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Abstract

Computation is a fundamental part of our world, with today's children growing up sur-

rounded by technology. This has led governments and policymakers to introduce

computer science into primary and secondary education (age 5 to 16). These de-

velopments have been driven by `computational thinking': the idea that the problem-

solving skills used in computer science are useful in other disciplines. They have

resulted in a wide range of programming tools designed for novices, of which Scratch,

a block-based visual programming environment, is the most popular. Yet, so far, both

computer science education and claims of computational thinking as a universal skill

have failed to live up to their potential.

This thesis begins by reviewing the literature on computer science in primary edu-

cation and computational thinking. It then describes a study that aimed to reproduce

�ndings that programming improves story sequencing, a non-computational skill, in

young children (age 5 and 6) using a programming game. The results showed an over-

all improvement for both the intervention and control group. In addition, it highlighted

issues with teaching programming to young children. The thesis then refocuses on

teaching older children (age 9 to 11) the computer science skill of abstraction and the

idea that it can be used to refactor code to remove `code smells' (bad programming

practices). Code smells indicate an underlying problem in a program, such as code

duplication, and are common in Scratch projects. A study is then reported that es-

tablishes that primary school children can recognise the bene�ts of abstraction when

asked to alter Scratch projects that contain it.

The thesis then describes the design and development of Pirate Plunder, a novel

educational block-based programming game designed to teach children to use ab-

straction in Scratch, using custom blocks (parameterised procedures) and cloning

(instances of sprites). Two studies are reported in the subsequent chapters. The �rst

investigates the value of a debugging-�rst approach in Pirate Plunder, �nding that it

was not always bene�cial. The second measures for improvements in using abstrac-

tion in Scratch, �nding that children who played the game were then able to use cus-

tom blocks to reduce duplication code smells in a Scratch project. In addition, Pirate

Plunder players improved on a computational thinking assessment compared to the

non-programming control group. The �nal chapter discusses the original contributions

of the thesis, the implications of these and future direction.
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Chapter 1

Introduction

“Whether you want to uncover the secrets of the universe, or you just want to

pursue a career in the 21st century, basic computer programming is an

essential skill to learn.”
— Stephen Hawking

The debate over whether computer science should be taught in compulsory edu-

cation has become more important as technology and computing become ubiquitous

in society. Computation is a fundamental part of our world, with today's children grow-

ing up surrounded by technology and entering a job market that requires an ever-

increasing number of computer-literate professionals (Passey, 2017). Over recent

years, this has led governments worldwide to evaluate the teaching of computing in

compulsory education (Heintz, Mannila, & Farnqvist, 2016). The result has been a

shake-up of computing education, with previous curricula based on of�ce software

replaced with wider topics of informatics, digital literacy and computer science (e.g.

The Royal Society, 2012). These developments have, in part, been driven by the idea

of `computational thinking', that the ideas and problem-solving skills used computer

science can be useful in other disciplines (Wing, 2006). The term has subsequently

been used by governments and policymakers as justi�cation for teaching computer

science in primary and secondary education.

Yet, despite the promise of computer science in primary education, it has so far

failed to live up to its potential (The Royal Society, 2017). Teaching is often sparse

and inconsistent, stemming from a lack of adequate training programs, infrastructure

and materials. It is often left up to inexperienced teachers to develop an understand-

ing of the required learning content by themselves. The multitude of programming

tools, differing in type, cost, complexity and learning approach, means that educa-

tors are unsure which of these they should be using. This results in inconsistencies

from school to school on how learning content is delivered, if at all. These problems

are exacerbated by the lack of standardised computer science assessment in primary

education. Despite the importance placed on it by governments, computer science of-

ten falls behind the traditional subjects of mathematics, literacy and science in primary
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school priorities.

This thesis is concerned with the way that programming tools are used to teach

computer science in primary education. The main aim is to use computer science

and computational thinking research to create a programming game that can be used

in primary schools to effectively teach programming without prior knowledge on the

part of the child or the teacher. Questions are raised throughout the thesis on com-

puter science learning content, computational thinking and the ef�cacy of widely-used

programming tools. These are then discussed in the �nal chapter (Chapter 10).

1.1 Aims

The aims of the thesis are to:

1. Review the literature on computer science education and computational think-

ing.

2. Identify areas of weakness in computer science education.

3. Create a programming game that addresses these weaknesses using game-

based learning research.

4. Evaluate the programming game in a series of experimental studies.

The thesis focuses on the teaching of abstraction skills to children as an area

of weakness in computer science education. Speci�cally, the concept of code reuse,

which makes programs easier to understand and maintain. Code reuse is best achieved

in simple programs through the extract method: moving fragments of duplicated code

into a procedure that can then be called from multiple places within the program,

meaning that the code fragment only exists in a single location (Chapter 5). This

process is otherwise known as procedural abstraction and is notoriously dif�cult for

novice programmers to learn, even in higher education (Kallia & Sentance, 2017).

Pirate Plunder, a programming game, is designed to teach these skills using

Scratch's block-based programming language. Scratch (Maloney, Peppler, Kafai,

Resnick, & Rusk, 2008) is the most widely-used programming tool in primary ed-

ucation. Yet, Scratch users frequently produce bad programming habits and code

smells that make programs dif�cult to understand, debug and maintain (Aivaloglou &

Hermans, 2016). These problems can be avoided using abstraction.

1.2 Thesis Structure

Chapter 2 analyses the growing trend for teaching computer science in primary ed-

ucation (age 5 to 11). The motivation behind this is that children should understand
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how technology works, to produce programmers for the growing technology industry

and to foster logical thinking and problem-solving skills. Despite the evidence that

primary-age children can develop programming skills, there are issues with the imple-

mentation of current curricula. The chapter explores how computer science has been

introduced into compulsory education worldwide and looks at some of the available

educational programming tools and their approach to teaching computer science.

Chapter 3 focuses on `computational thinking': the logical thinking and problem-

solving concepts used when solving computational problems. These concepts include

abstraction, generalisation, algorithms, decomposition and debugging amongst oth-

ers. Unlike computer science, computational thinking, in its current state, is a rela-

tively new �eld of research. Some proponents of computational thinking argue that

it is a `universal skill' that should be part of non-computational disciplines, such as

mathematics and science. However, there is a counterargument that computational

thinking should be used as an explanation of the bene�ts of computer science, not as

a discipline in its own right. The chapter explores this debate, examining de�nitions of

computational thinking and computational thinking measures, before discussing the

criticisms of computational thinking, including scope, transfer and teaching.

Chapter 4 reports a study designed to test the results of previous research into pro-

gramming and its impact on non-computational skills. In a series of studies, Kazakoff,

Sullivan & Bers (2012, 2014; 2013) found that a programming intervention improved

the story sequencing ability of children age 4 to 7. The study reported in this chapter

aims to replicate these results using an active control group and a programming game,

Lightbot Jr, for the intervention. The study found no difference between groups and

explores the reasons for this. The chapter ends by charting a change of direction in

the thesis, moving away from measuring computational thinking onto teaching com-

puter science and software engineering principles to older primary school children

(age 9 to 11).

Chapter 5 describes abstraction and its importance in computer science and soft-

ware engineering. Novice programmers develop abstraction skills as they gain ex-

pertise (Lister, 2011). Research suggests that primary school children can develop

abstraction skills, but there is limited evidence on the topic. The chapter explores

issues with Scratch, the most popular programming tool in primary education. In par-

ticular, the prevalence of code smells such as duplicated code and long scripts that

can be removed using abstraction.

Chapter 6 then describes a study designed to see whether children age 10 and 11

with limited Scratch experience can recognise the bene�ts of abstraction in Scratch.

They were asked to compare projects that met the same outcome but used different
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levels of abstraction, as measured by Dr. Scratch, an assessment tool that analy-

ses Scratch projects for evidence of different computational thinking skills. The re-

sults were positive, suggesting that children could recognise why custom blocks and

cloning were useful, but only when asked to alter projects themselves.

Chapter 7 explains the design and development of Pirate Plunder, a novel edu-

cational programming game designed to teach children to use abstraction in Scratch.

The chapter goes into detail on the different aspects of the game design, describing

how it introduces abstraction in a way that rationalises and explains its use, how it

fosters transfer to Scratch, how it allows minimal teacher instruction and interaction

and how it motivates the player.

Chapter 8 describes a study to investigate whether using a debugging-�rst ap-

proach in Pirate Plunder is bene�cial to players. The debugging-�rst strategy comes

from the theory that novice programmers learn better when completing existing code

than starting with an empty program (Van Merriënboer & De Croock, 1992). Two

versions of Pirate Plunder, debugging-�rst and non-debugging, were compared to a

Scratch curriculum using several assessment tasks with children age 10 and 11. In

addition to measuring for differences between the Pirate Plunder versions, a Scratch

assessment was used to see whether the participants could use the abstraction skills

they had learnt in Pirate Plunder in a separate Scratch project. The Pirate Plun-

der results showed that the debugging-�rst version was no more bene�cial than non-

debugging. There was also no difference in the amount of abstraction used by the

intervention group and active control groups on the Scratch assessment. However,

during artifact-based interviews, participants who played Pirate Plunder could explain

abstraction (using custom blocks) and how they would use it in the assessment.

Chapter 9 builds on the results and observations from the previous chapter, de-

scribing a study designed to evaluate whether Pirate Plunder can be used to teach pri-

mary school children (age 10 and 11) to use abstraction in Scratch. It used an updated

(single) version of Pirate Plunder, revised assessment tasks and a partial-crossover

design. The study compared Pirate Plunder to a non-programming spreadsheets

curriculum (using an additional Scratch control group in the �rst phase). In addition

to abstraction assessments, the study used a computational thinking assessment to

measure improvements in computational thinking after playing Pirate Plunder. The re-

sults were positive, showing that children were able to use abstraction to reduce block

and sprite duplication in Scratch and an improvement on the computational thinking

assessment in comparison with the non-programming control group.

Chapter 10 concludes the thesis by summarising the original contributions, explor-

ing the implications of these and the impact of results on the wider context of computer
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science education. The chapter �nishes with an exploration of future direction.

1.3 Notes

1.3.1 Thesis Length

As the thesis is interdisciplinary, it is between the length of standard computer science

thesis and a standard education thesis. This is because it focuses on the educational

and learning sciences aspects of the research, particularly on the learning outcomes

of the participants in the four experimental studies reported. The thesis does not

discuss the technical aspects of the software development as it is not the focus of the

work.

1.3.2 Pirate Plunder

The name `Pirate Plunder' in this thesis refers to the game created by the author and

should not be confused with the programming game of the same name produced by

Delightex, `Plunder Pirates' developed by Rovio Entertainment or `Pirate's Plunder' by

Dexterity Software. The name will be changed should it be released commercially in

future.

1.3.3 Terminology

Throughout the thesis, the terms `function', `procedure' and `method' are used in-

terchangeably to refer to programmatic subroutines: a sequence of instructions that

performs a speci�c task that is referenced within a larger body of code. There is a

technical difference between these terms in that functions can return a value, proce-

dures do not, and methods are normally associated with an object in object-oriented

languages. However, this distinction is not relevant to this thesis.

1.3.4 Design Concepts

Several design concepts are highlighted using grey boxes such as this, which feed

into the design and development of Pirate Plunder. This is done to aid the reader's

understanding of how the literature review in�uenced the game design.

1.3.5 Ethical Approval

Initial ethical approval was given by the university for Studies 1 and 2 (Appendix C).

A change in the University ethics approval system (from document submissions to an
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online portal) meant that an amendment to this approval for Studies 3 and 4 (Appendix

G) had to be submitted as a separate application.
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Chapter 2

Computer Science in Primary

Education

The lives of today's children will be greatly in�uenced by computing, both in the home

and at work (Barr & Stephenson, 2011). Policymakers, supported by the technol-

ogy industry, are arguing for children to be taught how technology works, to produce

`digital citizens' for an increasingly IT-based global economy. This has led to many

countries introducing computer science (CS) into primary education (age 5 to 11) and

an increase in the number of programming tools available for novice programmers.

This chapter covers the reasons for teaching CS in primary schools, its current

state in countries around the world and an analysis of educational programming tools.

2.1 The Promise of Computer Science Education

Programming is becoming an increasingly important skill as technology becomes

more prevalent in society. Nearly everyone in countries with advanced economies

uses technology on a daily basis. Children are now able to use smartphones and

tablets as young as 3 or 4 years old, often before they can read (Calvert, 2015).

There is little doubt that today's children will interact with technology throughout their

working lives, regardless of career choice.

Countries are under pressure to produce computer-literate professionals as the

global economy becomes more driven by technology. However, in�uential government-

funded reports in the UK (Livingstone & Hope, 2011; The Royal Society, 2012) and

the US (A. Wilson & Moffat, 2010) have criticised the lack of adequate CS education

at primary and secondary level (age 5 to 16). Since then, a combination of these re-

ports, cheap and available technology and the growing software development industry

(U.S. Department of Labor, 2018) have meant that traditional views that CS should

only be taught in higher education are being reconsidered (Bocconi, Chioccariello,

Dettori, Ferrari, & Engelhardt, 2016). Earlier teaching may also increase the number

of female students studying CS at tertiary level and going on to work in the industry
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(Margolis & Fisher, 2003), going some way to reducing the gender imbalance in the

technology sector.

There is a growing consensus amongst researchers, policymakers and the tech-

nology industry for teaching children CS at an earlier age, in addition to the broader

topic of ICT (Information and communications technology). In recent years, several

countries have introduced CS into compulsory (primary and secondary) education

(Heintz et al., 2016). There have also been attempts to introduce it outside the class-

room, through code clubs and initiatives such as Hour of Code (C. Wilson, 2015).

These developments have, in part, been driven by the `computational thinking' move-

ment that has gained traction in recent years. This is covered in detail in Chapter

3.

Passey (2017) summarises the main arguments for teaching CS in compulsory

education:

� Economic argument - Education should develop the skills that are most likely

to support a future IT-based economy.

� Organisational argument - Large organisations increasingly require technology-

literate individuals to support their systems.

� Community argument - Computing facilities are being used increasingly by

`communities' for social purposes, in addition to organisations and individuals.

� Educational argument - Due to the speed that technology is developing, learn-

ers need an awareness and understanding of how it should be used responsibly.

� Learning argument - Developing problem-solving, collaboration, creativity and

logical thinking skills through CS.

� Learner argument - Engaging learners in CS early, so that they have the op-

portunity to see how it might impact their future.

Conversely, there is a counter-argument that not all children need to learn CS: pro-

gramming is unnecessary for most jobs, maybe automated or outsourced to develop-

ing economies in the future and can be too dif�cult for younger children to learn. Fur-

thermore, suggestions that CS learning outcomes (e.g. logical thinking and problem-

solving) can be transferred to other subject areas may be problematic (Denning, 2017)

(Chapter 3). There are also issues with CS teaching because government changes to

curricula have been made without adequate research or teacher training programs in

place (Webb et al., 2017). CS in primary education is not part of standardised testing,

so is given limited classroom time in comparison with traditional subjects. A follow-

up report of the 2013 computing reforms in English compulsory education notes that

whilst there are pockets of excellence, computing education overall is still “patchy and

fragile” (The Royal Society, 2017, p. 6).
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In summary, CS is being introduced into primary education to give children an

understanding of how technology works, to produce programmers for a growing soft-

ware engineering sector, to foster problem-solving and logical thinking skills and to

give them an awareness of how it may in�uence their lives. The next section (Section

2.2) explores the countries that have introduced CS into compulsory education: how

it has been integrated and what sort of content is taught.

2.2 The Introduction of Computer Science Education

Several countries have now integrated CS into their national curricula (Heintz et al.,

2016). These changes are summarised in Table 2.1. CS has largely been given its

own subject area, but some countries have integrated it into existing subjects such

as mathematics. It is often taught as part of a broader informatics curriculum and is

sometimes combined with developing `digital competencies', such as using technol-

ogy ef�ciently and responsibly, addressing issues such as e-safety and cyber-bullying.

CS is compulsory at primary level (age 5 to 11) in just under half of the countries

reviewed (9/20). Furthermore, stakeholders in several others, such as France and

Spain, are pushing for its inclusion (Bocconi et al., 2016). With so much emphasis

on CS, it is therefore important that learning content is suitable for primary school

children and educational programming tools are well researched and used correctly.

2.2.1 What Children are Taught

Primary school children begin by learning to write simple programs using a variety of

approaches: basic visual programming environments, games, physical devices and

unplugged activities (e.g. writing out simple algorithms on paper). For example, the

English national curriculum for computing at Key Stage 1 (age 5 to 7) (Department for

Education, 2013) states that pupils should be taught to:

� Understand what algorithms are; how they are implemented as programs on

digital devices; and that programs execute by following precise and unambigu-

ous instructions.

� Create and debug simple programs.

� Use logical reasoning to predict the behaviour of simple programs.

Under 7 years old, children are often limited to low-level CS concepts like writing

algorithms, sequencing instructions and developing basic prediction skills. This is

primarily to introduce them to the basics, but also because of cognitive limitations in

working memory (Van Merriënboer & Sweller, 2005) and abstract reasoning (Armoni,

2012). As they get older, children are introduced to selection, repetition and problem
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Table 2.1: Overview of CS education in different countries, adapted from Heintz, Man-
nila, & Farnqvist (2016) using additional information from Bocconi, Chioccariello, Det-
tori, Ferrari, & Engelhardt (2016)

Country What? How? Primary Secondary
Australia Digital

Technologies
Own subject
and integrated

Compulsory Compulsory

Croatia Informatics Own subject Elective Compulsory
Cyprus Computer

Science
Own subject - Compulsory

Denmark Informatics Own subject - Compulsory
England Computing Replace

existed
subject

Compulsory Compulsory

Estonia Programming
(Technology &
innovation)

Integrated Compulsory Compulsory

Finland Programming
(Digital
competence)

Integrated Compulsory -

Hungary Information
Technology

Own subject - Compulsory

Isreal Computer
Science

Own subject - Compulsory
or elective
depending on
institution

Lithuania Information
Technology

Own subject - Compulsory

Malta Digital
Literacy

Integrated Compulsory Elective

New Zealand Programming
and Computer
Science

Own subject - Elective

Norway Programming Own subject - Elective
Scotland Computing

science
Own subject - Elective

Slovakia Informatics Own subject Compulsory Compulsory
South Korea Informatics Own subject Compulsory Elective
Sweden Programming

and Digital
Competence

Integrated Compulsory Elective

Poland Computer
Science

Own subject Compulsory Compulsory

Turkey Computer
Science

Own subject - Compulsory

USA Computer
Science

Own subject - Elective
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decomposition, as shown in the English national curriculum for Key Stage 2 (age 7 to

11) where pupils are taught to:

� Design, write and debug programs that accomplish speci�c goals, including con-

trolling or simulating physical systems; solve problems by decomposing them

into smaller parts.

� Use sequence, selection, and repetition in programs; work with variables and

various forms of input and output.

� Use logical reasoning to explain how some simple algorithms work and to detect

and correct errors in algorithms and programs.

2.2.2 What Children can Learn

The dif�culties that children under 7 have with the more abstract CS concepts (e.g.

selection, repetition, debugging, variables and procedures) can be explained by Pi-

aget's stages of cognitive development (1970), which provide a framework for when

children gain awareness of the world around them. In traditional Piagetian theory,

children are not able to think abstractly and reason about hypothetical problems until

they reach the `formal operational' stage. This abstract reasoning is fundamental in

CS and is “one of the most vital activities of a competent programmer” (Dijkstra, 1972,

p. 864), which might explain why younger children can struggle to predict the outcome

of programs, even if they understand the syntax.

Traditional Paigetian theory states that children do not reach the `formal opera-

tional' stage until around 11 years old. However, neo-Piagetian theory suggests that

“people, regardless of their age, are thought to progress through increasingly abstract

forms of reasoning as they gain expertise in a speci�c problem domain” (Lister, 2011,

p. 2), which is supported by Piaget's later work (2001). Lister goes on to describe

novice programmers' behaviour using neo-Piagetian stages, with expert programmers

being able to reason at the highest `formal operational' stage:

Sensorimotor Stage - Struggle with syntax and require considerable effort to

trace code (mentally simulate the program to predict program behaviour). Often

manipulate code using trial and error.

Preoperational Stage - Understand basic programming concepts, so can more

reliably trace code. Reliant on speci�c values to trace, understand and write

code. Struggle with the abstract relationship between different parts of the code

as their focus is limited to a single statement or expression at a time.

Concrete Operational Stage - Can reason at a more abstract level, not reliant

on speci�c values. Able to understand short pieces of code simply by read-
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ing (tracing not required) and can perform transitive inference: comparing two

objects via an intermediary object.

Table 2.2: Categorising programming responses using the SOLO taxonomy, adapted
from Seiter (2015)

Category Original Explanation In Programming
Prestructural The response contains bits of

unconnected information,
demonstrating a
misconception of the task.

The code substantially lacks
knowledge of programming
constructs or is unrelated to
the question.

Unistructural The response focuses on one
relevant aspect of the task.
Progression to the next level
is quantitative.

The code represents a direct
translation of the
speci�cation, it is in the
sequence of speci�cations.

Multistructural The response focuses on
several aspects, but
relationships among aspects
and their signi�cance to the
whole is missed. Progression
to the next level is qualitative.

The code represents a
translation that is close to
direct. The code may have
been reordered to make a
more integrated, valid
solution.

Relational Meta-connections are made,
and the response is holistic,
integrating concepts into a
coherent whole.

The code provides a
well-structured program that
removes all redundancy and
has a clear logical structure.
The speci�cations are
integrated to form a logical
whole.

Extended abstract The response demonstrates
conceptualization at a higher
level of abstraction,
formulating an instance of a
general case.

The code uses constructs
beyond those required in the
exercise to provide an
improved solution.

Another view comes from Seiter (2015), who used the SOLO taxonomy to clas-

sify programming responses of primary school children. SOLO classi�es learning

outcomes into �ve levels of increasing structural complexity, which Seiter revised for

`code writing' (both have been provided in Table 2.2). The SOLO taxonomy mirrors

the progression through neo-Piagetian stages, with learners becoming better able to

view code holistically and abstractly as they develop their skills.

Both neo-Piagetian theory and the SOLO taxonomy imply that the earlier children

begin to develop expertise in CS, the faster they will be able to develop a holistic

understanding of code and of more abstract programming principles, like selection,

repetition, debugging, variables and procedures. As long as their working memory is

suf�cient. This is supported by several studies that indicate that primary school chil-

dren can learn to understand abstract CS concepts using structured learning content

(e.g. Gibson, 2012; Price & Price-Mohr, 2018).
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Design Concept - Abstract Reasoning

Primary school children �nd abstract reasoning dif�cult but should be able to de-

velop those skills in programming if the learning content is structured correctly.

2.3 The Reality of Computer Science Education

The previous section implies that children should be able to start learning CS concepts

at around age 5. Yet, this is largely dependent on the teaching methods and program-

ming tools used (Duncan, Bell, & Tanimoto, 2014; Shein, 2014). As mentioned brie�y

in Section 2.1, many primary school teachers are not appropriately trained to deliver

CS content (Webb et al., 2017). This is a particular issue in England and Australia,

where curriculum changes have been criticised as being made prematurely by the

government at the risk of inadequate teacher knowledge affecting learning outcomes

(Brown, Sentance, Crick, & Humphreys, 2014). Often teachers must either take an

active interest in training themselves and �nding appropriate curriculum content, or

children are given programming tools to use with little or no guidance. In some cases,

CS may even be ignored because of outdated equipment, lack of teacher con�dence

and testing pressure on traditional subjects like mathematics and science (Yadav,

Gretter, Hambrusch, & Sands, 2016). The lack of teacher knowledge increases the

importance of educational programming tools in meeting learning outcomes.

There are a wide range of educational programming tools designed for primary

school children (Rich et al., 2019). The next section (Section 2.4) will give an overview

of these tools before describing each category in more detail.

2.4 Educational Programming Tools

For this thesis, educational programming tools include any software, hardware or ap-

proach that uses programming languages or methods designed for novices. This

covers visual programming environments (VPEs), programming games, physical de-

vices and unplugged activities. It is worth noting that some of these tools have been

developed by researchers and have some empirical support, yet the majority are com-

mercial and lack published research.

This section gives an overview of available educational programming tools, a brief

description of their history and an explanation of each category listed above with some

example tools.
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2.4.1 Available Tools

Table 2.3 gives an overview of the tools available. It has been extended from an

analysis by Duncan, Bell, & Tanimoto (2014, p. 66) and uses their heuristics to classify

each tool according to its approximate age group, ability level and learning outcomes:

Level 0 - Age 2 to 7. Drag-and-drop or simpler. Teaches planning (sequence)

only. Requires no abstraction. Contains no signi�cant use of: procedures, vari-

ables, iteration, indexed data structures, conditional execution.

Level 1 - Age 5 to 10. Drag-and-drop. Requires no abstraction (or small

amounts). Contains none or few of: procedures, variables, iteration, indexed

data structures, conditional execution.

Level 2 - Age 8 to 14. Drag-and-drop or text-based. Includes some abstrac-

tion. Contains some or most of: procedures, variables, iteration, indexed data

structures, conditional execution.

Level 3 - Age 12 and above. Drag-and-drop or text-based. Includes abstrac-

tion. Contains all of: procedures, variables, iteration, indexed data structures,

conditional execution.

Level 4 - Age 14 and above. Teaches an industry-level Turing-complete pro-

gramming language. Advanced, with extensions available. Contains all of: pro-

cedures, variables, iteration, indexed data structures, conditional execution.

The table is sorted by these heuristics, with more complex tools nearer the bottom.

Programming-style refers to what sort of language the user is programming in. Block-

based languages often combine blocks and text, giving the user a selection of blocks

that snap together to form scripts. Some of these tools use blocks with symbols to

support younger users, which have been speci�ed. `Commercial' indicates whether

or not the product costs money. Target age has been left blank if no information from

the developer could be found. Note that this is not an exhaustive table but has been

included to give an overview of the range of available educational programming tools.
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2.4.2 A Discussion of Available Tools

It is clear from Table 2.3 that there are a wide range of programming tools available

for novice programmers. Block-based programming is the most popular approach, but

some higher-level tools use text-based languages. Over half of the tools are commer-

cial, showing that there are commercial opportunities in producing these tools. Most

of the tools are speci�cally aimed at children. VPEs, games and physical devices are

all used to teach at every level of ability as de�ned by the heuristics. The level and

target age group of the tools differs slightly from the age range speci�ed for each of

Duncan, Bell, & Tanimoto's (2014) heuristics. Tools at levels 0 and 1 are aimed

at children aged 4 and above, level 2 at age 8 and above, and levels 3 and 4

at age 10 and above. This means that tools that introduce abstraction are aimed at

children aged 10 and above, �tting with the earlier discussion of what children can

learn (Section 2.2.2). Primary school children can start with basic tools that allow

sequencing and `code tracing' tasks. They can then progress to using tools that con-

tain abstract concepts like conditional execution, procedures and variables. However,

there is a lack of research measuring and comparing the ef�cacy of these tools for

primary school children (Fessakis, Gouli, & Mavroudi, 2013).

The rest of this section includes a brief description of the historical context and an

explanation of each category and a selection of tools. As this thesis focuses on VPEs

and games (speci�cally Scratch and Lightbot), more attention will be paid to these

than to physical devices and unplugged activities.

2.4.3 A Brief History of Programming Tools

The Logo programming language was the �rst programming tool designed speci�cally

for use in education (Feurzeig & Papert, 2011). Learners program a `turtle' (repre-

sented by an on-screen cursor or a �oor-robot) using simple text-based instructions.

Procedural programming can be used to direct the turtle to draw complex geomet-

ric shapes (Figure 2.1). Seymour Papert was one of the �rst to see the potential of

computing for learning (1980). He advocated that all children have access to a com-

puter, believing that they should take control of their learning by using the materials

around them and that both knowledge and problem-solving skills would come as a

by-product of this exploration, a learning theory known as constructionism (Turkle &

Papert, 1992). The work of Papert and colleagues led to computers, and Logo, being

popular in schools throughout the 1980s. However, questions were raised over the

effectiveness of Logo to develop general problem-solving skills (e.g. Kurland, Pea,

Clement, & Mawby, 1986), which is discussed further in Chapter 3. The enthusiasm

for programming in education faded before its revival in the 21st century, yet Logo-

based environments and constructionism have inspired current programming tools,

most notably Alice (Cooper, Dann, & Pausch, 2003), Scratch (Resnick et al., 2009)
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and Kodu Game Lab (MacLaurin, 2011).

Figure 2.1: Screenshot of a Logo program in Turtle Academy

2.4.4 Visual Programming Environments

Visual programming environments (VPEs) (sometimes referred to as visual program-

ming languages or VPLs) can be used to create media, animations and games using

specialised block-based programming languages. Blocks are used to implement pro-

gramming concepts such as conditionals, loops, events and procedures. VPEs often

follow an event-based approach, where blocks are executed when a speci�c event

occurs.

Repenning (2017) describes three levels of features that make a successful VPE:

Syntax - Using blocks/icons, forms and diagrams to reduce or eliminate syntax

errors and allow the learner to arrange well-formed programs.

Semantics - Mechanisms to disclose the meaning of programming primitives.

This is can be done through the shape of a block, e.g. a loop block having a gap

to place other blocks inside it (as shown in Scratch in Figure 2.2), or through

clear documentation.

Pragmatics - Give information on what a program means in a particular situ-

ation, e.g. how does it react when you add certain data or put it in a certain

state. Stagecast Creator does this using `rules' that allow the user to program

behaviours based on what action triggers an event (e.g. hitting an obstacle) and

what happens after the event (e.g. jumping over the obstacle).
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Novices can �nd it easier to learn CS using block-based languages, over text-based

languages, because they rely on recognition instead of recall (blocks are selected

from a pallet), reduce cognitive load by chunking code into smaller numbers of mean-

ingful elements and allow users to avoid basic errors by providing constrained direct

manipulation of structure (Bau, Gray, Kelleher, Sheldon, & Turbak, 2017). Most VPEs

follow a `low-�oor high-ceiling' design approach that makes it easy for novices to get

started but provides enough functionality for them to challenge themselves once they

become pro�cient. Because of this low barrier of entry, they are increasingly used

to teach programming in primary education. This section will describe three VPEs

that are used in primary education and are relevant to the rest of the thesis; Scratch,

ScratchJr and Kodu.

Scratch

Scratch (Figure 2.2) is one of the most popular VPEs, with over 37 million projects

shared on its online platform since it's public release in 2007 (Scratch Team, 2019). It

is also the most taught environment in primary schools (Rich et al., 2019). Designed

for children age 8 and above, it aims to “introduce programming to those with no

previous programming experience" (Maloney, Resnick, & Rusk, 2010, p. 2).

Figure 2.2: Screenshot of a simple Scratch project

Scratch 2.0 has 116 blocks divided into 10 categories: motion, looks, sound, pen,

data, events, control, sensing, operators and `more blocks'. Blocks are combined to

form `scripts' that are used to program `sprites' to perform behaviours. Scripts are

triggered by `event' blocks, for example when a particular key is pressed or when a

message sent from another script. Sprites are added to `backdrops' to create stories,
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animations and games. Projects can easily be customised by importing or creating

images, sounds and music. They can also be shared on the Scratch online plat-

form and `remixed' by other users (Dasgupta, Hale, Monroy-Hernández, & Hill, 2016).

Scratch can be used to program robotics kits (e.g. Lego Mindstorms) and can take

inputs from other physical devices like the Scratch Controller.

Scratch has been used from early years to higher education for teaching CS and

as a stepping stone to text-based programming languages (Franklin et al., 2016).

There is some evidence to suggest that Scratch can be used to improve wider skills

of mathematics (Calao, Moreno-León, Correa, & Robles, 2015) and problem-solving

(Giordano & Maiorana, 2014). Scratch includes abstraction and contains procedures,

variables, iteration, indexed data structures and conditional execution (levels 1 , 2

and 3 ).

Figure 2.3: Screenshot of a simple ScratchJr project

ScratchJr

ScratchJr is a version of Scratch redesigned for younger children age 5 to 7. It

maintains the creative programming elements of Scratch, allowing children to easily

create short stories and games. It was developed using several constructionist age-

appropriate design principles (Flannery et al., 2013) that are common in constructionism-

inspired VPEs:

Low �oor and appropriately high ceiling - Easy to get started but providing

room to use more complex concepts.
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Wide walls - Many different pathways and styles of exploration.

Tinkerability - Ideas can be incrementally developed through experimentation.

Conviviality - The interface is friendly and playful.

Classroom support - Wide range of learning outcomes through:

– Feasible management of use in classroom settings.

– Support for building foundational knowledge which underlies multiple dis-

ciplines, such as sequencing, patterning and iteration.

– Support for discipline-speci�c knowledge from mathematics, literacy and

classroom-selected criteria.

– Support for problem-solving strategies and skills.

– Complementary curricula and suggested teaching practices co-designed

with early childhood teachers.

In ScratchJr, characters can be added to a scene and given behaviours by com-

bining instruction blocks. The interface is entirely symbolic and contains only a third

of the original Scratch instruction set. ScratchJr executes instructions from left to right

(the way that the English language is read) instead of the top to bottom approach used

in Scratch. It has large buttons for touchscreen use to alleviate dif�culties that young

children often have with mouse movement. Scratch's Cartesian coordinate system

has been replaced by a natural coordinate system and there is a grid that can be

overlaid on top of the scene to help children calculate distance. Numerical parame-

ter values have a maximum limit of 25 and users can execute individual instructions

simply by pressing on them, allowing them to explore what each instruction does.

Exploratory studies have found that ScratchJr can help young children familiarise

themselves with basic programming concepts (Papadakis, Kalogiannakis, & Zaranis,

2016; Strawhacker, Lee, & Bers, 2017). ScratchJr does not include abstraction and

contains only iteration and some conditional execution in the form of wait blocks (levels

0 and 1 ).

Kodu Game Lab

Kodu Game Lab (often referred to as Kodu) is a VPE developed by Microsoft and

designed for children age 9 and above (Figure 2.4). It is integrated into a real-time 3D

gaming environment that is used to create games through `independent exploration'

(MacLaurin, 2011). Users give behaviours to sprites when a certain event happens,

for example when the player clicks on the sprite, or when the sprite hits a different

sprite. All behaviours are built using a condition (when) and an action (do). Kodu

supports �ow control, boolean logic, simple use of variables (score) and inheritance
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(a sprite can be set as creatable and can then be created by other sprites) (Stolee &

Fristoe, 2011). However, it is largely an explorative environment focused on seeing

and moving rather than on abstractions like variables and procedures.

Figure 2.4: Screenshot of Kodu sprite programming

Some exploratory studies suggest that Kodu is good for enriching introductory pro-

gramming experience (A. Fowler, 2012; Sovic, Jagust, & Sersic, 2014). Kodu includes

some abstraction and contains limited use of variables, iteration and conditional exe-

cution (levels 1 and 2 ).

2.4.5 Programming Games

The bene�ts of game-based learning in educational contexts are well researched

(Boyle et al., 2016). Programming games usually involve navigating an object through

a grid, either using block-based or text-based instructions. Harms, et al. (2015) sug-

gest that these puzzle-like approaches are more effective than tutorials for teaching

programming to novices. This section will describe three programming games rele-

vant to the rest of the thesis; Code.org, Lightbot and Lightbot Jr.

Design Concept - Combining Puzzles and Tutorials

Combining puzzle-based levels with tutorials that introduce programming con-

cepts should allow a game to teach dif�cult content without external support.

Code.org

Code.org is a non-pro�t organisation dedicated to expanding CS access in schools.

The initiative includes an online programming platform with sets of linear tutorials that
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teach programming constructs including algorithms, conditionals, variables, loops and

procedures (Figure 2.5). Tutorials are sorted into `courses' and `lessons' that are cat-

egorised by age group. These also include unplugged activities (Section 2.4.8) to be

used alongside the online platform. Tutorials aimed at younger children use a block-

based language, whereas older children are introduced to the text-based languages

JavaScript and Python (in some tutorials, users can switch between block and text-

based code). The platform can also be used to create projects similar to Scratch in

`labs', with over 35 million projects created to date (Code.org, 2018). Code.org is sup-

ported by many large organisations including Google, Microsoft, ISTE and ACM and

uses materials licensed from several well-known franchises including Angry Birds and

Star Wars.

Figure 2.5: Screenshot of the Classic Maze course in Code.org

Code.org begins with very simple programming for young children but does in-

troduce abstraction in later sections and contains procedures, variables, iteration, in-

dexed data structures and conditional execution (levels 0 , 1 , 2 , 3 and 4 ). Kale-

lio �glu (2015) found that Code.org helped primary school children develop a positive

attitude towards programming but did not improve their re�ective thinking skills to-

wards problem-solving.

Lightbot

Lightbot (sometimes stylised as Light-bot) (Figure 2.6) is a programming game de-

signed for children age 9 and above. In the game, the player arranges a �xed set of

block-based instructions to program a robot. Unlike Code.org and Scratch, each level

has a limit to the size of the program the player can produce. The goal is to program

the robot to `light up' all the blue blocks on a level. This is done by navigating the

robot to a blue block and executing the light command. Players can decompose a
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level into different sections, which can then be solved one after the other until they

have a complete solution. Later levels introduce procedures and conditionals. For

procedures, the player is given other program spaces below the main program that

can be called using special instructions. Conditionals are implemented using a paint

tool that colours the robot so that only instructions of that colour are executed.

Figure 2.6: Screenshot of Lightbot

Gouws, Bradshaw & Wentworth (2013) suggest that Lightbot is useful for practis-

ing computational thinking as a problem-solving process, where players are rewarded

for producing optimised solutions. Duncan, Bell & Tanimoto (2014) suggest that limit-

ing available commands can force players into practising CS concepts like abstraction

and decomposition. Lightbot includes some abstraction and contains procedures, it-

eration and conditional execution (levels 0 , 1 and 2 ).

Design Concept - Limiting Available Commands

Programming concepts can be introduced to the player by limiting available com-

mands and program space.

Lightbot Jr

Lightbot Jr is an educational puzzle game designed for children age 4 to 7. It is a

version of Lightbot, where the levels have been simpli�ed for younger children. De-

spite including some abstraction, the �rst two sets of levels concentrate on creating

algorithms by predicting the outcome of the program. As with Lightbot, Lightbot Jr in-

cludes some abstraction and contains procedures, iteration and conditional execution

(levels 0 , 1 and 2 ).
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2.4.6 Different Learning Approaches

Most programming tools sit on a scale between the open-ended exploration of VPEs

like Scratch and Kodu, and linear puzzles with lots of direct guidance like Lightbot.

Linear games can teach skills without external guidance by limiting player freedom

and introducing concepts at a steady pace. The downside is that once a player has

completed the game, they are unable to continue exploring.

Tools like Dragon Architect attempt to use a hybrid of open-ended exploration and

linear puzzles. The player has an open-world in which they can build 3D structures,

but are taught how to use certain functionality in a separate level progression (Bauer

et al., 2015). Code.org also uses this approach. Tutorial videos are combined with a

sequence of progressively more challenging puzzles (Kalelio �glu, 2015) and learners

can then use what they have learnt in an open environment. This approach is known

as guided discovery, in which discovery learning (similar to constructionism) is paired

with in-game guidance. Al�eri et al. (2013) suggest that “unassisted discovery does

not bene�t learners, whereas feedback, worked examples, scaffolding, and elicited

explanations do” (p. 2). These concerns have been echoed by Mayer (2004), who

recommends a guided discovery approach with instructional guidance and curricular

focus.

Figure 2.7: Screenshot of Dragon Architect

Other tools use a debugging-�rst approach (Figure 2.8), where the player has to

�x existing broken code to complete tasks (Harms et al., 2015; T. Y. Lee, Mauriello,

Ahn, & Bederson, 2014). Box Island has a mechanic where certain instructions are

locked in place so the player must design their solution around them. This comes from

the notion that debugging is an essential part of learning to program (Fitzgerald et al.,

2010) and takes up a sizeable portion of a program's development time (Du, 2009).

Liu, Zhi, Hicks & Barnes (2017) analysed problem-solving behaviours in their pro-

gramming game, BOTS. They found that debugging requires a deeper understanding

than writing new code, meaning that novices should learn better through completing

code than by generating new code (Van Merriënboer & De Croock, 1992) if they have

some prior experience. This is known as the completion strategy (Paas, 1992), which

reduces cognitive load because part of the solution is visible and does not have to be
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held in working memory.

Figure 2.8: Screenshots of programming tools that follow a debugging-�rst approach
(clockwise from the top-left: Gidget, BOTS, Box Island and Looking Glass)

Design Concept - A Debugging-First Approach

Using a debugging-�rst approach should help players, because they will be given

partially-complete problems that they only need to adjust and extend, instead of

starting from scratch.

2.4.7 Physical Devices

Robots, robotics kits and physical block-based languages are also seen as an effec-

tive way of teaching programming to novices (e.g. Benitti, 2012; Bers, Flannery, Kaza-

koff, & Sullivan, 2014). They are often combined with visual programming languages

that are either used to program devices or give an on-screen representation of pro-

gramming blocks. Having a physical artefact makes learning less abstract and more

direct, an approach that can be used across all STEM disciplines (Eteokleous, 2019).

Bee-bots (Figure 2.9) are widely used in primary schools in England. They are robots

that can be programmed to perform a sequence of movements by physically pressing

buttons on its back (Mannila et al., 2014). Other examples include KIBO, a robotics kit

designed for young children that is programmed using tangible programming blocks

and has been shown to be effective in teaching sequencing, logical reasoning and

problem-solving skills (Sullivan, Bers, & Mihm, 2017).
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Figure 2.9: Picture of a bee-bot being used with a �oor map of letters

2.4.8 Unplugged Activities

Unplugged activities provide ways of exposing students to CS without using comput-

ers, through logic games, cards or physical movements (Bell, Alexander, Freeman, &

Grimley, 2009). Examples include having children perform a sorting algorithm that re-

sults in them lining up in height order or making bracelets coded in binary. Figure 2.10

shows an example from a task sheet from Code.org to develop abstraction skills, cre-

ating a generalisation of three sentences. The advantage of unplugged approaches is

that schools can deliver CS content without computing equipment, or teachers having

technical skills and expertise.

There are indications that unplugged activities improve con�dence in primary school

children, compared to starting them off with computer-based applications or lan-

guages, with learning outcomes staying consistent (Hermans & Aivaloglou, 2017).

This �nding is supported by Brackmann et al. (2017), who found that unplugged ac-

tivities improved computational thinking skills compared to a control group.

2.5 Summary

In summary, there is a growing consensus that children should be taught CS in pri-

mary education (age 5 to 11). With the aim of giving children an understanding of how

technology works, to produce programmers for a growing software engineering sector,

to foster logical thinking and problem-solving skills and to give children an awareness

of how CS will in�uence their lives. This has resulted in an increasing number of

countries introducing CS into primary education. Children are being taught to create

and debug simple programs, using sequence, selection and repetition from around
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Figure 2.10: Snippet from a Code.org task sheet question on abstraction

5 years old. Curricula also focus on improving logical thinking skills and addressing

wider issues of using technology safely and responsibly.

Evidence suggests that primary school children can learn to program at this age

and develop abstract reasoning skills if learning content is introduced in a structured

and logical way. However, there have been issues with CS teaching, particularly in

England and Australia, where curriculum changes were introduced by governments

without adequate teacher training in place. The result has been a scramble to pro-

duce learning content, teacher training programs and effective and age-appropriate

educational programming tools.

