheduled.
As described in Section III-B, two DMPs models are built

to deliver the MOVE motion and the CLEAN motion in a
demonstrated task, respectively. The parameters α and β are
set to 120 and 20, respectively. The number of basis functions
is chosen as 90. The least squares method is used to learn
the weight parameters of the DMPs. We then adapt these two
models to make them suitable for the new target place of the
MOVE and the CLEAN motion. Fig. 11 and Fig. 12 show the
performing results accordingly. Note this change of position
only takes place in the direction of the y-axis.

If we take the generalized motions and force estimate
from the original task to control the robot under the hybrid
force/motion control mode, we find that the robot fails to
perform the task due to the mismatch between the motion and
contact force. This means that the contact force should also be
generalization. Therefore, we adjust the DMPs model for the
contact force by increasing the force amplitude with a similar
approach for the motion. The parameters α and β of the DMPs
are set to 150 and 25 in this case, respectively. The number of
basis functions is increased to 100. Fig. 13 displays the contact
forces before and after the generalization. By taking these
generalized motions and force into the hybrid force/motion
controller we employ, the robot can finally perform the task
with success.

Fig. 10. New task situation: the location of the parts is changed.

Fig. 11. Generalization of the MOVE motion.

V. CONCLUSION

Future autonomous robots or cognitive agents in complex
systems need to produce a more efficient human-robot col-
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Fig. 12. Generalization of CLEAN motion.

Fig. 13. Generalization of contact force.

laboration to increase technical autonomy, enhance safety,
favour more productive human labour and provide better
services to the public. This can be achieved by making human-
robot interaction more intuitive by adopting techniques like
imitation learning, mimicking the way humans teach and learn
to themselves. This will reduce the cognitive workload of
the users and increase acceptability and usability of cognitive
systems and robots. This paper has proposed a novel cognitive
learning framework for human-robot skill transfer, which
simultaneously considers the motion and the contact force
during the demonstration. The DMPs are built to model the
motion and the force to achieve skill generalization. To avoid
increasing the system complexity, a momentum-based force
observer is taken to estimate the contact force, without adding
any extra force sensors. To reproduce the motion and the
contact force, the hybrid force/motion controller is developed
based on the original position controller of the Baxter robot.
Experiments with the Baxter Robot have verified that the robot
can perform the force-related task better than the motion-only
method by employing the proposed robot learning framework.
The success rate of task performing is also improved. In the
future, to increase acceptability and usability of the proposed

approach, we will consider involving other skills, e.g., stiffness
profiles of the human user into the framework, and also
developing better control scheme to achieve more accurate
force tracking.
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Metzen, and F. Kirchner, “Intuitive interaction with robots – technical
approaches and challenges,” in Formal Modeling and Verification of
Cyber-Physical Systems. Springer Fachmedien Wiesbaden, 2015, pp.
224–248.

[8] M. S. Prewett, R. C. Johnson, K. N. Saboe, L. R. Elliott, and M. D.
Coovert, “Managing workload in human–robot interaction: A review of
empirical studies,” Computers in Human Behavior, vol. 26, no. 5, pp.
840–856, sep 2010.

[9] A. Moniz and B.-J. Krings, “Robots working with humans or humans
working with robots? searching for social dimensions in new human-
robot interaction in industry,” Societies, vol. 6, no. 3, p. 23, aug 2016.

[10] A. Sciutti, M. Mara, V. Tagliasco, and G. Sandini, “Humanizing human-
robot interaction: On the importance of mutual understanding,” IEEE
Technology and Society Magazine, vol. 37, no. 1, pp. 22–29, mar 2018.

[11] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[12] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
Cognitive Sci., vol. 3, no. 6, pp. 233–242, 1999.

[13] S. Calinon, D. Bruno, M. S. Malekzadeh, T. Nanayakkara, and D. G.
Caldwell, “Human–robot skills transfer interfaces for a flexible surgical
robot,” Computer methods and programs in biomedicine, vol. 116, no. 2,
pp. 81–96, 2014.

[14] J. Hu, Z. Yang, Z. Wang, X. Wu, and Y. Ou, “Neural learning of stable
dynamical systems based on extreme learning machine,” in Information
and Automation, 2015 IEEE International Conference on. IEEE, 2015,
pp. 306–311.

[15] X. Yin and Q. Chen, “Learning nonlinear dynamical system for move-
ment primitives,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2014,
pp. 3761–3766.

[16] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, 2013.

[17] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell,
“Statistical dynamical systems for skills acquisition in humanoids,” in
Proc. IEEE-RAS Int. Conf. Humanoid Robots, 2012, pp. 323–329.

[18] S. Calinon and A. Billard, “Statistical learning by imitation of competing
constraints in joint space and task space,” Adv. Robot., vol. 23, no. 15,
pp. 2059–2076, 2009.

[19] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and
generalizing a task in a humanoid robot,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 37, no. 2, pp. 286–298, 2007.
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