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Preface
This report has been prepared to describe research work on understanding of metal sheet
cutting (punching and Shearing) carried out in the faculty of Science, Technology and Arts at
Sheffield Hallam University in 2018-2019. The report is submitted in accordance with the
requirement for the award of the degree of M.Phil under the auspices of the Sheffield Hallam
University.



Abstract

The cutting process may be divided into two major types. The one type is called as straight
angle cutting, where blade is in continuous contact with metal sheet from one side of edge to
another side of the edge at the beginning of the cutting process. The another type is known
as shearing, where the blade edge is oblique and progressively proceed from one edge of
metal sheet to other end of metal sheet during cutting process. The present study has
investigated straight angle cutting and shearing processes by using virtual environment of
software ANSYS 19-R. An explicit dynamic FEM analysis was used in various simulations of
punching and shearing investigations. The current study has two four parts. In first part,
impact of attack angle variation on stress generated on tool and work piece has been
investigated. Both punching and shearing processes have been simulated in software
environment to understand and differentiate both cutting processes. In second part, straight
angle tool was used to create straight angle cutting environment. Various cutting parameters
including tool, metal sheet and cutting process parameters have been investigated for
straight angle cutting. In third part, oblique angle tool was used to create shearing
environment. Various cutting parameters including tool, metal sheet and cutting process
parameters have been investigated for shearing. In fourth part, straight angle cutting and
oblique angle cutting process has been compared to find out impact of various parameters on
straight angle cutting and shearing and how these may be differentiated. The cutting process
is complex and depends upon tool, metal sheet and cutting process parameters. Tool
parameters investigated in present study include tool edge angle, tool attack angle, tool
material and tool thickness. The metal sheet parameters affecting cutting process have been
investigated in the present study and include metal sheet material and metal sheet thickness.
Cutting process parameters investigated in present study include cutting process speed and
friction between metal sheet and tool. Both punching and shear cutting simulations has been
designed in present study by considering guillotining machine.
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1. Chapter 1; Introduction

Metal cutting is performed by relative motion of the tool edge towards the metal sheet (Bae et
al 2003). There are two types of cutting tools. Single point cutting tool and multipoint cutting
tool (Dipak et al 2008). By considering single point cutting, there are two types of cutting
protocol. Straight angle cutting and oblique angle cutting process (Merchant 1944). If the
cutting face of the tool is at 90 degree to the direction of the tool motion during cutting then it
is known as orthogonal cutting. If the cutting face of the tool is less than 90 degree to the
direction of the tool motion during cutting then it is known as oblique angle cutting or
shearing (Shouler et al 2010). Historically, orthogonal-cutting process has been used in
various studies to investigate cutting process. Orthogonal cutting is commonly used in
milling and machining process (Uhlmann et al 2011).Therefore, the terms straight angle
cutting and oblique angle cutting have been used in the current study to understand the
impact of attack angle on cutting process. Tools with straight edge are used in punching
process either in hydraulic or pneumatic press (Zhang et al 2016). If oblique edge blade is
used in same punching press, then it becomes shearing (Bouvier et al 2006).

The cutting process may be divided into two major types; straight angle cutting and oblique
angle cutting (Jin et al 2013). Straight angle cutting is used in punching or mechanical cutting
(Avadhani et al 2017). The cutting process may well be understood by considering both
straight angle cutting and oblique angle cutting processes in a single study. A perpendicular
force is applied on the top of straight angled tool creating a punching or stamping type of
cutting process (Gurun et al 2016). Punching is also used for hole making, iron bar cutting
and cutting various sizes and shapes of metal plates (Hambli et al 2003). The quality of cut is
comparatively low quality and edges are rough (Ilhan et al 2008). It is rarely used in large
metal sheet cutting, as metal sheet with smooth edges are desirable in industry.