There are a wide range of educational programming tools available for primary

school children. These fall into four categories; visual programming environments

(e.g. Scratch, ScratchJr and Kodu), programming games (e.g. Code.org and Light-

bot), physical devices (e.g. Bee-bot) and unplugged approaches. Tools differ in com-

plexity, with those designed for younger children (under age 7) often lacking abstrac-

tion and limited to sequencing and algorithms. Visual programming environments and

games can differ in learning approach, falling somewhere between `unassisted discov-

ery' (e.g. Scratch) and linear puzzles that limit freedom and introduce concepts at a

steady pace (e.g. Lightbot). The large number of available tools can make it dif�cult

for teachers to know what they should be using in the classroom and how to design

learning content around them. From this point on, the thesis will focus on Scratch and

Lightbot Jr for the programming interventions. Scratch because it is widely used in

primary schools and is readily available. Lightbot Jr because it is age-appropriate for

Study 1 (Chapter 4) and meets the aims of teaching the sequencing of programming

instructions. Robotics kits were not used for the studies in the thesis as they differ in

availability (due to cost) and type between schools.

With the context of CS in primary education in place, the next chapter (Chapter

3) focuses on `computational thinking'; the idea that the problem-solving and logical

thinking skills developed through CS are useful in their own right.
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Chapter 3

Computational Thinking

Chapter 2 described several arguments for teaching computer science (CS) in primary

education. The `learner argument', as Passey (2017) called it, is the idea that CS

can help develop problem-solving and logical thinking skills. `Computational thinking'

takes this one step further, implying that these skills can be used in a wider context

and, along with CS, is a “foundational competency for every child” (Grover, Jackiw,

Lundh, & Basu, 2018, p. 1).

Computational thinking (CT) has been used by policymakers as justi�cation for

introducing CS into primary education, with learning content focusing on CT as well

as CS (Rich et al., 2019). However, it has been criticised by some for its `decoupling'

from the theoretical foundations of CS, along with the lack of evidence for it as a mul-

tidisciplinary problem-solving skill (Denning, 2017). CT still lacks a concrete de�nition

(Nardelli, 2019). Yet, current de�nitions of CT involve working at multiple levels of

abstraction, writing algorithms, understanding �ow control, recognising patterns and

decomposing problems (e.g. Seiter & Foreman, 2013).

This chapter covers the history of CT and explores existing de�nitions, models and

frameworks before giving a working de�nition for this thesis. It then examines how CT

is assessed and measured before exploring some of the criticisms of CT.

3.1 Computational Thinking Origins

The idea that computing's unique methods of thinking can be used as general-purpose

`mental tools' has been around since the conception of computing and CS (Forsythe,

1959). For example, Alan Perlis argued in the 1960s for college students of all dis-

ciplines to learn to program, so that the `theory of computation' could recast “their

understanding of a wide variety of topics (such as calculus and economics)” (Guzdial,

2008, p. 25). Denning (2009) suggests that CT was known then as `algorithmic think-

ing', that is; “a mental orientation to formulating problems as conversions of some

input to an output and looking for algorithms to perform the conversions” (p. 28). To-

day algorithms and algorithmic thinking make up just a small part of CT de�nitions.
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Papert (1980) was the �rst to describe these skills as `computational thinking' while

researching how children can develop procedural thinking through computer program-

ming using the Logo programming language (Section 2.4.3).

Wing (2006) sparked a renewed interest in CT, suggesting that “to reading, writing,

and arithmetic, we should add computational thinking to every child's analytical ability”

(p. 33). This caught the attention of academics and policymakers at a time when

technology was becoming cheaper, so it could be viably introduced into schools, and

a growing demand for computer-literate professionals in the job market. It is referred

to throughout the government reports on computing education in the UK (The Royal

Society, 2012) and the US (A. Wilson & Moffat, 2010) mentioned in Chapter 2, which

argue for CS inclusion in compulsory education. As such, CT has provided additional

justi�cation for including CS into already busy primary school curricula.

CT is seen as the conceptual foundation of CS. Wing suggested that CT is about

conceptualising and not programming: “thinking like a computer scientist means more

than being able to program a computer. It requires thinking at multiple levels of ab-

straction” (2006, p. 34). CS learning content for primary age children often focuses

on CT because it is seen as more than just a way of introducing basic programming

concepts (Manches & Plowman, 2015). Proponents of CT have suggested that as

well as being a key skill for computer scientists, it can bene�t problem-solving in other

disciplines including mathematics and science. Yet, there is limited evidence for these

claims and still no widely agreed-upon de�nition for CT. The next section examines

how academics and policymakers have attempted to de�ne CT.

3.2 De�ning Computational Thinking

Wing (2006) deliberately did not give a formal de�nition in her article, instead describ-

ing CT as “solving problems, designing systems, and understanding human behavior,

by drawing on the concepts fundamental to computer science” (p. 33). Over a decade

later, there is still no unanimous agreement on a de�nition or even a de�nitive list of

the concepts that CT contains (Durak & Saritepeci, 2018). Román-González et al.

(2018a) use Aho's (2012) general de�nition for their development of CT measures:

“CT is the thought processes involved in formulating problems so their solutions can

be represented as computational steps and algorithms” (p. 834). Despite the ambi-

guity surrounding CT, it is still playing a key role in de�ning CS learning content for

children (Sentance & Csizmadia, 2017).

The broad consensus is that CT includes all the concepts or thought processes

that a computer scientist would typically use to solve computational problems. There

have been several efforts to clarify these concepts, in the form of de�nitions, frame-

works and models. This section explores six of these in order to formulate a working

de�nition for the rest of this thesis and also examines some alternative views of CT
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as a psychological construct. De�nitions, frameworks and models are referred to col-

lectively as `de�nitions' from here on in. Note that some of these de�nitions use the

term `K-12' to describe primary and secondary education (age 5 to 18).

3.2.1 Method

The �rst three de�nitions are taken from the most widely-cited papers on CT other

than Wing's articles (2006, 2008). The �rst two (Barr & Stephenson, 2011; Grover &

Pea, 2013) come from early contributors to the CT movement, giving a broad theo-

retical overview of CT and its application in contexts other than CS. The middle two

(Brennan & Resnick, 2012; Seiter & Foreman, 2013) give a more practical perspec-

tive. Both are frameworks that use Scratch to show measurable evidence of CT. The

�nal two (Kalelio �glu, Gülbahar, & Kukul, 2016; Shute, Sun, & Asbell-Clarke, 2017)

are more recent and both come from literature reviews on the topic, giving a more

up-to-date view of CT.

3.2.2 De�nitions, Frameworks & Models

Barr & Stephenson (2011)

Barr & Stephenson (2011) describe the CT de�nition that came from a 2009 joint

project between the Computer Science Teachers Association (CSTA) and the Inter-

national Society for Technology in Education (ISTE). The project brought together 26

academics and educators to produce an operational de�nition for CT and to de�ne the

steps needed to apply this in K-12 education. They de�ned CT as “an approach to

solving problems in a way that can be implemented with a computer” and suggested

that it can be applied in “every other type of reasoning” (p. 115).

The project produced a model of the core CT concepts and examples of where

they might be embedded in other disciplines, including CS, mathematics, science,

social studies and language arts. The CS examples have been included with each

concept:

Data collection - Find a data source for the problem area.

Data analysis - Write a program to do basic statistical calculations on a set of

data.

Data representation and analysis - Use data structures such as an array,

linked list, stack, queue, graph, hash table, etc.

Abstraction - Use procedures to encapsulate a set of often-repeated com-

mands that perform a function.

Analysis and model validation - Validate a random number generator.
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Automation - Example not given.

Testing and veri�cation - Debug a program: write unit tests; formal program

veri�cation.

Algorithms and procedures - Study classic algorithms; implement an algo-

rithm for a problem area.

Problem decomposition - De�ne objects and methods; de�ne main and func-

tions.

Control structures - Use conditionals, loops, recursion, etc.

Parallelisation - Threading, pipelining, dividing up data or task in a such a way

to be processed in parallel.

Simulation - Algorithm animation, parameter sweeping.

Design Concept - Teaching Abstraction using Procedures

Having programming tasks that teach players to use procedures will give them a

concrete way of using abstraction.

They then listed ways in which students can demonstrate CT:

� Design solutions to problems using abstraction, automation, creating algorithms,

data collection and analysis.

� Implement designs (programming as appropriate).

� Test and debug.

� Model, run simulations, do systems analysis.

� Re�ect on practice and communicating.

� Use the vocabulary.

� Recognise abstractions and move between levels of abstractions.

� Innovation, exploration, and creativity across disciplines.

� Group problem solving.

� Employ diverse learning strategies.

They also describe dispositions and pre-dispositions to capture the “areas of values,

motivations, feelings, stereotypes and attitudes” (p. 118) applicable to CT:

� Con�dence in dealing with complexity.
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� Persistence in working with dif�cult problems.

� The ability to handle ambiguity.

� The ability to deal with open-ended problems.

� Setting aside differences to work with others to achieve a common goal or solu-

tion.

� Knowing one's strengths and weaknesses when working with others.

Grover & Pea (2013)

Grover & Pea's (2013) literature review was one of the �rst on CT. They aimed to frame

the current state of discourse on CT in K-12 education using Wing's 2006 article as a

springboard. They state that abstraction is what distinguishes CT from other types of

thinking, and go on to state the elements that are “now widely accepted as comprising

CT and form the basis of curricula that aim to support its learning as well as assess

its development” (p. 39):

� Abstractions and pattern generalisations (including models and simulations).

� Systematic processing of information.

� Symbol systems and representations.

� Algorithmic notions of �ow control.

� Structured problem decomposition (modularising).

� Iterative, recursive, and parallel thinking.

� Conditional logic.

� Ef�ciency and performance constraints.

� Debugging and systematic error detection.

Brennan & Resnick (2012)

Brennan & Resnick (2012) were interested in the way that design-based learning

tasks can support CT in young people. Particularly focusing on strategies for assess-

ment. They developed their framework by watching and interviewing Scratch (Section

2.4.4) users age 8 to 16 over several years. The authors see CT as “a device for

conceptualising the learning and development that takes place using Scratch” (p. 2),

although their framework has been applied in more general CT analyses (e.g. Da

Cruz Alves, Gresse Von Wangenheim, & Hauck, 2019; Falloon, 2016). The frame-

work has three dimensions: computational concepts (employed when programming),

35



computational practices (developed when programming) and computational perspec-

tives (formed about the world and the programmer themselves). They go on to discuss

an approach to assessing these dimensions using project portfolio analysis, artifact-

based interviews and design scenarios.

The computational concepts they list are common in most programming languages

(and map to Scratch programming blocks) and are useful in a range of programming

and non-programming contexts:

Sequences - Activity or task expressed in a series of steps that can be executed

by a computer.

Loops - Running sequences multiple times.

Events - Triggering things to happen when something else happens.

Parallelism - Sequences of instructions happening at the same time.

Conditionals - Making decisions based on certain conditions.

Operators - Mathematical, logical and string expressions.

Data - Storing, retrieving and updating values.

Computational practices describe how the learner is thinking and learning:

Being incremental and iterative - Approaching a problem in steps.

Testing and debugging - Developing strategies for dealing with problems.

Reusing and remixing - Building on the work of others.

Abstracting and modularising - Dealing with a problem by breaking it down

into smaller parts.

The �nal part of the framework is computational perspectives: changes in the

learners understanding of themselves and the world around them:

Expressing - Seeing computation as a medium for creative expression.

Connecting - Using the ideas and in�uence of others to produce better content.

Questioning - Asking questions of why and how things work.
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Seiter & Foreman (2013)

Seiter & Foreman's (2013) Progression of Early Computational Thinking (PECT) model

assumes that every student has a latent pro�ciency in CT that manifests itself in their

ability to complete speci�c tasks. It maps measurable evidence (in Scratch) onto more

abstract coding design patterns, which are then mapped onto CT concepts. PECT is

designed to measure CT amongst students at primary school level (age 5 to 11).

There are three levels of assessment, which are ordered in decreasing levels of

abstraction (most abstract �rst):

1. CT concepts

2. Design patterns

3. Evidence variables (explicit programming constructs)

The CT concepts are a subset of those proposed by Barr & Stephenson (2011),

with `process skills' such as testing and veri�cation removed because they are dif�cult

to collect evidence for:

� Procedures and algorithms

� Problem decomposition

� Parallelisation and synchronisation

� Abstraction

� Data representation

The model then lists design patterns (common coding patterns) that are often used

in Scratch:

� Animate looks

� Animate motion

� Conversate

� Collide

� Maintain score

� User interaction

Students demonstrate CT by choosing the correct design pattern for a problem or

context and then implementing it successfully. They are assessed on a quantitative

scale for each design pattern:

1. Basic - Functional understanding.
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2. Developing - Advanced but not complete understanding.

3. Pro�cient - Complete understanding.

Evidence variables are used to measure the concrete computational aspects of

a student's work and contribute to the scores for each design pattern. A score is

given for each category using a pro�ciency rating similar to the design patterns. The

variables are roughly organised into Scratch block categories:

� Looks

� Sound

� Motion

� Sequence & looping

� Boolean expressions

� Operators

� Conditional

� User interface event

� Parallelisation

� Initialise location

� Initialise looks

Kalelio �glu, Gulbahar & Kukul (2016)

Kalelio �glu, Gulbahar & Kukul (2016) state that “CT literature is at an early stage of

maturity, and is far from either explaining what CT is, or how to teach and assess this

skill” (p. 583). They reviewed existing research on the topic, �nding that most provided

activities (plugged or unplugged) to promote CT in K-12 education, without much

empirical support. From their review, they produced a framework that describes CT

as a problem-solving process (Table 3.1) and can be used “in either a computerised

or unplugged approach” (p. 592).

Shute, Sun & Asbell-Clarke (2017)

Shute, Sun & Asbell-Clarke's (2017) literature review of CT is the most recent at the

time of writing. They describe the literature as showing “a diversity in de�nitions,

interventions, assessments, and models” (p. 142) and go on to de�ne CT as “the con-

ceptual foundation required to solve problems effectively and ef�ciently (i.e., algorith-

mically, with or without the assistance of computers) with solutions that are reusable
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Table 3.1: Computational thinking as a problem-solving process (from left to right)
(Kalelio �glu, Gülbahar, & Kukul, 2016)

Identify the
problem

Gathering,
representing
and analysing
data

Generate,
select and
plan solutions

Implement
solutions

Assessing
solutions and
continue for
improvement

Abstraction Data
collection

Mathematical
reasoning

Automation Testing

Decomposition Data analysis Building
algorithms
and
procedures

Modelling and
simulations

Debugging

Pattern
recognition

Parallelisation Generalisation

Conceptualising
Data
representation

in different contexts” (p. 151). They describe CT as a way of thinking and acting

that can be exhibited through particular skills including engineering and mathematics.

Table 3.2 shows their summary of the facets included in their de�nition.

3.2.3 Differences Between De�nitions

There are several noticeable differences between the de�nitions analysed in Sec-

tion 3.2.2. The scope of CT ranges from conceptualising learning and development

in a speci�c language (e.g. Scratch) (Brennan & Resnick, 2012; Seiter & Fore-

man, 2013), where CT is tightly coupled to the programming implementation, to an

all-encompassing term that includes engineering, mathematics and design thinking

(Shute et al., 2017). CT is described as a problem-solving process (Kalelio �glu et al.,

2016), a latent cognitive ability (Seiter & Foreman, 2013) and as a broad term for a

range of skills and problem-solving approaches (Grover & Pea, 2013). This lack of

clarity is one of the criticisms of CT that is expanded upon in Section 3.4, making it

dif�cult to produce measurable learning outcomes that are not embedded in program-

ming tasks.

Table 3.3 shows the main CT concepts in each de�nition. The next section draws

out the common concepts from this table and gives a working de�nition of CT for this

thesis.
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Table 3.2: Computational thinking facets and their de�nitions (Shute, Sun, & Asbell-
Clarke, 2017)

Facet De�nition
Decomposition Dissect a complex problem/system into manageable parts.
Abstraction Extract the essence of a (complex) system. Includes:

� Data collection and analysis (collect the most relevant and
important information)

� Pattern recognition (identify patterns/rules underlying the
data/information structure)

� Modelling (build models or simulations to represent how a
system operates)

Algorithms Design logical or ordered instructions for rendering a solution to
a problem, these can be carried out by a human or a computer.
Includes:

� Algorithm design (create a series of ordered steps to solve
a problem)

� Parallelism (carry out a certain number of steps at the
same time)

� Ef�ciency (design the fewest number of steps to solve a
problem, removing unnecessary or redundant steps)

� Automation (automate the execution of the procedure when
required to solve similar problems)

Debugging Detect, identify and �x errors.
Iteration Repeat design processes to re�ne solutions.
Generalisation Transfer CT skills to a wide range of situations/domains to solve

problems effectively and ef�ciently.

3.2.4 A Working De�nition

The concepts included in over half the de�nitions in Table 3.3 have been used to form

a working de�nition of CT. These include abstraction and generalisation, algorithms

and procedures, data collection, analysis and representation, parallelism, decompo-

sition, debugging, testing and analysis and control structures. Table 3.4 shows the

CT concepts, a description of what they involve and how many of the analysed de�-

nitions they were included in. Using these concepts, this thesis will take a temperate

approach to CT, de�ning it as “the thought processes involved in modelling and solv-

ing computational problems.” This de�nition implies that CT concepts (or thought

processes) are not language-speci�c (e.g. Scratch) but can be applied to all compu-

tational problems.
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Table 3.4: Concepts included in the working de�nition of computational thinking

Concept Meaning Included In
Abstraction and generalisation Removing the detail from a

problem and formulating
solutions in generic terms.

6/6

Algorithms and procedures Using sequences of steps and
rules to solve a problem.

6/6

Data collection, analysis and
representation

Using and analysing data to help
solve a problem.

6/6

Parallelism Having more than one thing
happening at once.

6/6

Decomposition Breaking a problem down into
parts.

5/6

Debugging, testing and analysis Identifying, removing and �xing
errors.

5/6

Control structures (and
mathematical reasoning)

Using conditional statements
and loops.

4/6

3.2.5 A View from Cognitive Psychology

An alternative view of CT is as an emerging psychological construct. Some re-

searchers have tried to break it down into cognitive processes that can be tested

using a battery of existing assessments. Ambrósio, Xavier & Georges (2014) sug-

gest that CT is related to three abilities-factors from the Cattell-Horn-Carroll (CHC)

model of intelligence (McGrew, 2009): �uid reasoning, visual processing and short-

term memory. Román-González, Pérez-González, & Jiménez-Fernández (2016) built

on this, �nding that scores from their CT test correlated strongly with verbal, spatial

and reasoning factors from the Primary Mental Abilities (PMA) battery (Thurstone,

1938) and also with scores from the RP30 problem-solving test, which requires rea-

soning, spatial ability and working memory.

Executive Functions

There are also indications that CT is related to executive functions: higher-order cog-

nitive functions including holding and manipulating information in working memory and

attention shifting (cognitive �exibility). Executive function is a predictor of academic

success in general (Cragg & Gilmore, 2014). Robertson (2019) found correlations

between assessments of programming and debugging in Scratch and scores from

CANTAB and BRIEF 2 assessments of executive functions in children age 11. The

Scratch assessments were a creative programming task measured for CT using Dr.

Scratch (Section 3.3.1) and a set of seven debugging tasks where the participant had

to locate and �x an error. A link between executive functions and CT would explain the

dif�culties that children have with more abstract programming concepts, particularly

those that require working memory and attention shifting. Working memory appears
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to develop gradually between age 4 and 7 (Luciana & Nelson, 1998) and then contin-

ues to improve up to age 14 (De Luca et al., 2003).

Section 2.4.6 discusses programming tools that use a `debugging-�rst' approach.

There is an argument that debugging code requires a deeper understanding than writ-

ing new code because the programmer must be able to understand the code fully to

locate the error. Debugging requires the programmer to develop a plan of detecting,

�xing and testing that places a high demand on working memory and requires them to

shift their attention between different representations of the code. These tasks, there-

fore, require better executive functions. Grover et al. (2015) suggest that unstructured

programming tasks by themselves do not improve CT, which means that debugging

tasks with minimal guidance should produce better learning outcomes than `discovery'

learning.

Design Concept - Debugging-First with Guidance

The player should be given guidance to help them complete structured debugging-

�rst tasks.

3.3 Measuring Computational Thinking

Whilst there have been some attempts to establish the cognitive underpinnings of CT

(Román-González et al., 2016) (Section 3.2.5), there is currently a lack of CT mea-

sures that have been shown to be reliable and valid due to the immaturity of the �eld

(Allsop, 2018). Existing CT measures can be categorised as either formative, skill-

transfer or summative. Table 3.5 shows the available measures, giving a description

of each, associated programming tools and a summary of studies for validity and relia-

bility. The section then gives an overview of each category and describes an example

measure for each.
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3.3.1 Formative Measures

Formative measures provide feedback for learners to improve their CT skills. These

are often project-based, working on the assumption that learners use CT in the com-

pletion of design tasks. Learners create projects using a programming tool (e.g.

Scratch). Their projects are then analysed for their use of CT, either manually or using

automated software. These scores can then be used to address areas of weakness

in projects and can motivate the learner to learn new functionality. Table 3.5 includes

several examples of formative measures, predominantly for Alice and Scratch.

Dr. Scratch will be discussed in more detail as there is some evidence for its

reliability and validity as a measure of CT in Scratch projects.

Table 3.6: Dr. Scratch scoring system

CT Concept Basic (1 point) Developing (2) Pro�ciency (3)
Logical thinking If If else Logic operations
Data
representation

Modi�ers of sprite
properties

Variables Lists

User interactivity Green �ag Keyboard, mouse,
ask and wait

Webcam, input
sound

Flow control Sequence of
blocks

Repeat, forever Repeat until

Abstraction and
problem
decomposition

More than one
script and more
than one sprite

Procedures
(de�nition of own
blocks)

Use of clones

Parallelism Two scripts on
green �ag

Two scripts on key
pressed or the
same sprite
clicked

Two scripts on
when I receive
message, or video
or input audio, or
when backdrop
changes to

Synchronisation Wait Message
broadcast, stop
all, stop program

Wait until, when
backdrop changes
to, broadcast and
wait

Dr. Scratch

Dr. Scratch (Moreno-León & Robles, 2015) is an automated tool that gives Scratch

projects a score out of 21 across seven CT concepts based on the blocks used (Table

3.6). The CT concepts used are similar to those in the working de�nition of this the-

sis. The Dr. Scratch authors have validated their tool for its ecological validity (useful-

ness for learners), convergent validity (comparable to expert judgements of projects

and software engineering complexity metrics) and discriminate validity (comparable

scores from different types of Scratch projects) (Robles et al., 2018). Dr. Scratch has
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been used in several recent studies of CT with primary and secondary school children

(e.g. Förster, Förster, & Loewe, 2018; Lawanto, Close, Ames, & Brasiel, 2017).

However, Dr. Scratch gives no guarantee that the user understands the blocks

that they are using to get points in a certain category. Blocks can be used incorrectly

in a program and still gain the user points for that CT concept. Furthermore, the `best'

way to complete a task may not involve any blocks that get the user a high Dr. Scratch

score, which should be considered when measuring projects that have been created

to a speci�cation. Yet, it does �t with the constructionist, open design of Scratch where

the user is encouraged to experiment with and explore functionality.

3.3.2 Skill-Transfer Measures

Skill-transfer measures are aimed at assessing a learner's ability to apply CT in dif-

ferent contexts. These are either assessments, questionnaires or surveys and are

often self-reporting or text-heavy and reliant on comprehension. Examples include

the Bebras Computing Challenge (Dagiene & Futschek, 2008) and the Computational

Thinking Pattern Quiz (Basawapatna et al., 2011). Bebras has been used recently as

a measure of CT in two large educational studies (Boylan et al., 2018; Straw et al.,

2017), so will be discussed in more detail.

Bebras Computing Challenge

The Bebras computing challenge is an international contest that aims to introduce

informatics and CT to children age 6 to 18 (Dagiene & Stupuriene, 2016). It had

over 2 million participants in 2018 (Bebras, 2018). Contestants are given between

15 and 21 questions of different dif�culty levels to solve in 45 minutes (an example

is shown in Figure 3.1). The questions do not require any pre-requisite knowledge.

Hubweiser & Mühling (2015) suggest some suitable sets of these questions could

be assembled that would measure to CT standards outlined by the CSTA (Barr &

Stephenson, 2011) and that Bebras could be the basis of future PISA (Programme

for International Student Assessment) assessments for CS (Hubwieser & Mühling,

2014).

Straw, Bamford & Styles (2017) used Bebras in a large randomised controlled trial

to measure the impact of attending code clubs on CT skills in children age 9 and

10, �nding that “attending Code Club for a year did not have an impact on pupils'

computational thinking over and above changes that would have occurred anyway”

(p. 5). However, Boylan et al. (2018) found that scores improved on a subset of

Bebras tasks after a year of using Scratch with children of the same age, supporting

Hubweiser & Mühling's (2015) suggestion that suitable sets of Bebras questions can

be used to measure CT.
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Figure 3.1: Question from the Bebras computing challenge

3.3.3 Summative Measures

Some summative measures are designed to test a learner's CT aptitude. These in-

clude the Computational Thinking test (Román-González et al., 2018b), the Test for

Measuring Basic Programming Abilities (Mühling et al., 2015) and the Commutative

Assessment Test (Weintrop & Wilensky, 2015). Others measure a learner's under-

standing of computational concepts using a programming tool (e.g. Scratch). These

can use adaptations of Bloom's taxonomy (Anderson et al., 2009), like the SOLO tax-

onomy (Biggs & Collis, 2014) to assess higher-order thinking used in projects (e.g.

Seiter, 2015). Some of the formative measures described in Section 3.3.1, such as

Dr. Scratch, can also be used summatively.

The Computational Thinking test is discussed in more detail as it has been used

in several studies of CT and programming (e.g. Pérez-Marín, Hijón-Neira, Bacelo, &

Pizarro, 2018).

Computational Thinking Test

The Computational Thinking test (CTt) aims to measure CT as “the ability to formu-

late and solve problems by relying on the fundamental concepts of computing, and

using logic-syntax of programming languages: basic sequences, loops, iteration, con-

ditionals, functions and variables” (Román-González et al., 2016, p. 4). It contains 28

multiple-choice questions (Román-González, 2016) and has been used with children

age 10 to 14 (e.g. Brackmann et al., 2017). Each question has four options and one

correct answer. Questions use either visual arrows or visual blocks that are common
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in educational programming tools (Section 2.4). The authors have conducted stud-

ies of the predictive validity of the CTt with regards to academic performance and a

Code.org course, suggesting that CTt can be used to detect `computationally talented'

students in middle school (Román-González et al., 2018a).

Figure 3.2: Question from the Computational Thinking test

The CTt is closely tied with block-based visual programming (an example question

is shown in Figure 3.2). However, Román-González, Moreno-León, & Robles (2017)

suggest that the CTt can be combined with Dr. Scratch (formative) and Bebras (skill-

transfer) as an overall measure of CT. They found signi�cant correlations between the

three, suggesting that they are partially convergent.

3.4 Criticisms of Computational Thinking

There are several concerns with CT. Whilst, in theory, concepts like abstraction, de-

composition and debugging can be useful in a wider context, there are unanswered

questions on transfer, learning content, assessments, views of it as a universal skill

and teacher expertise. These issues are discussed in the context of CS in primary

education (Chapter 2).

3.4.1 Does Computational Thinking Transfer?

CT is receiving widespread attention and is seen by some as a necessary problem-

solving tool for every child (Grover et al., 2018). But as of yet, there are no data to

support claims that CT can help solve non-computational problems (Denning, 2017).

Historically, a number of studies in the 1980s found no evidence that problem-solving

skills developed through programming in Logo are transferable to non-computational
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domains (e.g. Clements & Gullo, 1984; Pea & Kurland, 1984). There can also

be dif�culties with transfer from one programming language to another (Shrestha,

Barik, & Parnin, 2018), two skills that obviously require CT. Scherer (2016) argues that

despite computer programming and other skills sharing cognitive and meta-cognitive

processes, educational research is lagging in providing evidence of transfer. The

immaturity of the �eld is a factor, Kalelio �glu, Gulbahar & Kukul (2016) found that most

CT publications from the last ten years were lacking theoretically, conceptually or in

terms of in-depth research and empirical evidence. Additionally, it is dif�cult to show

that CT skills bene�t learners in other disciplines like mathematics and science without

valid and reliable assessments.

3.4.2 Is Computational Thinking Separate From Computer

Science?

Armoni (2016) argues that “CT curricula are mostly based on programming, and sel-

dom, if at all, explicitly specify high-level CT strategies” (p. 26). Several of the de�ni-

tions in Section 3.2.2 are tightly coupled with programming, and in particular, Scratch.

Seiter & Foreman (2013) suggest that CT is a latent pro�ciency and can be measured

only through application, of which the most obvious method is programming. Un-

plugged approaches (Section 2.4.8) are seen as a way of teaching CT and are widely

available as part of resources such as Code.org and Barefoot (Barefoot Computing,

2019). Brackmann et al. (2017) found evidence that unplugged approaches can work

to teach CT using the visual programming-centred CTt as their measure. It is, there-

fore, not clear whether their unplugged approach improved CT in terms of transfer to

other domains, or just its application in CS.

Denning, Tedre & Yongpradit (2017) suggest that thinking of any step-by-step pro-

cedure as an algorithm (e.g. making a jam sandwich) is a mistake. The steps in

an algorithm should be machine-executable, and a `step' in the human sense of the

word, as an isolated action of a person, implies that computers can do a lot more than

they actually can. This is an important distinction because unplugged curricula often

confuse the two. For example, Barefoot (2019), who provide CT resources for pri-

mary and secondary education, have an `algorithm' activity for sharing sweets, where

one step in the algorithm may be `snatch as many as you can'. This is obviously a

human step and not a machine-executable one. Misconceptions like this can lead to

exaggerations of what CT is capable of. Shute, Sun & Asbell-Clarke (2017) describe

the differences between CT and other types of thinking, suggesting that CT is “an

umbrella term containing design thinking and engineering (i.e., ef�cient solution de-

sign), systems thinking (i.e., system understanding and modelling), and mathematical

thinking as applied to solving various problems” (p. 146). However, it is dif�cult to �nd

experimental evidence to justify this view.
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Armoni (2016) suggests that CT should not be separated from CS and that at-

tempting to operationalise CT as a new discipline causes more harm than good. CT

should instead be seen as an explanation of the bene�ts of CS. Nardelli (2019) sup-

ports this view, suggesting that CT should not be separated from CS, just as mathe-

matical thinking or linguistic thinking are not separated from mathematics or linguis-

tics.

3.4.3 Assessing Computational Thinking?

CS and CT are often not formally assessed in primary education in the same way as

mathematics and literacy, even in countries where CS has its own subject. When it

is assessed, there is no standard approach and assessments can take many differ-

ent forms, including the formative, skill-transfer and summative measures discussed

in Section 3.3. Kallia (2017) expands on this, listing other types of CT assessment

that can be used: self-assessment, peer-assessment, Bloom's & SOLO taxonomy,

isomorphic questions, parametrised questions, rubrics, automated tools for program-

ming, assessment tools for CT, concept maps, code comprehension, debugging tasks

and multiple-choice questions and quizzes.

Of the measures in Section 3.3, some are project-based and tightly coupled with

programming. These formative measures take different forms that are often depen-

dent on the programming tool (e.g. Scratch). Others focus on CT aptitude (sum-

mative), through a series of multiple-choice questions, or CT application in different

contexts using written comprehension tasks (skill-transfer). The wide-range of as-

sessments leads to inconsistencies with what CT means, an issue made worse by

the lack of a formal de�nition. There is no guarantee, without experimental evidence,

that because learners improve on one measure that they will improve on another.

The removal of `process skills' such as testing and veri�cation from Seiter & Fore-

man's (2013) PECT model highlights one of the problems with measuring CT; if CT is

a problem-solving process, then it is dif�cult to accurately measure the process that

someone follows before arriving at a solution. Only the solutions themselves can be

quanti�ed. Brennan & Resnick (2012) state that accurately measuring CT requires a

combination of measures because just looking at a student project does not demon-

strate all of their computational competencies. Moreno-León, Román-González &

Robles (2018) suggest a combination of CTt, Bebras and Dr. Scratch to give an

overall measure of CT. However, conducting a combination of three measures is time-

consuming, which can be an issue in the classroom. Identifying the psychological

constructs that underpin CT may help measure the problem solving that goes into cre-

ating solutions, for example, �uid reasoning, visual processing and short-term mem-

ory (Román-González et al., 2016) or executive functions (Robertson, 2019). Yet, this

research has only shown correlations between these skills and CT, which could be

due to these measures being in�uenced by other factors.
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These issues affect curriculum design because it is dif�cult to establish what

should be taught. The lack of valid and reliable CT measures also makes it dif�cult to

properly test the ef�cacy of educational programming tools.

3.4.4 Is Computational Thinking a Universal Skill?

Wing suggested that CT is a “universally applicable attitude and skill set everyone,

not just computer scientists, would be eager to learn and use” (Wing, 2006, p. 33),

a view echoed more recently by Grover et al. (2018). However, there is currently

little evidence to support claims that CT improves general cognitive skills and can

help people perform everyday tasks (Guzdial, 2015). This means that it is unclear

whether everyone will bene�t from being able to think computationally (Webb et al.,

2017). Yet, Chapter 2 suggested that there are bene�ts to all children having a basic

understanding of CS in an increasingly technology-based society, even if learning

outcomes are unclear.

The indication that CT is related to executive functions (Robertson, 2019) sug-

gests that CT materials should be designed around the cognitive limitations of younger

learners. CT gives us a breakdown of problem-solving skills that are used in CS, which

may allow educators to focus on developing individual competencies in younger chil-

dren who struggle with more abstract concepts (e.g. variables and functions). For

example, focusing on `sequencing' or simple algorithms and seeing if this can trans-

fer to more `universal' skills used in mathematics and science. Kazakoff, Sullivan &

Bers (2012, 2014; 2013) pursued this line of enquiry, �nding that a robotics program-

ming tool improved story sequencing in children aged between 4 and 6. Chapter 4

describes a study that attempts to replicate these results using the Lightbot Jr pro-

gramming game.

3.4.5 Is Primary School Teaching of Computational Thinking

Effective?

The lack of teacher expertise in primary-level CS education is discussed in Section

2.3. In summary, most teachers lack the CS knowledge needed to support learning.

This is because, in some countries, CS and CT have been introduced into schools by

policymakers without adequate training resources, learning materials and infrastruc-

ture. As it is not yet an assessed part of the curriculum, like mathematics or literacy,

there is little motivation within schools to dedicate time and money towards it (Webb

et al., 2017).

Several studies have been done on teacher attitudes towards CS and CT in pri-

mary education. Sentance & Csizmadia (2017) analysed 339 teacher responses to a

survey on the strategies and challenges of teaching CS in compulsory education in the
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UK. They found that the main concern was the teachers' own subject knowledge. Re-

spondents reported that they often spent hours of their own time trying to upskill in the

subject. These concerns were echoed in a similar survey by Rich et al. (2019), who

analysed 310 teacher responses mainly from the US and UK and found that teach-

ers' greatest concern was their own ability to learn computing/coding. US teachers

were also unsure how and where in the curriculum they should be teaching CS. The

authors found that a wide range of programming tools were used and that CS/CT

was often integrated into mathematics or science. Yadav et al. (2016) investigated

CS teacher perspectives in the US, �nding that teachers struggled with developing

adequate knowledge, not having suf�cient IT software in schools and feeling isolated

because of having to train themselves and �nd appropriate resources. Teachers felt

unable to effectively support student learning unless they sought training and found

resources in their own time.

In a separate piece, Yadav, Stephenson and Hong (2017, p. 60) give �ve recom-

mendations for improving CT education:

Curriculum - Develop a pre-service teacher education curriculum to prepare

teachers to embed CT in their classrooms.

Core ideas - Introduce pre-service teachers to core ideas of CT by redesigning

educational technology courses.

Methods courses - Use elementary and secondary methods courses to de-

velop pre-service teachers' understanding of CT in the context of the discipline.

Collaboration - Computer science educators and teacher educators collabo-

rate on developing CT curricula that goes beyond programming.

Teacher education - Use existing resources and curriculum standards to as-

similate CT into pre-service teacher education.

However, these recommendations bring us back to the issues discussed in this

section. Does CT transfer to other disciplines? How and when should it be assessed?

And is it a universal skill that every child should develop? Without de�nitive answers to

these questions, it is dif�cult to justify centring CS education on CT. This is a key factor

behind Armoni (2016) and Nardelli's (2019) suggestions that CT should be viewed as

an explanation of the bene�ts of CS and not as a new discipline, where CT ability will

improve as the learner becomes more pro�cient in CS. This, combined with the lack

of teacher expertise at primary level, highlights the importance of well-designed and

thoroughly-tested educational programming tools.
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3.5 Summary

In summary, CT encompasses the problem-solving concepts used by computer sci-

entists to solve computational problems. For the purpose of this thesis, CT is de�ned

as “the thought processes involved in modelling and solving computational problems”

and includes abstraction and generalisation, algorithms and procedures, data collec-

tion, analysis and representation, decomposition, parallelism, debugging, testing and

analysis and using control structures. As of yet, there is limited evidence of transfer

to non-computational domains, despite it being clear that CT is used in CS.

The concepts included in CT, and its scope, are still unclear. Some suggest that

it can be used to conceptualise learning and development in a speci�c language

(e.g. Scratch), whereas others suggest it is an all-encompassing conceptual founda-

tion that includes engineering, mathematics and design thinking (Shute et al., 2017).

There are also views of it as an emerging psychological construct that correlates with

�uid reasoning, visual processing and short-term memory (Moreno-León et al., 2018)

and executive functions (Robertson, 2019). There are several existing CT measures,

but they lack evidence of validity and reliability at the time of writing. These include for-

mative project-based measures like Dr. Scratch, skill-transfer measures like Bebras,

and summative measures like the Computational Thinking test.

In terms of CT education, there are problems with teacher expertise, assessments

and questions over whether CT and CS should be a major part of curricula along with

mathematics and science. CT has been used as justi�cation by policymakers for CS

being taught in primary education, but lack of teacher expertise and formal assess-

ments could be harming student attitudes and learning outcomes. These problems

are made worse by questions of whether CT is a universal skill required by all children.

Armoni (2016) and Nardelli (2019) argue that CT should be seen as an explanation

of the bene�ts of CS, not as a new discipline or separate subject. Just as mathemat-

ical thinking and linguistic thinking are not removed from mathematics or linguistics.

Educators require the support of well-tested and age-appropriate programming tools.

These tools should give children a basic understanding of CS, whilst being fun and

engaging.

Despite the issues surrounding CT, some studies suggest that simple algorithmic

programming concepts such as `using sequences of steps' can transfer to other tasks.

Kazakoff, Sullivan & Bers (2012, 2014; 2013) found that computer programming using

a robotics kit improved story sequencing ability in children age 4 to 7. The next chapter

(Chapter 4) describes an exploratory study that aimed to reproduce those results

using a programming game with children age 5 and 6.
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Chapter 4

Study 1 - Measuring the Effect of a

Programming Game on Story

Sequencing Ability in Young Children

Chapters 2 and 3 discussed the theoretical and practical limitations of teaching com-

puter science (CS) and computational thinking (CT) in primary education. Children

begin their CS education by being taught to understand, create and predict the be-

haviour of simple algorithms (Section 2.2.2). Algorithm prediction requires the learner

to `trace' code: mentally simulating the program step-by-step to predict the outcome.

Lister (2011) suggests that novice programmers progress from manipulating code us-

ing trial and error to successfully tracing relying on speci�c values and �nally being

able to understand portions of code simply by reading (no tracing required). This type

of algorithmic thinking forms part of the working de�nition for CT given in Chapter 3,

de�ned as `using sequences of steps and rules to solve a problem.'

The action of `sequencing' objects or actions is an important skill for young children

to develop in mathematics and literacy. For example, ordering numbers in the correct

sequence and retelling a story in a logical sequence. Moreover, constructing narrative

scripts or sequences of daily routines is common in early childhood curricula (Paris

& Paris, 2003). Kazakoff & Bers (2012) argue that computer programming can be

seen as a type of story sequencing. They conducted a series of experiments to see if

story sequencing could be improved by teaching basic programming to young children

(age 4 to 7), �nding that participants improved on a story sequencing task after a

programming intervention.

The effect of programming on story sequencing is a signi�cant �nding because

there is limited evidence that CS and CT can improve skills on non-computational

tasks (Denning et al., 2017). This chapter describes an exploratory study that was

designed to reproduce these results using a programming game. It starts by explain-

ing the studies and their rationale before describing several weaknesses and corre-

sponding new methodological changes. It then moves onto the method, results and
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discussion of this study.

4.1 Programming and Story Sequencing

4.1.1 Rationale

Sequencing is the action of putting objects or actions into the correct order (Zelazo,

Carter, Reznick, & Frye, 1997). It is an important part of early childhood curricula

(age 3 to 8) in both mathematics and literacy; for example, putting words, letters and

numbers in the appropriate order (Department for Education, 2013). Using sequences

of pictures for storytelling is a common task for this age group as it requires sequential

thinking and narrative understanding without relying on words (Paris & Paris, 2003).

Kazakoff & Bers (2012) argue that computer programming is a version of story

sequencing: symbolic commands are arranged in an appropriate sequence to tell a

computer what to do (Liao & Bright, 1991), with programmers thinking in sequential

terms of next, before and until (Pea & Kurland, 1984). From this, the authors hypoth-

esised that children who engage in programming activities would increase their story

sequencing skills.

4.1.2 Studies

Kazakoff, Sullivan & Bers have reported three separate studies to measure the im-

pact of programming on story sequencing, building on a laboratory-based pilot study

(2011) (a full report on this study is the last one described in this section (2014)).

This section will discuss the methodology and results of each study in the or-

der they were published. The following section will critique the studies and suggest

methodological changes to address these weaknesses.

Kazakoff & Bers (2012)

The �rst study involved 54 children and was conducted in two schools (one private

and one public), with an experimental and control group in each. Teacher experience

using technology varied between the schools. Group 1 contained 22 children (64%

male and 32% female) with an average age of 5.65 (SD = 0.39), who were divided

evenly into an intervention group and a control group. Group 2 was comprised of

two classes used as separate groups, 15 children (60% male and 40% female) in the

intervention class with an average age of 5.54 (SD = 0.33) and 17 children (59% male

and 41% female) in the control class with an average age of 6 (SD = 0.27).

Children in the intervention groups were exposed to the TangibleK program (now

called KIBO) for 20 hours, taught by the class teacher. The control groups did art
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activities during this time. Story sequencing skills were assessed at pre-and post-

test using Baron-Cohen, Leslie and Frith's (1986) assessment described in Section

4.2.3. The assessment used by Kazakoff & Bers contained �ve story sequences for

the participant to arrange, with a maximum score of 10 points.

TangibleK involves a developmentally appropriate programming language called

CHERP (Creative Hybrid for Robotics Programming). CHERP uses either cubes of

wood covered in pictures depicting units of code (e.g. forwards, backwards, turn right,

turn left) or on-screen instructions of the same blocks. The physical blocks are then

converted to on-screen instructions that are then executed by a robot.

The authors found that children in the intervention groups improved their scores on

the sequencing assessment compared to the control groups. Interestingly, the control

group scores fell between pre-and post-test (Table 4.1). The authors give natural

�uctuation between `pre-operational' and `concrete' thinking for children of this age as

a possible reason for this (Section 2.2.2).

Table 4.1: Sequencing assessment scores in the �rst study by Kazakoff & Bers (2012)

Classroom Type N Pre-Test
Average

Post-Test
Average

Change % Change

1A Private In-
tervention

11 7.55 8.82 1.27 17%

1B Private
Control

11 7.82 6.91 -0.91 -12%

2A Public In-
tervention

15 7.4 7.6 0.20 3%

2B Public
Control

17 8.53 7.59 -0.94 -11%

Kazakoff, Sullivan & Bers (2013)

In the second study, Kazakoff, Sullivan & Bers (2013) repeated the experiment to see if

they could achieve the same result with a 1-week intensive programming intervention

(10 hours total). The participants were 27 children in either pre-kindergarten (age 4

and 5) or kindergarten (age 5 and 6). Once again, the experiment used the CHERP

programming language combined with Lego WeDo Robotics Construction Set. The

participants of the intervention group attended a public, early childhood Engineering

magnet school. Whilst the control group were 13 children from a small, university-

af�liated childcare centre. The assessments were given either side of the 1-week

intervention.

The results are shown in Table 4.2. The authors found that kindergarten children

in the intervention group improved signi�cantly, t(13) = 4.84, p < .001. That children in

the pre-kindergarten group also improved signi�cantly, t(12), p < .05. But that children

in the control group did not improve, t(13) = 0.291, p = .78.
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Table 4.2: Sequencing assessment scores in the second study by Kazakoff, Sullivan
& Bers (2013)

Type Age N Pre-Test Post-Test
Intervention 5-6 (kindergarten) 14 6.43 8.79
Intervention 4-5 (pre-kindergarten) 13 3.77 4.45
Control 4-6 13 6.07 6.36

Kazakoff & Bers (2014)

The third study aimed to control for confounding variables that arise within the class-

room, such as collaboration between children. Participants in the study had 3 one and

a half-hour structured sessions in a laboratory working one-on-one with a researcher,

as well as 1 initial one and a half-hour group session with four participants and three

researchers. As in the �rst two studies, the participants used the CHERP program-

ming system and a robotics toolkit. The participants were 34 children (64% male and

32% female) age 4 to 6. They had been recruited through �yers and emails sent to

local elementary schools.

The mean pre-test score was 7.06 (SD = 2.45) and the mean post-test score was

8.44 (SD = 1.76); t(33) = 2.71, p < .01. The average time between pre-and post-test

was 17.8 days (SD = 5.7). There were four perfect scores on the pre-test and one

participant scored 0 on the pre-test and 10 on the post-test. The authors reanalysed

the data without these participants and still found a statistically signi�cant difference.

4.1.3 Critique and Methodological Changes

Despite the indications that computer programming improves story sequencing, there

are several issues with the studies described in the previous section. This section

describes three of these issues and how they will be addressed in the new study.

Inactive Control Groups

The �rst weakness of the studies is the use of inactive control groups. Participants

in the experimental group may have changed their behaviour compared to the control

because they were being observed during the intervention. This tendency to alter

behaviour when being watched is known as the Hawthorne effect (Roethlisberger &

Dickson, 1939). Yet, Shipstead, Redick & Engle (2012) use it to refer to any psy-

chological phenomena that are introduced when intervention and control groups are

treated differently. In these studies, participants in the intervention were introduced to

technology and programming concepts that were both exciting and unusual compared

to the experience of the control groups. This difference in treatment is particularly im-

portant because of the young age of participants.

One method of controlling for Hawthorne effects is to use an active control group,
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who are given a different activity during the experiment to keep them engaged. Having

an active control “makes the experience of the participants in the baseline condition

more comparable to those in the intervention condition, potentially equating the social

contact experienced during the training period and reducing motivational differences

between the groups.” (Simons et al., 2016, p. 116). This can help clarify that the

intervention is responsible for any cognitive improvements. In the study that did use

an active control group, these participants did `art activities', which is quite different

from the exciting and unusual technology that the intervention groups were using.

To address this concern, the new study will have an active control group that uses

a phonics application, also on tablets, that does not require the same step-by-step

sequencing as the computer programming intervention task.

Sequencing Assessment

Secondly, the sequencing assessment used in the studies resulted in high average

scores, often above 65% at pre-test and 75% at post-test. Kazakoff & Bers (2014)

also state that there were ceiling and �oor effects at both pre-and post-test in one of

the studies. Dimitrov & Rumill (2003) suggest that ceiling effects indicate an easy test

which falsely favours low-ability participants. The assessment was conducted one

participant at a time, with a researcher delivering vocal instructions and explaining

parts of each story sequence if required. This method of delivery could have resulted

in differences between participants, for example, if one child had a further explanation

that another child needed but did not ask for.

The sequencing assessment for the new study will be delivered using a computer

program to reduce differences in delivery between participants. It will have three times

as many questions and a time limit to increase the spread of results and reduce ceiling

effects.

Control Groups from Different Institutions

The third weakness with two of the studies is either having no control group (Kazakoff

& Bers, 2014) or a control group from a different institution (Kazakoff et al., 2013). In

the second study, the participants were from a public magnet school in the Harlem

area of New York City, whereas the control group “were part of a small, university-

af�liated child care center outside of Boston, MA” (Kazakoff et al., 2013, p. 249).

There is no guarantee that these groups are from a comparable sample of the popu-

lation, which questions the validity of the control. However, it is worth noting that the

�rst study did have both intervention and control groups in each institution (Kazakoff &

Bers, 2012). Yet, the sample size for this study was small and one of the intervention

subgroups did not improve on the task (Table 4.1).
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The new study will use a control group comprised of children from the same insti-

tution and randomly assign them to the intervention condition or the control.

4.2 Method

This was an exploratory study to see if the repeated �ndings of Kazakoff, Sullivan

& Bers (2012, 2014; 2013) could be replicated using an age-appropriate program-

ming game, Lightbot Jr, instead of the physical CHERP programming language and

robotics toolkit. The study used the methodological changes described in the previous

section (Section 4.1.3): an active control group, an automated and longer sequencing

assessment and a control group from the same institution.

4.2.1 Participants

Participants in this study were 50 children age 5 and 6 (M = 6.2, SD = 0.27) from a

large primary school in northern England. The sample comprised of 40% male and

60% female participants. The school is above the national average of pupils meeting

the expected standard in reading, writing and maths with 63%. The original sample

contained 60 children of an even gender split, however, some have been excluded

from data analysis due to being absent during parts of the intervention or the post-

test.

4.2.2 Design

The study followed a pre-test post-test experimental design to measure for improve-

ments on the story sequencing assessment after playing a programming game (Fig-

ure 4.1). The participants were split into two groups: intervention (Lightbot Jr) and

active control (Twinkl Phonics). Participants were assessed using a story sequencing

assessment adapted from Baron-Cohen, Leslie and Frith (1986).

Figure 4.1: Diagram of the Study 1 design
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4.2.3 Materials

Sequencing Assessment

The sequencing assessment was adapted from picture sequencing cards created

by Baron-Cohen, Leslie and Frith (1986) for a study comparing high-ability autistic

children to low-ability Down's syndrome children. This is a similar assessment to the

one used by Kazakoff, Sullivan & Bers, with 20 more story sequences added, resulting

in six stories from each of �ve the categories listed below. Each story contains four

picture cards that must be ordered correctly for the story to make sense. An example

story is shown in Figure 4.2 and all the sequences are shown in Appendix E.

Figure 4.2: The 'Going to bed' story sequence

These stories were broken down into the �ve categories originally used by Baron-

Cohen, Leslie and Frith. These were used in the study as an indicator of dif�culty:

1. Mechanical 1 (objects interacting causally with each other)

2. Mechanical 2 (people and objects acting causally on each other)

3. Behavioural 1 (a single person acting out everyday routines)

4. Behavioural 2 (people acting in social routines)

5. Intentional (people acting in everyday activities requiring the attribution of men-

tal states)

A software application was created to present the story sequences using the stan-

dardised procedure created by Baron-Cohen, Leslie and Frith (1986) (Figure 4.3). The

�rst card in the sequence is placed in the correct location, the other cards are placed

above it in a random order, correcting for the child spontaneously placing cards in

the correct order. The participant then selects a card and places it in its appropri-

ate position in the sequence. Cards can be moved back to the top of the screen by

selecting them again. This interaction method allows children who struggle with a

computer mouse to use the application effectively. When the participant is happy with

their answer, they select the `Finished!' button and a new sequence is shown.

Participants received 2 points for a correct sequence, 1 point for the correct be-

ginning and end card, and 0 points for an incorrect sequence. They had 4 minutes

to order as many stories as they could out of a set of 15. The maximum score was
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Figure 4.3: Screenshot of the sequencing assessment application

30 points. Two sets of 15 story sequences were produced, containing the same num-

ber of stories from each category so that they were of similar dif�culty. These were

alternated for each participant, meaning that one participant would do the �rst set for

the pre-test and the second for the post-test, then the next participant would do the

second for the pre-test and the �rst for the post-test and so on. The stories were pre-

sented in a random order, which along with alternating the sets of questions, was done

to reduce the likelihood of participants copying each other and unintended differences

between the dif�culty of each set.

The application was tested in two other schools with children of the same age

before the study as part of an iterative development process. These observations

resulted in several important changes in the �nal application:

1. Allowing the user to operate the application using clicks, instead of clicking and

dragging with the mouse, which some children found dif�cult.

2. Setting the time limit to 4 minutes so that not all children would �nish the 15

stories, meaning there would be a bigger spread of results. There was no time

limit during testing to see how long it took each child to complete all the stories.

3. Bigger images and text as well as numbered spots for card position in the se-

quence.
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Lightbot Jr

Lightbot Jr (Section 2.4.5) was chosen for the intervention as it is age-appropriate,

can be played on a tablet and requires the player to program by placing instructions

in sequence (Figure 4.4). The goal of each level is to program the robot to turn all

the blue spaces in a level into illuminated yellow spaces. This is done by arranging

symbolic instruction blocks (forward, turn left, turn right, jump and lightbulb) that tell a

robot what to do, similar to CHERP.

Figure 4.4: Screenshot of Lightbot Jr

Twinkl Phonics Suite

The active control group used the Twinkl Phonics Suite (Figure 4.5), an application

that contains a range of phonics-based activities, including sounds and names of

letters, letter formation, blending sounds and high-frequency words. It was chosen

as an alternative to Lightbot Jr because it does not contain the same step-by-step

sequencing where symbolic instructions are placed in order. The school speci�ed

that they would like it used as it had a wide range of activities relevant to participants'

classroom learning outcomes to keep them occupied for the duration of the study.

4.2.4 Procedure

The sequencing assessments took place in the school IT suite. Participants were

given a demonstration beforehand to explain what they would be doing and how to

use the application. After the pre-test, participants were randomly assigned to either

the intervention or control condition using a matched-pairs design.
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Figure 4.5: Screenshot of a task from the Twinkl Phonics Suite where the player
selects balloons containing the same letter as the one at the bottom of the screen

Participants then used either Lightbot Jr or the Twinkl Phonics Suite in groups of

10, for 20 minutes a day in class time over the school week (�ve days, 100 minutes

total). This took place in a small intervention room situated between two classrooms.

Each child was given a tablet for this period that was locked to the application they

would be using. Participants in the intervention group used the same tablet each day

so that they could continue where they had �nished the previous day. Lightbot Jr

progress and researcher observations were recorded at the end of each session to

chart participant progress.

The post-test was completed 10 days after the pre-test, at a similar time of day for

each group. The study ran between the 5th May 2017 and the 15th May 2017.

4.2.5 Ethics and Access to Participants

University approval was given for a series of studies investigating the effect of visual

programming on CT skills (Appendix C). For this study, approval was acquired from

the headteacher of the school. Opt-out consent forms were then sent to the parents

or guardians of participants (Appendix F), in line with the school's wishes.

All data, including test scores, game progress and researcher observations were

anonymised using participant ID numbers. Appendix D shows the data management

plan.
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4.2.6 Hypotheses

It was hypothesised that the study would replicate the repeated �ndings of the previ-

ous studies by Kazakoff, Sullivan & Bers (2012, 2014; 2013); children in the program-

ming condition would improve from pre-to post-test on the story sequencing assess-

ment, compared to the control.

In addition, it was expected that the sequencing assessment would produce a

good range of scores without ceiling effects, that the sequencing assessment would

be a predictor of Lightbot Jr progress (to give some indication that sequencing is

related to programming) and that Lightbot Jr progress would be a predictor of learning

gains from pre-to post-test.

4.3 Results

4.3.1 Effectiveness of the Sequencing Assessment

Both the pre-and post-test produced a good range of scores (Table 4.3). Figure 4.6

shows the distribution of the pre-and post-test scores. Histograms have been used

here to identify ceiling effects, as one of the aims of the new sequencing assessment

was to negate these. There was a potential ceiling effect at post-test, with �ve par-

ticipants scoring within 5 points of the upper limit (30 points). Yet, the scores were

normally distributed, with skewness of -0.28 (SE = 0.34) and kurtosis of -0.051 (SE

= 0.66). Using a paired samples t-test, there was a signi�cant improvement for the

participants overall between the pre-and post-test (t(49) = -4.33, p < .001, d = 0.57).

Figure 4.6: Histogram of the sequencing assessment spread of results at pre-and
post-test
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Table 4.3: Descriptive statistics for the sequencing assessment at pre-and post-test

Pre-Test Post-Test
N 50 50
M 14.02 17.18
SD 5.17 5.75
Minimum 4 3
Maximum 25 28

4.3.2 Differences in Story Sequencing

A one-way ANCOVA was conducted to test for differences on the pre-and post-test be-

tween groups. This method used the post-test scores as the dependent variable and

the pre-test scores as a covariate, assessing for differences in the post-test means af-

ter accounting for pre-test values (Dugard & Todman, 1995). The difference between

groups was not signi�cant; F (1, 47) = 0.03, p = .86, � 2 = .001. Figure 4.7 shows the

average learning gains for each group. Further statistics are provided in Table 4.4.

Figure 4.7: Comparison of the average learning gains on the sequencing assessment
from pre-to post-test for each group (error bars show 95% con�dence interval)

4.3.3 Sequencing as a Predictor of Lightbot Jr Progress

There was a correlation between a participant's pre-test score and their number of

Lightbot Jr levels completed, r (50) = .46, p = .015 (Figure 4.8), indicating that the

story sequencing pre-test was a predictor of Lightbot Jr performance.
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Table 4.4: Descriptive statistics for the sequencing assessment at pre-and post-test
for each group

Condition Pre-Test Post-Test Learning Gains

Intervention
M 13.85 17.19 3.33
N 27 27 27

SD 5.70 5.84 5.02

Control
M 14.22 17.17 2.96
N 23 23 23

SD 4.59 5.77 5.42

Figure 4.8: Relationship between pre-test sequencing assessment score and Lightbot
Jr progress (with regression line)

4.3.4 Lightbot Jr Progress as a Predictor of Learning Gains

There was a negative correlation between Lightbot Jr levels completed and learning

gains between pre-and post-test, r (49) = -.42, p = .02 (Figure 4.9). Children who did

not progress as far in Lightbot Jr improved more on the story sequencing assessment.

4.4 Discussion

In summary, the sequencing assessment produced a good range of scores (21 in the

pre-test and 25 in the post-test). However, there was a ceiling effect in the post-test,

which suggests that the test may have been too easy. The intervention and the active

68



Figure 4.9: Relationship between Lightbot Jr progress and learning gains on the se-
quencing assessment (with regression line)

control both improved on the story sequencing task, with no difference between the

groups. The pre-test scores were a predictor participant progress in Lightbot Jr, but

this progress was, in turn, a predictor of lower learning gains between the pre-and

post-test.

The �nding that both the intervention and control groups improved on the sequenc-

ing assessment is at odds with the previous studies by Kazakoff, Sullivan & Bers.

Possible reasons for this include the limitations in those studies described in Section

4.1.3 (e.g. lack of an active control group), the link between sequencing and pro-

gramming is not as strong as expected and limitations with the methodology of this

study (problems with Lightbot Jr, sample size and intervention length). This section

discusses the link between sequencing and programming and the limitations of this

study in more detail.

4.4.1 The Link Between Story Sequencing and Programming

Story sequencing may not be as intrinsically linked to programming as �rst expected.

Likely, the improvements in this study for both groups from pre-to post-test on the

story sequencing assessment can be attributed to the practice effect: participants

improved because they were used to the format and style of the assessment. The

correlation between pre-test scores and Lightbot Jr progress does suggest that story
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sequencing is in some way related to programming, yet this could be far transfer that

requires further mediation.

Denning, Tedre & Yongpradit (2017) argue that everyday step-by-step procedures

(similar to the story sequences used in this study) are not the same as machine-

executable algorithms used in programming (Chapter 3). Therefore, it may be that

Kazakoff, Sullivan & Bers' argument that computer programming is a version of story

sequencing is misguided. Despite programmers thinking sequentially and using `se-

quences of steps and rules to solve a problem', it could be that the jump from this

to sequencing stories of `human steps' (the isolated actions of a person) is too large.

This highlights questions of transfer between computational and non-computational

domains. In experiments done with the Logo programming language, researchers

found that problem-solving skills developed through programming did not transfer to

non-computational contexts (e.g. Clements & Gullo, 1984; Pea & Kurland, 1984). The

problem of CT skills like algorithms and sequencing transferring to non-computational

tasks (like story sequences) was discussed in criticisms of CT section in the previous

chapter (Section 3.4). An additional measure of algorithmic sequencing or program-

ming ability could be used in future studies to test whether story sequencing and

programming are related as the correlation between pre-test scores and Lightbot Jr

progress suggests.

The negative correlation between Lightbot Jr progress and learning gains could be

explained by higher-scoring participants already possessing sequencing skills before

the intervention. This meant that there was simply less room for improvement in the

post-test, because of the ceiling effect, compared with lower-scorers.

4.4.2 Lightbot Jr Understanding

Some participants struggled with aspects of Lightbot Jr, despite the game being de-

signed for children age 4 to 7. This lack of understanding may have resulted in partic-

ipants not developing programming skills as expected during the intervention.

Instruction Overlay

It was observed that participants ignored the visual instructions at the start of levels,

choosing instead to ask researchers for an explanation. Most participants were not

con�dent readers and may have also avoided instructions because they overlay the

game itself, meaning the player can see the game waiting to be played behind them

(Figure 4.10).

Debugging Dif�culties

Participants had dif�culty identifying and removing incorrect blocks from their solu-

tions. They often chose to remove all instructions from the program and start again
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Figure 4.10: Screenshot of Lightbot Jr instructions with the game visible behind

rather than attempting to debug their solution. Participants would also attempt to com-

plete the level in one go, without breaking down the problem into parts. This lack of

debugging and decomposition could be due to underdeveloped working memory: par-

ticipants could not hold the executing instruction and movement of the robot in their

heads simultaneously. The dif�culty with debugging, decomposition and abstraction

may be a limitation of teaching programming to this age group, echoing concerns of

Armoni (2012). This supports Lister's (2011) theory that novice programmers initially

struggle with the abstract relationship between different parts of the code and can

only focus on one instruction at a time.

This study required participants to understand the sequencing used in program-

ming and then to transfer these skills to another task. Whilst there is evidence that

children as young as age 4 can understand basic programming concepts (Bers, 2010;

Fessakis et al., 2013), it may be that Lightbot Jr is too dif�cult for children without prior

knowledge. As previously mentioned, this could be addressed by using a measure

of programming ability, in addition to story sequencing, to test if participants have

developed programming skills as expected.

4.4.3 Sample Size and Intervention Length

The lack of a between-groups difference in this study could be because of the sample

size. Yet, given that this was an exploratory study designed to test the assumptions of

Kazakoff, Sullivan & Bers, it did use a similar sample size to their studies and found

no difference. Moreover, due to the effect size of the between-group difference (� 2 =

.001), the new study would need 7843 participants to show a signi�cant improvement
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in story sequencing compared to the control (using a type 1 error rate of 0.05 and

type 2 error rate of 0.8). The small effect size suggests that such a study would not

be worth doing.

Another limitation of this study was the length of the intervention. Classroom lo-

gistics meant that participants only had 100 minutes of programming during the in-

tervention, compared to the 6, 10 and 20 hours in Kazakoff, Sullivan & Bers' studies.

However, a much larger study by the National Foundation for Education Research

found that a year-long programming intervention using Scratch did not affect the CT

ability (measured using Bebras (Section 3.3.2)) of 317 children age 9 to 11 (Straw

et al., 2017). Furthermore, Boylan et al. (2018) found that mathematics outcomes of

5,818 children age 9 to 11 did not improve after a year (or two years in some cases)

of Scratch programming, but that CT scores using a different subset of Bebras tasks

did. These results, along with the results of this study, suggest that measuring the

impact of programming on CT and other cognitive skills (such as story sequencing) is

dif�cult and that additional measures or mediation is required.

4.5 Conclusions

In conclusion, there was no difference observed between the effects of a program-

ming game and phonics activities on story sequencing ability in children age 5 and 6.

The overall improvement of both groups could suggest that the �ndings of Kazakoff,

Sullivan & Bers have been in�uenced by methodological design weaknesses, such as

using an inactive control group, a short and manual assessment or a control group

from a different institution. This raises concerns as to whether their improvements in

story sequencing can be attributed solely to the programming intervention. Yet, due

to differences in the intervention and limitations of this study, their results cannot be

dismissed outright.

The cross-disciplinary application of computer programming for young children is

an interesting area. CT literature argues that skills developed through programming

are useful in other subject areas. However, there is no guarantee that children in

early childhood can develop an understanding of these concepts and limited valid

and reliable CT assessments, particularly designed for younger children. This study

supports the issues with CT in primary education raised in Section 3.4. Furthermore,

programming observations from this study echo the concerns that more abstract CS

and CT concepts are too dif�cult for children under age 7 to understand and apply

(Armoni, 2012).
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4.5.1 Moving Away from Computational Thinking

The results of this study suggest that it can be dif�cult to measure for transfer and im-

provements of the CT concepts learnt through programming. In this case, the transfer

of algorithmic sequencing to ordering story sequences. In addition, it has highlighted

issues with teaching programming to young children (under age 7), in terms of their

ability to formulate and debug programs.

This study has highlighted the `computational' aspect of the working de�nition

given in Section 3.2.4. It supports views that it is dif�cult to separate CT and CS

(Armoni, 2016; Nardelli, 2019), particularly without CT measures designed for chil-

dren this young. It makes sense, then, to focus on measurable aspects of CS and CT

that older children can learn to use in existing educational programming tools, which

are computational in nature. These can then be supported by existing CT measures,

such as Dr. Scratch and the Computational Thinking test. This, in turn, means mov-

ing away from younger children, who lack the working memory to understand more

abstract CS concepts, to children at upper-primary level (age 9 to 11).

Novices can experience problems and misconceptions when learning to program.

Research suggests that they can form `bad programming habits' in block-based tools

that can make programs dif�cult to understand, debug and maintain. The following

chapter (Chapter 5) discusses the concept of abstraction in more detail and how it can

be used to teach novice programmers to correct bad programming habits by `smelling'

their code and learning to `refactor' their programs using abstraction.
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Chapter 5

Abstraction and Code Smells

Chapter 4 showed that it can be dif�cult to measure improvements and transfer in even

the simplest aspects of computational thinking (CT). In this case, from algorithmic se-

quencing of instructions in a programming game to ordering story sequences. This

�ts with the perspectives of Armoni (2016) and Nardelli (2019) in suggesting that it is

dif�cult to separate CT and computer science (CS), particularly without valid and reli-

able CT measures. Section 3.3 highlighted the fact that many existing CT measures

have little or no evidence of validity or reliability. This is because CT is a relatively

new �eld and producing reliable measures is a time-consuming process. Academics

are playing catch-up to policymakers who have introduced CS and CT into national

curricula without testable learning outcomes, adequate training resources and teacher

support. As such, children are being taught CT and CS in primary education by teach-

ers that lack expertise and con�dence in CS, often using programming tools with little

direct guidance (Webb et al., 2017). Until it is possible to reliably assess CT, it makes

sense to focus on measurable aspects of CS (and therefore CT) that address com-

mon problems and misconceptions that can arise when primary school children learn

to program. This also means concentrating on older primary school children (age 9 to

11), who use more complex programming tools (e.g. Scratch).

Chapters 2 and 3 identify abstraction as playing a key role in both CS and CT.

Yet, these skills are not often taught in the primary school classroom, because they

require expertise and understanding that teachers often lack (Rich et al., 2019). This

is important because abstraction is a crucial part of writing `good' code and can be

used in popular block-based programming tools such as Scratch.

Scratch is the most widely-used programming tool in primary education, yet it's

constructionist, self-directed design means it can lead children to form bad program-

ming habits (Meerbaum-Salant, Armoni, & Ben-Ari, 2011). These habits can make

programs dif�cult to understand, debug and maintain. They can be addressed if the

programmer is taught to `smell' that something is wrong with their code and can `refac-

tor' the code to remove the smell. Common smells in Scratch include duplicated code,

long scripts and dead code. The refactoring process requires good programmatic and
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procedural abstraction skills, which primary school children should be able to learn

through structured teaching (Gibson, 2012).

This chapter discusses abstraction, which plays a key role in the thesis from this

point in. It begins with its application in human cognition before explaining what it

means in both CT and CS. The chapter then discusses the bad programming habits

that can arise because of Scratch's constructionist design, before examining the dif-

ferent `code smells' that indicate these habits and how abstraction can be used to

remove them.

5.1 Abstraction

5.1.1 In Human Cognition

Abstraction is the conceptual process where general rules and concepts are derived

from speci�c examples, literal (or `concrete') signi�ers or �rst principles. An `abstrac-

tion' is the outcome of this process. Conceptual abstractions are formed by selecting

only the aspects of an observable phenomenon that are relevant for a speci�c pur-

pose. For example, abstracting a square to the more general idea of a 2D shape by

selecting the relevant `shape' information (area, perimeter, colour, etc.) and excluding

the other characteristics that are only relevant to the square (e.g. four sides). Abstract

reasoning is the ability to generalise about relationships and attributes as opposed to

concrete objects, using categories, schemas and cognitive structures to organise and

generalise information. Thinking in abstractions is one of the key characteristics of

human behaviour (Piaget, 1970).

5.1.2 In Computational Thinking

Abstraction is the main tenet of CT (Wing, 2006) (Chapter 3). It forms part of the work-

ing de�nition of CT for this thesis and is de�ned, in combination with generalisation,

as `removing the detail from a problem and formulating solutions in generic terms'.

In the CT de�nitions, frameworks and models analysed in Section 3.2, abstraction

is discussed in the general context of recognising and generalising patterns (Shute

et al., 2017), using procedures to encapsulate a set of repeated commands (Barr &

Stephenson, 2011) and distinguishing CT from other types of thinking (Grover & Pea,

2013). Abstraction in CT is closely linked with generalisation, pattern recognition and

decomposition.

There are several non-computational approaches used to teach abstraction to chil-

dren. In one example from Barefoot (2019), who provide CT resources for primary and

secondary education, children try to describe an animal by its features without using

its name. This requires the child to only include what is important, therefore creating

an abstraction. There is some evidence to suggest that tasks like this can improve

75



novice con�dence in programming (Hermans & Aivaloglou, 2017) and improve scores

on the Computational Thinking test (Brackmann et al., 2017). However, there is little

evidence that these skills can transfer to computational tasks, as discussed in Section

3.4.

5.1.3 In Computer Science

Abstraction is fundamental in CS and is “one of the most vital activities of a compe-

tent programmer” (Dijkstra, 1972, p. 864). The main objective of abstraction in CS is

the process of `information hiding' (Colburn & Shute, 2007): hiding, but not neglect-

ing, details that are “essential in a lower-level processing context but inessential in a

software design and programming context” (p. 176). The reason that information can

be essential in one context and inessential in another is that tools for abstraction and

information hiding have evolved over the history of software development. Program-

ming languages, operating systems, network protocols and design patterns all allow

programmers to operate at higher levels of abstraction.

Abstraction is also an important part of software engineering. The DRY (Don't

Repeat Yourself) principle states that duplication in logic should be eliminated via ab-

straction (Hunt & Thomas, 1999). Abstraction is used to model the problem domain:

de�ning an object in terms of its properties, functionality and interface (how it commu-

nicates with other objects.) An `abstract' class in object-oriented programming is one

that cannot be instantiated but instead provides a base for subclasses to `extend'. In

the earlier example in Section 5.1.1, `shape' would be the abstract class that contains

the relevant shape details (area, perimeter, colour) and `square' would be a subclass

that extends it with other details speci�c to the square (having four sides).

Duncan, Bell & Tanimoto's (2014) heuristics used to categorise available program-

ming tools in Section 2.4 use abstraction as a measure of complexity, with tools aimed

at older children containing more abstract concepts like functions, variables and con-

ditional execution.

Levels of Abstraction

Good computer scientists can move quickly and ef�ciently between levels of abstrac-

tion. Knuth described natural computer scientists as “individuals who can rapidly

change levels of abstraction, simultaneously seeing things both `in the large' and `in

the small' ” (Armoni, 2013, p. 266). Perrenet, Groote & Kaasenbrood (2005) de�ned

a hierarchy of levels of abstraction in CS (referred to as the PGK hierarchy in the rest

of the chapter):

1. Execution level – an interpretation of an algorithm as a speci�c run on a speci�c

machine.
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2. Program level – an algorithm as a process; a program written in a speci�c pro-

gramming language.

3. Object level – an algorithm not associated with a speci�c language.

4. Problem level – considering the problem as an object, referring to its attributes

and being able to deal with the solution to the problem as a black box.

At each of these levels, more information is hidden or excluded, with the program-

mer working at a higher level of abstraction. Perrenet, Groote & Kaasenbrood (2005)

found that novice programmers at university level were working mostly at Program (2)

and Object (3) level, with only a few working at Execution (1) or Problem (4) level.

They also found that students were able to work at higher levels of abstraction the

longer they had been on the course. This �ts in with Lister's (2011) view that pro-

grammers develop abstract reasoning skill as they gain expertise. Statter & Armoni

(2016) found that children age 13 and 14 could work at Object level (3) after a year

of CS lessons focusing on abstract thinking, giving generalised verbal descriptions of

algorithms in Scratch programs.

In Primary Education

Chapter 2 brie�y discussed abstraction in CS for primary school children. Lister

(2011) suggests that the development of abstract thinking in CS corresponds to be-

ing able to `trace code' (mentally simulating the program step-by-step to predict the

outcome.) New programmers require considerable effort to trace code and rarely

manage to do so accurately. As they gain expertise, they can trace reliably using

speci�c values but are unable to reason abstractly about the code. Eventually, they

progress to tracing abstractly without using speci�c values and are then able to under-

stand sections of code without tracing. Armoni (2012) used the limitations of novice

programmers to question whether children can learn CS, particularly before age 7,

going on to argue that in theory young children can learn abstract ideas through spe-

ci�c values, concrete objects and physical manipulation of information. This is the

approach used by Gibson (2012) to successfully teach theoretical abstract CS con-

cepts such as graph connectivity and graph isomorphism to children as young as age

5. Gibson suggests that children have the potential to learn abstract concepts in pri-

mary school, even from the point they can read and write, as long as the content is

structured correctly.

However, Benton et al. (2018) suggest that primary school children can strug-

gle with comparing different algorithms and tackling problems `from above' (Object

(3) and Problem (4) levels of the PGK hierarchy). In particular, problems that in-

cluded procedures to abstract away information from the main program. Yet, many

learners were able to give answers that suggested they could re�ect on different pro-

grammatic strategies. Swidan, Hermans & Smit (2018) found that primary school
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children held programming misconceptions about variables, loops and conditionals

that caused them to struggle to trace code in Scratch. This reiterates that structured

teaching is required for primary school children to develop abstract reasoning skills in

CS.

The next section explains how Scratch and other block-based programming tools

can be problematic when teaching good CS practices, particularly those involving

abstraction, to novices.

5.2 Code Smells

5.2.1 The Problem with Scratch

Abstraction skills correspond to a better `top-down' approach to programming because

the programmer can think about the problem at a higher level and better plan the so-

lution before they begin to write code. However, Scratch encourages a constructionist

`bottom-up' (or `bricolage') programming approach, where solutions are unplanned

and created largely through exploration (Turkle & Papert, 1992). Scratch aims to

“support self-directed learning through tinkering” (Maloney et al., 2010, p. 2). It in-

spires a bottom-up approach by making the block palette visible at all times, having

little in-built guidance and feedback, giving no error messages and allowing `dead'

blocks to be in the program space that are not executed. These features are useful

for the creative aspects of Scratch, allowing users to quickly create programs that

perform visible actions. Yet, they can result in the user forming bad programming

habits because proper software engineering practices (e.g. code reuse) are not for-

mally introduced (Dorling & White, 2015). This is particularly important because of

the widespread use of Scratch in primary education and the lack of teacher CS exper-

tise, meaning that children often use Scratch without structured lessons or adequate

support. Other tools that are similar to Scratch, like Hopscotch and Tynker, also have

these problems.

Bad Programming Habits

Meerbaum-Salant, Armoni & Ben-Ari (2011) found that children age 14 and 15 demon-

strated two `habits of programming' that are at odds with accepted CS and software

engineering practices. The �rst of these is extreme bottom-up programming. When

correctly used, a bottom-up approach enables the programmer to design and develop

components separately before they are integrated to form a top-level system. How-

ever, it was observed that instead of thinking about tasks from an algorithmic level,

children would drag all the blocks into the program that seemed appropriate for solv-

ing the task, only then combining them to form scripts (Figure 5.1). This pattern of

behaviour is characterised as programming by `bricolage' and is closely tied with con-
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structionism. An example of bricolage is a chef who constructs a dish as he goes

along (bottom-up) instead of following a recipe (top-down). There are suggestions

that programming by `bricolage' can favour higher-ability children and that those of

lower-ability need more structured support (Rose, 2016).

Figure 5.1: Screenshot of an example of bottom-up or `bricolage' programming, where
blocks are dragged into the program that seem appropriate for the task, without much
thought put into the program design

The second habit is `extremely �ne-grained programming' (EFGP), which comple-

ments the �rst habit by taking the top-down programming approach to its extreme.

Top-down is the traditional software engineering method for writing programs, break-

ing down (or decomposing) a problem into a modular structure that forms a com-

plete solution. The authors found that children would decompose scripts until they

became extremely small, often lacking logical coherency (Figure 5.2). Some pro-

grams comprised of hundreds of these scripts, making them dif�cult to understand

because Scratch executes all scripts concurrently. This concurrency can be useful

if consciously designed but otherwise makes programs dif�cult to debug. It is worth

noting that both these problems were observed whilst children followed a textbook

that emphasised program analysis and design.

The extreme bottom-up and top-down approaches observed by Meerbaum-Salant,

Armoni & Ben-Ari (2011) suggest that Scratch encourages certain programming habits

that lead to programs that are dif�cult to understand, debug and maintain. If left

unchecked, these habits may in�uence the learner as they switch to text-based lan-

guages (Weintrop & Wilensky, 2015). These bad programming habits can be identi�ed

and addressed if the programmer can `smell' that something is wrong with their code

and can `refactor' it to remove the issues. Yet, this skill is rarely taught before higher

education.
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Figure 5.2: Screenshot of an example of extreme decomposition or EFGP (left), the
two `when green �ag clicked' scripts have been decomposed and would be more
logically coherent if combined (right)

5.2.2 Code Smells in Object-Oriented Programming

The term `code smell' was coined by Fowler (1999) in his book `Refactoring: Improving

the Design of Existing Code'. A code smell is a surface indication in a program that

usually corresponds to a deeper problem. Code smells can help the programmer

identify parts of their code that need `refactoring', that is “the process of changing a

software system in such a way that it does not alter the external behaviour of the code

yet improves its internal structure” (p. 9). The refactoring process involves working

at multiple levels of abstraction because the programmer must be able to understand

the code at the Program (2), Object (3) and Problem (4) levels of the PGK hierarchy.

Fowler gives a long list of possible code smells that includes duplicated code,

long methods, large classes and long parameter lists, explaining in each case the

refactoring methods that can be used to remove them. Keuning, Heeren & Jeuring

(2017) found that university students rarely �x code quality issues, in particular, issues

related to modularisation or system design, even when given code analysis tools.

5.2.3 Code Smells in Scratch

Several exploratory studies of large repositories of Scratch projects have shown that

duplicated code, large scripts and dead code smells are common (Table 5.1). Her-

mans & Aivalaglou (2016) found that these smells can impact understanding, debug-

ging and the ease with which learners can alter projects. Furthermore, Techapalokul

& Tilevich (2015) found that novice programmers “prone to introducing some smells

continue to do so even as they gain experience” (p. 10). Code smells are particularly

important because `remixing' other users' projects is a large part of the Scratch online
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platform (Dasgupta et al., 2016).

Table 5.1: Percentage of code smells and the use of procedures in analyses of
Scratch projects

Author(s)
Projects
Analysed

% of Projects

Duplicated
Code

Dead
Code

Long
Scripts

Procedures

Moreno-León &
Robles (2014)

100 62% 17%

Aivalaglou &
Hermans (2016)

247,798 26% 28% 30% 8%

Techapalokul
(2017)

1,066,308 46% 23% 47%

Robles et al.
(2017)

250,166 20% 8%

In another work, Techapalokul (2017) listed 12 different code smells that appear in

Scratch (Table 5.2). This chapter focuses on duplicated code, long scripts and dead

code (unused custom blocks, unused variables and unreachable code) as these have

been included in other analyses. The rest of this section examines these code smells

in Scratch, exploring the frequency that they appear and the problems that they cause.

The next section explains how duplicated code and long script smells can be removed

through procedural abstraction and code reuse.

Duplicated Blocks

Moreno-León & Robles (2014) analysed 100 randomly selected Scratch projects from

the Scratch online repository. They were analysed using Hairball (Boe et al., 2013), a

static code analyser for Scratch written in Python. The authors wanted to detect two

bad programming habits that they had observed in high school students: default sprite

names and duplicated code. Hairball works by analysing the `tokens' of the blocks in

a Scratch program. These are textual representations with generalised inputs, for

example `move %s steps'. This means that two blocks are considered equal if it

is only their input values that differ. Duplicated code was classi�ed as a minimum

of �ve blocks where the tokens match. They found that 62% of projects contained

duplication.

A larger analysis of 247,798 projects by Aivalaglou & Hermans (2016) used the

same �ve-block threshold for script duplication. They found that 26% of projects

had scripts duplicated across sprites, 10% had scripts duplicated within sprites and

11% of projects contained exact duplication (with input values the same). Techa-

palokul (2017) found that 46% of projects contained duplicated code in an analysis

of 1,066,308 projects. However, Techapalokul does not specify the duplicated block

threshold used.
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Table 5.2: Code smells in Scratch (Techapalokul, 2017, p. 782)

Name Description
Broad Variable Scope A variable with its scope broader than its usage does not

tell which scriptable the variable belongs. Too many
global variables clutter script palette and drop-down
menus.

Duplicate Code Repeated sequence of blocks regardless of block
arguments is used as a way to reuse code.

Duplicate String Same string values are repeatedly used in multiple
program locations.

Extreme Fine-Grained
Script

Breaking up of functionally similar scripts into several
small �ne-grained event-based scripts.

Hard-Coded Media
Sequence

A sequence of media elements is hard-coded as block
arguments.

Long Script Long script (longer than 11 blocks) suggest inadequate
decomposition and hinder code readability.

Uncommunicative
Naming

Generic naming started with Sprite or message (e.g.
“Sprite2” and “message1”) make programs unreadable.

Unnecessary
Workaround

Use of polling of �ag variables to direct control �ow to
recreate broadcast-receive mechanism.

Unorganised Script Similar event-based scripts are scattered around making
the program hard to navigate.

Unreachable Code An unreachable script can be safely removed without
affecting the program behaviour.

Unused Custom Block A script de�nition of an unused custom block can be
safely removed without affecting the program behaviour.

Unused Variable A variable is declared but never used anywhere in the
program.

Hermans & Aivalaglou (2016) found that duplication, whether it be blocks or scripts,

makes Scratch projects more dif�cult to modify and maintain. Students performed

signi�cantly worse on Scratch code comprehension tasks in projects that had long

script and duplication smells. Block duplication indicates a lack of abstraction and de-

composition skills and violates the DRY (Don't Repeat Yourself) software engineering

principle.

Long Scripts

In addition to analysing for script duplication, Aivalaglou & Hermans (2016) also anal-

ysed Scratch projects for long scripts. They classi�ed long scripts using the top 10%

largest scripts in the 247,798 projects they analysed, setting the threshold for a large

script at 18 blocks. They found that 30% of projects contained scripts of 18 blocks or

more. Techapalokul (2017) used a slightly lower threshold of 11 blocks, �nding that

47% of the 1,066,308 projects analysed contained a long script. Long scripts suggest

inadequate decomposition and can hinder code readability.
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Dead Blocks

Aivalaglou & Hermans (2016) also analysed Scratch projects for dead code: blocks

that are either not invoked (not attached to an event block), empty event scripts (the

script block alone), procedures that are not invoked and unmatched broadcast-receive

messages. They found that 28% of projects contained one or more of these dead

code smells. Techapalokul (2017) used similar criteria for dead code: unused custom

blocks, unused variables and unreachable code (an unreachable block can be safely

removed without affecting the program behaviour). Finding that 29% of projects con-

tained unused custom blocks, 25% contained unused variables and 23% contained

unreachable code.

Dead blocks are an indicator of the bottom-up or `bricolage' programming ap-

proach described in Section 5.2.1. Meerbaum-Salant, Armoni & Ben-Ari (2011) found

that children would drag all the blocks into the program that seemed appropriate for

solving the task, only then attempting to compose a solution. Inevitably, some of these

blocks are then not removed. Scratch encourages this because it does not indicate

that these scripts will not be executed (dead blocks are 'greyed out' in similar tools

like Google Blockly and LEGO Mindstorms EV3.) Dead code can be distracting and

confusing to the programmer and in the case of unused variables and unused custom

blocks, indicate that inadequate thought has been put into program design.

5.2.4 Code Smells in Other Educational Programming Tools

Hermans, Stolee & Hoepelman (2016) analysed code smells in two other educa-

tional programming tools, Lego Mindstorms EV3 and Kodu Game Lab. They anal-

ysed projects from both for 11 different object-oriented inspired code smells, including

dead code, message chaining (multiple calls or jumps between different objects) and

unused variables. In an analysis of 44 projects, they found that 88% of EV3 projects

and 93% of Kodu projects contained at least one smell. The most common smells

(appearing in at least a third of programs) were lazy classes (objects with few blocks),

duplicated code and dead code.

GameMaker's drag and drop language goes some way to limiting code duplication

and dead code. Objects have `events' that cannot be duplicated, unlike in Scratch

where there can be many of the same event block (e.g. when something is clicked) in

one sprite. However, `actions' in each event can be applied to another object (Figure

5.3), meaning that duplication can exist where the same action (or sequence of ac-

tions) is applied to an object in different places. For example, collision events can be

added to both objects in the collision, leading to potential logic duplication. Dead code

is rarer in GameMaker projects because actions must be chained with other actions.

In summary, code smells are possible in all programming tools that contain enough

complexity. Duplicated code and long methods, in particular, can be found in any pro-
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Figure 5.3: Screenshot of objects, events and actions in GameMaker Studio 2

gramming environment. Whereas dead code is often a by-product of block-based

tools where blocks can exist in the program without being connected to anything else.