Metal sheets are cut more precisely by using shearing process (Jaspers et al 2002). Shearing
with oblique attack angle is used to cut metal sheets with precise and smooth edges (Brosius
et al 2011). Shearing machines may be as simple as guillotine machines or complex with
more than one oblique angle blades (Fu et al 2005). The punching with straight angled blade
is used to cut small strips of metal sheets (Ojolo et al 2011). In shearing, three components of
force are considered, cutting force, thrust force and radial force (Payton et al 2009). Only two
components of force; cutting force, thrust force are considered in straight angle cutting
(Gustafsson et al 2016).
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Shearing can be simplified by considering example of a scissor to cut a paper sheet. Both
upper and lower blade of a scissor makes oblique angle with paper sheet. Paper sheet is not
supported from either side. Both blades move simultaneously. With the movement of blades,
elastic deformation and bending happens in paper sheet, which is converted into plastic
deformation, and failure of material in paper sheet ultimately shearing the paper sheet.
Concept of guillotining is used in present study to differentiate between straight angle cutting
and shearing. In most of guillotine machines, two blades are used. Lower blade is stationary
and the upper movable blade makes an oblique angle with stationary blade creating an
oblique cutting environment, which is called guillotine shearing. The sheet is clamped on
lower blade. There is a clearance of (1 to 25% of metal sheet thickness) between two blades
moment (Fu et al 2005). As other end of metal sheet is not supported, the shearing is also
accompanied with bending moment. At the beginning of the cutting process, an elastic failure
happens in metal sheet, which is converted to plastic deformation by progressive downward
moment of upper blade (Gustafsson et al 2016).

In more sophisticated guillotining machine with one oblique edged blade, the metal sheet on
both sides is supported (Hilditch et al 2005). The distance between both side of supporting
blocks is equal to the width of blade plus clearance (1 to 25% of metal sheet) to allow free
downward moment of oblique edged blade. If straight blade is used instead of oblique edged
blade, then it presents a straight angle cutting environment. Same concept of guillotining is
used in the present study. A simple model of Guillotine machine with one blade and two

blades is presented in Figl-2. Metal sheet is clamped on both ends to minimise its bending.
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Figure 1; Guillotine machine with two blades
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Figure 2; gallstone machine with one oblique blade and metal sheet support on both sides
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1.1 Aim & Objectives

The aim of the present study is to elaborate understanding of shearing / oblique cutting in
addition to the optimisation of various impacting parameters. The objectives of the present
study may be summarised as following.
.
e To investigate impact of attack angle variation on stress generated on tool and work
piece in cutting process
e To investigate parameters affecting straight angle and shearing process. Although
there are numerous parameters impacting shearing process, the current study has
investigated tool factors; tool attack angle, tool material, tool thickness and metal
sheet factors; metal sheet material, thickness and cutting process factors; cutting
speed, friction between tool and metal sheet,
e To observe comparison of straight angled cutting and oblique angled cutting. Various
parameters variation versus stress generated on tool and work piece is compared in

straight angled and oblique cutting processes.
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1.2 Background

Straight angle cutting and shearing (oblique angle cutting) processes are commonly used
cutting methods in industry (Lalwani et al 2008). Both methods differ from each other due to
attack angle of blade (Meenu et al 2014). In straight angle cutting, attack angle is straight 90
‘deg’ while in oblique cutting; the attack angle is less than 90’degree’ (Asilturk et al 2011). A
differentiation of straight angle and oblique cutting process has been presented in tabulated
form in appendix 10, table 4.

The purpose of present study is to elaborate the understanding of shearing process. The
present study has also investigated the parameters of tool, metal sheet and cutting process,
which may affect tool life span and metal edge smoothness (Gangopadhyay et al 2010). In
straight angle cutting, the blade is at 90 angles to the surface of metal sheet and makes
continuous contact from one edge of the metal sheet to the other edge from beginning to the
end of cutting process (Hardeep et al 2011). The example of straight angle cutting includes
punching of hydraulic press to cut down metal bars using 90 angled straight blades. However,
if blade cutting edge is oblique and not on right angle to the surface of metal sheet, the
process is known as shearing (Hilditch et al 2005).