Yet, it could apply to code that is `unreachable' behind a conditional statement that is

never true, which is possible in all programming tools that contain conditional execu-

tion.

5.3 Dealing with Code Smells

Section 5.2.3 demonstrated that duplicated code, long scripts and dead code are all

common in Scratch projects. These smells can impact understanding, debugging and

project maintenance. To remove code smells, novice programmers must be able to

recognise them and alter their code to remove them, whilst maintaining the behaviour

of the program. The solution to dead code is simply to remove it, yet duplication and

large scripts are more complicated and require some restructuring. Fowler (1999)

recommends the `extract method' for dealing with duplicated code and large methods

in object-oriented programming. This method can also be used in Scratch.

5.3.1 The Extract Method

The extract method is recommended by Fowler (1999) to deal with duplicated code

and long methods. It involves moving fragments of code into a procedure with or with-

out parameters (to pass variable information) that can then be invoked from multiple

places. These methods should be small and well-named.

From version 2.0, Scratch enables procedures by allowing users to create blocks,

which can then be used (or invoked) in multiple places within the sprite. Information

can be passed to these `custom blocks' through number, text and boolean parameters.

The user can refactor code using the extract method by creating a custom block to
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encapsulate a set of repeated commands (Techapalokul & Tilevich, 2015). This is the

example of abstraction in CS used by Barr & Stephenson (2011) in their CT de�nition.

Dr. Scratch (Section 3.3.1) gives Scratch projects a score out of 21 across seven

CT concepts based on the blocks used. It uses custom blocks (2 points) and clones

(3 points) as a measure of abstraction in projects, combining this with decomposition

(having multiple scripts in multiple sprites, 1 point). Table 5.1 shows that this function-

ality is not often used and explains the common appearance of duplicated code and

long scripts in Scratch programs. The next two sections will explain Scratch's custom

blocks and clones in more detail.

Figure 5.4: Screenshot of a custom block that moves and turns a sprite, taking argu-
ments for distance and direction (left) and its implementation as a procedure in C++
(right) for comparison

5.3.2 Custom Blocks

'More Blocks' (or `My Blocks' in Scratch 3.0) are a category of blocks that hold custom

procedures for the selected sprite (far left of Figure 5.4). The category starts off

empty apart from a `Make a Block' button, which, when clicked, brings up a dialogue

box for creating a block. This allows the user to specify the name of the block and

any parameters (known as `inputs' in Scratch) that they want the block to have. When

created, a `de�ne' block is added to the program, letting the user specify what will

happen when the block is executed. The block appears in the `More Blocks' category

and can be used like any other Scratch block. Figure 5.4 shows an example of a

custom block in Scratch and its corresponding implementation in C++. Custom blocks

in Scratch are limited in that they cannot be used return values like functions in text-

based programming languages and can only be de�ned for the current sprite. Snap!

(Harvey, Garcia, Paley, & Segars, 2012) is a Scratch-based programming tool that

enables full procedures but is aimed at children age 12 and above.

Figure 5.5 shows an example of a Scratch project that contains a duplicated code

smell: point in direction, repeat and move are all repeated four times with different in-

put values. This smell has been refactored in Figure 5.6 using the extract method. The

duplicated code has been moved into a procedure called `turnAndMove' that takes two

arguments, distance and degrees. The Scratch user has recognised the duplicated

code smell and extracted that functionality into a reusable procedure, noticing and
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Figure 5.5: Screenshot of a Scratch project that uses block duplication to move a cat
around the four corners of a park and plants a tree on each corner

including arguments for the values that change. This process is known as `procedural

abstraction', which Kallia & Sentance (2017) describe as `threshold concept' in CS

and an area that is dif�cult for students at high-school and university level to under-

stand. The notion of a threshold concept is described by Meyer & Land (2003) as

“opening up a new and previously inaccessible way of thinking about something. It

represents a transformed way of understanding, or interpreting, or viewing something

without which the learner cannot progress” (p. 1). Procedural abstraction is, therefore,

an important skill for novice programmers to learn. Despite this, procedures (custom

blocks) are not often taught or used in Scratch projects.

This chapter has already discussed the development of abstraction skills as a

programmer becomes more experienced. Despite the dif�culties that novices have

with procedural abstraction, it should be possible to introduce custom blocks and the

concept of code reuse to primary school children if they are given concrete examples

of where and when they should be used (Armoni, 2012).

5.3.3 Cloning

Cloning is a feature in Scratch that allows a sprite to create a clone of itself (or another

sprite) while the project is running. This duplicate is a separate instance of the original

or parent sprite but will inherit scripts, costumes, sounds and properties that can

be modi�ed. Cloning a sprite is similar to creating an instance of a class in object-

oriented programming, where an `instance' is a concrete occurrence of an object that

is created during runtime. There are three blocks in Scratch related to cloning: `create
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Figure 5.6: Screenshot of the Scratch project in Figure 5.5 where the extract method
has been used to create a custom block that reduces code duplication

clone of', `when I start as a clone' and `delete this clone'. Cloning is an important part

of games and projects that require more than one instance of a sprite, for example,

special effects like �reworks or snow. Without clones, scripts would be duplicated

across almost identical sprites (see Figures 5.5 and 5.6). This violates the DRY (Don't

Repeat Yourself) principle and produces duplicated code smells. Cloning can be used

to reduce this duplication. Figure 5.7 shows a further refactor of Figure 5.6 that uses

tree clones to reduce the number of sprites, therefore removing the duplicated code

across them.

Figure 5.7: Screenshot of the Scratch project in Figure 5.6 but using tree clones (right)
to reduce the number of sprites
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Design Concept - Similarity to Scratch

Creating a programming game that teaches children to use abstraction to reduce

code smells in Scratch needs to be similar enough to it that the skills can transfer.

5.3.4 Custom Blocks and Cloning in Practice

Robles et al. (2017) measured 250,166 projects using Dr. Scratch whilst also analysing

them for duplicated code smells. They found that the use of custom blocks (8% of

projects) and cloning (10%) did not impact the amount of code duplication, even for

high-scoring projects. In other words, custom blocks and clones were not used to

refactor code. This may be because most Scratch manuals do not suf�ciently ad-

dress code duplication and how to solve it using custom blocks. In addition, the con-

structionist nature of Scratch with no error messages or explanations means that this

functionality is too dif�cult for a novice to understand without prior instruction. In pri-

mary education, where teachers are often not trained in CS, it is unlikely they will be

able to effectively demonstrate these abstraction techniques to children.

5.4 Summary

In summary, abstraction is an essential skill in CS and CT. In CS, the main objective

of abstraction is the process of `information hiding' or hiding details that are essential

in one context but inessential in another. Abstraction is also important in software

engineering, it is used to model components of a problem domain and to reduce

duplication, ensuring that the programmer does not violate the DRY (Don't Repeat

Yourself) software engineering principle. Good computer scientists can move quickly

and ef�ciently between multiple levels of abstraction, seeing things both `in the large'

and `in the small'.

Novice programmers develop abstraction skills as they gain experience. They

begin by only being able to trace code using speci�c values, eventually progressing to

being able to understand chunks of code simply by reading. The neo-Piagetian view

is that these skills can be developed regardless of age, as long as working memory

is suf�cient. This indicates that it should be possible to develop abstraction skills in

older primary school children (between age 9 and 11).

Scratch is the most popular programming tool in primary education. Its design en-

courages a constructionist, self-directed learning approach where solutions are cre-

ated through exploration. However, this can result in bad programming habits such

as extreme bottom-up and top-down approaches, where programs lack formal design

and logical coherency. These problems can be addressed if a programmer is taught

to `smell' that something is wrong with their code. A code smell is a surface indication
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in a program that usually corresponds to a deeper problem. Code smells indicate that

a program should be refactored, where the internal structure of the code is improved

without altering its external behaviour.

Duplicated blocks and sprites, long scripts and dead code are all common code

smells in Scratch and make projects dif�cult to understand, debug and maintain. The

�rst two can be refactored using the extract method, which involves turning a section

of code into a procedure that can then be invoked in multiple places. In Scratch, pro-

cedures take the form of custom blocks. These blocks are created by the user and

can be passed data through number, text and boolean arguments. Using procedures

correctly requires procedural abstraction, which is a threshold concept in CS. Dupli-

cation smells can also be removed in Scratch using cloning, where a sprite creates a

clone of itself (or other sprites) at runtime. Without cloning, sprites are often copied

and pasted, resulting in both block and sprite duplication.

Despite custom blocks and clones, Scratch users still frequently copy and paste

code in their projects. This is because these concepts are dif�cult to understand

without formal teaching, particularly for children. Most Scratch manuals do not suf�-

ciently address code duplication and how to reuse code. Furthermore, weaknesses

in teacher CS expertise, particularly in primary education, mean that teachers are

unable to effectively teach children how to use abstraction.

The importance of abstraction in CS and CT means that children should be de-

veloping these skills as soon as they are able. Custom blocks and clones in Scratch

give concrete examples of abstraction in an accessible environment. The next chap-

ter (Chapter 6) will explore whether primary school children age 10 and 11, with some

Scratch experience, can recognise the bene�ts of abstraction.
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Chapter 6

Study 2 - Can Children Recognise the

Bene�ts of Abstraction in Scratch?

Chapter 5 examined the `code smells' common in Scratch projects: duplicated code,

long scripts and dead code. These smells can make projects dif�cult to understand,

debug and maintain (Hermans & Aivaloglou, 2016). A good programmer can identify

these smells and `refactor' their code to remove them (M. Fowler, 1999). Refactoring is

the process of improving the internal structure of a system without altering its external

behaviour and requires the programmer to work at multiple levels of abstraction.

Duplicated code and long scripts can be refactored using the extract method: mov-

ing fragments of code into a procedure that can be invoked from multiple places.

Scratch enables procedures through custom blocks. Using procedures to reduce

code duplication requires procedural abstraction, which is a vital skill in computer

science (CS). In Scratch, sprite duplication can be removed through cloning (creating

instances of a sprite). The Dr. Scratch computational thinking (CT) assessment uses

custom blocks and cloning to measure abstraction in Scratch projects. However, re-

search has shown that these are not often used in projects, and when they are, they

do not impact the amount of duplication in projects (Robles et al., 2017). Using cus-

tom blocks and clones requires good abstraction skills, which primary school children

should be able to learn if the content is presented in a structured way (Gibson, 2012).

This chapter describes a formative study to see if children age 10 and 11 with

limited Scratch experience can recognise the bene�ts of abstraction in Scratch using

custom blocks and clones. This was done to establish the potential for teaching ab-

straction to this age group, before focusing on the development of a game to support

this understanding that is described in the next chapter (Chapter 7).

The chapter explains the background of the study, before moving onto the method,

results, discussion and conclusion.
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6.1 Background

6.1.1 Abstraction

Chapter 5 discusses abstraction as a general aspect of human cognition, describing

the conceptual process where general rules are derived from concrete examples. In

CT, it is the process of `removing the detail from a problem and formulating solutions

in generic terms' (Table 3.4). In CS and software engineering, abstraction is used to

hide information between the levels of a program, remove duplicated logic through

procedural abstraction and to model the problem domain. Good computer scientists

can move easily between multiple levels of abstraction (Armoni, 2016).

Novice programmers develop abstract reasoning skills as they gain expertise (Lis-

ter, 2011). There are indications that primary school children can learn abstract CS

concepts through concrete objects and physical manipulation of information (Gibson,

2012). However, the observations of Benton et al. (2018) suggest that children under

age 11 can struggle to compare different algorithms, particularly those that contain

procedural abstraction. Swidan, Hermans & Smit (2018) found that children can hold

misconceptions about programming concepts like variables, loops and conditionals.

This indicates that structured teaching is required for children to learnt to use abstrac-

tion correctly.

6.1.2 Code Smells

A code smell is a surface indication of an underlying problem in a program (M. Fowler,

1999). Code smells indicate that a project needs to be `refactored', where the internal

structure of a system is altered without changing its external behaviour. Possible

smells in object-oriented programming include duplicated code, long methods, large

classes and long parameter lists.

Chapter 5 discusses several studies of large Scratch repositories that showed that

duplicated code, long scripts and dead code are all common code smells in Scratch

projects. Code smells can indicate bad programming habits that are at odds with ac-

cepted software engineering practices (Meerbaum-Salant et al., 2011). These prob-

lems can be exacerbated by Scratch's self-directed, constructionist design where the

block palette is visible at all times, there is little in-built feedback and there are no error

messages. Hermans & Aivaloglou (2016) found that code smells hampered novice

programmers, making projects dif�cult to understand, debug and maintain. This is

problematic because Scratch's online platform is built on the ability to `remix' other

users' projects (Dasgupta et al., 2016). Moreover, programming habits picked up in

block-based tools may in�uence the learner as they transition to text-based languages

(Weintrop & Wilensky, 2015).

Therefore, novice programmers should be taught to `smell' that something is wrong
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with their code and are then able to `refactor' it to remove the smell. In Scratch, dupli-

cated code and long script smells can be removed by reusing code through custom

blocks (procedures) and cloning (creating instances of a sprite).

6.1.3 Custom Blocks and Cloning

Custom blocks (or `More Blocks'/`My Blocks') are a category of blocks in Scratch that

hold procedures for the selected sprite (Section 5.3.2). They can be used to reuse

code through the extract method, where fragments of code are moved into a proce-

dure (or custom block) that can then be used in multiple places. This process requires

procedural abstraction, which Kallia & Sentance (2017) suggest is a threshold concept

in CS: opening a door to a new way of thinking about programming. Cloning in Scratch

allows a sprite to create a clone of itself or another sprite while the project is running

(Section 5.3.3). This can be used to duplicate sprites (e.g. �reworks or clouds) that

have the same behaviour. Cloned sprites inherit scripts, costumes, sounds and prop-

erties from the original sprite.

Dr. Scratch (Section 3.3.1) measures Scratch projects for CT, giving them a score

of 21 across seven concepts based on the blocks used. It measures abstraction using

custom blocks and cloning. Giving the user 2 points for using custom blocks and 3

points for cloning. However, this functionality is rarely used in Scratch projects (Table

5.1). Dr. Scratch combines abstraction with decomposition, giving 1 point for having

multiple scripts in multiple sprites.

Custom blocks and clones enable the user to reuse code, therefore avoiding the

copying and pasting duplication that violates the DRY (Don't Repeat Yourself) soft-

ware engineering principle (Hunt & Thomas, 1999). This makes projects easier to

understand, debug and maintain. Yet, even when they are used, Scratch users still

frequently copy and paste code (Robles et al., 2017), indicating that they are not used

correctly. This may be because code reuse and refactoring require abstract reasoning

skills, which are only developed as the programmer gains expertise. Code reuse is

dif�cult to understand without formal teaching, which is problematic at primary school

level because teachers often lack technical knowledge and con�dence in delivering

CS (Chapter 2). However, there are indications that primary school children (under

age 11) can understand abstract CS concepts if learning content is presented in a

structured way (Gibson, 2012).

6.2 Method

This chapter describes a formative study designed to see whether can children age

10 and 11 with limited Scratch experience can recognise the bene�ts of abstraction.

Groups of children were asked to rank four Scratch projects with the same external
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behaviour, each project achieved a different score for abstraction and decomposition

in Dr. Scratch. The rankings were based on several criteria: `best coded', easiest to

understand, smallest scripts and least blocks and easiest to change.

6.2.1 Participants

The study participants were 21 children age 10 and 11 from a medium-sized primary

school in northern England. The school is around the national average for pupils

meeting the expected standard in reading, writing and maths (63%). All participants

had a term of Scratch teaching in the previous academic year, but no experience

using custom blocks or cloning.

6.2.2 Materials

The participants were asked to rank four Scratch projects produced to the same speci-

�cation: `when the green �ag is pressed, animate the cat's movement around the edge

of the park, planting a tree in each corner'. The projects demonstrate the four levels

of abstraction and decomposition measured by Dr. Scratch. They all start when the

`green �ag' button is clicked and have a `go to position' block that resets the position of

the cat sprite to the bottom left corner of the park. Each project was given a name to

suggest to participants that it was produced by a child in another school. Note, three

of the projects were shown in the last chapter (Chapter 5) as examples of custom

blocks and cloning (Figures 5.5, 5.6 and 5.7). Table 6.1 shows a summary of each

project, the rest of this section then describes them in more detail.

Ava

The �rst project gets 0 points for abstraction and decomposition in Dr. Scratch (Figure

6.1). The cat moves around the four corners of the park using several repeated `point

in direction', `repeat' and `move' blocks (a block duplication smell). At 14 blocks,

this script would be classi�ed by Techapalokul (2017) as a long script smell. The

trees are copied and pasted (sprite duplication) and do not contain any scripts, which

means that they are not `planted' as speci�ed. The project does not strictly meet the

speci�cation and has a slightly different outcome to the others.

Emma

The second project is similar to the �rst. Yet, it gets 1 point for abstraction and de-

composition because it has multiple scripts in multiple sprites, showing evidence of

decomposition. The script in the cat is identical (block duplication and long script

smells). However, each tree (sprite duplication) is hidden and shown after the number
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of seconds that it takes the cat to reach that corner of the park when the project is run

(Figure 6.2).

Table 6.1: Scratch projects breakdown

Project
Identi-
�er

Dr. Scratch
Abstraction
and Decom-
position
Score

Sprites
(Number
of Blocks)

Description Code
Smell(s)

Ava 0 Cat (14)
Tree1 (0)
Tree2 (0)
Tree3 (0)
Tree4 (0)

The cat moves around the
four corners of the park but
the trees are already in
place (as these sprites are
empty.)

Block and
sprite
duplication,
long script
(14 blocks)

Emma 1 Cat (14)
Tree1 (4)
Tree2 (4)
Tree3 (4)
Tree4 (4)

The cat moves around the
four corners of the park, the
trees are on timers to `wait'
for the cat to reach each
corner.

Block and
sprite
duplication,
long script
(14 blocks)

Alice 2 Cat (10)
Tree1 (4)
Tree2 (4)
Tree3 (4)
Tree4 (4)

The cat moves around the
four corners of the park
(using a custom block), the
trees are on timers to `wait'
for the cat to reach each
corner.

Sprite
duplication

Zoe 3 Cat (11)
Tree (3)

The cat moves around the
four corners of the park
(using a custom block), a
clone of the tree sprite is
created at the position of the
cat when it reaches each
corner.

None

Alice

The third project uses a custom block (Figure 6.3) to remove the block duplication

smell in the cat, achieving 2 points for abstraction and decomposition in Dr. Scratch.

The blocks for turning and moving along each edge of the park, `point in direction',

`repeat' and `move', have been extracted into a custom block called `turnAndMove'

that takes two parameters, degrees and distance. Degrees speci�es the direction to

point the cat in and distance is the number of times the step block will be repeated.

The block is then used four times, one for each side of the park. The trees are still

duplicated sprites that are hidden and shown after several seconds.
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Zoe

The fourth project gets 3 points for abstraction and decomposition in Dr. Scratch. In

addition to the `turnAndMove' custom block (renamed `turnMoveAndPlant'), the fourth

project uses cloning to `plant' a single tree sprite on each corner (Figure 6.4). When

the cat reaches a corner, a clone of the tree sprite is created in that position (removing

the sprite duplication).

Figure 6.1: Screenshot of Ava's Scratch project that gets 0 points for abstraction and
decomposition in Dr. Scratch

Figure 6.2: Screenshot of Emma's Scratch project that gets 1 point for abstraction
and decomposition in Dr. Scratch (each tree has a different number of seconds in the
`wait' input and the cat sprite the same as in Figure 6.1)
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Figure 6.3: Screenshot of Alice's Scratch project that gets 2 points for abstraction and
decomposition in Dr. Scratch (tree sprites are the same as they are in Figure 6.2)

Figure 6.4: Screenshot of Zoe's Scratch project that gets 3 points for abstraction and
decomposition in Dr. Scratch, showing the cat sprite (left) and the tree sprite (right)

6.2.3 Procedure

The study took place in a small IT suite with each Scratch project loaded on a different

PC in random order. Participants were put into groups of 3 by their class teacher

based on the teacher's judgement of their Scratch ability. With Group 1 being the

most competent and Group 7 being the least competent. Participants were asked to

pretend to be teachers, using numbered cards to rank the Scratch projects from best

to worst. Each group was introduced to the project speci�cation and behaviour. They

were then given a short explanation of custom blocks and clones. The sessions were

between 25 and 35 minutes and audio was recorded.
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Participants were given four cards, numbered 1 (best), 2, 3 and 4 (worst), to rank

the projects using the criteria in Table 6.2. The criteria were introduced in turn so

that participants could not infer answers from later questions. They were encouraged

to examine each project and come up with a decision as a group. The �rst criterion

was for which project was `coded the best'. This was deliberately ambiguous to see

what factors participants would use to judge `good' code in Scratch. They were then

asked to rate the projects by which was easiest to understand. Then by which had the

smallest scripts and least blocks. Finally, participants were asked to alter each project

so that the cat navigates and plants trees on a smaller park and then rank them on

how easy this was to achieve.

The study took place on the 10th October 2018.

Table 6.2: Scratch project ranking criteria

Criteria Action Justi�cation

Best coded Examine each project What factors would participants use

to judge `good' Scratch code?

Easiest to

understand

Examine each project Does abstraction make projects

easier to understand?

Smallest scripts

and least blocks

Examine each project

(counting blocks)

Can participants recognise that

abstraction has reduced the size of

the script and the number of blocks?

Easiest to

change

Altering each project

in turn

Can participants recognise that

abstraction makes a project easier to

change?

6.2.4 Ethics and Access to Participants

This study is covered under the same ethics approval as Study 1: a series of stud-

ies investigating the effect of visual programming on CT skills (Appendix C). Audio

transcripts were anonymised using group ID numbers and original recordings were

deleted after they had been transcribed.

6.3 Results

This section will describe the order that each group ranked the projects and their

explanations for doing so. The full order that each group placed the projects at each

stage can be seen in Table 6.3.
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Table 6.3: Scratch project ranking results (the number in brackets is the Dr. Scratch
abstraction and decomposition score for the project)

Group
Number

Best Coded Easiest to
Understand

Smallest
Scripts and
Least Blocks

Easiest to
Change

1

Zoe (3)
Alice (2)
Emma (1)
Ava (0)

Ava (0)
Emma (1)
Alice (2)
Zoe (3)

Missed
question

Zoe (3)
Alice (2)
Emma (1)
Ava (0)

2

Zoe (3)
Alice (2)
Emma (1)
Ava (0)

Ava (0)
Emma (1)
Alice (2)
Zoe (3)

Zoe (3)
Ava (0)
Alice (2)
Emma (1)

Zoe (3)
Alice (2)
Ava (0)
Emma (1)

3

Emma (1)
Alice (2)
Zoe (3)
Ava (0)

Ava (0)
Emma (1)
Alice (2)
Zoe (3)

Zoe (3)
Ava (0)
Alice (2)
Emma (1)

Zoe (3)
Ava (0)
Alice (2)
Emma (1)

4

Zoe (3)
Emma (1)
Alice (2)
Ava (0)

Zoe (3)
Emma (1)
Alice (2)
Ava (0)

Zoe (3)
Emma (1)
Alice (2)
Ava (0)

Zoe (3)
Emma (1)
Ava (0)
Alice (2)

5

Alice (2)
Zoe (3)
Emma (1)
Ava (0)

Zoe (3)
Alice (2)
Emma (1)
Ava (0)

Zoe (3)
Alice (2)
Emma (1)
Ava (0)

Zoe (3)
Alice (2)
Emma (1)
Ava (0)

6

Alice (2)
Emma (1)
Ava (0)
Zoe (3)

Ava (0)
Alice (2)
Emma (1)
Zoe (3)

Ava (0)
Emma (1)
Alice (2)
Zoe (3)

Zoe (3)
Emma (1)
Ava (0)
Alice (2)

7

Emma (1)
Alice (2)
Zoe (3)
Ava (0)

Ava (0)
Emma (1)
Alice (2)
Zoe (3)

Alice (2)
Emma (1)
Ava (0)
Zoe (3)

Zoe (3)
Alice (2)
Emma (1)
Ava (0)

6.3.1 Previous Scratch Experience

All groups were asked at the start of the study if they had used Scratch before and

then if they had used custom blocks and cloning. All participants had used Scratch,

one participant from Group 1 had used custom blocks but had “not managed to get

them working”. The participants from the �rst two groups had used cloning and could

explain how it worked.

6.3.2 Best Coded

There was a range of answers for which project was the `best coded'. Three groups

ranked Zoe's project (3) as number 1, because “it's got more advanced coding” and

“it's more complex and modern, it's only got one tree and it clones it, so it's also saving
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space.” Two groups ranked Alice's project (2) as the best. One group because “it has

got more details” when talking about custom block arguments (degrees and distance

inputs) and the other because it had four trees that appeared at different times, in

comparison with the single tree in Zoe's project. The �nal two groups ranked Emma

(1) as the best-coded project because it was not “copying trees” and “had the most

blocks in the trees”.

It was widely agreed that Ava's project (0) was the worst coded (6/7 groups). The

reasoning for this was that the project was noticeably simpler than the others and did

not meet the speci�cation, for example, “there's nothing in the trees” and “it doesn't

actually plant trees”. One group placed Zoe's project as the worst because it was the

only one with a single tree, “It's only one tree and I think there should be four trees.”

6.3.3 Easiest to Understand

Most groups (5/7) ranked Ava's project as the easiest to understand. The main reason

for this is that it was “very simple” in comparison with the others and because “there's

no coding in the trees... the trees are already there”. Group 2 suggested that it was

the easiest to understand because “all you have to do is paste them down”, “you've

got everything so you don't need to add any blocks, you can just copy and paste

and add.” The same �ve groups also ranked Zoe's project as the most dif�cult to

understand, often because of a lack of understanding of custom blocks and cloning,

”I don't understand those sorts of codes”. Despite the short introduction to clones at

the start of the session, Group 6 asked: “how does one tree end up with four trees?”

After a further explanation, one participant stated, “that's even more complicated.”

The other two groups (4 and 5) ranked Zoe's project as the easiest to understand.

The justi�cation for this was that it “didn't have the different trees” and that “you can

use a different one of these” when referring to the `moveTurnAndPlant' custom block.

6.3.4 Smallest Scripts and Least Blocks

When asked to rank the projects by the smallest scripts and least blocks, each group

counted the blocks in each project. Based on this, the correct order should be Ava

or Zoe (14 blocks each), Alice (26 blocks) then Emma (30 blocks). Interestingly, par-

ticipants were unable to see that this was the case, even after counting the blocks in

each project. The rankings given for this criterion differed depending on the Scratch

ability of participants in each group. Group 1 missed the question, Groups 2 and 3

based their order on the number of blocks and Groups 4 and 5 counted the blocks but

did not adjust their order from the previous question. The �nal two groups (6 and 7)

both put Zoe's project as the worst due to complexity, “because it's got so much code

in.” Several groups had to be reminded that there were blocks in the tree sprites that

counted towards the project size.
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6.3.5 Easiest to Change

All the groups ranked Zoe's project as the easiest to change (7/7) after adjusting the

size of the park in each project. There were two main reasons for this. One was that

you did not need to move or adjust the tree sprites; “wherever the cat stops, that's

where the tree goes”. When asked whether they needed to change the trees in Zoe's

project, Group 2 replied “no, because they're going to clone”, going on to say, “that

one was the easiest to change, and it's always perfect (because of the clones).” The

second reason was that they only had to change one number in the cat sprite; “with

that one we had to change one number, but with that one we had to change four”

and “that one's easiest because its only one step.” There was also some evaluation

of project quality “it was done good in the �rst place, you don't have to change much

when you're doing it different.” It did take some groups several minutes to �gure out

the best way of completing the task in the �rst project. Some participants began by

changing the numbers in the `repeat' blocks instead of the `move' blocks.

There were a range of answers for the project that was the most dif�cult to change.

Ava's project was ranked the worst by 3/7 groups, Emma's project by 2/7 and Alice's

by 2/7.

6.4 Discussion

In summary, the best coded and the smallest scripts and least blocks criteria resulted

in inconsistent rankings. The simplest project (Ava) was chosen by most groups as the

easiest to understand. All groups chose the project with custom blocks and cloning as

the easiest to change (Zoe), but only after altering each project in turn. This section

discusses these results, giving possible reasons for each �nding and then summaris-

ing the implications.

The `best coded' criterion aimed to see what primary school children perceived

as `good code' in Scratch without any indication as to what this meant. As expected,

there was a range of different answers. Most groups ranked projects based on their

behaviour. This explains why the simplest project (Ava), which produced a slightly

different output to the others, was ranked bottom by 6/7 groups.

However, Group 2 chose Zoe's project as the best based on the notion of `saving

space', because it had fewer blocks and fewer sprites. They even went as far as to

compare this to the copying and pasting in other projects. This suggests that children

in this age group can understand abstraction, even when they have not been formally

introduced to custom blocks and cloning in Scratch.

Custom blocks and cloning generally made projects more dif�cult to understand.

The simplest project was widely-chosen as the easiest to understand. Group 2 jus-

ti�ed this by saying that copying and pasting made the project easier to understand

because it already contained all the blocks needed for the project. This could be
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one of the reasons that block duplication is so common in Scratch projects. Having

primary school children produce programs with duplication, before refactoring it out

using procedures, could act as a stepping stone when introducing abstraction and

code reuse.

The number of blocks had little effect on what the participants thought of the pro-

gram. This supports the idea that children must be taught explicitly to recognise du-

plication and long script smells and be taught how to refactor code to remove them. It

highlights the �ndings discussed in Chapter 5: that children using Scratch frequently

duplicate code and produce long scripts, with little understanding of why these smells

can result in programs that are dif�cult to understand, debug and maintain (Hermans

& Aivaloglou, 2016).

Finally, having primary school children alter projects was a good strategy for teach-

ing the bene�ts of procedural abstraction and code reuse, even without them having

a full understanding of custom blocks and cloning.

6.4.1 Implications

The variability in the understanding of what makes a well-coded project implies that

this skill does not come naturally. Primary school children prefer a copy and paste

approach that they �nd easier to understand. This supports the Scratch project anal-

yses discussed in Chapter 5: children frequently duplicate code even if they have used

abstraction in their projects (Robles et al., 2017). This implies that they cannot be ex-

pected to appropriately use abstraction if they do not understand the bene�ts. Yet,

the success of the altering project strategy suggests that children can understand the

value of abstraction if they are taught how to use it through practical problem-solving

tasks and project comparison. They should �rst be introduced to the correct usage

of custom blocks and cloning. Then given tasks that involve producing programs that

would bene�t from abstraction, with code duplication or long scripts, before being

asked to remove these code smells using custom blocks and/or cloning. These tasks

would need strict rules to enforce the correct use of abstraction, which would suit a

game-based approach using a restricted Scratch environment because rules can be

integrated and changed on a level-by-level basis.

Design Concept - Correct Usage

Primary school children should �rst be introduced to the correct use of custom

blocks and cloning before being asked to produce programs containing it.
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6.4.2 Limitations

The study was designed to establish the potential for teaching abstraction to children

of this age group. It aimed to ensure that the learning goals of the programming game

(Chapter 7) were not too dif�cult for the target age group before development began.

This meant that it was somewhat limited in its methodological approach: taking place

in a single day and not using a formal experimental design.

6.5 Conclusions

In conclusion, this formative study showed that children age 10 and 11 with limited

Scratch experience can recognise the bene�ts of abstraction in Scratch, but only when

asked to alter a project in a way where code reuse was bene�cial. There were some

indications that children could understand the concept of `saving space' by using pro-

cedural abstraction, compared to copying and pasting. However, copying and pasting

was seen as easier to understand by most participants, which may explain why it is

common in Scratch projects. There was no consistency in what participants thought

constituted a well-coded project. Nor were they able to see that abstraction reduced

the number of blocks in a Scratch project.

The �ndings of this study support the ideas of Armoni (2016) and the research of

Gibson (2012) in suggesting that primary school children can learn abstraction in CS

through concrete examples and the physical manipulation of information, combined

with structured teaching. In this case, showing that duplication and long scripts in

Scratch make projects dif�cult to debug and alter and that these code smells can be

removed using custom blocks and clones. Letting children interact with projects that

use different blocks to produce the same behaviour was an effective method of getting

them to compare programming approaches and see the bene�ts of code reuse.

This study feeds into the next chapter (Chapter 7), which describes the design

and development of a programming game, Pirate Plunder, designed to teach primary

school children abstraction skills in Scratch.
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Chapter 7

Pirate Plunder - Design and

Development

This chapter describes the design and development of Pirate Plunder, a novel block-

based educational programming game designed to teach primary school children (age

9 to 11) to use abstraction in Scratch through custom blocks and cloning (Chapter 5),

using the observations from the previous chapter (Chapter 6). Two empirical stud-

ies were then conducted using the game. These are described in the following two

chapters (Chapters 8 and 9).

The chapter begins by describing the aims of Pirate Plunder and the reasoning be-

hind teaching abstraction using a game-based approach. It then gives an overview of

the game, a walkthrough of some important elements, before explaining each aspect

of the game design. Finally, the chapter describes the iterative development of the

game and some of the key changes made throughout this process. The software de-

velopment of the game, including the technologies and processes used, is explained

in Appendix A.

7.1 Aims

The study in the previous chapter (Chapter 6) showed that children age 10 and 11

can understand the bene�ts of abstraction in Scratch when altering programs them-

selves. Section 6.4.1 discussed the implications of these �ndings, suggesting that

when teaching abstraction, strict rules should be enforced to make sure that children

are using custom blocks and cloning correctly. The idea of introducing these concepts

through practical problem-solving lends itself to a game-based approach. Games can

be an engaging method of learning new skills, particularly those that involve technol-

ogy (Boyle et al., 2016). Programming games often involve the player solving puzzles

by navigating an object through a grid using block-based or text-based instructions.

Chapter 2 evaluates existing programming games and the different learning ap-

proaches used in educational programming tools. Code.org, Lightbot, Gidget and

103



Dragon Architect all introduce programming concepts and have the player use these

concepts to complete a set of levels. In theory, games can avoid the bad programming

habits that learners can form in constructionist tools like Scratch by using `instructional

guidance' (Mayer, 2004) to teach children programming concepts (e.g. conditionals,

iteration and variables) in a linear level progression. Games can enforce rules that

require the player to use concepts correctly and can then change these rules over

time.

This was the starting point for Pirate Plunder, to create a programming game

where children are introduced to basic Scratch concepts (events and movement) that

allow them to complete early levels, before presenting them with problems that require

loops (repeat blocks), custom blocks and cloning in a structured dif�culty progression.

Such a game should be able to successfully demonstrate how to use abstraction in

Scratch to reduce code duplication.

The aims of Pirate Plunder feed directly into the design and development of the

game:

1. Introduce abstraction through custom blocks and cloning in a way that ratio-

nalises and explains its use.

2. Be similar enough to Scratch that skills transfer between the two.

3. Can be played with minimal teacher instruction and interaction.

4. Keep players motivated throughout the delivery of the learning content.

5. Collect data that can be used to evaluate and improve the game.

7.2 Overview

Pirate Plunder is a novel educational block-based programming game that introduces

abstraction in a game-based Scratch-like setting. The aim is to teach players to

reuse code by having them produce programs with duplicated code, before introduc-

ing loops, custom blocks and cloning that enable them to create `better' solutions with

less duplication. The next section gives a walkthrough of what the player would see

when they �rst log in to the game, including a tutorial and a challenge to explain how

the game works. Full explanations of the level progression are then given in Sections

7.4.1 and 7.4.2.

The player uses Scratch blocks to program their pirate ship to navigate around a

grid, collect items and interact with obstacles (Figure 7.1). They can execute, stop

or speed up the execution of their programs using the buttons above the program

workspace (7.1A). Levels are divided into `tutorials' and `challenges'. Tutorial levels

introduce blocks or functionality, with a red parrot character demonstrating how and

when to use each block (7.1B). Players then use those blocks to complete a set of
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Figure 7.1: Screenshot of Pirate Plunder gameplay, A) Buttons, B) Tutorial parrot, C)
X marks the spot, D) `get treasure!' block, E) Map coins, F) Rocks, G) Feedback
parrot

challenges before attempting the next tutorial. Levels require the player to navigate

to the `X marks the spot' position on the grid (7.1C) and then use the `get treasure!'

block (7.1D) to collect a treasure chest that contains coins. Levels also contain `map

coins' that can be collected as the player navigates around the grid (7.1E). They must

avoid obstacles such as rocks (7.1F) and enemy ships that will sink their ship. The

player is assisted by the feedback parrot (7.1G). A star rating is given depending on

how many of the map coins the player collected. Collected coins can then be used to

purchase items and customise the player's avatar, which they can then compare with

other players.

7.3 Walkthrough

This section describes what happens when the player �rst logs into the game. Along

with an example tutorial (for the `repeat' block) and a corresponding challenge.

7.3.1 Avatar Select

Once the player has logged into their account for the �rst time. They have to select a

starting avatar from two options (Figure 7.2). They can then customise their avatar in

the game shop.
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Figure 7.2: Screenshot of the Pirate Plunder character select screen

7.3.2 Level Select

The player is then given a tutorial of the level select screen. This explains how to earn

coins and stars, the difference between tutorials and challenges and how to access

the shop and class screens.

Figure 7.3: Screenshot of the Pirate Plunder level select tutorial
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7.3.3 Tutorials

Tutorials introduce blocks or functionality to the player. Each tutorial begins with the

red parrot telling the player what they will be learning. They are then directed through

a series of actions that they must complete before they can execute the program and

complete the level. Figure 7.4 shows the program in the `repeat' tutorial that the player

will have produced by the �nal instruction. The program will execute when the green

�ag above the workspace is clicked. It will move the ship �ve spaces, one step at a

time, which will collect all the map coins and get the ship to the treasure. The player

needs to complete the level by adding the `get treasure!' block to the end of their

program, to collect the treasure chest when they are over the `X marks the spot'.

Figure 7.4: Screenshot of the Pirate Plunder `repeat' block tutorial

7.3.4 Challenges

Challenges develop the ability of the player to use the blocks or functionality that they

have been taught in the corresponding tutorial. There are several challenges for each

tutorial that get progressively more dif�cult. Once the player has completed all of

them, they are able to attempt the next tutorial. Figure 7.5 shows a `repeat' challenge

with the correct solution. The program moves the ship to collect all the available map

coins before reaching `X marks the spot', using two repeat blocks and a turn.

Challenges differ from tutorials in that they have a block limit and a reset button

and do not have the red parrot, yet the underlying aim of each level is the same. The

player cannot execute their program if they go over the block limit. The reset button

can be used to empty the program or reset it to its original state.
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Figure 7.5: Screenshot of a Pirate Plunder `repeat' block challenge

7.4 Game Design

This section begins with a level-by-level explanation of the game, it then explains the

rationale behind different aspects of the game design: dif�culty progression, Scratch

integration, reward system, tutorials, in-game feedback and hints, customisation, ad-

ministration section, analytics and sounds. These are described as Pirate Plunder

was at the start of Study 3 (Chapter 8). The subsequent section (Section 7.5) ex-

plains how the game was developed up to that point using an iterative development

process.

7.4.1 Level-by-Level

This section describes several example levels in Pirate Plunder, highlighted in Figure

7.6. This explains in detail how the game works and how the learning content is intro-

duced. It starts off with an early tutorial level (7.6A) and a `turn and move' challenge

(7.6B). It then explains the �nal `repeat' challenge (7.6C), the �nal `show/ hide' chal-

lenge (7.6D), custom block tutorials (7.6E), inputs levels (7.6F and 7.6G) and cloning

levels (7.6H and 7.6I). The colours underneath the levels correspond to the colour of

their block category, giving the player an idea of how many challenges are required

before they can attempt the next tutorial.

108



Figure 7.6: Screenshot of Pirate Plunder level select, the highlighted levels are de-
scribed in the level-by-level section

Go To Position Tutorial

The `go to position' tutorial is the second level in the game. It is part of three initial

tutorials, along with `when green �ag clicked' and `get treasure', that introduce the

player to the fundamental blocks used in the game. The �rst challenge is not unlocked

until these are complete. The tutorial introduces grid positions and the `go to position'

block. The block is only used in the �rst two challenges and is then not used again

until the cloning levels (where it is only available in the cannonball). This is because it

makes it too easy for the player to navigate to the treasure.

The �rst stage of the tutorial gets the player to add the `go to position' block to

the workspace (Figure 7.7). They are asked by the tutorial parrot (7.7A) to open the

`Motion' block category and then to drag the block into the program so that it connects

with the `when green �ag clicked' block. The pointer (7.7B) directs the player and

demonstrates certain functionality, such as `click' or `click and drag'. In tutorials, the

instructions cannot advanced until the player has completed the required action. The

player then cannot run the program until they have �nished the instructions (7.7C).

The second stage of the tutorial explains the grid coordinates (Figure 7.8), includ-

ing the x and y-axis and the bottom-left (1, 1) and top-right (8, 8) coordinates (7.8A

and 7.8B). It then shows how the player can �nd out coordinates of each grid position

using the indicator above the grid (7.8C).

The player is then asked to demonstrate an understanding of the coordinate sys-

tem by selecting the correct grid position for three different sets of coordinates (Figure

7.9A). The green feedback parrot will tell them if they get this wrong (7.9B).
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Once the player has �nished the coordinate stage, they must then use the block to

move the ship to the coin (Figure 7.10). This involves �nding the position of the coin

(7.10A) and putting these numbers into the `go to position' block inputs (7.10B). They

then press the green �ag (7.10C) and the ship will move. The level is complete once

the player has collected the coin.

Figure 7.7: Screenshot of the �rst instruction on the Pirate Plunder `go to position'
tutorial, A) Tutorial parrot, B) Pointer, C) Greyed out buttons

Figure 7.8: Screenshot of the second stage of the Pirate Plunder `go to position'
tutorial, A) Bottom-left: 1, 1, B) Top-right: 8, 8, C) Grid position indicator
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Figure 7.9: Screenshot of the third stage of the Pirate Plunder `go to position' tutorial,
A) Example coordinate demonstration, B) Feedback parrot

Figure 7.10: Screenshot of the fourth stage of the Pirate Plunder `go to position'
tutorial, A) Position of the coin, B) Entering coordinates into the `go to position' block
inputs, C) Green �ag to execute the program

Move and Turn Example Challenge

This example is the �nal `turn' challenge before the `repeat' block is introduced (Figure

7.11). This challenge uses most of the blocks that the player has been introduced to
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so far (`when green �ag clicked', `get treasure', `move' and `turn'). Each challenge

has the level number and a short description of the aim of the level in the top left

of the screen (7.11A). The green parrot in the top right gives the player feedback

throughout the level (Section 7.4.6) (7.11B). Challenges have a block limit (7.11C)

that the solution cannot exceed. The player can clear their solution (or bring back the

starting solution) using the `reset' button (7.11D).

The ideal solution to this level is to turn immediately to avoid the rock, then to stop

on each coin until the ship reaches the `X marks the spot', turning left 90 degrees

after seven `move 1 step' blocks. The player must collect all the map coins to get

a three star rating on the level (Section 7.4.4). Only blocks connected to the `when

green �ag clicked' block will run when the green �ag is clicked. Like Scratch, blocks

can be in the program workspace that are not executed. The player can zoom in and

out of the workspace if necessary (7.11E). The inputs for the `turn' blocks are 90 by

default and are limited to 0, 90, 180 and -90, meaning that the ship stays within the

grid lines. The input for the `move' block can be any integer. Blocks can be duplicated

by right-clicking on them and selecting the `duplicate' option and can be deleted by

dragging them out of the program workspace or into the bin (7.11F).

Figure 7.11: Screenshot of the solution to the �nal Pirate Plunder `turn' challenge, A)
Level number and challenge instructions, B) Feedback parrot, C) Block limit, D) Reset
button, E) Program zoom, F) Block bin

Once the player produces a solution that gets the ship to the `X marks the spot' and

uses the `get treasure!' block, a treasure chest appears on the screen that gives the

player a random number of coins between 1 and 15. They are then given a star rating

for their performance on the level before being returned to the level select screen.

The rationale for this challenge is to get the player to duplicate a `move 1 steps'
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block. This is a time-consuming process and uses the maximum number of blocks for

the level (18). The next level is the `repeat' tutorial that introduces loops, allowing the

player to only use a single `move' block inside a `repeat' to collect several coins in a

line, meaning that this challenge could be completed in eight blocks, instead of 18.

Repeat Blocks

Between the �nal `turn' challenge and the example in Figure 7.12, the player has

completed the `repeat' tutorial and four `repeat' challenges of increasing complexity.

This example is the �nal `repeat' challenge before custom blocks are introduced (with

the show and hide levels in between). `Repeat' blocks work by repeating the blocks

inside them the number of times speci�ed in the input. Their main use in Pirate

Plunder is to collect lines of coins using a single `move 1 steps' block.

Figure 7.12: Screenshot of the solution to the �nal Pirate Plunder `repeat' challenge,
A) Duplicated `repeat' blocks to collect lines of �ve coins, B) Duplicated `repeat' blocks
to collect lines of two coins

This challenge has �ve lines of coins, three that are 5 coins in length and two that

are 2 coins in length. The optimal solution (to achieve three stars on the level) has

duplicated `repeat' blocks to collect all of the coins in sequence (7.12A and 7.12B),

with `turn' blocks of different directions in between. This duplication can be removed

using custom blocks.

Show and Hide Blocks

`Show' and `hide' blocks are introduced after `repeat' blocks. They are in Pirate Plun-

der because they can be used in Scratch to hide and show cloned sprites (as shown
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in the best solution in study 2 (Figure 6.4)). In Pirate Plunder, they are used to hide

from enemy `ghost' ships (Figure 7.13A) that will shoot at the player's ship if it goes

within range (one grid space horizontally or vertically). These cannot be hit by the

player's cannonballs (when they are introduced in the cloning levels). When hidden,

players can still collect map coins, but cannot collect the treasure chest. This means

that both `show' and `hide' blocks must be used to complete the level.

Figure 7.13: Screenshot of the last Pirate Plunder `show and hide' challenge, A) En-
emy ghost ships

Custom Blocks

The custom block and inputs tutorials are both split into two. The �rst tutorial in each

converts the solution to a challenge that the player has already completed to use

either custom blocks or inputs (Figure 7.14 shows this for custom blocks, converting

the `repeat' challenge solution from Figure 7.12 using the extract method described in

Section 5.3.1). The second tutorial then walks the player through creating a custom

block (with or without inputs), before leaving them to complete the rest of the level on

their own.

As with the other tutorials, instructions only move on once the player has com-

pleted each action correctly. Custom blocks tutorial 2 has the player open up the `More

Blocks' category and press `Make a Block', which opens up the block creation modal

window (Figure 7.15A). They then have to name the block correctly (`move3AndTurn')

and are unable to close the modal window until they have (7.15B). The tutorial has

them de�ne the `move3AndTurn' block to move three steps sequentially and turn right

(Figure 7.16) (7.16A). This involves directing them to each block category, having
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them drag blocks to the right place and setting the correct input values. The player is

then directed to add a `when green �ag clicked' block and to use their custom block

underneath (differentiating between the de�ning block and the block itself). Three

`move3AndTurn' blocks are needed because the level requires the operation to be

performed three times (7.16B).

Figure 7.14: Screenshot of the Pirate Plunder `custom blocks' tutorial 1 that converts
the solution in Figure 7.12 to use custom blocks for the duplicated `repeat' blocks

Figure 7.15: Screenshot of the Pirate Plunder `custom blocks' tutorial 2, A) Custom
block creation window, B) The tutorial parrot specifying the custom block name
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The player then has to use custom blocks for the next set of challenges. Custom

blocks are required (and validated) so that the player cannot keep completing levels

using the duplicated `repeat' strategy from Figure 7.12. Most of these challenges re-

quire two custom blocks that are duplicated with only the `repeat' block input changing

for the distance (e.g. move2 and move5). This duplication can be removed by using

a single custom block with inputs for the changing values.

Figure 7.16: Screenshot of the Pirate Plunder `custom blocks' tutorial 2 showing
an almost complete solution, A) De�ning the `move3AndTurn' block, B) Using the
`move3AndTurn' block three times to get to the treasure

Inputs

The inputs tutorial 1 takes the solution from level 23 (this is indicative of all the custom

block levels) where the player has used two custom blocks that only differ by their

`repeat' block input (`move3' and `move5'). It then converts them into a single custom

block with an input (parameter) for the `distance' or number of times the `move 1

steps' block is repeated (Figure 7.17) (7.17A and 7.17B). The `moveAndTurn' block

then takes the `distance' as its input (7.17C).

Inputs 2 works similarly to custom blocks 2. It has the player create a custom

block through the `More Blocks' `Make a Block' button called `moveAndTurn'. It asks

the player to add a `number input' using the custom block options (Figure 7.18) (7.18A

and 7.18B). After this, they are asked to add a `repeat' block and duplicate the input

(using the right-click menu) and drag the duplicated input into the `repeat' block input.

After adding a `move 1 step' block to the `repeat and a turn right after the `repeat',

they are then asked to add a `when green �ag clicked' block and one of their `move-
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Figure 7.17: Screenshot of the Pirate Plunder `inputs' tutorial 1 that converts a `custom
blocks' solution from a previous challenge to use inputs, A) `distance' input, B) Using
the `distance' input for the number of repeat iterations, C) The input `distance' passed
to the `moveAndTurn' block

AndTurn' blocks to it (Figure 7.1). The tutorial then explains how the `distance' input

is used in the de�ne block for the number of iterations. The player must use two more

`moveAndTurn' blocks, with different input values, to complete the level.

Figure 7.18: Screenshot of the Pirate Plunder `inputs' tutorial 2, adding a number
input, A) Add number input option, B) `distance' input
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The input challenges progress from using one input (`distance') to two inputs (`dis-

tance' and `degrees'). The degrees input is used to rotate the ship in different direc-

tions, which allows the custom block to be used in more cases (Figure 7.19 shows an

example of this). This further reduces the total blocks needed to complete the level.

Using two inputs is enforced because players are asked to complete the same map

again (in another challenge) but with fewer blocks. Pirate Plunder makes it possible to

complete some levels several blocks under the maximum block count. For example,

in Figure 7.19 the player has moved the `turn' block to be executed �rst in `moveAnd-

Turn' because the ship needs to be turned before it can move. Another solution would

be to have a `turn' block after the `when green �ag clicked' block, then having the last

`moveAndTurn' block turn the ship 0 degrees, which would use an extra block.

Figure 7.19: Screenshot of the solution for the �nal Pirate Plunder `inputs' challenge

Cloning

Pirate Plunder contains two cloning tutorials: `cloning myself' and `cloning other sprites'.

`Cloning myself' has the player create a copy of their ship that they can use to collect

another line of coins. `Cloning other sprites' introduces the cannonball sprite, having

the player clone it at the position and in the direction of the ship, then move it to `�re'

it into some �oating boxes that contain coins and block off parts of levels. There are

three `cloning' blocks in the game (as in Scratch): `when I start as a clone', `create

clone of' and `delete this clone'.

In the cloning myself tutorial (Figure 7.20), the player is �rst asked to add a `when

green �ag clicked' block to the program, then a `create clone of' block and a `move 1

step' block (7.20A). They then add `when I start as a clone' (7.20B), `go to position'
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(set to 2, 2) and `delete this clone' blocks to a separate script. When run, this creates

a clone of the ship that moves to the start of the other line of coins, then deletes it and

moves the original ship sprite 1 step. The player must then �gure out how to collect

all the coins (by adding `repeat' blocks to both scripts), before collecting the treasure

chest.

Figure 7.20: Screenshot of the `cloning' blocks in Pirate Plunder, A) The blocks for the
original sprite. B) Adding the `when I start as a clone' event to the program indicated
by the click and drag pointer

The cloning other sprites tutorial (Figure 7.21) adds a `cannonball' sprite (7.21A)

and the `property of' block (in the `Sensing' category). The player adds a `when I start

as a clone' block to the cannonball sprite. They then attach a `go to position' block

and use the `property of' block to move the cannonball to the position of the ship (it

starts off-screen), before pointing it in the same direction as the ship using `point in

direction' (7.21B). The player then adds a `move 1 step' block to �re the cannonball

from the ship's current location, before deleting the cloned sprite. This script allows

the player to �re cannonballs from different places on the level by creating a clone of

the cannonball sprite. The cannonball sprite has a limited set of blocks available.

The cloning challenges progress from using a single cannonball to multiple can-

nonballs, then to multiple cannonballs with custom blocks (Figure 7.22 shows the �nal

cloning level). General levels then introduce extra complexity, such as having to clone

the ship to access blocked off parts of a level. These are not part of the dif�culty

progression and were added to occupy players who had completed the game during

Studies 3 and 4 (Chapters 8 and 9).
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Figure 7.21: Screenshot of the cannonball sprite in the Pirate Plunder `cloning other
sprites' tutorial, A) Cannonball sprite selection, B) A `property of' block used to get the
direction of the ship sprite

Figure 7.22: Screenshot of the last `cloning' level in Pirate Plunder

7.4.2 Dif�culty Progression

Section 7.4.1 describes how different blocks are introduced in Pirate Plunder. This

section explains the dif�culty progression and the mechanics used to motivate the
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player to use the taught functionality. The dif�culty progression aims to introduce

abstraction using custom blocks and cloning in a way that rationalises its use (Aim

1), allows the game to be played with minimal teacher instruction (Aim 3) and keeps

players motivated throughout (Aim 4).

Pirate Plunder contains 40 challenges and 13 tutorials that are split into four dif-

�culty stages: statements (event and motion blocks), loops (repeat blocks), proce-

dures (custom blocks and inputs) and instances (cloning) (Table 7.1). The latter three

stages introduce a different technique for abstraction and code reuse, to help the

player recognise how they could reduce duplication in previous levels. The number

of levels in each section corresponds to the dif�culty of that section, with harder con-

cepts having more challenge levels. The dif�culty progression was developed over

the iterative development process (Section 7.5). It is the same for every player and is

not scaffolded based on individual ability or performance.

Table 7.1: Pirate Plunder dif�culty progression

Stage Block (Tutorial) Challenge Requirements Number of
Challenges

Statements

When green �ag
clicked

Move to a grid position and
collect the treasure chest.

2

Go to position
Get treasure!
Move Move in a single direction and

collect the treasure chest.
3

Turn Change direction to avoid
obstacles.

5

Loops
Repeat Use loops to reuse blocks. 5
Show/hide Hide and show the ship to avoid

being attacked by enemy ships.
3

Procedures

Custom blocks Create and use custom blocks to
reuse sets of blocks.

6

Inputs Create and use custom blocks
with number inputs for further
reuse.

6

Instances

Cloning (myself)
Cloning (other
sprites)

Clone a cannonball sprite to
destroy �oating debris and
access other parts of the map.

10

Pirate Plunder combines `process constraints': increasing the number of features

(or blocks) that the learner can control as they progress through the game, with `ex-

planations': specifying exactly how to perform an action (on tutorial levels) (Lazonder

& Harmsen, 2016). Blocks are introduced after the appropriate tutorial has been com-

pleted, which the player must then use in a series of challenges before they move on

to the next tutorial. These challenges get progressively more complex, demonstrating

the rationale for using the abstraction technique introduced in the next stage that will
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enable the player to produce a `better' solution. Combining these two approaches

means that a player is given structured guidance (explanations) but must then apply

this knowledge in unguided challenge levels.

Motivation

The game motivates players to use the taught functionality through intrinsic integra-

tion (Habgood & Ainsworth, 2011) using block limits, collectable items, required block

validation and obstacles (Aim 4). Each challenge limits the number of total blocks

that can be used in the program, forcing the player to address block duplication and

produce a nearly ideal solution. It also means that players cannot produce dead block

code smells, because every block in the program must be used to achieve a maximum

score on the level. Players must stop on each coin to collect it and must collect every

coin to achieve a maximum score for that level (Section 7.4.4). Solutions are validated

for containing the block related to that challenge. Some levels contain obstacles, such

as enemy ghost ships, that will shoot at the player if they are within range. These can

be avoided by hiding the ship using the `hide' block. Levels contain rocks that will sink

the ship if the player hits them. On the cloning challenges, there are sets of �oating

boxes that must be destroyed by cloning the cannonball sprite.

7.4.3 Scratch Integration

The Pirate Plunder layout and functionality are based on Scratch 2.0 (the most popular

version used in schools at the time of development.) This addresses Aim 2, similarity

to Scratch.

This section describes how the Pirate Plunder functionality and user interface was

similar to (and differed from) Scratch, the programming blocks available in Pirate Plun-

der and how sprites were implemented.

Functionality

Pirate Plunder replicates the layout of Scratch 2.0 in that the scene is on the left

and the program workspace is on the right (Figure 7.23). The buttons above the

workspace work in the same way: the green �ag executes any scripts attached to

the `when green �ag clicked' block and the stop button stops the program execution.

In Scratch, the currently executing script is highlighted (not individual block) because

multiple scripts can be executed concurrently. In Pirate Plunder, execution has been

slowed down to make the program easier to debug, with the current instruction high-

lighted to allow the player to better `trace' the code (Section 2.2.2). Scripts cannot be

executed concurrently in Pirate Plunder because of implementation limitations. There

is a fast forward button that allows the player to speed up program execution, similar

to Lightbot (Section 2.4.5).
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Figure 7.23: Screenshots of Pirate Plunder (top) and Scratch 2.0 (bottom)

The program workspace is implemented using Google Blockly, a library for creat-

ing block-based programming languages and editors that can be easily converted to

text-based languages including JavaScript and Python. Code.org (Section 2.4.5) and

Scratch 3.0 (the latest version at the time of writing) both use Blockly. Scratch 3.0 was

in development during the Pirate Plunder design and development phase, hence why

it was not used. Blockly does not look like Scratch 2.0 by default, so block colours have

been changed to match Scratch, block highlighting on execution was switched from

a bezel to a yellow outline and unattached blocks made identical to attached blocks

(they are greyed out by default in Blockly.) Custom block and cloning functionality

mimic Scratch as closely as possible. Program validation, restrictions and in-game

warnings were added based on player feedback during testing (Section 7.4.6). Block
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names are validated (so the player cannot create two custom blocks with the same

name), the player can only create `number' inputs to avoid unnecessary complexity

and the player cannot delete a custom block de�nition whilst that block is being used

in the program.

The Pirate Plunder grid is top-down and uses an 8x8 grid in a single quadrant (top-

right), compared to the Cartesian 480x360 pixel coordinate system used in Scratch

(Figure 7.24). This is because four quadrant coordinates are not taught in the English

national curriculum until Year 6 (age 10 and 11) (Department for Education, 2013).

The coordinates for the grid refer to the grid spaces to make navigation and using

the `go to position' block easier for players. Like Scratch 2.0, Pirate Plunder has a

coordinate position indicator that updates when the player hovers over the grid (shown

in Figure 7.8).

Figure 7.24: Screenshot of Scratch's 480x360 four-quadrant pixel coordinate system,
Pirate Plunder uses an 8x8 grid in a single quadrant (top-right)

Blocks

The Scratch 2.0 toolbox contains 116 blocks divided into 10 categories. These blocks

are all available from the start to give the user freedom, in line with Scratch's construc-

tionist principles (Maloney et al., 2010). Yet, this can be both daunting and dif�cult for

novice users. The large and always visible block pallet is one of the problems with

Scratch described in Section 5.2.1 that may contribute to forming bad programming

habits (Meerbaum-Salant et al., 2011). Pirate Plunder uses a restricted set of blocks

relevant to gameplay that are introduced as the player progresses through the game

(Table 7.2). The block categories are taken from Scratch (apart from the `Pirate' cat-

egory).
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Table 7.2: Pirate Plunder programming blocks

Category Block Use in Pirate Plunder

Motion

Move Move sprite n steps (grid spaces)

Turn right Turn sprite clockwise n degrees

Turn left Turn sprite anticlockwise n degrees

Point in direction Point sprite in a direction (up, down, left, right)

Go to position Move sprite to an x, y grid position

Looks
Show Show sprite

Hide Hide sprite

Events When green �ag

clicked

Execute a script when the green �ag is clicked

Control

Repeat Repeat the nested block(s) n times

When I start as

a clone

Execute a script when the sprite is cloned

Create clone of Create a clone of a sprite

Delete this clone Delete the clone of a sprite

Sensing Property of Get the x position, y position or direction of a

sprite

More

Blocks

Create and use custom blocks

Pirate Get treasure! Collect the treasure chest

Sprites

Scratch uses event-driven programming with multiple active `sprites', where each

sprite can be programmed separately. In Pirate Plunder, the available sprites are

selectable above the program workspace, which is different from Scratch 2.0 where

they are selectable in the bottom left corner (Figure 7.23). In Pirate Plunder, avail-

able sprites are level-dependent, and players cannot add, edit or remove them, unlike

Scratch. The ship sprite is available in every level and the cannonball sprite is added

in the cloning levels. Sprites face right at the start of each level and are visible by de-

fault. This restricts the player to use the taught concepts, whilst still providing similar

functionality to Scratch (Aim 2).

7.4.4 Reward System

Pirate Plunder uses several reward strategies to motivate the player (Aim 4). These

include the treasure mechanic, map coins and star ratings.
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Treasure Chest

After collecting the treasure chest, the player receives a random number of coins

between 1 and 15 (Figure 7.25). Ozcelik, Cagiltay & Ozcelik (2013) found that un-

certainty enhanced learning in game-like environments and was associated with an

increase in motivation. Collecting the treasure chest is the goal of every level apart

from the �rst two tutorials before the `get treasure!' block has been introduced.

Figure 7.25: Screenshot of treasure chest collection in Pirate Plunder

Map Coins

Map coins are used in Pirate Plunder to get the player to stop the ship on each grid

position. This is because in Scratch, repeating `move' blocks is a method for animating

movement (used in the bottom of Figure 7.23), justifying the use of loops. Collecting

map coins is an important part of the game because it is used to demonstrate the

justi�cation for using loops, custom blocks and inputs (Section 7.4.1). Map coins

come in denominations of either one, two or �ve coins per grid space to give the

player extra motivation to collect them on some levels (the two-coin denomination is

used in the top of Figure 7.23). The player can then use the coins collected from

the map and the treasure chest to purchase items to customise their avatar (Section

7.4.7).

Star Rating

Players are given performance feedback (Malone & Lepper, 1987) through a star

rating upon completion of each challenge (Figure 7.26). This is based on how many

map coins the player has collected: three stars for all, two stars for some and one star
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for none. This is designed to further motivate the player to collect map coins, therefore

completing levels using the taught concepts. This is based on similar three-star rating

systems used in popular mobile games such as Angry Birds and Cut The Rope. The

star count is shown for each level on the level select and the player's total is shown

next to the coin count in the top bar of the game. It is also visible in the class screen

(Section 7.4.7) so that the player can compare their star count with other players.

Figure 7.26: Screenshot of star ratings in Pirate Plunder

7.4.5 Tutorials

As explained in Sections 7.4.1 and 7.4.2, tutorial levels introduce the player to blocks

or functionality that they then use in a set of corresponding challenge levels. Tutori-

als differ from challenges in that they have a red parrot that gives explanations and

instructions on how to use the block correctly (Figure 7.7). The parrot moves around

the screen for each instruction and there is a pointer that demonstrates the action that

the player needs to perform. In some tutorials, such a `go to position', the player must

demonstrate an additional competency such as understanding coordinates by clicking

on speci�c grid positions (Figure 7.9). Players can only run the program once they

have completed all the instructions. Tutorials are a key part of the game because of

the dif�culties that children have with understanding abstraction and are designed to

require no additional classroom support (Aim 3).

This section explains the inspiration for the tutorial levels and how the instructions

and pointer both work.
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Inspiration

The tutorial levels were inspired by Dragon Architect and Stagecast Creator. In

Dragon Architect (Figure 7.27), the player must complete basic tutorials before they

can move to a sandbox level. They are then able to go back and `learn' more function-

ality through additional tutorials, unlocking this in the sandbox. This `guided-discovery'

approach combines open-ended exploration with linear sets of puzzles (Bauer, Butler,

& Popović, 2017). The tutorial levels contain a dragon character that moves around

the screen to help direct the player (7.27A). However, this is on an automatic timer

and can easily be ignored.

Figure 7.27: Screenshot of a tutorial in Dragon Architect, A) The help dragon that
moves around the screen

Figure 7.28: Screenshot of a tutorial in Stagecast Creator, A) Highlighting the required
action
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Stagecast Creator is a rule-based visual programming environment that can be

used to create stories, animations and games (similar to Scratch). It has a `Learn

Creator' section that contains tutorials on how to use the application. These tutorials

explain things like rules, mouse and keyboard interaction and variables. They work by

having an explanation on the bottom of the screen, then restricting the application so

that the player can only perform the next `action' in the tutorial (Figure 7.28). These

actions are highlighted in the application (7.28A). Stagecast Creator uses context and

repetition to introduce concepts using minimal text.

Pirate Plunder uses a combination of these two approaches. Players must follow

a series of actions within a tutorial that are highlighted on-screen by a moving help

character.

Instructions

The instructions in Pirate Plunder tutorial levels are designed so that they can be

completed without reading any text. It was observed in Study 1 (Chapter 4) that

children would often ignore instructions and instead use a trial and error approach

to �gure out how the game worked (Section 4.4.2). Pirate Plunder tutorials have

the player perform actions, which cannot be skipped or ignored like the instructions

in Dragon Architect or Lightbot Jr, meaning that they cannot progress through the

tutorial without completing them. Instructions are given by the red parrot, which moves

around the screen depending on the instruction. The green parrot then gives feedback

on whether the action has been done correctly or not (Section 7.4.6). The instructions

can be cycled through by pressing the `next' and `previous' buttons, the `next' button

disappears when an action is required to progress. The pointer aids the player in

performing the required action. Section 7.3 describes an example tutorial.

In the custom block and inputs tutorials (Section 7.4.1), certain buttons are dis-

abled as part of the instructions (for example when the custom block creation window

is opened) and validation is in place to ensure the player creates the correct custom

block with the correct inputs. Feedback is given to ensure that the player understands

that this is the case.

Pointer

The pointer helps the player understand the current instruction. This mainly points at

sections of the screen but will also demonstrate actions when required. For example,

clicking on a block category, clicking and dragging a block into the program (Figure

7.20B) or right-clicking on an input to duplicate it.
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7.4.6 In-Game Feedback and Hints

Players are given feedback on both tutorials and challenges by the green feedback

parrot (Figure 7.29A). This is designed to support the player when playing the game

and perform the role of an instructor (Aim 3). Feedback is given for guidance, warn-

ings or level requirements. Guidance feedback is for general block use and program

issues such as missing the `get treasure!' or `when green �ag clicked' blocks, using

`get treasure!' on a grid position where there is no treasure, going out of bounds

(7.29B), hitting objects or getting hit by an enemy. Warnings are for behaviour that

might break the game, including recursion (having a custom block inside its de�ne

block), using `get treasure!' in a `repeat', custom block validation (if that block already

exists, if it is a game block (e.g. `move'), if it is a block or input name is a JavaScript

keyword that will break the execution of the program, etc.) Level requirement feed-

back is given for not using required blocks, hitting the block limit and trying to collect

treasure when hidden. Feedback is either shown when the player performs an action,

when they run the program (not allowing execution) or when the program is running.

As mentioned in the previous section, players are also given feedback in tutorial levels

for completing actions successfully or not. Feedback is also given in tutorials if the

player tries to run the program before getting to the end of the instructions.

Figure 7.29: Screenshot showing an example of Pirate Plunder in-game feedback,
telling the player that their ship has gone out of bounds, A) Feedback parrot, B) Feed-
back

Each challenge level has a `hint' that the player can ask for, by clicking on the

feedback parrot, which is designed to help them solve the level. This is known as

micro-scaffolding (Melero, Hernández-Leo, & Blat, 2011) and can be used to help

students when introducing new concepts in puzzle-based games.
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7.4.7 Customisation

Players in Pirate Plunder have an avatar that they can customise in the shop. They

can purchase items for their avatar or purchase new ships using the coins collected

by playing levels, either map coins or those from treasure chests. This, along with

collecting coins to buy items, is designed to motivate the player to keep playing the

game (Aim 4). A strong link has been shown between self-designed avatars and game

enjoyment, as players identify with and become invested in their character (Bailey,

Wise, & Bolls, 2009). Player avatars and ships are integrated into the login screen

and there is a `class' screen where the player can compare their avatar with others.

Players select their starting avatar from two options the �rst time that they play the

game (Section 7.3).

This section explains the shop, class screen and how avatars are integrated into

the Pirate Plunder login.

Figure 7.30: Screenshot of the Pirate Plunder shop, A) Paying �ve coins to save the
updated avatar, B) Items that require purchasing, C) Locked items

Shop

The shop allows players to purchase items and customise their avatar (Figure 7.30).

Items are split into 12 categories: body, eyes, hair, eyebrows, mouth, facial, clothes,

shoes, hat, accessory, weapon and ship. Players are charged �ve coins each time

they want to save their character (7.30A). This was done to limit customisation in the

early levels, when the player has a limited number of coins, motivating them to play

through early levels before spending time upgrading their character. Some shop items
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are available from the start, but most must be purchased (7.30B) and are unlocked

after certain challenges have been completed (7.30C). A pricing model was used to

price items based on the minimum and maximum coins a player could earn through

tutorials and challenges. Additional shop items were added from player suggestions

throughout development. The starting character and a few items were from a pur-

chased graphics package, but additional shop items were created manually by the

author.

Class

The class screen allows players to compare their avatars and statistics with other

players (Figure 7.32). The class screen is not ranked by performance, but instead

by the same ID order used on the login screen. This was done so to reduce the

negative effects on intrinsic motivation that can arise from competition (Vellerand,

Gauvin, & Halliwell, 1986), instead allowing players to compare their avatars and

statistics without the pressure of a leaderboard.

Figure 7.31: Screenshot of the Pirate Plunder class screen

Login

Player avatars are integrated into the Pirate Plunder login screen because they are

not part of the gameplay. This makes them a more intrinsic part of the game and

gives players an extra opportunity to compare avatars with their classmates. Players

�rst enter their class ID, which then loads a selection screen similar to the right of

Figure 7.32, listing each player's avatar, name and ship. A player then selects their
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character and is asked to enter a password. Once the player selects their avatar, it is

then visible on every screen apart from the game itself.

Figure 7.32: Screenshot showing part of the Pirate Plunder login screen

7.4.8 Administration Section

Pirate Plunder has an administration section that shows player information and statis-

tics (Figure 7.33) (Aim 5). This also allows an administrator to lock players out, so

they cannot use the game outside of the study sessions, and to reset passwords if

required. It has a class �lter and a search bar for player names. New player accounts

can be created using the administration section, but in practice, a computer program

was used to add them in bulk from a spreadsheet. In-depth statistics are shown for

each player when selected. These are broken down into time spent on sections, shop

purchases and level completions. The administration section can be used to track

player progress and rank players on success metrics such as star count and levels

completed. In this version, the �rst name of the player is saved into the database and

a numeric user ID is used to save all other data. Name customisation was introduced

for Study 4 (Chapter 9), meaning that the player's real name was not saved to the

database or used in the game.

7.4.9 Analytics

Pirate Plunder saves analytics for player actions. These were used to investigate

player approaches and performance in the game, particularly during development

and between versions in Study 3 (Aim 5). They were collected for:
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Figure 7.33: Screenshot of the Pirate Plunder administration section (table view)

� Changing game section (e.g. level select, shop, level) - used to calculate time

spent on each section.

� Level attempt (current program, fast forward on, block count, errors).

� Level completion (time spent, stars collected, attempts, block count, hints used).

� Purchasing shop items.

� Working on the program (block creation, move and deletion).

7.4.10 Sounds

Sounds are used to give the player feedback, including completing a correct action

on a tutorial, collecting coins, each star on a star rating, collecting treasure, �ring a

cannonball and when the ship was sunk.

7.5 Iterative Development Process

Pirate Plunder was created using an iterative development process that involved infor-

mal testing in three schools with small groups of children over the initial development

period (up to Study 3). This process was split into the four stages shown in Table 7.3.

Firstly, an early version of the game was tested informally with two children (age 7

and 9). Stage 2 then took place in an after-school club (with three children age 8 and

9) for roughly an hour. The third stage involved two children (age 10) playing Pirate
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Plunder over three weeks after-school (the �rst week was with only one child so this

is split into stages 3 and 3.1). The fourth stage was a pilot study comprising of 12

children (age 9 and 10) playing the game over four weeks (one session per week).

The pilot study is discussed in more detail in the next chapter (Chapter 8).

Table 7.3: Pirate Plunder iterative testing stages

Stage N Age (Years) Total Length
1 2 7 and 9 30 minutes
2 3 8 and 9 1 hour
3 1 10 1 hour
3.1 2 9 and 10 2 hours 30 minutes
4 12 9-10 5 hours

This section will describe some key developments at each stage of this iterative

process. This process continued throughout Studies 3 and 4 with further changes

discussed in Chapters 8 and 9.

7.5.1 Stage 1

Initial Idea

The initial idea for the game is shown in Figure 7.34. The player would play through a

series of levels that would introduce custom blocks and cloning (7.34A), using Scratch

blocks to move a pirate ship around a grid. They would be given instructions on each

level by the captain of the ship (7.34B).

Figure 7.34: Screenshot of the �rst Pirate Plunder design, A) The game levels, B)
Level instructions
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Tutorial Order

An early version of the game is shown in Figure 7.35. At this point, the game intro-

duced `point in direction' after `repeat'. This was altered before Stage 1 to give the

player more levels and functionality to practice simple navigation before loops were

introduced.

Figure 7.35: Screenshot of a Pirate Plunder tutorial at stage 1 of development

Skipping Tutorial Instructions

Tutorial instructions at Stage 1 were in a �xed position at the top of the screen (Figure

7.36). This meant that the `next' button could be repeatedly clicked without the player

reading any of the instructions (7.36A). It was observed during Stage 1 that players

would do this and then get stuck because they did not know what to do. This resulted

in the moving instructions, required actions and pointer described in Section 7.4.5.

Turning Sprites

Early versions of the game used the `point in direction' Scratch block instead of `turn

right' and `turn left' for basic navigation (Figure 7.36B). This came from Study 2 (Chap-

ter 6), where the four Scratch projects use the `point in direction' block to set the di-

rection of the cat sprite. There was some confusion with the `point in direction' input,

which takes the number of degrees from the sprite's default direction (right). Some

players struggled with understanding the number of degrees when it was passed into

the custom block (e.g. Figure 6.3), because it loses the direction indicator (`left', `right',

`up' or `down'). `Point in direction' was therefore switched to the turning. Clockwise
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Figure 7.36: Screenshot of the Pirate Plunder level select at Stage 1 of development,
A) `Previous' and `Next' buttons. B) `point in direction' instead of `turn'

and counter-clockwise rotation by n degrees is introduced in Year 5 (age 9 and 10) in

England (Department for Education, 2013). `Point in direction' was left in the game for

the cannonball sprite as the cloning levels require it for pointing the cannonball in the

same direction as the ship (Figure 7.21).

Missed Coins

In early versions of Pirate Plunder, the player could not go back to a completed level

and collect any coins that they had missed. This was changed during Stage 1 so that

players could `recomplete' levels to collect all the coins. Once all map coins had been

collected they would show up as greyed out when the player revisited the level.

7.5.2 Stage 2

Final Design

The �nal design (used in the game screenshots in the rest of the chapter) was imple-

mented for Stage 2 of testing. This included new assets and backgrounds to make

the game more appealing to players.

Integrating Avatars

The login screen was initially a simple username and password form. Player avatars

were integrated into the login screen for Stage 2 because they are not part of the

gameplay (Section 7.4.7).
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Demonstrating Actions

It was observed during Stage 2 that players would misinterpret tutorial instructions or

get confused as to the action that they were meant to perform. This would then impact

their understanding of the block that the tutorial was introducing. To address this, the

pointer was changed from an arrow to demonstrating actions such as `click and drag'

(Section 7.4.5).

Saving Level Completions

Another feature added after Stage 2 was saving the solution that the player used to

complete the level and loading this when they replayed the level. This meant that they

could go back and see how they had solved a similar level, which was particularly

bene�cial between sessions (during the studies this gap was often a week).

7.5.3 Stage 3

Locked Level Progression

During Stages 1, 2 and 3, players could progress through tutorials one-by-one, un-

locking the challenges for each tutorial when they had completed it. The idea behind

this was that players could `discover' additional functionality whilst playing through

the challenges at their own pace (similar to Dragon Architect). However, in practice,

players ignored the challenges and played through each tutorial level instead. They

then had problems with the more dif�cult tutorials because they did not have enough

experience playing the game to understand the functionality and rationale for using

`repeat' blocks, custom blocks and cloning.

For Stage 3.1, the level progression was �xed so that players had to complete

the tutorial, then the set of challenges for that tutorial, before they could attempt the

next tutorial. A prompt was added when the player unlocked the �rst challenge (after

completing the `when green �ag clicked', `go to position' and `get treasure' tutorials)

to make this clear. This was much more successful in getting players to understand

and use the concepts correctly.

Custom Blocks and Inputs Tutorials

As it took around an hour of gameplay to reach the custom block levels, these were

not tested until Stage 3. Players struggled to understand the rationale for using these

blocks, so two extra tutorials were introduced using the project comparison strategy

from Study 2 (Chapter 6). One that showed reducing duplication using the extract

method with custom blocks, then another that showed further abstraction into a single

custom block with an input. These are both described in detail in the level-by-level

description (Section 7.4.1).
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Performance Feedback

An early version of the star rating system was added for Stage 3 as an extra motivator

for collecting map coins. This was an indicator on the level select screen for each level

that showed whether all the map coins had been collected (Figure 7.37). However,

it was unclear to players what this indicated, so it was replaced with the star rating

system described in Section 7.4.4 for Stage 3.1.

Figure 7.37: Screenshot of the early performance feedback in Pirate Plunder, a coin
that indicates whether all the coins have been collected on that level

7.5.4 Stage 4

Level Attempts

For Stage 4, whenever the player goes `back' from a level, they are asked whether

they would like to save their level attempt. This allows them to attempt levels and

either go back and check another solution or resume the level from the same point

the next time they play the game.

Ship Customisation

Ship customisation was added during Stage 4 because players wanted to customise

something that was part of the gameplay. They can purchase ships in the shop. These

include pirate ships of different colours, rocket ships and a UFO.
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Dif�culty Progression

The Pirate Plunder version at Stage 4 had 45 levels (Table 7.4). This level progression

was adjusted for Study 3 using game analytics collated level-by-level. It was observed

that players were spending too long on levels before custom blocks were introduced

and then having dif�culties understanding them because the levels were too dif�cult.

This resulted in the number of statement levels being reduced from 14 to 8, loops

from 10 to 8 and cloning increased from 9 to 10. The level progression then contained

40 levels, with the player reaching loops at level 11, procedures at 19 and cloning at

31. The early custom block, inputs and cloning challenges were all simpli�ed to help

players understand them.

Table 7.4: How the Pirate Plunder dif�culty progression changed between the pilot
study and Study 3

Stage Block (Tutorial) Number of Challenges
Stage 4 Study 3

Statements

When green �ag clicked
3 2Go to position

Get treasure!
Move 4 3
Turn 7 5

Loops
Repeat 7 5
Show/hide 3 3

Procedures
Custom blocks 6 6
Inputs 6 6

Instances
Cloning (myself)
Cloning (other sprites) 9 10

Total 45 40

7.6 Summary

In summary, Pirate Plunder is designed to teach children to use custom blocks and

cloning in Scratch. This chapter described elements of the game design and how

these meet the aims of the game. These include dif�culty progression, Scratch inte-

gration, reward system, tutorials, in-game feedback and hints, customisation, admin-

istration section, analytics and sounds. The game was developed over an iterative

development process, which continues throughout the two studies described in the

next two chapters (Chapters 8 and 9).

The next chapter (Chapter 8) describes an experimental study to investigate whether

a debugging-�rst approach is bene�cial for players. The study uses two versions of

the game: debugging-�rst and non-debugging. These are compared against an ac-

tive control group who were taught a standard Scratch curriculum. The results of this
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study feed into the �nal version of the game used in Study 4 (Chapter 9) to measure

Pirate Plunder can be used to teach abstraction skills to primary school children.
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Chapter 8

Study 3 - Investigating the Value of a

Debugging-First Approach

Chapter 7 described the design and development of Pirate Plunder, a novel educa-

tional block-based programming game designed to teach children to use abstraction

in Scratch. The rationale being that these abstraction skills should enable primary

school children to recognise code smells in Scratch projects, such as duplicated

blocks, and then be able to refactor their code using custom blocks and cloning to

remove them. This should then help children avoid forming bad programming habits.

The study reported in this chapter aims to establish whether a debugging-�rst pro-

gramming approach can bene�t players. The results then feed back into the game de-

sign to produce a �nal version of Pirate Plunder for the study of its ef�cacy in the next

chapter (Chapter 9). In this study, two versions of Pirate Plunder (debugging and non-

debugging) were compared to a standard Scratch curriculum that does not introduce

abstraction, with participants creating Scratch projects to a speci�cation at pre-and

post-test that would encourage code smells. The study also included an additional

measure of computational thinking (CT) (Chapter 3), to see whether improvements in

Scratch programming correspond to improvements in CT, as the literature indicates.

The chapter �rst explains the background of the study. It then describes a pilot

study used to test Pirate Plunder and the assessment tasks, before moving onto the

method, results, discussion and conclusions of the main study reported in this chapter.

8.1 Background

The background of the study is made up of three key subsections. The �rst subsection

covers the main aim of Pirate Plunder: to teach children procedural abstraction skills

(through custom blocks and cloning) that should enable them to refactor their code to

remove duplication. The second subsection focuses on the debugging-�rst program-

ming approach that differentiates the two versions of the game. The third subsection

follows on from earlier chapters in examining the link between programming and CT
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in primary education, before going onto explain how it is applied in this study.

8.1.1 Abstraction and Code Smells

Abstraction and code smells are explained in detail in Chapter 5. Abstraction is an

important part of programming. Good computer scientists can move easily between

different levels of abstraction (Armoni, 2016). Lister (2011) suggests that novice pro-

grammers develop abstract reasoning skills as they gain expertise. Gibson (2012)

argues that primary school children can acquire an understanding of abstract con-

cepts, but only through structured teaching.

A code smell is a surface indication of an underlying problem in a program (M.

Fowler, 1999). For example, duplicated code and long methods are both code smells

that indicate bad program design. Code smells can be removed through refactoring:

improving the internal structure of the program without altering its external behaviour.

The extract method is one way of refactoring code to remove duplication code smells.

It involves moving sections of code into their own procedure that can then be invoked

from multiple places, a process known as procedural abstraction. This process is

dif�cult for students at high-school and university level to understand, despite it being

an important programming skill (Kallia & Sentance, 2017).

Duplicated code and long script smells are common in Scratch projects (Section

5.2.3) and can make them dif�cult to understand, debug and maintain (Aivaloglou &

Hermans, 2016). Custom blocks and cloning can both be used to refactor code in

Scratch. Custom blocks are the equivalent of procedures, allowing Scratch users to

create their own blocks that can then be invoked from multiple places within a sprite

(Section 5.3.2). Cloning allows the user to create copies of sprites, which can also

be used to reduce sprite and block duplication (Section 5.3.3). Yet, these are rarely

taught in Scratch curricula and even when they are used in Scratch projects, they do

not reduce the amount of code duplication (Robles et al., 2017), suggesting that they

are often not used correctly.

Dr. Scratch (Section 3.3.1) is a CT measure that scores projects across seven

CT concepts based on the blocks used. One of these categories is abstraction and

decomposition, which is measured by having multiple scripts in multiple sprites (1

point), using custom blocks (2 points) and using cloning (3 points). This provides an

objective measure of abstraction in Scratch.

Pirate Plunder aims to teach primary school children to use custom blocks and

cloning in Scratch through practical problem-solving. This is discussed in detail in

Chapter 7. One of the aims of this study is to see whether children can apply the

skills learnt in Pirate Plunder to Scratch projects. Yet, the main aim is to investigate

the value of a debugging-�rst approach.
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8.1.2 Debugging-First

The main aim of this study is to establish whether a debugging-�rst approach in Pirate

Plunder bene�ts players when solving levels. The rationale behind using a debugging-

�rst approach in programming tasks is discussed in Section 2.4.6. It comes from the

theory that novice programmers learn better by completing existing code than by writ-

ing new code (Van Merriënboer & De Croock, 1992). This is known as the completion

strategy, where part of the solution is visible so does not have to be held in working

memory (Paas, 1992). Lee et al. (2014) list debugging-�rst as their �rst principle of

debugging games, describing it as encouraging “learners to learn programming con-

cepts by debugging existing programs before creating new programs... our approach

provides nearly complete, but broken programs for learners to debug and �x before

moving onto the more demanding task of creating new puzzles from scratch” (p. 57).

This is the approach used in Lee's text-based programming puzzle game, Gidget,

which showed promising results in getting novices to program using conditionals and

loops (M. J. Lee & Ko, 2014) (Figure 8.1).

Figure 8.1: Screenshot of a level from Gidget

The debugging-�rst version of Pirate Plunder (Figure 8.2) has blocks that either:

1. Have an incorrect input (8.2A).

2. Have a locked (but correct) input (8.2B).

3. Are there for assistance and are undeletable (8.2C).

4. Are there for assistance (but may not be needed) (8.2D).

The player must either use, change or remove these blocks to complete the level.

Undeletable blocks have a white padlock and cannot be removed from the program.
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Figure 8.2: Screenshot of a debugging-�rst program in Pirate Plunder, A) An erro-
neous block that the player needs to delete (should be a `turn left'), B) A locked input
that is the same colour as the block and cannot be changed, C) Padlock indicating the
block is undeletable, D) An erroneous input that the player needs to change (should
be `1')

Locked inputs have the same background colour as the block they are in. The number

and type of debugging-�rst blocks on each level is linked closely with the dif�culty pro-

gression, with early challenges linked to a tutorial having more debugging blocks than

later challenges (Appendix I). Figure 8.2 shows the �rst custom blocks challenge that

has several debugging-�rst blocks. The debugging-�rst blocks are the only difference

between the debugging-�rst and non-debugging versions of the game.

Antipatterns

Lee et al. (2014) observed several `antipatterns' used by Gidget players that were

counter-productive to problem-solving:

All knowing computer - Failing to scrutinise the debugging code, even if they

are told it is �lled with errors.

Reinventing the wheel - Deleting the debugging code without reading it and

missing out on the clues that the code provides.

When you have a hammer, everything looks like a nail - Persisting in using

programming constructs used for earlier levels.

I don't want to try it - Avoiding trying out new ideas.
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I'll use it as it is - Failing to adapt an existing example to a particular context

(suggesting a lack of abstract reasoning that is common in novice programmers

(Lister, 2011)).