Guillotine is one of the simple cutting machines used for both straight angle cutting and
shearing (Ben et al 2008). It may have one or two blades. If the blades are straight in shape,
the phenomenon is called as real shear and if the blade shape is curved, then the process is
called shear operations (Gustafsson et al 2014). Difference in straight angle cutting and
shearing may well be understood in laboratory investigations. In laboratory investigation,
various cutting equipment is required to design an experimental environment. Although,
virtual environment of software is not real but numerical studies may well present
comprehensive analysis of cutting process. Therefore, the present study has used software
ANSYS 19-R to investigate cutting of metal sheet instead of laboratory investigation.

The present study has taken a simple approach to create understanding of straight angle
cutting and shearing by using concept of a guillotine machine with either a straight angled
edge or an oblique edged tool. A simple CAD model consisting of a single straight edged tool
and a strip of metal sheet is used to create understanding of straight angle cutting. Instead of
changing the angle of motion of straight edged tool, the cutting edge of tool was changed to
oblique angle edged in creating shearing environment in present study.
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1.3 Contribution to knowledge

The proposed program of research has addressed the principal question of creating an
understanding of straight angle cutting and shearing (oblique cutting) procedure. The present
study has investigated various parameters of metal sheet, tool and cutting process to minimise
stress on tool ad work piece. The outcome of the present study may result in an understanding
of straight angle cutting and shearing process in virtual environment of software. The present
study may also result in optimised cutting process with minimum and equally distributed

stress on tool and work piece, during straight angle cutting and shearing process.
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2. Chapter 2; Literature review
2.1 What is cutting process

The cutting process was originally defined as orthogonal cutting in which a piece of material
is separated by applying enough force to cause material to fail but orthogonal cutting is
mainly used in milling and machining process (Pawade et al 2008). The term, cutting process
is widely used to cut metallic and non-metallic materials into small pieces by a tool known as
blade or knife (Lalwani et al 2008). The most common cutting processes include punching,
guillotining, stamping, slitting shearing and mechanical cutting (Mackensen et al 2010).
Attack angle plays a vital role in cutting process. More research is required to evaluate the
impact of attack angle on cutting process in addition to other parameters (Orrego et al 2010).
Shearing is commonly used cutting process to cut both metallic and non-metallic materials
(Pradeesh et al 2016). Non-metallic material includes paper, wood, plastic, leather and cloth
etc. and the metal material sheets include Steel, Aluminium and Brass etc. (Suhail et al
2010). Metal sheets of variable thickness are used in manufacturing industry (Tugrul et al
2005). Various types of shearing machines are used to cut metal sheets of various quality,
size, material and volume according to nature of industry (Uhlmann et al 2011).

Shearing machine may have one or more blades. If two blades are used, the shearing angle is
the angle between two blades; upper blade and lower blade. If upper blade is inclined, the
sheet is cut progressively from one end to other end and the process is called stationary
process (Wen et al 2013). If both blades are parallel, the sheet is cut once and the process is
called transient process (Mastanamma et al 2012). Although both methods, cut the sheet but
there is difference of sheared edge in both cases. Lubrication may be used to reduce shear
stress, friction and roughness of metal plate edges (Ojolo et al 2011). However, gross plastic
deformation of the metal sheath happens near the cutting edge of the blade (Momani et al
2008). In straight angle cutting, the blade is in continuous contact with metal sheet from one
end of metal plate edge to other side of the edge at the beginning of the cutting process
(Kundan et al 2014). Shearing is the process of cutting off metal sheets by applying shear
stress along the thickness of the sheet by using single or pair of blades (Dong et al 2008).
Shearing happens by severe plastic deformation locally that propagate along the thickness of
the sheet (Gurun et al 2016). In shear, locally created fracture propagates deeper into the
thickness of the blank and cut metal sheet (Gustafsson et al 2014). The shearing operations
may include blanking, piercing, roll slitting and trimming (Hilditch et al 2005).
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2.2 Shearing versus straight angle cutting

Attack angle is the angle between blade edge and the surface of metal sheet (Wang et al
2018). A cutting process is defined by an attack angle of cutting tool (Axelsson et al 1993).
The angle of attack in a cutting process determines the type of cutting; straight angle cutting
or oblique angle cutting (Wyeth 2008).