The Pirate Plunder debugging-�rst version is designed to address these issues.

By locking certain inputs and making blocks undeletable, players are restricted in

`reinventing the wheel'. This approach was inspired by Box Island (Radiant Games,

2016) (bottom right of Figure 2.8). The `I don't want to try it' and `when you have

a hammer, everything looks like a nail' antipatterns are addressed by having condi-

tions on level completion: block limits, obstacles, required blocks and the level pro-

gression itself where functionality is unlocked as the player progresses through the

game. Debugging-�rst custom blocks and inputs are given erroneous names and

large values in an attempt to address the `I'll use it as it is' and `all knowing computer'

antipatterns.

This study aimed to measure, using pre-to post-test results, whether the debugging-

�rst version of Pirate Plunder is more effective than a non-debugging version in meet-

ing the learning outcomes: better Pirate Plunder performance, teaching children to

use custom blocks and cloning in Scratch and improving CT. Game analytics were

used to analyse differences in player approaches between the versions.

8.1.3 Computational Thinking

Chapter 3 explores CT, what it means for primary education and the concerns sur-

rounding it. These concerns include how to assess CT and whether it can transfer

to other subjects or skills. This has proven dif�cult, in part due to the wide range of

different assessments available. Study 1 (Chapter 4) showed no difference between a

programming game and phonics activities on story sequencing ability, supporting the

results of much larger studies measuring CT improvements after a Scratch curriculum

(Straw et al., 2017) and mathematics improvements after a Scratch curriculum (with

CT as a secondary measure) (Boylan et al., 2018).

Section 4.5.1 charted a move away from CT onto measurable computer science

outcomes. The last few chapters have concentrated on abstraction and code smells.

Abstraction can be measured in Scratch using Dr. Scratch, a formative CT assess-

ment tool. In this study, CT is reintroduced as a secondary measure, to see whether

improvements in Scratch programming correspond to improvements in CT using a

summative assessment. This study will use one of the more well researched mea-

sures, the Computational Thinking test (CTt) (Román-González et al., 2018a) (Sec-

tion 3.3.3). The CTt is a multiple-choice assessment based on visual programming

and has been used with children age 10 and 11 in other experimental trials (e.g.

Brackmann et al., 2017).
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8.2 Pilot Study

A pilot study was conducted to test Pirate Plunder and the assessment tasks. This

took place in a medium-sized primary school in northern England. The participants

were 12 children age 9 and 10, who were experienced in Scratch, having used it and

other programming tools throughout their primary education (the school has strong

links with educational technology companies), but were inexperienced with custom

blocks and cloning. The school is below the national average (64%) with 54% of

pupils meeting the expected standard in reading, writing and maths.

The study took place over �ve weeks (one session of 1 hour 30 minutes each

week). In the �rst week, six participants did the Scratch task assessment (Section

8.3.3), before playing a debugging-�rst prototype of Pirate Plunder for the rest of the

session. Six more participants joined them in the second week, playing the non-

debugging prototype of the game. Observations made during this testing period and

their impact on Pirate Plunder are discussed in Stage 4 of the iterative development

process (Section 7.5.4). Participants then played Pirate Plunder for another three full

sessions (�ve hours in total). In the last week, all the participants did the Scratch task

assessment and the CTt.

The changes made to the materials and procedure from the pilot study are dis-

cussed in the next section.

8.3 Method

8.3.1 Participants

The participants in Study 3 were 85 children age 10 and 11 (M = 11.21, SD = 0.3) from

a large primary school in northern England. The school is above the national aver-

age of pupils meeting the expected standard in reading, writing and maths with 87%.

Participants were largely inexperienced with Scratch (having had sporadic lessons

throughout primary school) and had no experience using custom blocks or cloning.

The sample comprised of 36 males (42%) and 49 females (58%).

8.3.2 Design

The study followed a pre-test post-test quasi-experimental design to measure for dif-

ferences between two versions of Pirate Plunder. The experiment consisted of three

groups: Pirate Plunder (debugging-�rst), Pirate Plunder (non-debugging) and an ac-

tive control group that followed a standard Scratch curriculum. Participants were as-

sessed for their ability to use abstraction in Scratch using a Scratch task assessment

and their computational thinking ability using the CTt. At post-test, they were given

a Pirate Plunder or Scratch questionnaire depending on which group they were in. A
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selection of the Pirate Plunder participants were then interviewed after the post-test

to establish whether they had understood the rationale for using abstraction.

Figure 8.3: Diagram of the Study 3 design

8.3.3 Materials

This section describes the intervention and active control group learning content, the

quantitative assessments (Scratch task and CTt) and the qualitative data collection

methods (questionnaires and artifact-based interviews).

Pirate Plunder

Pirate Plunder is described in detail in the previous chapter (Chapter 7). It is a novel

educational block-based programming game designed for children age 9 to 11. It aims

to teach code reuse using loops (repeat blocks), parameterised procedures (custom

blocks) and instances (clones) in a game-based Scratch-like setting. Players program

a pirate ship to navigate around a grid, collect items and interact with obstacles using

Scratch blocks. They progress through a dif�culty progression that forces them to

duplicate code before introducing a block or strategy that they can then use to reduce

duplication (Section 7.3). Block limits, collectable items, program validation and in-

game feedback are all used to motivate the player. Pirate Plunder is designed to be

played with minimal teacher interaction.

Two versions of Pirate Plunder were created for this study, a debugging-�rst ver-

sion that starts with blocks in each level that the player must debug, and a version

where the player starts each level with an empty program (Section 8.1.2).

Scratch: Animated Stories Curriculum

Study 1 (Chapter 4) highlighted the importance of using an active control group when

measuring for cognitive improvements. An active control group aims to keep the ex-

perience of the control group similar to those during the intervention. This is done
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by giving them the same amount of researcher contact time and introducing them to

similar `new experiences' like using technology and learning content that they do not

often use in school.

The control group in this study were taught a six-lesson Scratch curriculum pro-

duced by Twinkl, a popular educational resources company. The curriculum is de-

signed for this age group (age 10 and 11) and does not cover custom blocks or cloning

(Twinkl Educational Publishing, 2018). Table 8.1 gives a breakdown of each lesson.

It was delivered by the author and involves creating an animated story based on a

`haunted house' (an example �nished project is shown in Figure 8.4).

Table 8.1: Scratch: Animated Stories curriculum - lesson breakdown

Lesson
Number

Lesson
Name

Content Scratch/Programming
Concept

1 Animate a
Scene

Animating characters to
around a scene

Green �ag events, sounds,
repeats (loops), changing
size, gliding to position

2 Broadcast
a Message

Using message
broadcasting (sending and
receiving messages) to
sequence events

Message broadcasting

3 Show and
Hide

Using show and hide to set
the visibility of sprites

Show and hide

4 Sequence
a Story

Creating a story (using a
storyboard) with different
backdrops

Backdrops, speech

5 Adding
Audio

Recording and adding
audio to the project

Sounds

6 Getting
interactive

Using key press events to
add extra functionality

Key press events

Scratch Task

The Scratch task was completed at both pre-and post-test. It was designed to allow

participants to demonstrate Scratch pro�ciency (as a baseline), but also to a speci-

�cation that involved duplication, enabling them to use custom blocks and cloning if

they were able to recognise that abstraction would be useful. The task was based on

the Scratch projects used in Study 2 (Chapter 6) and involved animating the cat sprite

around the edges of a rectangle, leaving an object on each corner. Two versions were

used alternately (in an attempt to reduce copying), so two participants sat next to each

other would be doing slightly different tasks. They were then given the other task at

post-test. The tasks were different only in their appearance, having the participant

place either trees or speakers on different rectangular backdrops (Appendices J and

K). A third version was shown on the interactive whiteboard at the front of the class-

room to demonstrate the expected behaviour. The project starts with the cat sprite
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Figure 8.4: Screenshot of a �nished project from lesson six of the Scratch curriculum

(containing a `when green �ag clicked' block, a `go to position' block to move the cat

back to the bottom left corner and a `point in direction' block to reset its direction to

facing right), a single empty object sprite (either a tree or a speaker) and a backdrop

with a rectangle that the player must navigate around (Figure 8.5).

This version of the Scratch task was adjusted from observations during the pilot

study. Comments were added to the starting instructions to explain what they did, and

the task sheet was altered so that the expected behaviour was clearer.

The ideal solution to the setting up speakers Scratch task is shown in Figure 8.6.

It uses a custom block for moving and turning different distances along the sides of

the rectangle and clones a speaker on each corner. This block is used four times,

one for each side of the rectangle. The speaker sprite is hidden when the green �ag

is clicked and moved to the position of the cat before being shown. This solution is

similar to the cloning levels in Pirate Plunder (Section 7.4.1). Other ways to meet the

speci�cation (but not custom blocks and cloning) are similar to those used in Study 2

(Chapter 6). For example, having four object sprites, hiding them on `when green �ag

clicked' and then showing them after the number of seconds that correspond to the

cat sprite reaching that corner (e.g. Figure 6.2).

The Scratch task assessment projects were marked using Dr. Scratch for abstrac-

tion and decomposition (use of custom blocks and cloning) (Table 8.2) and for whether

the project had met the expected outcome of the task. The expected outcome mark

was split into cat behaviour and object behaviour (Table 8.3).

150



Figure 8.5: Screenshot of the starter Scratch project for the setting up speakers task

Figure 8.6: Screenshot of a Scratch project showing the ideal solution to the setting
up speakers task, showing the cat sprite (left) and speaker sprite (right)

Table 8.2: Dr. Scratch scoring system for abstraction and decomposition

Points Required Functionality

1 More than one script and more than one sprite

2 Custom blocks

3 Cloning

151



Table 8.3: Scratch task expected outcome marking (a score out of 2 for each category)

Points Cat Object

0 No movement None/incomplete

1 Movement around the rectangle

with no animation

Trees on each corner but not

appearing when the Cat reaches

them

2 Animated movement around the

rectangle

Trees on each corner that appear

when the Cat reaches them

Computational Thinking Test

The Computational Thinking test (CTt) is described in Section 3.3.3. It aims to mea-

sure “the ability to formulate and solve problems by relying on the fundamental con-

cepts of computing, and using logic-syntax of programming languages: basic se-

quences, loops, iteration, conditionals, functions and variables” (Román-González et

al., 2016, p. 4). The CTt contains 28 multiple choice questions that use visual arrows

or blocks common in educational programming tools (Figure 8.7). Each question has

four possible answers (with one correct) and not all questions have to be answered. It

has been used in several experimental trials with children age 10 to 14 (e.g. Brack-

mann et al., 2017; Pérez-Marín et al., 2018) and has been used to predict perfor-

mance on a Code.org course (Román-González et al., 2018a), suggesting that it may

have some predictive validity in terms of `computational talent'.

Figure 8.7: Question from the Computational Thinking test
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Questionnaires

Participants were given a questionnaire designed by the author at post-test. These

were slightly different for the Pirate Plunder and Scratch groups (Appendices M and

N) and contained the following questions:

1. How con�dent do you feel using Scratch?

2. How has your con�dence using Scratch changed after playing Pirate Plun-

der/the Scratch lessons?

3. How con�dent do you feel using custom blocks in Scratch?

4. How has your con�dence using custom blocks changed after playing Pirate

Plunder/the Scratch lessons?

5. How con�dent do you feel using clones in Scratch?

6. How has your con�dence using clones changed after playing Pirate Plunder/the

Scratch lessons?

7. What did you like about Pirate Plunder/the Scratch lessons?

8. Is there anything that you would change about Pirate Plunder? (problems, dif�-

culties, extra features)/the Scratch lessons?

9. Do you have any other comments?

The con�dence questions (1, 3 and 5) used the scale: very con�dent, con�dent,

slightly con�dent and not con�dent and answers were coded as quantitative data as

3, 2, 1, 0. The con�dence change questions (2, 4 and 6) used a different scale:

improved, same as before and declined and were coded as 1, 0, -1. The last three

questions (7, 8 and 9) on the questionnaire were text boxes and optional. The coded

answers were used as secondary data as self-reporting measures, particularly from

children, can be inconsistent (Austin, Deary, Gibson, McGregor, & Dent, 1998). The

feedback obtained from the last three questions on the Pirate Plunder questionnaire

was used to improve the game for Study 4 (Section 8.5.4).

Artifact-Based Interviews

Artifact-based interviews are part of Brennan & Resnick's (2012) method of assessing

the development of computational thinking through design activities in Scratch, along

with project portfolio analysis and design scenarios. Their approach uses these inter-

views to discuss Scratch more generally, focusing on the user's background, project

creation, involvement in the Scratch online community and wider interests.
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In this study, the interviews were used to establish whether participants had under-

stood the rationale for using abstraction through custom blocks and cloning. The in-

terviews were one-to-one with the researcher. They began with open questions about

the participant's project, to see if they could rationalise why they had done something

without a prompt, before progressing to more leading questions about custom blocks

and cloning. They were asked about their project (what each of the blocks did and

why they had used them), alternative approaches they considered, why they had/had

not used custom blocks, why they had/had not used cloning, before �nishing on simi-

larities between the task and Pirate Plunder and general feedback on the game. A full

script can be seen in Appendix L.

8.3.4 Procedure

All participants did both the Scratch task and the CTt at pre-test. The Scratch task

took place in the school IT suite in class groups. Participants were introduced to the

study and the assessment, then given 40 minutes to produce a solution. This was

done in order for the assessments to be conducted in one lesson (50 minutes) due to

the time constraints of the study. They were told they could save multiple versions of

their projects if they could think of more than to complete the task. The CTt took place

after the Scratch task in the classroom on tablets. Participants were given 45 minutes

to complete the test.

The class groups were then assigned to either the debugging-�rst intervention,

non-debugging intervention or the Scratch control. School limitations meant that par-

ticipants were placed in their class groups for the study. Sessions were conducted in

their normal computing lesson time in the school IT suite. This meant that each group

had 50 minutes per week during the intervention over six weeks (�ve hours of lesson

time in total). The pre-tests and post-tests were conducted in the weeks before and

after this period, making the study eight weeks long.

The Pirate Plunder sessions were unstructured, with participants playing through

the game over six lessons. They were reminded not to copy from or complete levels

for others. If they were stuck, the researcher or teacher would come around and give

them hints on how to complete that level. The Scratch lessons followed the curriculum

detailed in Section 8.3.3, one lesson per week.

At post-test, all the participants then did the Scratch task (following the alternate

speci�cation) and the CTt again following the same procedure, and in the same or-

der, as the pre-test. After this, the participants were asked to complete either the

Pirate Plunder or Scratch questionnaire and a sample of participants from the inter-

vention groups were interviewed. The interviewees were selected based on their use

of custom blocks, cloning or obvious duplication in their Scratch projects, roughly �ve

participants per category. As not many participants used custom blocks or clones,

all participants that did use them were interviewed, along with a set of participants
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who could have used abstraction but did not (having duplicated blocks that could be

moved to a single custom block). The interviews were between 10 to 15 minutes and

conducted in a reading room adjoining the classroom. They took place over 1 day

(allowing time for 16 participants) as the end of the study coincided with the end of

the school year.

The study took place in the summer term after participants had completed their

Key Stage 2 SATs (Standard Assessment Tests). It was eight weeks long, a six-week

intervention with assessments taking place in the weeks either side, one session per

week. It ran from the 24th May 2018 to the 19th July 2018.

8.3.5 Ethics and Access to Participants

The ethics application for testing Pirate Plunder in primary schools (Appendix G) was

approved by the University ethics committee as an amendment to the initial ethics ap-

plication (Appendix C). This covers the game testing in Chapter 7 and Studies 3 and

4 with their respective pilots. For this study, permission was given by the headteacher

to con�rm that the study could go ahead. Once the teachers had been briefed, opt-out

consent forms were sent to the parents/guardians of participants (Appendix O). This

was done to meet the wishes of the school.

All data, including assessment scores, game analytics, coded questionnaires and

interview transcripts, were anonymised and stored against participant ID numbers.

Scratch projects were renamed as versions (e.g. `V1', `V2') and saved in participant

ID folders. Appendix H shows the data management plan.

8.3.6 Hypotheses

There were two hypotheses for the study, the �rst based on evaluating the debugging-

�rst approach and the second on the wider aims of Pirate Plunder:

1. The debugging-�rst version of Pirate Plunder would have a positive impact on

learning outcomes (Dr. Scratch abstraction and CTt) and game performance

compared to the non-debugging version.

2. Participants in the Pirate Plunder groups would improve their abstraction and

decomposition scores (measured by Dr. Scratch) from pre-to post-test com-

pared to the Scratch control group.
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8.4 Results

8.4.1 Hypothesis 1 - Did the Debugging-First Approach Have a

Positive Impact on Learning Outcomes and Pirate Plunder

Performance?

Hypothesis 1 was that the debugging-�rst version of Pirate Plunder would have a

positive impact on learning outcomes (Dr. Scratch abstraction on the Scratch task

assessment and CTt scores) and game performance compared to the non-debugging

version.

Scratch Task - Abstraction

Figure 8.8 shows the mean Dr. Scratch abstraction and decomposition learning gains

from pre-to post-test for each group (Table 8.4 shows the descriptive statistics). A

one-way ANOVA showed no signi�cant difference between the learning gains of the

three groups, F(2, 67) = 1.01, p = .340, � 2 = .032.

Figure 8.8: Comparison of the Dr. Scratch abstraction and decomposition learning
gains on the Scratch task assessment from pre-to post-test for each group (error bars
show 95% con�dence interval)

In the Scratch task post-test, seven of the 70 participants attempted to use custom

blocks and/or cloning (10%), with six of these in the intervention condition (Table 8.5).

The two intervention groups were identical in terms of the number of participants that

attempted to use custom blocks and cloning. Dr. Scratch cannot assess whether
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Table 8.4: Descriptive statistics of the Dr. Scratch abstraction and decomposition
scores on the Scratch task assessment (maximum score of 3)

Condition Pre-Test Post-Test Learning Gains

Pirate Plunder

Debugging-�rst
M 0.74 0.87 0.13
N 23 23 23

SD 0.54 0.69 0.92

Non-debugging
M 0.82 1.23 0.41
N 22 22 22

SD 0.40 0.69 0.80

Control
M 1.00 1.08 0.08
N 25 25 25

SD 0.58 0.40 0.70

this functionality was used correctly, but this can be measured using the expected

outcome score (Section 8.4.4). Of the six participants in the intervention condition

who used custom blocks and/or cloning, four achieved a full expected outcome score

of 4 (one debugging-�rst and three non-debugging) and two achieved 0 (one from

each group).

Table 8.5: Breakdown of the post-test Dr. Scratch abstraction and decomposition
scores for each group

Condition N Dr. Scratch Abstraction and Decomposition Score
0 1 2 3

Debugging-�rst 23 6 15 1 1
Non-debugging 22 1 17 2 2
Control 25 0 24 0 1
Total 70 7 56 3 4

Computational Thinking Test

Figure 8.9 shows the mean Computational Thinking test learning gains from pre-

to post-test for each group (Table 8.6 shows the descriptive statistics). A one-way

ANOVA showed no signi�cant difference between the learning gains of the three

groups F(2, 72) = 0.28, p = .76, � 2 = .008.
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Figure 8.9: Comparison of the Computational Thinking test learning gains from pre-to
post-test for each group (error bars show 95% con�dence interval)

Table 8.6: Descriptive statistics of the Computational Thinking test for each group
(maximum score of 28)

Condition Pre-Test Post-Test Learning Gains

Pirate Plunder

Debugging-�rst

M 15.42 16.96 1.54

N 24 24 24

SD 4.05 4.80 4.85

Non-debugging

M 16.63 17.96 1.33

N 24 24 24

SD 4.27 5.00 4.76

Control

M 17.96 18.56 0.59

N 27 27 27

SD 4.41 4.39 4.88

Pirate Plunder Performance

Pirate Plunder performance is judged by the number of challenges completed (out of

40) and overall stars collected (a maximum of 120, 3 per challenge). The average

stars collected is given as an additional measure of performance (out of 3) but is not

part of the main measurement. Both groups spent 290 minutes playing the game (4

hours 50 minutes).

Table 8.7 shows a breakdown of these statistics for both Pirate Plunder groups.

Because there are two measures of performance, the required con�dence level for
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signi�cance is increased to 97.5% ( p < 0.025). In this case, there was no difference

between-groups in the number of challenges completed, t(55) = 1.96, p = .055, d =

0.51, or the total stars collected, t(55) = -2.01, p = .049, d = 0.53.

Table 8.7: Descriptive statistics of Pirate Plunder performance for both intervention
groups

Condition Challenges
Completed

Total Stars
Collected

Average Stars
per Level

Debugging-�rst
M 31.28 91.62 2.91
N 29 29 29

SD 5.30 17.87 0.16

Non-debugging
M 34.04 100.79 2.96
N 28 28 28

SD 5.35 16.42 0.08

8.4.2 Hypothesis 2 - Did Pirate Plunder Improve Abstraction in

Scratch Compared to the Control?

Hypothesis 2 was that the Pirate Plunder groups would improve their abstraction

scores (measured by Dr. Scratch) from pre-to post-test more so than the Scratch

control group. Using an independent samples t-test, there was no signi�cant differ-

ence in the learning gains between the intervention and the control, t(68) = 0.92, p =

.36, d = 0.24 (Table 8.8).

Table 8.8: Descriptive statistics of the Dr. Scratch abstraction and decomposition
scores on the Scratch task for the intervention and control groups (maximum score of
3)

Condition Pre-Test Post-Test Learning Gains

Intervention
M 0.78 1.04 0.27
N 45 45 45

SD 0.47 0.71 0.86

Control
M 1.00 1.08 0.08
N 25 25 25

SD 0.58 0.40 0.70

As previously mentioned in Section 8.4.1, only seven of the 70 participants (10%)

who did the Scratch task at post-test attempted to use custom blocks and/or cloning,

with six of these in the intervention condition. Most participants completed the task

using `show', `hide' and `wait' blocks to get each object to appear, using four object

sprites in the process.
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8.4.3 Artifact-Based Interviews Observations

Participants were selected for the interviews based on their use of custom blocks and

cloning on the Scratch task assessment in relation to their Pirate Plunder progress,

or for solutions with obvious duplication. During the interviews (N = 16), it became

apparent that when prompted, participants could explain what custom blocks are, why

they are used and where they could have used them in the Scratch task. For example:

Researcher: “Could you have used a custom block?”

Participant: “Oh yeah – I might have been able to actually – instead of

doing a repeat and move every time, I could've had a custom block to

move and it would move as many steps as it needed to move.”

Researcher: “Would you have put the turn in it?”

Participant: “In the cat, yes because it has to turn every time.”

Researcher: “What is the advantage of using a custom block?”

Participant: “It makes it easier because you don't have to keep clicking

repeat and move. And if you add inputs it can move as many as you want

it to.”

Several of these participants could also explain what cloning is and why it is used

in Scratch, but had dif�culty applying this knowledge to the Scratch task assessment.

Various reasons were given for not using custom blocks and cloning in the post-test,

including the lack of a block limit, Pirate Plunder working differently to Scratch and

wanting to complete the task using a similar method to the method they had used at

pre-test. These reasons are explored in the discussion (Section 8.5).

8.4.4 Differences in Scratch Task Performance

An expected outcome score out of 4 (Table 8.3) was used to establish whether partici-

pants had produced a project that met the speci�cation of the Scratch task. There was

no signi�cant difference in the expected outcome learning gains between groups, F(1,

68) = 0.05, p = .82, � 2 = .001. Table 8.9 shows the descriptive statistics. As the pre-

test scores of the three groups were signi�cantly different ( F (2, 67) = 7.87, p = .001,

� 2 = .19), paired samples t-tests show signi�cant improvements for the debugging-�rst

group (t(22) = 2.69, p = .013, d = 0.68), the non-debugging group (t(21) = 5.08, p <

.001, d = 1.06) and the control group (t(24) = 4.54, p < .001, d = 1.01).
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Table 8.9: Descriptive statistics of the expected outcome scores on the Scratch task
for each group

Condition Pre-Test Post-Test Learning Gains

Pirate Plunder

Debugging-�rst

M 0.96 1.96 1.00

N 23 23 23

SD 1.15 1.71 1.78

Non-debugging

M 1.27 2.86 1.59

N 22 22 22

SD 1.39 1.58 1.47

Control

M 2.32 3.52 1.20

N 25 25 25

SD 1.22 1.16 1.32

8.4.5 Differences in Post-Test Con�dence

Table 8.10 shows the descriptive statistics for the Pirate Plunder and Scratch post-test

questionnaire con�dence ratings. The con�dence ratings are on a scale from 3 to 0

(very con�dent to not con�dent) and con�dence changes from 1 to -1 (improved to

declined) (Section 8.3.3).

There were signi�cant differences in Scratch con�dence ( F(2, 67) = 3.95, p = .024,

� 2 = .11), Scratch con�dence change ( F(2, 67) = 9.81, p < .001, � 2 = .23), custom

block con�dence ( F(2, 67) = 6.41, p = .003, � 2 = .16), custom block con�dence change

(F(2, 67) = 3.62, p = .032, � 2 = 0.1) and clone con�dence change ( F(2, 67) = 5.5, p

= .006, � 2 = 0.14). All of these differences favoured the non-debugging group or the

control and the non-debugging group over the debugging-�rst group.

Table 8.10: Descriptive statistics of the questionnaire con�dence ratings for each
group (PP = Pirate Plunder, DF = Debugging-�rst and ND = Non-debugging)

Condition Scratch
Con�-
dence

Change Custom
Block
Con�-
dence

Change Clone
Con�-
dence

Change

PP DF
M 1.54 0.46 1.21 0.38 1.00 0.25
N 24 24 24 24 24 24

SD 0.88 0.72 1.10 0.71 0.78 0.79

PP ND
M 1.96 1.00 2.08 0.81 1.46 0.81
N 26 26 26 26 26 26

SD 0.72 0.00 0.94 0.49 0.86 0.40

Control
M 2.20 0.90 1.20 0.45 1.55 0.40
N 20 20 20 20 20 20

SD 0.77 0.31 0.95 0.61 0.83 0.60
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8.4.6 Differences in Pirate Plunder Analytics

Section 8.4.1 showed that there were no differences in Pirate Plunder performance

between groups. This section analyses the Pirate Plunder analytics in more detail,

examining level attempts, time spent on each level and program manipulation.

Table 8.11 shows the average attempts and time spent statistics, both overall and

per level, for each version. The debugging-�rst group had signi�cantly more total level

attempts (t(55) = 2.41, p = 0.019, d = 0.55) and average attempts per level (t(55) =

3.51, p = .001, d = 0.93). Yet, the average time per level was not signi�cantly different.

Level attempts with a time under one second were removed from the dataset because

these indicate that the button was spammed and would skew results.

Table 8.11: Descriptive statistics of Pirate Plunder attempts and time for each inter-
vention group

Condition Total Level
Attempts

Average
Attempts per
Level

Total Level
Time
(HH:MM:SS)

Average
Time per
Level
(Seconds)

Debugging-�rst
M 276.97 8.93 02:58:25 343.04
N 29 29 29 29

SD 116.03 3.45 00:40:49 63.43

Non-debugging
M 211.29 6.18 03:05:30 325.8
N 28 28 28 28

SD 86.93 2.36 00:47:13 75.11

Table 8.12 shows the program manipulation statistics (block additions, deletions

and moves) for each group. Interestingly, the average manipulation per attempt was

signi�cantly higher for the non-debugging group ( t(55) = 2.05, p = .045, d = 0.54),

whereas average manipulation per level was signi�cantly higher for the debugging-

�rst group ( t(55) = 2.41, p = .02, d = 0.64).

Table 8.12: Descriptive statistics of Pirate Plunder program manipulation for each
intervention group

Condition Total Program
Manipulation

Average Program
Manipulation per
Attempt

Average Program
Manipulation per
Level

Debugging-�rst
M 3256.80 12.31 102.88
N 29 29 29

SD 1409.35 3.97 37.15

Non-debugging
M 2890.67 14.71 83.46
N 28 28 28

SD 887.84 4.83 21.45
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8.4.7 CT as a Predictor of Pirate Plunder Performance

The CTt pre-test scores correlated signi�cantly with both measures of Pirate Plunder

performance: number of challenges completed, r (53) = .44, p = .001 (Figure 8.10)

and total stars collected, r (53) = .42, p = .002 (Figure 8.11).

Figure 8.10: Relationship between CTt pre-test score and number of Pirate Plunder
challenges completed for each participant (with regression line)

8.4.8 Scratch Expected Outcome Learning Gains as a Predictor

of CT Learning Gains

The CTt was included as a measure to see if improvements in Scratch programming

would correspond to improvements in CT. The Scratch task expected outcome mea-

sure is a good indicator of Scratch programming ability as it assesses whether the

participant can produce a project to a solution. There was no correlation between the

learning gains of the two measures, r (69) = .15, p = .228. However, participants did

improve on the CTt overall after both programming interventions (Section 8.4.1).
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Figure 8.11: Relationship between CTt pre-test score and number of Pirate Plunder
stars collected for each participant (with regression line)

8.5 Discussion

8.5.1 Was Debugging-First Bene�cial?

The results show that a debugging-�rst approach was not bene�cial in Pirate Plun-

der in comparison with a non-debugging approach, in terms of learning gains on the

Scratch task assessment, CTt and the Pirate Plunder performance statistics. This

suggests that the debugging-�rst blocks were no more bene�cial than starting with an

empty program on each level.

Debugging-First Constraints

The debugging-�rst blocks were designed to both �t the dif�culty progression (aiding

the player) and to address the antipatterns observed by Lee et al. (2014). However,

during the study, it was observed that players would be confused by the debugging-

�rst blocks and often attempt to clear the program, even if some blocks were un-

deletable. The results also show that on average, the players in the debugging-�rst

condition manipulated their programs more and had more total attempts and attempts

per level. This was expected, as the player has to come to grips with the debugging-

�rst program. Yet, this did not have the expected positive impact on the learning

outcomes. This suggests that the style of debugging-�rst blocks used may have been
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too restrictive and actually hindered the player instead of helping them.

During the artifact-based interviews, participants in the debugging-�rst group were

asked about how helpful they found these blocks. Several participants responded that

they were only useful sometimes and would often get in the way. For example:

Researcher: “In Pirate Plunder, you had these locked blocks, did you

think they were helpful? Or unhelpful?”

Participant: “So sometimes I moved them around and didn't use them.”

Researcher: “Did you think they were helpful?”

Participant: “Yeah, they were helpful because they were giving you a

vague idea of what you had to do. I just played it and tried to �gure out

what they were doing.”

Researcher: “Would you have preferred not having them at all?'

Participant: “Sometimes – sometimes not. Cos on some of them I found

them harder than others and they all had those on. Like sometimes it

would've been easier with those on and sometimes not.”

8.5.2 Did Pirate Plunder Work?

The results show that there was no difference between the Dr. Scratch abstraction

and decomposition scores for the intervention and control groups on the Scratch task

assessment. However, when questioned during the artifact-based interviews, inter-

vention participants could explain how they would use custom blocks, and in some

cases cloning, on the task. When asked why they did not use these, participants said

that they did not know that they had to. This indicates that the Scratch task was not a

good enough assessment to show participant understanding of the learning content.

The possible reasons for this are discussed below.

No Motivation for Using Abstraction in the Scratch Task

The �rst reason for the lack of abstraction on the Scratch task assessment is that the

task does not motivate participants to use custom blocks and cloning. Whereas in

Pirate Plunder, they have to use abstraction to complete levels and this is enforced by

motivational strategies such as a block limit and required blocks (Section 7.4.2). For

example:

Researcher: “Could you have used a custom block in your solution?”

Participant: “I'm not quite sure – because Scratch is a bit different to

Pirate Plunder. You probably could because there is options for custom

blocks – but I don't really know how you would use them, because you

don't really have the limited blocks. Because there's no block limit then

you wouldn't really need too – but you could just to make it a bit quicker.”
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In comparison, the objective of the Scratch task is to achieve the required be-

haviour of moving the cat sprite around the rectangle. This does not have to be

done using the same method as Pirate Plunder and can be done using other `Move'

category blocks such as `glide to position'. In addition, the project will only contain

duplication, and motivation for abstraction, if the participant produces it. This means

that the participant has to �rst complete the task and then see that they can refactor

their solution, which is a lot of functionality to produce in the 40 minutes they were

given for the task.

Same Scratch Task at Pre-and Post-test

The second possible reason is that because the participants were doing a similar

assessment at pre-and post-test, they completed the task at post-test using a similar

method as they did at pre-test. This is supported by research into memory strategies,

which suggests that children will stick to an existing strategy instead of using a new

one because it requires less cognitive effort (Lodico, Ghatala, Levin, Pressley, & Bell,

1983). Participants would often use the functionality that they had attempted to use

at pre-test instead of attempting to use the new functionality. An example of this is

shown in Figure 8.12, where a participant (from the non-debugging group) created an

incomplete solution at pre-test that used repeat blocks. At post-test, they then �nished

this solution using the same, but now complete, repeat blocks. It is worth noting that

this participant had reached level 33 of Pirate Plunder, completing all the custom block

and inputs levels, so in theory, should have been able to use them in Scratch.

Scratch Differences to Pirate Plunder

During the interviews, some participants stated that Scratch was too different from

Pirate Plunder and that this affected their solution to the Scratch task assessment at

post-test. Participants gave two main reasons for this, which are described below.

The �rst reason was that there is no resetting in Scratch. Whereas in Pirate Plun-

der, the grid resets after each program run, Scratch sprites will maintain their state

from the previous program run. Despite the starting project (Figure 8.5) having blocks

to reset the cat sprite and comments to explain this, many participants simply deleted

these blocks and attempted to start again. They then got confused when the cat sprite

would not return to the bottom left corner of the park/room once their program had run.

The second reason was the grid differences, namely the much larger Cartesian

system in Scratch (Section 7.4.3) and the coordinates on the x-and y-axes in Pi-

rate Plunder. This meant that distances were considerably bigger in Scratch and

participants had to obtain grid coordinates by using the coordinate position indica-

tor underneath the stage that updates as the player moves their mouse around the

grid. Despite Pirate Plunder having this, players rarely used it because of the x-and
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y-coordinates on the grid axes.

Figure 8.12: Screenshot of a participant Scratch project attempting to complete the
task using the same solution at pre-and post-test, not considering attempting to use
custom blocks or cloning

Not Remembering the `Property Of' Block

When questioned on how they would use cloning blocks, participants struggled to

describe how they would get the object to appear in the same position as the cat

sprite. For example:

Researcher: “Could you have used cloning in this project?”

Participant: “I think so – to maybe clone the trees.”

Researcher: “What would the advantage of that be?”

Participant: “You wouldn't have to use the buttons as well and it would

just do it itself.”
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Researcher: “How would you go about getting the clone to go to the right

position? Would you still need four trees?”

Participant: “No – when you clone something it means there's more than

one of the thing. I'd use the go to position block to get it to go to the right

position.”

Researcher: “How would you get each tree clone to go to the right place,

if you can only give it one set of numbers?”

Participant: “You could put in the go to block – I can't remember. Would

you use delete clone?”

Potentially, this is because the `property of' block in the `Sensing' category is intro-

duced as part of the `cloning other sprites' tutorial, where the player is already taking

on a lot of new information.

8.5.3 Limitations

Other than the issues with Pirate Plunder and the Scratch task assessment described

in the previous section, another limitation of the study was that the non-debugging

group were better than the debugging-�rst group at the start of the study, as shown

by their higher pre-test scores on both the Scratch task assessment and the CTt.

Yet, this difference was dif�cult to avoid because the school required the use of class

groups who may have had different teaching experiences before the study.

8.5.4 Pirate Plunder Feedback

Participants were asked to give feedback on Pirate Plunder as part of the question-

naire (Appendix M) and at the end of the artifact-based interviews. The majority of

suggestions for improving the game involved getting better help from the feedback

parrot. There were also some suggestions for removing the �ve-coin update cost in

the shop and adding extra shop items for female pirates (dresses, haircuts, etc.)

8.5.5 Non-Programming Control

To con�rm that Pirate Plunder is effective in meeting its learning outcomes, a non-

programming control group would be useful in providing a comparison to a group

that did no programming (and therefore no CT) during the study. This would test

whether Pirate Plunder works in terms of improving abstraction scores and expected

outcomes, compared to a group that did no block-based programming. This second

control group would still be active, and would still be doing a technology-based task,

to ensure that they are a reliable comparison to the intervention group. This was done

in Study 4 (Chapter 9).
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8.6 Conclusions

In conclusion, the debugging-�rst approach in Pirate Plunder was not bene�cial to

players. The debugging-�rst blocks may have been too restrictive, particularly the un-

deletable and unchangeable inputs. Not allowing the player to clear the program, in an

attempt to address the `reinventing the wheel' antipattern, may have been detrimen-

tal to some players. Consequently, Study 4 will use a single version of Pirate Plunder

that contains some debugging-�rst blocks (those that the game analytics showed were

useful) that can be deleted if the player does not want to use them.

There was also no difference between the experimental condition (Pirate Plunder)

and the active control (Scratch curriculum) in Dr. Scratch abstraction scores on the

Scratch task assessment from pre-to post-test. This could be down to weaknesses

in the task. The artifact-based interviews suggested that participants had understood

how to reuse Scratch code using custom blocks and cloning, but the Scratch task

assessment was not good enough to pick up these differences. The lack of a differ-

ence between the expected outcome scores on the assessment suggests that Pirate

Plunder is effective in teaching children to use basic Scratch functionality, or at least

enough to complete a simple Scratch task.

The weaknesses of the Scratch task assessment discussed in Section 8.5.2 in-

clude not motivating the player to use abstraction and the task being the same at pre-

and post-test. Weaknesses with Pirate Plunder include differences to Scratch and

participants not remembering how to use the `property of' block. Several changes

are made to the Scratch task assessment in Study 4 to address these weaknesses,

including moving the blocks to reset the position of the cat sprite to a different starting

event. Study 4 used a new post-test assessment that explicitly asks the player to re-

duce the number of blocks in a pre-made project. This is discussed in more detail in

the next chapter (Chapter 9).

The next chapter describes a study designed to evaluate the overall ef�cacy of

Pirate Plunder to teach abstraction skills to children in Scratch. It builds on the results

of this study, using a crossover design, a non-programming control group, improved

assessments and an updated version of the game. The updated version of Pirate

Plunder has an improved help function, name customisation (so that player names are

not stored in the database), a revised dif�culty progression (with looser debugging-

�rst blocks) and more shop items.
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Chapter 9

Study 4 - Using Pirate Plunder to

Improve Children's Abstraction Skills

in Scratch

This chapter describes a study designed to evaluate whether Pirate Plunder can

be used to teach primary school children age 10 and 11 how to use abstraction in

Scratch. The observations, results and participant feedback from Study 3 (Chapter

8) have been used to develop an updated version of Pirate Plunder, produce revised

assessments and devise a new experimental design.

The chapter begins by describing the conclusions and changes made from Study

3. It then describes a pilot study before giving the results, discussion and conclusions

of the study reported in this chapter.

9.1 Introduction

This section explains how the conclusions from Study 3 have been used to create an

updated version of Pirate Plunder. It then describes how the observations and results

have been used to create two new Scratch abstraction assessments and an updated

experimental design, which are described in detail in Section 9.3.3.

9.1.1 Conclusions from Study 3

Study 3 was designed to investigate the value of a debugging-�rst approach in Pirate

Plunder and to measure whether Pirate Plunder was effective in teaching children to

use abstraction skills in Scratch.
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Debugging-First

Study 3 was unable to demonstrate any bene�ts of the debugging-�rst version over

the non-debugging version of Pirate Plunder. Observations during the intervention

and responses during the artifact-based interviews indicated that participants found

them too restrictive and got frustrated when they did not understand them. Particu-

larly the undeletable and unchangeable input blocks that were added to deal with the

`reinventing the wheel' antipattern identi�ed by Lee et al. (2014).

Abstraction

There was no difference observed between the Pirate Plunder groups and the Scratch

active control group on the tasks designed to measure abstraction in Scratch. Yet,

when the same participants who had played Pirate Plunder were interviewed about

using custom blocks, most could explain what they were and how they could have

used them in the task. This suggests that there were weaknesses in the Scratch

assessment, speci�cally a lack of motivation for using abstraction and participants

producing similar solutions at pre-and post-test because the task was the same.

Pirate Plunder was successful in getting players to use custom blocks and cloning

within the game. This indicates that the game mechanics explained in Chapter 7 work

and can be built upon for the study reported in this chapter. Yet, there were issues with

participants being unable to recall the `get property of' block and complaints about the

hint function.

Computational Thinking

Study 3 used the CTt (Computational Thinking test) as an additional measure to see

whether improvements in Scratch programming corresponded to improvements in CT.

There were overall improvements from pre-to post-test, but no difference between

groups. This was expected because both groups were applying computational think-

ing (CT) through programming, in line with the current literature.

9.1.2 Pirate Plunder Changes

Several changes were made to Pirate Plunder before the start of Study 4. These

were:

1. Removing the restrictive debugging-�rst blocks and leaving in looser debugging-

�rst blocks that were useful to players in Study 3.

2. Updating the dif�culty progression.

3. Adding a tutorial for the `get property of' block.
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4. Adding an improved help function.

5. User interface changes to make Pirate Plunder more similar to Scratch.

6. Name customisation to remove players' real names for GDPR.

All these changes were combined into a single version of Pirate Plunder that was used

in the study reported in this chapter. This version was tested in a pilot study before

Study 4 began (Section 9.2).

Debugging-First Blocks

Debugging-�rst blocks were altered considerably for Study 4 due to the lack of bene�t

for players using them in Study 3. This was done using player feedback, observations

and level analytics. The blocks were altered in two ways: removing restrictive block

types and only having debugging-�rst blocks on levels where they were bene�cial in

Study 3.

The four types of debugging-�rst blocks from Study 3 were as follows (Section

8.1.2):

1. Blocks with an incorrect input.

2. Blocks with a locked (but correct) input.

3. Assistance blocks that are undeletable.

4. Assistance blocks that not locked but are sometimes not needed in the solution.

For Study 4, undeletable assistance blocks (Type 3) were removed completely and

blocks with a locked (but correct) input (Type 2) were unlocked so that the player

could change their value. In the Study 3 post-test interviews, participants stated that

the debugging-�rst blocks could be confusing and locking them made some levels

more dif�cult. This was supported by the higher number of total level attempts and

average attempts per level for the debugging-�rst players (Section 8.4.6). Combined

with their lower performance overall, this indicates that they found levels more dif�cult

because of the restrictive debugging-�rst blocks. Block Types 1 and 4 were left in the

game, leaving debugging-�rst code that is `looser' and can be removed by the player

(Figure 9.1 shows an example). The debugging-�rst blocks for a challenge level can

be brought back using the `reset' button.

This may now encourage the `reinventing the wheel' antipattern, where players

delete the debugging-�rst code without reading or understanding it (the rationale for

the undeletable blocks). However, this decision was made as a trade-off between

the frustration that players feel because they do not understand the debugging-�rst

functionality, instead being guided to the solution themselves using tutorials, previous

level solutions and the new help feature.
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Figure 9.1: Screenshot of an example of the updated debugging-�rst instructions for
Study 4, all the blocks can be removed, and the inputs can be changed

The decision was made to leave the `looser' debugging-�rst blocks on the levels in

which they were bene�cial to players in Study 3. This was judged on a level-by-level

basis using the following criteria. On average, did the debugging-�rst players:

� Collect more stars?

� Collect more coins?