In straight angle cutting, the nature of cut is rough and procedure may be used in small
industries with no requirement to create precision cut (Amin et al 2012). As high amount of
force is required in straight angle cutting and the amount of stress generated on, tool and
work piece in high as well (Sasimurugan et al 2011). As tool, life depends upon stress and
strain generated during cutting process, straight angle cutting impact negatively on tool life
(Ulutan et al 2011). Straight angle cutting is actually mechanical cutting of metal sheet with
perpendicular force creating straight attack angle (Roy et al 2009). The process is simple as a
perpendicular mechanical force is applied to cut metal sheet into two or more pieces.
Examples include hydraulic, pneumatic, simple mechanical and punching press with straight
angle tool. Simple example of mechanical cutting machine in everyday use includes manually
handled or power operated punching machine. The mechanical cut is not sophisticated cut, as
it is less smooth in nature as compared to a shear cut (Suraratchai et al 2008). Straight angle
cutting creates relatively rough edge cut as compared to shearing (Asilturk et al 2011). The
intensity of wear also depends upon the hardness of material (Hardeep et al 2011). Metal
stamping is a type of straight angle cutting and not a real metal cutting procedure (Kumar et
al 2016). It converts metal sheet into a desired shape by use of a die under high mechanical
pressure (Gaudilliere et al 2010). The metal sheet used must be ductile and capable of
bending into the desired shape without any tear or fail. The technique is widely used in small
to medium size industries to manufacture various mechanical and automobile parts including
door panels, car body, tins and many more (Gaudilliere et al 2010). In panel manufacturing,
panels are obtained by straight angle cutting that run parallel to the sides of the panel and
runs from one side of the panel to other end. Usually, base plate on which work piece
material sits is rectangular but may be of other shapes.

Guillotine may be used for either oblique or straight angle cutting depending upon the attack
angle of its blade. Oblique cutting or shearing is also called edge to edge cutting as oblique
angle of blade makes contact at one end of sheet in the beginning and continue to propagate
to other end during cutting process ( Grzesik 2008).
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Shearing blade may be either curved or straight to get precision cut of metal sheet edge while
sheet is clamped on both sides (Fu et al 2005). Slitting is a type of shearing carried out by a
pair of rotatory blades (Gurun et al 2016). Trimming is a finishing process in which
previously formed part is finished by removing burr from cut edge. It provides smoothness on
the cut edges (Jyothi et al 2013). The shearing is more significant when required size of sheet

is large enough or too small (Gurun et al 2016).

2.3 Significance of shearing

In shearing, cut starts from one end of metal sheet and propagate to the other end while in
straight angle cutting; the blade has continuous contact with metal sheet from one end to the
other end of metal sheet (Brosius et al 2011).

The metal sheets are used in many industries including mechanical, manufacturing,
automotive, aeronautical, construction, electronic and electrical to manufacture wide range of
products (Turnbull et al 2011). The range of products manufactured from metal sheets
includes small industrial elements to heavy mechanical complex products (Wu et al 2012).
Light weight products using metal sheets include packaging, automobile body work and
construction industry items like cladding. Other heavy-duty industries manufacturing cranes,
cars, tools, suspension bridges and rockets, use steel metal sheets of significant thickness.
Fine edged metal sheets are highly demanded in manufacturing industry and therefore
shearing is more demanded than straight angle cutting.

A metal sheet depending upon its hardness may be cut by using a single method of cutting or
a combination of more than one cutting method (Mian et al 2011). Metal material is better
than non-metallic material in strength, durability and reliability (Zhang et al 2016). Steel and
Aluminum are economical, easily available and most commonly used metal sheets in
manufacturing industry (Wan et al 2018).