� Take fewer attempts to complete the level successfully?

� Take less time to complete the level successfully?

If the level met three or more of these requirements, the debugging-�rst blocks were

left in with restrictive block types removed. Blocks were also retained for the �rst one

or two challenges per tutorial, to give the player further examples of how to use the

tutorial block. The resulting level progression is shown in Appendix P.

Updated Dif�culty Progression

Game analytics and observations from Study 3 were used to make a minor alteration

to the dif�culty progression. It was observed that players often got stuck on level

22 and had to ask for help. The game analytics showed that this was one of the

levels with the overall lowest average star count (2.75/3) and the lowest percentage

of collected coins (86.23%), other than the �rst 8 levels where the player is learning

the fundamentals of the game.
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The dif�culties with level 22 arise because it requires the player to recognise that

`move3' is the required custom block because the turns are in different directions (as

shown in Figure 9.2). Often, players would create a `move3AndTurn' block that moves

the ship and turns in a single direction, similar to that used in levels 20 and 21. It was

decided that swapping levels 22 and 23 would give the player more practice in using

custom blocks and recognising when turns are required inside or outside of them.

Figure 9.2: Screenshot of the ideal solution to challenge 23 (previously challenge 22)
in the Study 4 version of Pirate Plunder

`Get Property Of' Tutorial

The post-test Scratch task assessment projects and artifact-based interviews from

Study 3 showed that participants had dif�culty recalling how to clone objects in the

current location of a sprite. This is done using the `get property of' block, which can

be used to get the current coordinate position of a sprite in Scratch. In Pirate Plunder,

the player must use the block to move the cloned cannonball sprite to the position of

the ship sprite and then use it again to set it to the direction of the ship, ensuring that

it is �red (or moved) in the same direction as the ship (Figure 9.3).

`Get property of' was introduced in the Study 3 version of Pirate Plunder as part

of the `cloning other sprites' tutorial. The fact that it was not used by participants in

the post-test Scratch task, and that some interview participants struggled to recall it,

suggested that the block needed a separate tutorial.

The `get property of' tutorial was added in between the `cloning myself' and `cloning

other sprite' tutorials. In terms of the level progression, it acts as an extra cloning tu-

torial and does not unlock any challenges on its own. In the tutorial, the player is
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Figure 9.3: Screenshot of the `get property of' block used in the cannonball sprite in
Pirate Plunder

introduced to the `sensing' block category. They must navigate the ship to avoid the

rocks in the middle of the map (Figure 9.4). This can only be done using the `go to

position' block to teleport the ship to the treasure (because the ship will crash if the

`move' block is used to go over them.) The `get property of' block is used to get the

coordinates of the treasure (which are available only on this level.)

Figure 9.4: Screenshot of the �nished solution to the Pirate Plunder `get property of'
tutorial added for Study 4
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Help Function

The main feedback from players in Study 3 was that the hint function was unhelpful

because it gave the same hint throughout the level. For Study 4, a full help function

was added that contains between three and six `scaffolded' steps for each challenge.

These were written based on teacher and researcher observations in Study 3, in-

cluding regularly given responses to player questions and suggestions for how to

complete the level. Most steps were framed as questions because the game cannot

detect whether the player has already completed the suggested step. For the last

step, the player is asked if they want to do the related tutorial again. For example, the

help suggestions for the �rst custom block challenge (level 19) are as follows, with an

explanation of why that suggestion is given under each:

1. “Take a look at the grid, what tasks can we repeat?”

Recognising the duplicated functionality is a key part of creating the correct custom

block(s) for each level. This �rst suggestion is used in all of the custom block and

input challenges.

2. “We repeat 4 move 1 and turn left. We do this 3 times.”

Building on the last suggestion, indirectly telling the player what should go inside the

custom block.

3. “We can use a custom block for those repeated actions.”

Reminding the player that they should be using custom blocks for those repeated

actions (shown in Figure 9.5).

4. “Have you added blocks to the `de�ne' block?” (pointer to the �rst de�ne block

in the program.)

This was an issue observed when players used custom blocks in Study 3. Players

would not add blocks to their de�ne blocks in early custom block challenges. Instead,

they would expect that the block would achieve the required functionality by naming

the de�ne block what they wanted it to do and not adding blocks to it.

5. “You can use your block from the `More Blocks' folder” (pointer to the `More

Blocks' category.)

Reminding the player that once they have created a custom block, they need to use it

from the `More Blocks' folder.

6. “Do you want to do the custom blocks tutorials again?” (with an option to return

to the level select screen.)
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Telling the player to go and do the custom blocks tutorial again if the previous sugges-

tions did not help them complete the level.

Figure 9.5: Screenshot of the Pirate Plunder help function

To access the help, the player clicks on the green feedback parrot in the top-

right corner of a challenge level. The parrot may then move around the screen or

a pointer may appear depending on the suggestion. This is similar to the tutorial

levels described in Section 7.4.5. When a help suggestion is visible, the player can

either dismiss it or return to the previous suggestion. The next suggestion can only

be accessed by clicking on the parrot again. This was done in an attempt to stagger

the help, so the player does not cycle through all the suggestions in one go.

Closer to Scratch

During the artifact-based interviews in Study 3, several participants stated that Scratch

was too different from Pirate Plunder and that this affected their solution to the post-

test Scratch task. For Study 4, three changes were made to Pirate Plunder to make

the user interface more similar to Scratch. These were 1) the removal of the x and

y-axes from the grid, 2) moving the coordinate position indicator below the grid and 3)

using sprite images instead of names (all visible in Figure 9.5).

One frequent observation from the post-test Scratch assessment in Study 3 was

that participants struggled with coordinate positions. This is because Scratch does

not have the coordinates on the grid axis (like the Study 3 version of Pirate Plunder)

and requires the use of the coordinate position indicator to get sprite coordinates.

For Study 4, the x and y-axes were removed from Pirate Plunder and the coordinate
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position indicator moved to below the grid, where it is in Scratch.

Pirate Names

The Study 3 version of Pirate Plunder used participants' �rst names as player iden-

ti�ers. However, with the introduction of the General Data Protection Regulation

(GDPR) laws, it was decided that participant names should be removed as they could

lead to player identi�cation. This resulted in player name customisation being intro-

duced for Study 4.

Players are asked to choose a starting avatar when they �rst log in to the game.

For Study 4, this was extended to require the player to input their pirate name (Figure

9.6), which can then be updated in the shop. Players were told not to use their real

names. The name is shown on the class and login screen and can be used by players

to identify each other. This is similar to the username systems used on Xbox Live and

the PlayStation Network. As the player can update their name as many times as want,

player ID numbers were added to the login screen so that players could be identi�ed

should they forget which avatar is theirs. In addition, a language �lter was added to

the name input to recognise and block profanities.

Figure 9.6: Screenshot of the Pirate Plunder character select screen for Study 4 where
the player can set their pirate name

Other Changes

Several other minor changes were made to Pirate Plunder for Study 4. These in-

cluded removing the �ve-coin charge to update avatars in the shop, adding additional
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shop items that were requested from the feedback in Study 3 and adding additional

analytics for help and name changes.

9.1.3 Assessment Changes

The two main hypotheses for not �nding a difference in Study 3 were both related

to the Scratch assessment (Section 8.5). The �rst was that participants were not

motivated to use abstraction in the task because there was no block limit or obvious

duplication like when they encountered it in Pirate Plunder. In addition, there would

only be duplication (the rationale for using abstraction) if the player had produced it,

meaning that they would have to complete the task �rst and then refactor their code

using abstraction. This requires a lot of work for participants to produce in the 40

minutes they were given. The second was that because participants were doing the

same task at pre-and post-test, they could complete it at post-test by reproducing

or expanding their pre-test solution, bypassing what they had learnt in Pirate Plunder.

These observations resulted in a new Scratch assessment designed to deal with these

issues and an additional multiple-choice assessment on abstraction in Scratch. These

are both described in the materials section (Section 9.3.3).

9.1.4 Experimental Design Changes

Study 3 was designed primarily to compare the debugging-�rst and non-debugging

versions of Pirate Plunder. Therefore, it was limited when trying to establish whether

Pirate Plunder was effective in teaching abstraction in Scratch. The lack of a com-

parison to a non-programming control group (no block-based programming) meant

that the results of the CT test were not useful as both groups had been practising CT

during the study.

To address these issues, Study 4 used a partial-crossover design with a non-

programming control, in addition to the Scratch control used in Study 3. All partic-

ipants play Pirate Plunder, meaning that it is easier to establish whether the game

meets the learning outcomes. The new design is described in Section 9.3.2.

9.2 Pilot Study

The pilot study took place before the start of Study 4 in the same medium-sized pri-

mary school as the Study 3 pilot. The participants were nine of the 12 children who

had taken part in the earlier pilot, who were now age 10 and 11. They were expe-

rienced in both Scratch and Pirate Plunder, having played a previous version of the

game for 5 hours during the Study 3 pilot.

The pilot took place over two days and involved 2 hours 15 minutes of total activity.

They �rst spent 1 hour 30 minutes playing Pirate Plunder. Participants started from
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the custom block tutorials to �t the time constraints and because they already had a

basic understanding of the game. This meant that the assessment tasks could be

more effectively tested as they require knowledge of custom blocks and cloning. The

participants then had 30 minutes to attempt the Scratch challenge and 15 minutes to

do the multiple-choice Scratch abstraction test. How this in�uenced the assessment

tasks is discussed in Section 9.3.3.

9.3 Method

9.3.1 Participants

The participants in Study 4 were 91 children age 10 and 11 (M = 10.58, SD = 0.32)

from a large primary school in northern England (the same school as Study 3 but with

the next cohort). As with Study 3, they were largely inexperienced with Scratch (hav-

ing had sporadic lessons throughout primary school) and had no experience using

custom blocks or cloning. The sample contained 45 males (49.5%) and 46 females

(50.5%).

9.3.2 Design

Study 4 followed a pre-test post-test partial-crossover quasi-experimental design to

measure for improvements using abstraction in Scratch after playing Pirate Plunder

(Figure 9.7). For the �rst part of the study, the three groups were split into Pirate Plun-

der (intervention), spreadsheets (non-programming active control) and Scratch (pro-

gramming active control). The two control groups then crossed-over to Pirate Plunder

and the intervention group to the spreadsheets curriculum. Participants were as-

sessed for their Scratch baseline ability using the Scratch task from Study 3, their abil-

ity to use abstraction in Scratch through the Scratch challenge and the multiple-choice

Scratch abstraction test, and their computational thinking ability using the Computa-

tional Thinking test. After playing Pirate Plunder, participants were given con�dence

questionnaires and a sample of them were interviewed.

The study uses a partial-crossover (as opposed to a full crossover with each

group doing each task) partially because of school timetabling and planning restraints,

but mainly because it met the aims of the study without participants completing the

assessments four times each. Pirate Plunder can be compared against the non-

programming and programming curricula in Phase 1 and the crossover allows all par-

ticipants to play the game. This goes some way to handling the effects of using class

groups (which was done again in this study to reduce logistical issues for the school)

as the assessments are completed after each group has played the game. However,

because it is a partial-crossover, Phase 2 is not as informative because it does not

contain a genuine control group (as they have already played the game).
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Figure 9.7: Diagram of the Study 4 design

9.3.3 Materials

Spreadsheets Curriculum

A six-lesson spreadsheets curriculum was chosen as the primary control group ac-

tivity for this study because it does not involve programming (beyond using pre-made

formula to calculate values, e.g. SUM and AVERAGE) or explicit CT, yet still has par-

ticipants using the computers and being exposed to new learning content. As with the

Scratch curriculum, the spreadsheets curriculum was produced by Twinkl (2018) and

is designed for the age group (age 10 and 11). Table 9.1 gives a breakdown of each

lesson.

Both curricula in this study were delivered by the author and were given the same

amount of time as Pirate Plunder.

Scratch: Animated Stories Curriculum

The same six-lesson Scratch curriculum from Study 3 was used and is described in

detail in Section 8.3.3. It involves creating an animated story in Scratch based on a

`haunted house' starter project. The curriculum contains no custom blocks or cloning.

Scratch Baseline Task

The Scratch task assessment from Study 3 was used as a baseline of Scratch pro-

�ciency at pre-test for this study. As described in Section 8.3.3, the task involves
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Table 9.1: Spreadsheets - lesson breakdown

Lesson
Number

Lesson Name Content

1 Number
Operations

Enter and edit text and numbers in cells and use
SUM formula, begin formatting cells.

2 Ordering and
Presenting Data

Using SUM formula for a speci�c purpose, ordering
data using the sort function and producing graphs to
present data.

3 Add, Edit and
Calculate Data

Creating totals and averages on existing data,
sorting and understanding the bene�t of automatic
recalculation.

4 Solving
Problems

Investigating how to use a spreadsheet to solve a
given problem.

5 Party Plan
Budget

Choosing items for a party from a list of possible
items and prices, using a spreadsheet to calculate
quantities and totals within a set budget for a given
number of people.

6 Design Your
Own

Open-ended challenge to design their own
spreadsheet.

animating the Scratch cat around the edges of a rectangle and leaving an object on

each corner. Two versions were used alternately for participants sat next to each

other in an attempt to reduce copying. The task was analysed using Dr. Scratch for

abstraction and decomposition and the expected outcome measure in Table 8.3.

This was used at pre-test instead of the Scratch challenge assessment because it

enables participants to achieve an outcome without prior Scratch knowledge. Whereas

the Scratch challenge requires speci�c functionality that none of the participants had

previously encountered. Furthermore, using the Scratch challenge at pre-test would

have meant that the Phase 1 control groups would have done the challenge twice

before they had been taught how to attempt it using abstraction.

Scratch Challenge

The Scratch challenge assessment was created using the conclusions from Study 3

summarised in Section 9.1.1. Participants were instructed to reduce the block count in

a pre-made project that contained both duplicated blocks and sprites, therefore giving

them motivation for using abstraction.

The project involves animating the Scratch cat around a map and leaving a lamp-

post sprite on each corner (Figure 9.8). Participants were speci�cally instructed to

reduce the number of blocks and sprites used in the starter project. The ideal solution

uses custom blocks and cloning as seen in Figure 9.9. The task sheet (Appendix

Q) contains screenshots of the starting blocks on the reverse so that the player can

recreate the starting program or use the input values if needed. This was done be-

cause of observations during the pilot study, where participants removed blocks from
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the program and were unable to remember the distance values that they needed to

move the cat sprite.

Figure 9.8: Screenshot of the Scratch challenge starter project (the script in the right
is normally off the screen and out of the immediate view of the participant)

Figure 9.9: Screenshot of the perfect solution to the Scratch challenge, showing the
cat sprite (left) and lamppost sprite (right)

In the Study 3 Scratch task, it was observed that participants often removed the

starting blocks (used to reset the cat sprite position). To deal with this, these blocks

were added to a separate `when green �ag clicked' block off to the right-hand side of

the project. Participants were then instructed not to delete them by the task sheet.

They were told they could not use `glide to position' or `go to position' blocks that allow

movement to be reduced from the two blocks of `repeat' and `move' to a single block

(therefore easily reducing the block count).
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As with the Scratch baseline task, each project was analysed using Dr. Scratch for

abstraction and decomposition (Table 8.2). The starter project gets 1 point for using

multiple scripts in multiple sprites. Projects were also manually analysed against the

following criteria (an explanation of each is given below) as a measure of whether

abstraction had been used correctly. This is because Dr. Scratch can only measure

whether a block has been used in a project, not whether it has been used correctly.

Assessment criteria:

1. Correct custom block

A custom block with two inputs representing distance and degrees (may not be named

correctly), containing a `repeat' `move' for the distance and a `turn' for the direction.

2. Correct use of cloning

A single lamppost sprite that is cloned at the position of the cat sprite (using the `get

property of' block) inside the custom block before the repeat (because the starter

project has a lamppost at the starting position.)

3. Complete movement

The cat sprite is animated around the map and reaches the shop as it does in the

starter project.

4. Correct lamppost positions

All the lamppost sprites are in the same positions as they are in the starter project.

This includes the lamppost on the cat's starting position and on each subsequent

corner. They must appear in sequence (ideally as the cat sprite reaches them.)

Multiple-Choice Scratch Abstraction Test

The Scratch abstraction test was a 10-question multiple-choice assessment designed

by the author and used to supplement the Scratch challenge assessment. The ques-

tions are on using custom blocks and cloning correctly in Scratch (the full test is in

Appendix R and the breakdown and rationale for each question is shown in Appendix

S). Each question has four options with one correct answer. The test includes ques-

tions on:

� Identifying duplicated Scratch code that can be refactored using a custom block.

� Identifying correct block names and inputs for duplicated code.

� Comparing Scratch scenes and �guring out which sprites can be cloned.

� Identifying the block that can be used to get properties of a sprite.

� Identifying the blocks used to clone sprites successfully.
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Computational Thinking Test

As in Study 3, the Computational Thinking test (CTt) was used as a measure of CT.

The CTt is a 28-question multiple-choice assessment that uses visual arrows and

blocks common in education programming tools (Román-González et al., 2016) and

was used because it is one of the better researched CT measures.

Questionnaires

The Pirate Plunder questionnaire from Study 3 (Appendix M) was given to participants

after they had played the game. This included questions about con�dence using

Scratch, custom blocks and cloning, as well as the participant's change in con�dence

after playing Pirate Plunder. As in Study 3, answers were coded as quantitative data:

con�dence questions as 3 (very con�dent), 2 (con�dent), 1 (slightly con�dent) and 0

(not con�dent) and con�dence change questions as 1 (improved), 0 (same as before)

and -1 (declined).

Artifact-Based Interviews

Artifact-based interviews were conducted for the Pirate Plunder groups after they had

played the game, using the same script as Study 3 (Appendix L). This was done to

establish whether participants had understood the rationale for using abstraction in

Scratch. Interviews began with open questions about the participant's project, such

as what each of the blocks did and why they had used them. Before asking more

leading questions about their use (or lack) of custom blocks and cloning in the project

and where they could use them in other Scratch projects.

9.3.4 Procedure

All participants did the Scratch baseline task and the CTt at pre-test. The Scratch

baseline task took place in the school IT suite in class groups. Participants were

introduced to the study and the assessment task. They were then given 40 minutes to

produce a Scratch project to the assessment speci�cation. The CTt was administered

using tablets in the classroom after the group had completed the Scratch baseline

task. Participants were given a maximum of 45 minutes to complete the test.

Class groups were then assigned to the intervention (Pirate Plunder) or active

control conditions (spreadsheets and Scratch) for Phase 1 of the study. Both phases

were four weeks long with two sessions per week, taking place in the school IT suite.

Participants in the intervention group played the game for that time with no classroom

support other than individual assistance (if required). The six-lesson spreadsheet and

Scratch curricula were delivered by the author over the four weeks.
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At mid-test, all participants did the Scratch challenge (as opposed to the Scratch

baseline task), multiple-choice Scratch abstraction test and the CTt. The intervention

group also completed the Pirate Plunder questionnaire and a sample of them were

interviewed. Once again, the Scratch challenge took place in the IT suite with partici-

pants given 40 minutes to modify the starter project. Both the multiple-choice Scratch

abstraction test and CTt (in that order) were then administered using tablets in the

classroom. They were given a maximum of 15 minutes for the abstraction test and 45

minutes for the CTt.

The conditions were then crossed-over so that the intervention group did spread-

sheets and the two control groups from the �rst Phase did Pirate Plunder (Figure 9.7).

At post-test, the intervention groups re-completed the Scratch challenge, multiple-

choice Scratch abstraction test and the CTt, whilst the control group only did the

abstraction test and the CTt.

For the interviews at mid-test and post-test, 15 participants from each group (N

= 45) were interviewed after completing their post-Pirate Plunder Scratch challenge.

To select participants for the interviews, each group was divided into three categories

(using simpler criteria than the ones given in Section 9.4.4): correct solution, almost

correct or interesting solution and no use of abstraction. Depending on the group,

roughly �ve participants who met each criterion were selected.

The study took place in the �rst term of the school year, before the Christmas

break. It was 10 weeks long, four weeks for the two phases (two sessions per week,

30 minutes and 50 minutes respectively), with a week for the mid-test and interviews

in the middle and one at the end for the post-test and further interviews. The pre-test

was done on the Monday of the �rst study week to �t with the school time constraints.

It started on the 8th October 2018 and �nished on the 19th December 2018.

9.3.5 Ethics and Access to Participants

The study falls under the same ethics approval as Study 3. For this study, permission

was obtained from the headteacher to con�rm that the study could go ahead. After

meeting with the class teachers to con�rm the study content, opt-in consent forms

were sent out to the parents/guardians of potential participants (Appendix T) along

with an information sheet with a short description of the study and the data collected

(Appendix U). The study went ahead once the permission slips had been returned.

As with Study 3, all data was anonymised and stored against the participant ID

numbers. The data management plan is shown in Appendix H.

9.3.6 Hypotheses

There were two hypotheses for the study, one related to abstraction skills and the

other to CT ability:
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1. Pirate Plunder would improve scores on abstraction measures from pre-to post-

test in comparison with both the programming (Scratch) and non-programming

(spreadsheets) control groups.

2. Pirate Plunder would improve CT ability (measured by the CTt) in comparison

to the non-programming control group who were not doing explicit CT activities.

9.4 Results

9.4.1 Phase 1

Phase 1 of the study was from pre-to mid-test, comparing Pirate Plunder with both

non-programming (spreadsheets) and programming (Scratch) conditions.

Hypothesis 1 - Did Pirate Plunder Improve Abstraction in Scratch?

Hypothesis 1 was that the intervention group would improve on the abstraction mea-

sures compared to the control groups. This includes the Dr. Scratch abstraction and

decomposition scores on the Scratch challenge assessment and the multiple-choice

Scratch abstraction test scores.

For this phase, the mid-test Scratch challenge abstraction scores for each group

are compared using the Scratch baseline task abstraction scores as a covariate, to

control for variance in baseline ability. Figure 9.10 shows the mean Dr. Scratch ab-

straction and decomposition for each group at mid-test (note that the starting project

gets 1 point for abstraction in Dr. Scratch). A one-way ANCOVA showed a signi�cant

difference in abstraction scores between the three groups, F(2, 78) = 30.30, p < .001,

� 2 = .44. Table 9.2 shows the average Dr. Scratch abstraction scores for each group.

Table 9.3 gives the breakdown of these results for each group, showing how many

participants used custom blocks and how many used cloning.
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Figure 9.10: Comparison of the Dr. Scratch abstraction and decomposition scores
on the mid-test Scratch challenge for each group (error bars show 95% con�dence
interval)

Table 9.2: Descriptive statistics of the Dr. Scratch abstraction and decomposition
scores on the Scratch task and Scratch challenge for each group (maximum score of
3)

Condition Scratch Baseline Task

(Pre-Test)

Scratch Challenge

(Mid-Test)

Pirate Plunder

M 1.08 1.84

N 25 25

SD 0.70 0.62

Spreadsheets

M 0.93 1.10

N 29 29

SD 0.37 0.41

Scratch

M 1.11 1.00

N 28 28

SD 0.40 0.00
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Table 9.3: Breakdown of the Dr. Scratch abstraction and decomposition scores on the
mid-test Scratch challenge for each group

Condition N Dr. Scratch Abstraction and Decomposition Score

0 1 2 3

Pirate Plunder 25 0 7 15 3

Spreadsheets 29 0 27 1 1

Scratch 28 0 28 0 0

Total 82 0 62 16 4

Figure 9.11 shows the mean multiple-choice Scratch abstraction test scores at

mid-test for each group. There was a signi�cant difference between the three groups

using a one-way ANOVA (F(2, 80) = 11.64, p < .001, � 2 = .23), with the Pirate Plunder

group (M = 5.21, N = 28, SD = 1.40) scoring higher than both the non-programming

(M = 3.58, N = 26, SD = 1.86) and programming control (M = 3.45, N = 29, SD =

1.30).

Figure 9.11: Comparison of the mid-test multiple-choice Scratch abstraction test
scores for each group (error bars show 95% con�dence interval)

Hypothesis 2 - Did Pirate Plunder Improve Computational Thinking?

Hypothesis 2 was that participants in the intervention group would improve their CT

ability (measured by the CTt) in comparison with the non-programming (spreadsheets)

control group.
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There was a signi�cant difference in the mean CTt learning gains from pre-to mid-

test between the three groups (F(2, 84) = 3.72, p = .028, � 2 = .081) (Figure 9.12),

with the only signi�cant pairwise-comparison (using an independent samples t-test)

between the intervention group and the non-programming control, t(55) = 2.87, p =

.015, d = 0.67 (Table 9.4).

Figure 9.12: Comparison of the CTt learning gains from pre-to mid-test for each group
(error bars show 95% con�dence interval)

Table 9.4: Descriptive statistics of the Computational Thinking test from pre-to mid-
test for each group (maximum score of 28)

Condition Pre-Test Mid-Test Learning Gains

Pirate Plunder

M 14.26 17.33 3.07

N 27 27 27

SD 5.90 5.61 3.22

Spreadsheets

M 14.33 14.53 0.20

N 30 30 30

SD 5.00 5.44 5.10

Scratch

M 15.70 17.90 2.20

N 30 30 30

SD 4.33 3.94 3.68
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9.4.2 Phase 2

Phase 2 of the study was from mid-to post-test. During this phase, the Phase 1 in-

tervention group switched to a non-programming control and both Phase 1 control

groups switched to Pirate Plunder (Figure 9.7). This means that there was not a gen-

uine control group during Phase 2. Each group's activities are shown in this section

using Phase 1/Phase 2 identi�ers (e.g. Pirate Plunder/Spreadsheets).

Hypothesis 1 - Did Pirate Plunder Improve Abstraction in Scratch?

Table 9.5 shows the learning gains on the Scratch challenge for the Phase 2 interven-

tion groups. The breakdown of these results is given in Table 9.6, showing how many

participants used custom blocks and cloning. Both groups improved signi�cantly from

mid-to post-test: Spreadsheets/Pirate Plunder (t(28) = 5.52, p < .001, d = 1.44) and

Scratch/Pirate Plunder (t(25) = 8.76, p < .001, d = 1.44). The scores are not com-

pared with the control group because they did not re-complete the assessment at

post-test.

Table 9.5: Descriptive statistics of the Dr. Scratch abstraction and decomposition
scores on the Scratch challenge from mid-to post-test for each group (maximum score
of 3)

Condition Mid-Test Post-Test Learning Gains

Spreadsheets/Pirate Plunder
M 1.10 1.90 0.79
N 29 29 29

SD 0.41 0.67 0.77

Scratch/Pirate Plunder
M 1.00 2.19 1.19
N 26 26 26

SD 0.00 0.69 0.69

Table 9.6: Breakdown of the Dr. Scratch abstraction and decomposition scores on the
post-test Scratch challenge for the Phase 2 intervention groups

Condition N Dr. Scratch Abstraction and Decomposition Score
0 1 2 3

Spreadsheets/Pirate
Plunder

29 0 8 16 5

Scratch/Pirate Plunder 26 0 4 13 9

Figure 9.13 shows the mid-to post-test learning gains for the multiple-choice Scratch

abstraction test for each group. A one-way ANOVA showed that there was no signi�-

cant difference between groups, F(2, 71) = 2.21, p = .12, � 2 = .059. In addition, using

a paired samples t-test, only the Scratch/Pirate Plunder group changed (in this case,

improved) signi�cantly from mid-to post-test, t(26) = 2.14, p = .042, d = 0.47. The

descriptive statistics are shown in Table 9.7.
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Figure 9.13: Comparison of the multiple-choice Scratch abstraction test learning gains
from mid-to post-test for each group (error bars show 95% con�dence interval)

Table 9.7: Descriptive statistics for the multiple-choice Scratch abstraction test scores
from mid-to post-test for each group

Condition Mid-Test Post-Test Learning Gains

Pirate Plunder/Spreadsheets

M 5.12 4.88 -0.24

N 25 25 25

SD 1.45 2.05 2.05

Spreadsheets/Pirate Plunder

M 3.64 4.20 0.56

N 25 25 25

SD 1.87 1.87 2.31

Scratch/Pirate Plunder

M 3.41 4.07 0.67

N 27 27 27

SD 1.31 1.49 1.62

Hypothesis 2 - Did Pirate Plunder Improve Computational Thinking?

Figure 9.14 shows the learning gains from mid-to post-test on the CTt for each group.

A one-way ANOVA showed a signi�cant difference between groups, F(2, 84) = 4.49,

p = .014, � 2 = .097. A paired samples t-test showed that the Pirate Plunder/Spread-

sheets group declined signi�cantly, t(27) = 2.87, p = .008, d = 0.38. Table 9.8 shows

the descriptive statistics.
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Figure 9.14: Comparison of the CTt learning gains from mid-to post-test for each
group (error bars show 95% con�dence interval)

Table 9.8: Descriptive statistics of the Computational Thinking test from mid-to post-
test for each group (maximum score of 28)

Condition Mid-Test Post-Test Learning Gains

Pirate Plunder/Spreadsheets

M 17.29 15.18 -2.11

N 28 28 28

SD 5.51 5.64 3.88

Spreadsheets/Pirate Plunder

M 14.53 15.80 1.27

N 30 30 30

SD 5.44 5.90 5.46

Scratch/Pirate Plunder

M 18.07 17.93 -0.14

N 29 29 29

SD 3.90 5.01 3.17

9.4.3 Pirate Plunder Performance

Table 9.9 shows the Pirate Plunder performance for each group. As with Study 3, this

is judged by the number of challenges completed (out of 40) and overall stars collected

(maximum of 120). The average stars collected (out of 3) and the time spent playing

the game are also given. One-way ANOVAs showed no signi�cant difference between

the three groups for challenges completed (F(2, 87) = 0.81, p = .447, � 2 = .018) or

stars collected (F(2, 87) = 1.13, p = .329, � 2 = .025).
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Table 9.9: Descriptive statistics of Pirate Plunder performance for each group

Condition Challenges
Com-
pleted

Total
Stars
Collected

Average
Stars per
Level

Total
Time
(Minutes)

Pirate Plunder/Spreadsheets
M 33.00 95.72 2.89 316
N 29 29 29

SD 6.51 21.84 0.21

Spreadsheets/Pirate Plunder
M 32.23 94.90 2.94 321
N 30 30 30

SD 5.93 18.73 0.10

Scratch/Pirate Plunder
M 34.13 101.52 2.97 326
N 31 31 31

SD 5.05 15.40 0.05

9.4.4 Completeness of Scratch Challenge Solution After Playing

Pirate Plunder

Completeness criteria for the Scratch challenge are used to support the Dr. Scratch

abstraction and decomposition scores. This is because, as mentioned earlier in the

chapter, Dr. Scratch can only assess whether a block has been used within the project

and not whether the block has been used correctly. Each project was assessed using

the four criteria explained in Section 9.3.3:

1. Correct custom block

2. Correct use of cloning

3. Complete movement

4. Correct lamppost positions

Table 9.10 shows the number of participants that met each criterion in their Scratch

challenge projects at mid-and post-test (note that the Pirate Plunder/Spreadsheets

group did not repeat the Scratch challenge assessment at post-test). When combined

with the Dr. Scratch abstraction and decomposition scores, this provides a measure

of how successful participants were in using abstraction. There were signi�cant im-

provements for the Phase 2 intervention groups from mid-to post-test in using the

correct custom block (Spreadsheets/Pirate Plunder, t(28) = 6.84, p < .001, d = 1.80

and Scratch/Pirate Plunder, t(25) = 9.21, p < .001, d = 2.56) and the correct use of

cloning (Spreadsheets/Pirate Plunder, t(28) = 2.42, p = .023, d = 0.63 and Scratch/Pi-

rate Plunder, t(25) = 2.13, p = .043, d = 0.58). This supports the improvements shown

in the Dr. Scratch abstraction and decomposition scores and shows that participants

were not only using abstraction but were using it successfully.
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Table 9.10: Descriptive statistics of the completeness of the post-Pirate Plunder
Scratch challenge projects (PP/SP = Pirate Plunder/Spreadsheets, SP/PP = Spread-
sheets/Pirate Plunder and SC/PP = Scratch/Pirate Plunder)

Group N Correct
Custom
Block

Correct
Use of
Cloning

Complete
Movement

Correct
Lamppost
Positions

Mid Post Mid Post Mid Post Mid Post Mid Post
PP/SP 25 - 10 - 0 - 16 - 21 -
SP/PP 29 29 0 11 0 5 9 19 22 26
SC/PP 26 26 0 13 0 4 8 22 9 15

9.4.5 Artifact-Based Interview Observations

The purpose of the artifact-based interviews was to investigate whether participants

had understood the underlying rationale for using abstraction in Scratch projects. To

establish this, they were asked why they had used/would use custom blocks and

cloning and to give other examples of where they could use each in Scratch (Section

8.3.3). The answers were roughly split into three categories, where the participant

had either:

� Understood abstraction and could apply it to examples outside of Pirate Plunder.

� Understood abstraction but could only apply it to Pirate Plunder-based examples

(i.e. involving moving, turning and cannonballs).

� Not understood abstraction (even though they may have used it in the chal-

lenge.)

Examples of each are given below. Clari�cation of ambiguous language is provided

using square brackets.

Understanding and Applying Abstraction Outside of Pirate Plunder

Generally, high-scoring participants (using Dr. Scratch, multiple-choice Scratch ab-

straction test, CTt and Pirate Plunder performance) were better able to apply abstrac-

tion to theoretical examples in Scratch. For example, one participant said that they

could use custom blocks and cloning when creating a bowling game. Even going as

far as to question whether cloning would be appropriate or not due to the way it works:

Researcher: “Can you give me another example of where you'd use a

custom block in Scratch?”

Participant: “Take Pirate Plunder, say you needed to go to a certain

place. . . In fact, you could create a bowling game and you could input

the amount of power the ball would move, so you could determine how far

it would go, or you could use it for some sort of game where you'd throw
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or catapult something. So, you could change at different moments how far

it would go.”

Researcher: “Why have you used cloning?”

Participant: “Because if you do it then you use less sprites, you'd only

have one sprite. And it also means that you can make all the sprites do

the same thing because you can have `when I start as a clone' and you

can make it do the same thing.”

Researcher: “In what other situation could you use cloning in Scratch?”

Participant: “Going back to the bowling game, I could probably clone the

pins. But then if you cloned the bowling pins, some of them would (need

to) go down and some of them wouldn't.” [Here the participant has identi-

�ed that the cloning may not be suitable for bowling pins because they will

have different behaviour.]

In another example, a participant stated that they could use a custom block called

`dance' to make the Scratch cat perform a dance:

Researcher: “Can you give me another example of where you'd use a

custom block in a different Scratch project?”

Participant: “If something was repeating over and over again and you

wanted to lose less blocks then you could just do it in there. So if you

wanted your Scratch to do a dance over and over again continuously then

you could put it in there and just use `dance', `dance', `dance'.”

Understanding and Applying Abstraction Within Pirate Plunder

Other participants, who generally scored from mid-to-high on the assessment tasks,

could explain the rationale for abstraction but only using examples from the Scratch

challenge or Pirate Plunder. For example, one participant had produced an ideal

custom block solution (similar to Figure 9.9 but without cloning), but could not explain

where they could use abstraction outside of the Scratch challenge and Pirate Plunder

context:

Researcher: “Why have you decided to use the `moveAndTurn' custom

block?”

Participant: “It's easier. I knew that there weren't any obstacles or any-

thing and its quite easy for using lots of big numbers.”

Researcher: “If there had of been obstacles, then what would you have

done differently?”

Participant: “If there had of been obstacles then I would've added it on to

here (the custom block), if not then I would've broken the blocks apart.”

Researcher: “Can you give me another example of where you'd use a

custom block in another project?”
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Participant: “If you were doing a maze.”

Researcher: “Could you use one that's not for moving or turning?”

Participant: “Yeah, you can do one for direction I think.”

Researcher: “Could you use one for anything else? In what situation

would you think `oh I can use a custom block here'?”

Participant: “If it was lots of repeated moves, or if the turning was differ-

ent each time.”

Limited Understanding of Abstraction

Lower-scoring participants tended to display a limited understanding of abstraction,

even if they had used it in their post-Pirate Plunder Scratch challenge project. For ex-

ample, this participant had used multiple custom blocks for different distances (lacking

inputs for variable distance) and had almost got the solution to work:

Researcher: “Why have you used custom blocks?”

Participant: “I feel like custom blocks were really helpful during Pirate

Plunder and I felt that they were also really helpful using Scratch. And

because everyone was doing cloning (in Pirate Plunder) and I never did

cloning I thought maybe if I use custom blocks, and I'm quite con�dent in

that, then I can use them.”

Researcher: “Can you give me another example of where you'd use a

custom block in Scratch?”

Participant: “I would probably use it. . . say so can you move them to

this place, or move them to the second lamppost, you can probably do it

in just �ve blocks doing a custom block but at the same time just put a

repeat but I put a custom (block) cos it shows kind of that you know what

you're doing.”

Researcher: “Could you use custom blocks for something that's not a

move?”

Participant: “With a turn there's not really any point in doing it. You could

probably use it for a hide and show block. Like if you wanted to avoid the

ghost ship in Pirate Plunder.”

Another participant had used one custom block for moving 40 steps, but had not

fully understood how abstraction can be used to reduce duplication in the rest of the

project:

Researcher: “Can you give me another example of where you'd use a

custom block in another project?”

Participant: “I don't know.”

Researcher: “In what situation would you think I could use a custom block

there?”
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Participant: “When it's like, 34 and 10, you can use a custom block be-

cause that's quite a lot, say two blocks.”

9.4.6 Con�dence Ratings

Table 9.11 shows the results of the Pirate Plunder post-test questionnaire. As with

Study 3, the con�dence ratings are on a scale from 3 to 0 (very con�dent to not con-

�dent) and con�dence changes from 1 to -1 (improved to declined). Totals have been

included in the bottom row. The custom block con�dence ratings correlated signif-

icantly with the use of the correct custom block in the post-Pirate Plunder projects

(r (83) = .62, p < .001) and cloning con�dence ratings correlated signi�cantly with

correct use of cloning (r (83) = .36, p = .001).

Table 9.11: Descriptive statistics of the questionnaire con�dence ratings for each
group (PP/SP = Pirate Plunder/Spreadsheets, SP/PP = Spreadsheets/Pirate Plunder
and SC/PP = Scratch/Pirate Plunder)

Condition Scratch
Con�-
dence

Change Custom
Block
Con�-
dence

Change Clone
Con�-
dence

Change

PP/SP
M 1.54 1.00 1.96 0.64 1.43 0.25
N 28 28 28 28 28 28

SD 1.14 1.85 1.11 0.56 1.17 0.80

SP/PP
M 1.65 0.65 1.92 0.65 1.31 0.42
N 26 26 26 26 26 26

SD 1.02 0.56 1.02 0.49 1.01 0.64

SC/PP
M 1.95 0.90 1.97 0.90 1.36 0.64
N 29 29 29 29 29 29

SD 0.83 0.31 0.98 0.31 0.95 0.63

Total
M 1.72 0.86 1.95 0.73 1.37 0.39
N 83 83 83 83 83 83

SD 1.00 1.13 1.02 0.47 1.04 0.70

9.4.7 CTt as a Predictor of Pirate Plunder Performance

As in Study 3, the CTt pre-test scores correlated signi�cantly with both measures of

Pirate Plunder performance: number of challenges completed, r (88) = .53, p < .001

(Figure 9.15) and total stars collected, r (88) = .53, p < .001 (Figure 9.16). It is worth

noting that ceiling effects on the Pirate Plunder performance measures may have

resulted in a weaker correlation than if the game did not have a maximum level.
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Figure 9.15: Relationship between CTt pre-test score and number of Pirate Plunder
challenges completed for each participant (with regression line)

Figure 9.16: Relationship between CTt pre-test score and number of Pirate Plunder
stars collected for each participant (with regression line)
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9.5 Discussion

9.5.1 Was Pirate Plunder Effective?

Hypothesis 1 - Did Pirate Plunder Improve Abstraction in Scratch?

The results of both the Scratch challenge and the multiple-choice Scratch abstraction

test after Phase 1 indicate that Pirate Plunder was effective in teaching primary-school

children to use abstraction in Scratch, in comparison to a non-programming and a pro-

gramming curriculum. Participants in the intervention group were able to use custom

blocks and cloning to reduce duplication in a Scratch project.

However, the results from Phase 2 (after the crossover) are not as clear, in part due

to the lack of a genuine control group. The Phase 2 intervention participants improved

their scores on the Scratch challenge and were successful in using abstraction after

playing Pirate Plunder. Yet, they did not signi�cantly improve their scores on the

multiple-choice Scratch abstraction test.

The Phase 1 Dr. Scratch results from the Scratch challenge show that 15/25 (60%)

of the intervention group used custom blocks and a further 3/25 (12%) used cloning

(note that these participants also used custom blocks). This is compared to one use

of custom blocks and one use of cloning for the non-programming control and no

use of either in the programming control. Whilst these results show that participants

used abstraction in their Scratch projects, they do not show whether they used it

correctly (to reduce duplication). These concerns come from the analysis by Robles

et al. (2017) who found that duplication is still common in Scratch projects that use

abstraction. The completeness criteria (Section 9.4.4) can be used to clarify this.

Those results show that of those 18 to use custom blocks at mid-test, 10 used them

correctly in line with the speci�cation and none of them used cloning correctly to

reduce sprite duplication. The single-use of both custom blocks and cloning in the

spreadsheets group was also incorrect. At post-test, 29/55 (52.7%) participants in

the Phase 2 intervention groups used custom blocks and a further 14 (25.4%) used

cloning. When combined with the completeness criteria, 24 of those produced the

correct custom block and 9 used cloning correctly.

The completeness criteria show that Pirate Plunder was effective in getting chil-

dren to use abstraction correctly but less so than the Dr. Scratch results indicate. This

is a weakness of using Dr. Scratch as a measure of CT, as discussed earlier in the

chapter. The completeness criteria show that almost half (34/80) of participants were

able to use custom blocks to reduce duplication after playing Pirate Plunder and 9 of

these were able to use cloning to reduce the number of sprites in the project. A fur-

ther third of participants (26/80) attempted to use custom blocks but did so incorrectly.

This suggests that formative, project-based CT measures like Dr. Scratch need to

be combined with software engineering metrics to assess whether functionality that
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indicates CT (or programming skills) has been used correctly.

The artifact-based interviews showed that similar to Study 3, the majority of inter-

viewed participants had understood why they should use abstraction in Scratch after

playing Pirate Plunder. Yet, as stated in Section 9.4.5, some participants could only

apply this knowledge within the context of Pirate Plunder or the Scratch challenge as-

sessment. This implies that whilst Pirate Plunder can be used to teach primary school

children to use abstraction, this knowledge is only a starting point. By combining the

game with formal teaching, children should be able to learn to apply these skills in

other programming projects. This is discussed further in the next section and in the

following chapter (Chapter 10).

The questionnaires showed that participants were more con�dent using Scratch,

custom blocks and cloning after playing Pirate Plunder. This implies that they are

more willing to use them in Scratch after playing the game and was demonstrated by

a correlation between the custom block and clone con�dence ratings and the use of

both of those in the post-Pirate Plunder Scratch challenge.

Hypothesis 2 - Did Pirate Plunder Improve Computational Thinking?

The results of the Computational Thinking test show that Pirate Plunder improved CT

compared to the non-programming curriculum after Phase 1 of the study. However,

these results were not repeated after the crossover. Interestingly, the Phase 2 control

group declined signi�cantly on the CTt from mid-to post-test. This is likely because

they were doing the same assessment for the third time during the study and had lost

motivation to complete it properly.

9.5.2 Why Was Pirate Plunder Effective?

As discussed in the previous section, the majority of participants used abstraction in

Scratch after playing Pirate Plunder. This section explores the reasons behind this,

considering the changes made from Study 3.

Updated Assessments

The main reason for the ef�cacy of Pirate Plunder in comparison with Study 3 is that

the updated Scratch challenge assessment was able to demonstrate improvements

in using abstraction. It successfully addressed the two weaknesses of the Scratch

assessment task discussed in Section 8.5.2: it was able to motivate participants to

use abstraction and to restrict them from using the same strategy at pre-and post-

test. The multiple-choice Scratch abstraction test then added a further measure of

their ability to use abstraction in Scratch, asking them to apply their knowledge about

custom blocks and cloning to speci�c questions.
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By instructing participants to reduce the block count in an existing project, the

Scratch challenge linked what participants had learnt in Pirate Plunder with the task

itself. This enabled them to debug the duplicated code and refactor it without having to

produce duplication �rst, as in the Scratch task from Study 3. This is the main reason

why more participants used abstraction in the Scratch challenge despite the same

time limit (40 minutes). Having the starting blocks (that reset the cat sprite) off to the

right-hand side of the project and clear instructions not to delete them resulted in fewer

participants removing these blocks. This meant that unlike Study 3, participants did

not struggle with the cat sprite not resetting to its starting position after the program

had �nished. Furthermore, having clear rules on the task sheet and screenshots of

the starting blocks on the reverse gave participants a clearer understanding of the

task.

Procedure

The procedure used in Study 4 had participants playing Pirate Plunder twice a week.

The shorter time between each session will have enabled the participants to better

understand the learning content because they can retain more knowledge between

each session. The intervention was also an average of 30 minutes longer in total than

in Study 3.

Pirate Plunder Changes from Study 3

The changes to Pirate Plunder from Study 3 (Section 9.1.2) had a positive impact on

participants' ability to use abstraction in the Scratch challenge, namely using the `get

property of' block and understanding Scratch coordinates. The help feature was also

widely-used (an average of 73 times per player).

As previously stated, 9 participants successfully used cloning to reduce the num-

ber of lamppost sprites. This involved using the `get property of' block to move the

cloned lamppost to the position of the cat sprite. This is a signi�cant improvement

from Study 3, where no participants used the block. This shows that the `get prop-

erty of' tutorial was more effective in getting participants to be able to recall it and

understand it.

Participants were also more comfortable using the coordinate position indicator in

Scratch because the axes were removed from the Pirate Plunder grid. Participants

had to use the Pirate Plunder coordinate indicator throughout the game to get the

position of items.

Interestingly, despite the Pirate Plunder changes, better abstraction assessment

results and the additional 30 minutes playing the game, participants performed simi-

larly on Pirate Plunder in comparison with Study 3 (Table 9.12). One reason for this

that the participants were younger (by half a year on average), so their similar perfor-
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mance re�ects improvements to the game. Furthermore, based on the artifact-based

interviews, the Study 3 intervention participants did understand abstraction and would

have been able to use it had they been given the Study 4 assessments. The game

changes, therefore, made it easier for younger children to understand abstraction and

to reach a similar point as the older participants in Study 4.

Table 9.12: Descriptive statistics of Pirate Plunder performance for Studies 3 and 4

Study Challenges
Completed

Total Stars
Collected

Average Stars per
Level

3
M 32.63 96.12 2.94
N 57 57 57

SD 5.45 17.64 0.13

4
M 33.13 97.44 2.93
N 90 90 90

SD 5.84 18.79 0.14

In terms of the game analytics, Table 9.13 shows the Pirate Plunder analytics for

the Study 3 and 4 versions of the game. The only signi�cant difference is in the

average time per level (t(145) = 2.77, p = .006, d = 0.49), which is to be expected

because participants had more time playing the game but completed a similar number

of levels.

Table 9.13: Pirate Plunder average attempts and time spent overall and per level for
Studies 3 and 4

Study Total Level
Attempts

Average
Attempts per
Level

Total Level
Time
(HH:MM:SS)

Average Time
per Level
(Seconds)

3
M 244.70 7.58 03:01:53 334.57
N 57 57 57 57

SD 107.11 3.25 00:43:50 69.34

4
M 260.77 8.16 03:25:56 380.89
N 90 90 90 90

SD 124.40 4.16 00:57:15 113.54

Computational Thinking

Pirate Plunder and the Scratch curriculum were effective in improving scores on the

CTt because they both involve CT. However, using the research and observations in

Chapters 3 and 4, another reason for the improvement is that the CTt uses visual

programming blocks similar to Scratch and Pirate Plunder. Several participants in the

interviews pointed out the similarities between the CTt questions and Pirate Plunder

programming.

As we have seen in earlier chapters, it is dif�cult to separate CT from computer

science. The correlation between CTt pre-test scores and Pirate Plunder performance
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could be due to visual programming ability or CT ability, or a combination of both.

This once again highlights the issues with CT de�nitions and assessments, as well

as using it for the justi�cation of teaching computer science in primary education.

Furthermore, the issue with Dr. Scratch being unable to detect whether blocks have

been used correctly means that whilst it gives a broad overview of CT use in Scratch

projects, it is far from an ideal assessment. The next chapter (Chapter 10) discusses

the implications of this.

9.5.3 Limitations

One limitation is that participants did the same CT test three times during the 10-week

study. Whilst they were told each time that it was important to try their best, doing the

same 45-minute assessment for the third time may have contributed towards the simi-

lar results (or decline in the case of the control) from mid-to post-test (Phase 2). How-

ever, the lack of valid and reliable CT assessments (that clearly measure the same

construct) means that it would be dif�cult to select another test to compare against.

Furthermore, the partial-crossover design that resulted in the repeated assessment

meant that all participants were able to play Pirate Plunder.

9.5.4 Future Suggestions and Improvements

This section gives reasons and suggestions for future improvements to Pirate Plunder

and the study design. These include the low use of cloning in the post-Pirate Plunder

Scratch challenge, poor block and input naming, combining Pirate Plunder with formal

lessons and CT assessments.

Cloning

Cloning in the post-Pirate Plunder Scratch challenge assessment was attempted by

17/80 (21.3%) participants and used successfully by 9 of these. This meant that many

projects still contained duplicated lamppost sprites. This can be partially explained by

the number of participants that did not reach the cloning challenges (37.8%) on Pirate

Plunder, implying that the earlier levels took too long for the player to progress through

during the given time. This is one of the dif�culties with creating a game to teach

concepts that players have no previous experience with, particularly ones that are

cognitively challenging. It also highlights the broad range of abilities in a single school

year group. However, the number of participants that used custom blocks in their post-

Pirate Plunder Scratch challenge solutions (76.3%) implies the earlier custom block

and inputs levels were effective. It may just have been that cloning required more time

than was available during Studies 3 and 4. Even so, 62.2% of participants reached

cloning levels but only 19.8% attempted to use them. One reason for this is that the
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transfer gap between creating cannonballs and creating lampposts was too big, as

cannonballs in Pirate Plunder are created using a slightly different set of blocks.

This presents an opportunity for data mining of the game analytics to identify spe-

ci�c points where the game could be improved. This is discussed further in Chapter

10.

Poor Block and Input Naming

It was common in both Pirate Plunder and the Scratch challenge for participants to

give their custom blocks and inputs `bad' names. These were often random series

of letters or words that did not correspond to what the block or input was doing (an

example is shown in Figure 9.17). This is one of the Scratch code smells identi�ed

by Techapalokul (2017) and could be addressed in Pirate Plunder by validating block

names to what the block does, with these restrictions teaching the player how to name

blocks and variables correctly in Scratch.

Figure 9.17: Screenshot showing an example of bad custom block and input naming
in an otherwise ideal Scratch challenge solution

Combining Pirate Plunder with Formal Lessons

Pirate Plunder could be combined with formal lessons to A) give children a better

understanding of Scratch before they play the game and B) to explain the extract

method and abstraction in more detail with contextual examples. In this study, the

group that did the Scratch curriculum before playing Pirate Plunder performed better

on the game compared to the other groups, completing more challenges and collect-

ing more stars. This suggests that having some previous Scratch experience aids
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learning. Furthermore, the decline of CTt scores in the Phase 2 assessments of the

Phase 1 intervention group highlights the need for the learner to continue using these

techniques in Scratch projects.

These lessons would introduce Scratch programming in a more structured ap-

proach, focusing on producing `good' Scratch code and avoiding the code smells listed

in Section 5.2.3. The Pirate Plunder levels could then be used as an example of code

reuse and using the extract method to refactor duplicated Scratch code. The potential

of this is demonstrated by the improvement on the multiple-choice Scratch abstraction

test for the group who did Scratch before playing Pirate Plunder.

Computational Thinking Assessments

This study has shown that the CTt is a predictor of Pirate Plunder progress. Yet,

it is dif�cult to know whether this is because both contain visual programming, or

both contain CT. This shows that it is dif�cult to create reliable measures of CT and

suggests that existing CT assessments are better suited to measuring programming

skills and should be used in primary education as part of a wider assessment strategy.

9.6 Conclusions

In conclusion, Pirate Plunder can be used to teach primary school children (age 10

and 11) to use abstraction in Scratch. Children were able to use custom blocks (in

most cases) and cloning (in some cases) to reduce block and sprite duplication in

Scratch through procedural abstraction using the extract method and code reuse.

This supports the results of Gibson (2012) in demonstrating that primary school chil-

dren can understand abstract computer science concepts if the learning content is

presented in a structured way.

The artifact-based interviews suggest that higher-scoring children did develop a

general understanding of abstraction. Yet, most children could only explain what they

had learnt within the context of Pirate Plunder and the Scratch challenge. The study

results demonstrate that it is possible to teach children to use abstraction (even if they

cannot apply it more generally) using game-based learning and a structured level

progression. The CTt results also show that Pirate Plunder improves CT, in line with

the current literature.

The success of Pirate Plunder indicates that it could be used as part of school

curricula, either alongside traditional teaching or as a standalone application. The

dif�culty progression worked well in introducing abstraction in a way that rationalised

its use. The game could be extended to include more computer science concepts,

such as conditionals and variables. It could be used to show how block-based code

compares to text-based code, similar to Code.org.
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The next chapter (Chapter 10) discusses the implications of these results and

those of the rest of the thesis on computer science in primary education and CT.
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Chapter 10

General Discussion

This chapter concludes the thesis by discussing the theoretical and practical impli-

cations of the results of this programme of work. The aims of the thesis outlined in

Chapter 1 were to identify areas of weakness in computer science (CS) education

(Chapters 2 to 5) and to design, create and evaluate a programming game to address

these weaknesses (Chapters 6 to 9). The outcome was Pirate Plunder, a novel edu-

cational block-based programming game that can be used in primary schools to teach

children how to use abstraction in Scratch.

The chapter describes the contributions of the thesis, before exploring the impli-

cations of these on computational thinking (CT), methodological approaches, game

design, debugging-�rst learning approaches, abstraction and Scratch. It then high-

lights the limitations of the thesis, explores implications for the wider context of CS

education and discusses future direction.

10.1 Contributions

10.1.1 Pirate Plunder

The novel educational block-based programming game, Pirate Plunder, is the main

contribution of the programme of work. Study 4 showed that it is an effective method

of teaching the conceptually dif�cult programming concept of abstraction to primary

school children and can be used to support Scratch teaching and learning.

The game is unique in its learning outcomes for the target age group (abstrac-

tion for primary school children), dif�culty progression, use of game design elements

such as rewards and avatars and the level of polish for a research game. Addition-

ally, Pirate Plunder's game mechanics, dif�culty progression, engagement strategies

and analytics all contribute towards its success. The tutorials and in-game feedback

allow players to develop an understanding of the learning content without external

assistance. The dif�culty progression successfully scaffolds abstraction in a way that

rationalises and justi�es its use and enables children to transfer those skills in Scratch.
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This is done by forcing the player to use abstraction in situations where it is bene�cial.

The engagement strategies of avatars and the reward system keep players motivated.

The use of game analytics to adjust the level progression of Pirate Plunder show the

importance of using data to improve game designs, particularly for conceptually dif�-

cult content.

10.1.2 Teaching Abstraction to Primary School Children

Abstraction is an essential skill in CS and the main tenet of current CT de�nitions, yet it

is conceptually dif�cult for novices to understand (Kallia, 2017) and is, therefore, rarely

taught in primary education. Despite these suggestions, Study 2 showed that primary

school children (age 10 and 11) could recognise the bene�ts of using abstraction

when asked to manipulate Scratch projects that used it. Study 4 then showed that

children in this age group can learn to use abstraction in Scratch. After playing Pirate

Plunder, children were able to use custom blocks and cloning to reduce block and

sprite duplication in an existing Scratch project compared to two active control groups.

Most of these children were then able to explain the bene�ts of abstraction when

interviewed. Some children were also able to explain how they would use abstraction

in other situations in Scratch.

10.2 Implications

10.2.1 Computational Thinking

What Do We Mean by Computational Thinking?

The difference in the de�nitions, models and frameworks discussed in Chapter 3 high-

lights the importance of clarifying what CT is. There is a growing consensus that CT is

a universal problem-solving skill that will bene�t every child (Grover et al., 2018) and

an all-encompassing conceptual foundation that includes engineering, mathematics

and design thinking (Shute et al., 2017). In theory, this argument works if all problem-

solving, engineering, mathematics and design is done in computational domains. But

it is not, and due to the lack of evidence of transfer of CT to non-computational do-

mains (Denning et al., 2017), claims of it as a universal skill are unfounded.

The working de�nition of CT from Section 3.2.4: “CT is the thought processes

involved in modelling and solving computational problems” supports the view of Ar-

moni (2016) and Nardelli (2019) in suggesting that CT demonstrates the bene�ts of

CS, providing a useful explanation of the skills required to be a good computer scien-

tist. It is problematic to view CT as a separate discipline from CS, in terms of being

used to solve `non-computational' problems, as suggested by the results of Study 1

(Chapter 4). Just as mathematical thinking is not removed from mathematics. Fur-
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thermore, Nardelli's (2019) conclusion that CT should reach an “externally speci�ed

(set of) goals” (p. 34) is one of importance. He argues that as computer scientists

differ from mathematicians in that they work towards computing an answer and not

towards an equation de�ning the answer. Therefore, CT de�nitions should include

working towards a set of pre-de�ned goals.

The results of the studies in this thesis suggest that the learning bene�ts of CT

speci�c tasks are dif�cult to justify. Particularly learning materials like those of Bare-

foot (2019), for example, the abstraction task where children are asked to explain an

animal without mentioning its name, requiring them to abstract the details of the ani-

mal. The focus instead should be on designing computational problems that require

each CT skill, for example, abstraction or �ow control, in a range of programming lan-

guages and tools. This then allows the learner to demonstrate that they have under-

stood the concept and can use it to solve CS problems. Grover & Pea (2017) remind

CT researchers that transfer of learning across contexts does not happen automat-

ically and transfer of CT concepts to other learning contexts must be mediated. In

which case, they become general problem-solving strategies or situated within other

contexts and may lose their `computational' nature.

How Do We Measure Computational Thinking?

The CT measures used in Studies 3 and 4, Dr. Scratch and the Computational Think-

ing test, both focus on visual programming and would be dif�cult to use to demonstrate

improvements on non-computational tasks. Román-González et al. (2017) suggest

that these two measures be combined with Bebras to create a complementary CT

assessment. Bebras is a skill-transfer measure, yet despite being comprehension

based, the questions are still largely computational (Figure 3.1 shows an example

question). Román-González et al. state that the psychometric properties of Bebras

are “still far from being demonstrated and some of them are at risk of being too tan-

gential to the core of CT” (p. 158).

The working de�nition of CT as the `thought processes' involved in modelling and

solving computational problems implies that CT is a problem-solving process and is

therefore dif�cult to accurately measure. In which case, assessments should focus

on different types of programming problems that require CT skills. As suggested in

Chapter 3, identifying the psychological constructs that underpin CT will help to clarify

what it means, but not necessarily make it easier to measure and assess.

10.2.2 Methodological Approaches

Robust and quantitative experimental designs, like those used in this programme of

work, are important because of the weaknesses with evaluating games for computing

education. In a systematic literature review of educational games research, Petri &
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von Wangenheim (2017) found that most evaluations used simple research designs,

subjective feedback via questionnaires and small sample sizes. This is particularly

important in the context of the thesis because programming games, amongst other

tools, are being more widely used in primary education to teach programming, often

without adequate classroom support.

Active Control Groups

The results of this programme of work support the need for active control groups in

clarifying that the intervention condition is responsible for improvements in cognitive

tasks (Simons et al., 2016). Using passive control groups means that the intervention

and control groups are treated differently. This introduces psychological phenomena

that can have an impact on results, such as the Hawthorne effect (Roethlisberger &

Dickson, 1939), where the experimental group may change their behaviour because

they are being observed. In the case of CS and CT research, these phenomena

include excitement with using new technologies or approaches and interaction with

researchers who have expertise in the �eld. Active control groups must be doing

comparable tasks that expose them to a similar level of these new experiences. This

has ethical implications for studies involving children in that all participants play an

important role in the results and can do something different from their normal class-

room experience. Whereas in studies with passive control groups, children can be

disappointed when they realise they are not actively participating in the study.

Crossover Designs

Study 4 used a partial-crossover design that allowed all the study participants to play

Pirate Plunder. This had important ethical implications because, during phase 1 of

the study, the children in the control groups were asking when they would be able to

play the game, despite actively participating in the study (following the spreadsheets

or Scratch curriculum). This highlights that children can still be aware that there is

something `more' exciting that they were not doing, suggesting that game-based trials

using children, in particular, should allow all participants to play the game as part of

the study or getting to use new technology.

10.2.3 Designing Programming Games for Children

The success of Pirate Plunder has implications for designing programming games for

children. These include learning content, player motivation, data mining and educa-

tional support.
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Learning Content

Pirate Plunder was successful in introducing abstraction to primary school children

in a way that rationalised and explained its use, as well as introducing basic Scratch

movement and loops. This indicates that level design and dif�culty progression are

particularly important when designing educational programming games. The Pirate

Plunder dif�culty progression was effective because it enabled the player to become

pro�cient in using blocks at each stage, before introducing new functionality, in this

case, a method of code reuse that would then enable them to produce better solu-

tions using fewer blocks. The levels were designed so that by the time a player was

introduced to a code reuse method, they had been duplicating those blocks before-

hand and could understand the bene�t of using abstraction in that situation.

In Study 4, players were able to transfer the skills learnt in Pirate Plunder to

Scratch. This was because the game used a similar layout and functionality to Scratch,

including the block-based language, buttons and scene/program positions on the

screen. More importantly, the differences in the block pallet, coordinate system and

sprite use between the game and Scratch did not noticeably inhibit the transfer. This

is important for game design because Pirate Plunder can be used alongside Scratch

in the classroom, without external guidance about how the programming concepts

transfer between the two.

Player Motivation and Engagement

Overall, players enjoyed Pirate Plunder and were motivated enough to continue play-

ing it throughout each study, with several players requesting to be able to play it af-

ter the study had �nished. Players commented positively on the tutorials (that the

game shows you how to use the blocks), the dif�culty progression (that you get more

blocks as you progress through the game), the design (colours, user interface and

background) and the collectable coins and customisable avatars. The performance

statistics for Studies 3 and 4 support this (Table 9.12). Players continued playing,

progressing and buying shop items throughout both studies.

The success of the collectable items, reward system and player avatars in keep-

ing players engaged in the game suggests that these `meta' game elements are an

important part of designing learning games for children, particularly when they can

compare these with other players.

Analytics and Data Mining

The �eld of data mining and big data has grown in recent years (Sin & Muthu, 2016).

The amount of data produced by learning applications provides opportunities for this

data to be used to improve technology and personalise content for the learner. In

terms of game design, analytics can give valuable insights into how the game is be-
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ing played and can enable the developer to adjust the application to further support

learning, as was done throughout Pirate Plunder development.

The game analytics collected during development and Study 3 were key in adjust-

ing the dif�culty progression. Statistics were analysed on a per-level basis to identify

the levels that players struggled on. This was particularly important when introduc-

ing custom blocks and cloning because these are conceptually dif�cult to understand.

During the Study 3 pilot, performance on these levels was poor and resulted in a re-

duction of the number of earlier levels (to get the player using abstraction sooner) and

simpli�cation of the early custom block, input and cloning levels.

Teacher Support

In primary education, teachers are often concerned with their lack of ability and con�-

dence (Rich et al., 2019) and feel isolated because they have to train themselves and

�nd appropriate resources (Yadav et al., 2016). Often, children are given program-

ming tools with little or no guidance and in some cases, CS is left out of lesson plans

altogether. Programming games such as Pirate Plunder can allow teachers to 1) use

these tools effectively in the classroom without having to know the content in-depth,

2) to train themselves using these tools, allowing them to build con�dence in CS and

3) be used to indicate CS ability.

Pirate Plunder was played with minimal teacher and researcher support in Studies

3 and 4. This was achieved through the tutorials (Section 7.4.5) that introduced blocks

and functionality by explaining and demonstrating what they are used for. The tutorials

were an effective method of introducing concepts and were key to the success of the

game. In addition, the in-game feedback and help feature meant that the player was

better able to �gure out how to correct their program, meaning that the teacher could

focus on supporting weaker learners.

10.2.4 Debugging-First

The rationale for using a debugging-�rst approach in programming tasks comes from

the completion strategy (Van Merriënboer & De Croock, 1992), where novice program-

mers modify or extend complete or incomplete programs (Paas, 1992). This approach

was used in the text-based programming game, Gidget (M. J. Lee & Ko, 2014), which

showed promising results in getting novices to learn programming concepts.

The results of Study 3 showed that a restrictive debugging-�rst approach in Pirate

Plunder was no more bene�cial to players than a non-debugging approach. This sug-

gests that in programming games, a well-tested and looser debugging-�rst approach

is a better option when it comes to improving player progress or learning outcomes,

such as the one used in the Study 4 version of Pirate Plunder. This may be because

novices struggle to understand code snippets, particularly containing blocks that are
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inexperienced with, so forcing them to use these blocks negates the bene�ts of a

debugging-�rst approach.

In addition, the Scratch challenge assessment required the player to debug and

refactor the existing program. This is compared to the Scratch task assessment in

Study 3, where the player had to �rst produce a program and then debug and refactor

it, which is a lot of functionality to produce in the 40 minutes they were given. This

highlights the importance of designing programming tasks for children that teach them

to understand code snippets that they have not produced themselves.

10.2.5 Abstraction

The success of using Pirate Plunder to teach abstraction supports the suggestions of

Gibson (2012) in demonstrating that primary school children can understand abstract

CS concepts if learning content is structured effectively. Furthermore, they support

neo-Piagetian theory, which suggests that people, regardless of their age, progress

through increasingly abstract forms of reasoning as they gain expertise in a domain

(Lister, 2011). This is in comparison with traditional views that children only begin to

reason abstractly once they reach a certain age. Yet, the most important �nding is that

the `threshold' concept (one that opens up a new way of thinking about something) of

procedural abstraction, which is dif�cult even for high school and university students

to understand (Kallia & Sentance, 2017), can be taught to and understood by primary

school children.

Chapter 2 analysed the wide range of programming tools designed for primary

school children. Part of this analysis included the target age of tools and how much

abstraction they allow. Those that allow limited abstraction are aimed at children

age 8 and above and tools allowing full abstraction (through procedures) aimed at

children age 10 and above. This suggests that if children are going to be using these

programming tools for anything other than creative design, they should have at least

some understanding of abstraction. Particularly in block-based languages where code

smells are common.

It is important to consider the current state of CS education when discussing the

relevance of individual CS and CT concepts. In countries where CS is compulsory

at primary level, it lacks the teacher expertise required to implement it successfully

(e.g. The Royal Society, 2017). Skills like procedural abstraction are only necessary

if the learner already has some basic programming knowledge and is running into

problems (e.g. duplication code smells) that further understanding can help to avoid.

It may be better to let learners make mistakes when programming, before introducing

them to the tools and skills that they can then use to solve these problems (Ginat,

2003) (using a similar approach to Study 2). However, this process would still need to

be supervised by a teacher with adequate CS knowledge.
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10.2.6 Scratch

The prevalence of bad programming habits and code smells in Scratch projects (Chap-

ter 5) highlights issues with using constructionist, self-directed block-based program-

ming tools, such as Scratch, to teach CS to children.

Whilst Scratch is good for fostering creativity, the open-ended nature of it al-

lows children to create solutions using bad programming practices and code smells,

such as widespread copying and pasting (duplication), dead blocks and long scripts

(Meerbaum-Salant et al., 2011; Techapalokul, 2017). This is important because

Scratch and similar tools (Hopscotch, Tynker, etc.) are widespread in primary edu-

cation, meaning that children are often using these tools without adequate support

and can end up forming bad programming habits (Aivaloglou & Hermans, 2016).

It was observed during the Scratch lessons in Studies 3 and 4 that when chil-

dren were left to their own devices, they would ignore using programming functionality

and focus instead on selecting and adding sprites, drawing and adding audio. This

highlights the importance of structured teaching alongside constructionist tools, either

through lesson plans that explain functionality, or game-based approaches where the

child is guided through using CS concepts. Games such as Pirate Plunder are bene-

�cial because they restrict the learner from reverting to their previous method of doing

something, as is the case with code reuse in Pirate Plunder.

10.3 Limitations

10.3.1 Situated Use of Abstraction

It could be argued that the children in Study 4 have only learnt to use abstraction in

a speci�c context because the Scratch assessment and Pirate Plunder both similarly

use custom blocks and cloning (for sprite movement). This was highlighted during the

artifact-based interviews, where most participants could only apply their understand-

ing of abstraction in the context of Pirate Plunder or the Scratch assessment. Yet,

the aim of the study and of Pirate Plunder itself was to see if primary school children

were able to use abstraction, which is a conceptually dif�cult skill. The success of

Pirate Plunder shows that primary school children can be taught to use procedural

abstraction and code reuse. Pirate Plunder could, therefore, be used as a starting

point for teaching children how and why to use abstraction in other programming lan-

guages. Furthermore, there were indications that higher-scoring children could apply

abstraction in a wider context. Several were able to explain how they would use pro-

cedures for repetitive tasks that required parameters, such as a procedure for bowling

a bowling ball that takes direction and power as its arguments.
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10.3.2 Broader Programming Skillset

Pirate Plunder was designed to teach abstraction to primary school children. How-

ever, despite abstraction being an important skill in CS, these skills must be developed

as part of a broader programming skillset. Moving forward, Pirate Plunder could be

expanded to include other CS concepts, such as variables and conditionals. It could

be used alongside a structured curriculum that contextualises some of the key points

in other block-based or text-based languages and expanded to include a discovery

section in the form of a level editor. Whilst the studies in this thesis concentrated on

primary-school children, the game could be used by novice programmers of any age.

Additional features could include paired-programming (having two players work on the

same solution, similar to Pyrus (Shi, Shah, Hedman, & O'Rourke, 2019)) or having

players check and grade the solutions of other players, highlighting where the solution

could be improved and developing code comprehension skills.

10.3.3 Dif�culties Designing Programming Games for Children

The results of the studies in this programme of work have shown that there are dif�-

culties with designing programming games for children because of the differing ability

levels between children of the same age. This was an issue with Pirate Plunder, where

some players did not reach the later `cloning' levels in the study time because they

found the earlier levels too dif�cult. One way to solve this problem is to adapt game

content based on how the player is doing, concentrating on areas of weaknesses that

have been identi�ed automatically by the game using analytics (Mees, Jay, Habgood,

& Howard-Jones, 2017).

10.4 Wider Context

10.4.1 Supporting Teachers

This programme of research took place in seven different primary schools in north-

ern England. Observations of computing practices within these schools con�rm that

teachers need more support if teaching CS in primary education is to be success-

ful. Despite each school having adequate technology (IT suites and sets of high-spec

tablets), the teaching of the national computing curriculum was sparse. Most of the

schools used Scratch as their main programming tool, with children doing at least

some computing lessons in either Year 5 or Year 6 (age 9 to 11). Yet, the majority

of teachers lack the con�dence or expertise to deliver a full curriculum, instead al-

lowing children to follow Scratch's inbuilt tutorials or to play mathematics games such

as Times Table Rockstars. Large teacher surveys by Sentance & Csizmadia (2017),

Rich et al. (2019) and Yadav et al. (2016) show that this situation is not uncommon.
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To counteract this, governments and policymakers need to support programs that

provide CS training programs and resources to primary teachers. This is already

happening in the UK through the Barefoot Computing Project, which was created in

2014 by the British Computer Society in collaboration with the Department for Ed-

ucation and BT. Their 2016 report (BT and Ipsos MORI, 2016) found that teachers

were growing in con�dence with delivering the computing curriculum (with 81% of the

400 teachers interviewed saying that they were con�dent with it.) Initiatives like this

are vital for improving CS education in primary schools, as teachers are then able to

explain CS concepts and have some understanding of what children are doing.

10.4.2 Educational Programming Tools

In addition to training programs and resources, educational programming tools play

an important role in the success of CS education. With tablets now widespread in UK

primary schools, visual programming tools and games can be used by teachers to

support CS. Yet, it is dif�cult for teachers to know what programming tools to use as

they differ considerably in cost, complexity and learning approach. Particularly when

there is evidence that some tools can result in bad programming habits that can carry

over to text-based languages. It is not unreasonable to suggest that a combination

of games, creative tools and physical devices would offer the best all-round approach

to CS. This would involve the child learning CS through games and formal teaching,

then applying these skills in creative tools and using physical devices.

10.4.3 Computational Thinking

The issues surrounding CT lead to questions on how much emphasis there should be

on it in CS education. Chapter 2 showed that CS is often combined and integrated

with existing subjects, such as mathematics, informatics and digital literacy (Table

2.1). Teachers are then being told not only to get children to think about CT in CS

lessons but also in other subjects beyond computing (BT and Ipsos MORI, 2016).

Governments and policymakers must clarify the aims and objectives of CS in pri-

mary education. If the purpose is to simply expose children to CS, giving them a

basic understanding and building con�dence with technology, then creative program-

ming tools like Scratch can be effective. However, it is reasonable to suggest that

today's children will need a good understanding of technology when they enter the job

market. This means that they will need to develop an understanding of well-designed

systems, which requires knowledge of programming and design concepts that make

sense to children within the domain of CS.

The ideas surrounding CT have played an important role in getting CS into primary

education. Yet, without a valid and reliable set of measures, it is dif�cult to show the

transfer of CT to non-computational tasks and therefore substantiate the claims of
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it as a universal skill important for every child. It is reasonable to suggest that CT

is useful in CS education as a useful demonstration of the skills required to solve

computational problems. But, curricula should still focus on programming, keeping

the learning grounded in functional skills that can be reliably assessed.

One aspect of CT de�nitions that is vital to all learners is the `soft' problem-solving

skills of persistence when facing dif�cult problems, being able to handle ambiguous,

complex and open-ended problems and asking questions about why and how things

work. If using CT in the classroom develops these skills, then it is reasonable to

argue that it will bene�t the learner, even if its goal of using computational ideas to

solve non-computational problems is misguided.

10.5 Future Direction

10.5.1 Abstraction in Other Programming Tools

The thesis has concentrated on code smells and abstraction in Scratch. However,

Chapter 5 also indicated that code smells can exist in other educational programming

tools, such as Kodu Game Lab and GameMaker Studio 2. Future research could

involve building analysis tools to identify code smells in these programming environ-

ments. It could then answer questions about how abstraction is relevant in these tools.

Can it be used to reduce code smells in a similar way to custom blocks and cloning

in Scratch? and how do you introduce good programming practices in programming

tools that use different programming approaches?

10.5.2 Text-Based Abstraction

It would be interesting to see whether the abstraction skills learnt by children in Stud-

ies 3 and 4 bene�t them when they move to text-based programming languages in

secondary school and beyond. Particularly, are they able to see how functions and

procedures are similar to custom blocks? and are they able to recognise duplicated

code smells in text-based languages? This would require a longitudinal study to mea-

sure the effect of the Pirate Plunder learning content over time.

Another experiment could be conducted with older children (age 11 to 14) to see if

Pirate Plunder bene�ts text-based programming in a shorter time frame. Perhaps hav-

ing them play Pirate Plunder before a Python curriculum, answering similar research

questions to those above.

10.5.3 Improving Programming Tools

The dif�culties in teaching good software engineering practices using constructionist

programming tools, like Scratch, suggests that programming tools can be improved

218



to better teach CS concepts. Future research would focus on designing programming

tools that place restrictions on what the learner can do, introducing programming

concepts as they progress before allowing them to experiment in an open environ-

ment (a guided-discovery approach). This research would aim to answer questions

about whether these changes make a difference compared to existing programming

tools. Think-aloud studies could be used to understand the learners thought pro-

cesses when using these tools.

10.5.4 Other Programming Concepts

Despite the focus on abstraction in this thesis, Section 10.3 explained the importance

of these skills as part of a broader programming skill-set. Future research could focus

on designing similar games, or expanding Pirate Plunder, to teach other programming

concepts such as variables and conditionals. Answering similar questions to those in

this study: can primary school children understand and learn to use these in other

programming tools?

10.5.5 Attitudes Towards Computer Science

Another interesting question based on the studies in this thesis is whether partici-

pants have improved their attitudes towards programming and CS, and in turn, will

this impact whether they go onto to pursue quali�cations in CS.

10.5.6 Computational Thinking Research

Although this thesis moved away from designing measures to assess CT, it would be

an interesting direction for future research. This would begin by designing a series

of experiments to �rstly design a measure of CT (using different CT concepts). The

measure could then be used to measure improvements in non-computational tasks

after programming interventions. This could go some way to answering the questions

about CT and its usefulness in other disciplines.

10.5.7 Pirate Plunder in the Classroom

Finally, the success of Pirate Plunder indicates that it would be a useful part of CS

curricula in primary and secondary education. This would involve expanding the game

to introduce other CS principles and designing a curriculum and learning materials to

accompany the game. Future versions of the game could also include transitions or

comparisons to text-based programming, a level designer, paired programming or a

solution checking mechanic where players have to approve or suggest improvements

to other players' programs.
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Appendices

A Pirate Plunder Development

This section describes the software development of Pirate Plunder, as a supplement

to Chapter 7. It explains the development stack and how the application was struc-

tured, speci�c details of the client and server projects, the local development pipeline,

deployment and project management.

A.1 Stack

Pirate Plunder is a web application with the majority of the code written in TypeScript

(a syntactical superset of JavaScript). It uses the MEAN stack: a MongoDB database,

Express.js for routing requests, Angular for the front-end and Node.js as the platform.

The application is split into a `client' project that handles the front-end functionality of

the game, and a `server' API project that routes requests and handles the database.

The projects run separately on different ports and communicate with each other using

HTTP. Figure 1 shows a diagram of the system.

Figure 1: Diagram of the Pirate Plunder system architecture

Having a web-based game meant that data could be stored in a central database.

This made player comparison easier and meant that the game did not have to be
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installed on school computers. In addition, once the study was �nished, players could

continue playing the game at home (if parental consent had been given).

A.2 Client

The client project is an Angular project written in TypeScript (that is then compiled

down to JavaScript to be executed by the browser). The application is loaded into

the browser through the `index.html' �le, which imports the system.js con�guration �le

responsible for handling the execution of the Angular application. The client project

uses the npm package manager to handle external dependencies.

Figure 2: Diagram of typical Angular 2+ architecture

Structure

Angular uses a modular architecture with modules, components, services and direc-

tives as the main class types. Components and services can be grouped into mod-

ules. Pirate Plunder uses a single `app' module. Components de�ne `views', which

are screen elements that can be modi�ed (in isolation) according to program logic

and data. Components then use `services' that can be injected into multiple compo-

nents and specify reusable application logic. Models de�ne TypeScript classes that

represent different types of information. Figure 2 shows how these parts �t together.

The client application was structured as follows:
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client/

app/

about/

admin/

analytics/

blockly/

character/

character-select/

class/

game/

grid/

help/

info/

instructions/

level/

level-select/

login/

main-menu/

player-info/

shop/

star-rating/

utils/

assets/

data/

Each folder in the `app' folder (apart from `utils') contains a component that has a

TypeScript �le for its logic, a HTML �le for its template and a Less �le that compiles

down to CSS for the stylesheet. Services and models sit within the relevant folder.

Less is an extension language for CSS that allows for variables and functions to be

de�ned that can be reused in different �les. There are components for each `page' in

the application (e.g. `about', `admin', `character-select', `level'), then subcomponents

that �t within these (e.g. `grid', `blockly'). For example, the grid component is struc-
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tured as follows, with ObjectIds specifying an enum that identi�es each object in the

grid:
grid/

models/

CoinMesh.ts

GridPosition.ts

Properties.ts

grid.component.html

grid.component.less

grid.component.css

grid.component.ts

grid.service.ts

mesh.service.ts

ObjectIds.ts

The `assets' folder contains the images and sounds used by the application. The

`data' folder contains JSON �les that specify the levels (split into tutorials and chal-

lenges), shop items and con�guration settings.

Frameworks

Several external frameworks are used within the client application: Google Blockly

for the block-based programming environment, PixiJS for the game grid (previously

Three.js for Study 3) and howler.js for handling audio. The Google Blockly framework

was extended to produce a block-based language similar to Scratch. The framework

does not come with Scratch type blocks so these had to be created manually. Google

Blockly works by parsing the player's block-based code into JavaScript, it was then

executed in a service that handles each line of code, updating the grid accordingly.

Assets

The majority of the assets in Pirate Plunder were acquired from free sources and are

used under the Creative Commons license. They are each attributed to the author

on the `about' screen. The avatar images are taken from a bought pack and some

additional shop items have been created by the author of the thesis.
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A.3 Server

The server is a Node.js application that runs separately to the client. It handles HTTP

requests sent to the speci�ed API endpoints, the Express.js framework then routes

these requests to the Mongoose `controllers' and `models' that interact with the Mon-

goDB database. The project uses JWT (JSON web tokens) to authenticate requests

to certain endpoints.

Mongoose models specify the structure of the data because MongoDB is a NoSQL

database, meaning that data is stored in documents and does not have to contain

consistent �elds. Controllers then handle the methods that can be called on that

data. (e.g. adding a player to the database or logging in). The Mongoose controllers

and models in Pirate Plunder are split into `admin', `analytics' and `playerInfo'. Admin

handles login from the administration section, analytics handles the game analytics

and playerInfo handles the information about the player, including password hashing,

current avatar, completed levels, etc.

The server has a con�guration �le for the `origin' that can send requests to it and

an environment �le that contains the name of the current database. This means that

different values can be used for local development and the live server.

A.4 Local Development

During local development, the client project is run using `lite-server', a node server

that serves the application, opens it in the browser and refreshes when HTML or

JavaScript �les are changed. This is used concurrently with `tsc', which compiles the

TypeScript �les down to JavaScript when they are edited. The client also uses gulp.js,

a toolkit that can be used to automate development tasks. In this case, it watches for

changes to the Less �les and compiles them down to CSS when they are edited. The

server project is run using `nodemon', a utility that uses Node.js and automatically

restarts the process when �les are changed.

GitFlow and Semantic Versioning

The projects were stored in separate Git repositories and were managed using the

GitFlow branching model. GitFlow splits branches into master (major releases), de-

velop, features, hot�xes and releases. This easily isolates new development from

�nished work. Both projects were versioned using the semantic versioning strategy

(major, minor, patch), meaning that each change can be traced to a speci�c version

of the game, making development and documentation easier.
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A.5 Deployment

Pirate Plunder was hosted on a DigitalOcean `droplet' (a remote server) running

Ubuntu. It was deployed using continuous integration, which meant that changes

could easily be pushed to the live version on the server from each Git repository. A

Codeship service was set up to listen for new releases that had been pushed to the

master branch. It would then run tests before updating the code on the server. Code-

ship was also con�gured to run a gulp task to `bundle' the client project �le into a

single �le, saving load time in the browser.

The server ran the client project using the `http-server' module and the server

project using Node.js.

A.6 Project Management

The project was managed using Trello, a free web-based project management appli-

cation. This used the Kanban work�ow methodology, with columns for `Backlog', `In

Progress', `In Review/Blocked', `Bugs' and `Done'. Each card was assigned a prior-

ity (low, medium or high). Figure 3 shows a burndown chart of the tasks completed

throughout development.

Figure 3: Chart of the use of Trello during the development of Pirate Plunder

B Other Development

B.1 Anonymising Projects

A C# application was developed to anonymise Scratch projects. The participants

in Studies 3 and 4 would save projects in a folder of their name, using various �le
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names. The application converted these folder names to participants' corresponding

ID numbers and renamed each project as a version (V1, V2, etc.). This meant that

completed projects are not identi�able without the paper sheet of ID numbers.

B.2 Collating Analytics

A Node.js application was developed to collate analytic data by player or by level. The

MongoDB database stores analytics in a single collection with analytic differentiated

using a `type' �eld. The application connects to the database and uses the MongoDB

driver to collate data and output it to a CSV �le.

B.3 Adding Player Accounts

The player accounts application is a Node.js application that takes a list of names from

a CSV and sends requests to the API so that they are added to the game database.
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C Computational Thinking - Ethics Application
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D Computational Thinking - Data Management Plan
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E Study 1 - Story Sequences
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F Study 1 - Parental Consent Form
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G Programming Games - Ethics Application
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H Programming Games - Data Management Plan
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J Scratch Task - Planting Trees
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K Scratch Task - Setting Up Speakers
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L Artifact-Based Interview Script
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M Study 3 - Pirate Plunder Questionnaire
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N Study 3 - Scratch Questionnaire
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O Study 3 - Parental Consent Form
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Q Scratch Challenge
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R Multiple-Choice Scratch Abstraction Test - Questions
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S Multiple-Choice Scratch Abstraction Test - Answers

and Rationale

Table 4: Multiple-choice Scratch abstraction test question breakdown

Question Correct

Answer

Rationale

1 Which ONE of these scripts

could we use a custom

block to shorten?

A Identifying duplicated code where

the block count can be reduced

using a custom block.

2 Which ONE of these custom

block de�nitions would be

best for this script?

D Identifying the correct block name

and inputs for a set of duplicated

blocks.

3 Which ONE of these scripts

could we use a custom

block to shorten?

B Identifying duplicated code

containing cloning where the block

count can be reduced using a

custom block.

4 Which ONE of these scripts

would a custom block NOT

shorten?

B Recognising that using a custom

block for blocks only duplicated

twice will not reduce the project's

block count.

5 Which ONE of these custom

block de�nitions would be

best for this script?

C Identifying the correct block name

and inputs for a set of duplicated

blocks that uses cloning.

6 How many inputs will the

best custom block for this

script need?

B Identifying the correct number of

inputs for a set of duplicated blocks.

7 In which ONE of these

scenes would it be

worthwhile to clone one of

the sprites?

D Recognising the scene where there

are multiple sprites performing the

same action.

8 In which ONE of these

scenes would it cloning

NOT be worthwhile?

D Recognising the scene where there

are single sprites performing

different actions.

9 Which ONE of these blocks

can be altered to get the x

position of a sprite?

A Identifying the correct `get property

of' block for getting the x position of

a sprite.

10 Which ONE of these scripts

will create the clone at

same x and y position as

the `Cat' sprite?

A Identifying the correct blocks for

cloning at the position of another

sprite.
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T Study 4 - Parental Consent Forms
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U Study 4 - Information Sheet
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