Both, metallic and non-metallic materials are cut into sheets in manufacturing industry
(Wyeth 2008). Metal sheets are manufactured and transported in small size pieces and then
fabricated again to build up larger structures like deck of ships (Bouvier et al 2006). The
purpose of metal sheet cutting includes cutting metal sheets in various sizes, stripping of

metal sheets, hole making and designing in various desired shapes (Husson et al 2008).
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2.4 Shearing stress

The force required to cut the metal sheet decreases with increase in attack angle (Tekiner et al
2006). In straight angle cutting (punching), the cutting edge of the tool is perpendicular to the
surface of sheet. In shearing, the cutting edge of tool is oblique to the surface of metal sheath
(Soyarslan et al 2010). The shear machine may have one or more blades. If two blades are
used, the superior blade and inferior blade both contribute in to the shear force build up. The
superior blade provides an initial blow over the metal sheet resting on the inferior blade. A
small distance known as clearance is present between edges of upper and lower blades
(Tekiner et al 2006). The clearance facilitates the fracture of metal sheet by increasing shear
force (Hambli et al 2003). Stress generated on tool and metal sheet depends upon attack angle
in addition to tool size, shape, sharpness, material, tool speed, tool edge angle and metal sheet
properties like sheet’s material, thickness and stiffness (llhan et al 2008). In addition, the
cutting speed also impact on the tool and metal sheet stress (Pawade et al 2008). Tools made
of various materials are used to cut materials ranging from soft materials like food items to
hard material like metal sheet and therefore made of various hard materials (Wang et al
2018).

Shearing is different from mechanical cutting as it is used to cut metal sheets with fine and
smooth edge (Wu et al 2012). Manufacturers are interested to reduce stress on tool and work
piece in order to enhance tool life and smoothness on cutting edge of metal sheet. For
example, smoothly cut steel plates are highly demanded in vessel manufacturing industry.
Therefore, shearing is most commonly used method to cut metal sheets ( Juneja 2003).

Some examples of straight angle cutting and shearing machines used in everyday routine are
represented on page 31, figure 3-6. Shearing machines in figure 3, 5 and 6 makes oblique
attack angle with the surface of metal sheet and therefore result in shear cut but in straight
attack angle cutting machine in figure 4, tool makes right angle with the surface of the metal

sheet and therefore result in straight angle cutting.
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Figure 3; Guillotine metal cutting (shring)

Figure 4; Guillotine machine with blade angle of 90 Degree(Straight angle
cutting)

Figure 5; Shearing

Figure 6; Shearing

Source; https://www.ebay.co.uk/itm/Sheet-metal-quillotine-shear-manual-cutter-2050mm-1-25mm-Fast-

25



https://www.ebay.co.uk/itm/Sheet-metal-guillotine-shear-manual-cutter-2050mm-1-25mm-Fast-

2.5 Parameters impacting Shearing process

Parameter may be defined in cutting process context as a measurable element or variable that
defines cutting process and impact by its variation (Bard et al 1974). Many parameters
impact shearing and may be optimised to reduce shearing stress (Wen et al 2013). These
factors may be classified into parameters related to tool, metal sheet and the cutting process
itself (Ilhan et al 2008). Cutting tool factors include size, shape, blade angel, acceleration,
and material of tool (Meenu et al 2014). The factors of metal sheet include size, shape,
thickness and material of metal sheet (Lalwani et al 2008). The cutting process factors
include cutting force, temperature, attack angle and contact time of tool and metal sheet
(Hardeep et al 2011). Stress on the metal sheet and cutting tool depends upon various factors
including degree and level of contact between blade profile and metal sheet (Orrego et al
2010). Parameters affecting shearing are optimised to reduce shear stress in cutting process
(Suhail et al 2010). Less shear stress results in longer tool life and smoother edge of metal
sheet (Ulutan et al 2011). The surface finish of final metal sheet and tool life are major
considerations in cutting process (Li 2000). Therefore, metal shearing should be optimised in

efficiency, performance, quality and cost of final product (Luo 1999).

Tools may vary in size, shape, application site, quantity and material (Dipak et al 2008).
Tool wear must be considered to aim economical metal cutting process (Fu et al 2005).
Cutting tools may wear due to rust, friction, abrasion, aging, mechanical use, chemical
decomposition and angle of attack (Jyothi et al 2013). Oxygen also plays a vital role in the
early wear of cutting tools (Dipak et al 2008). Various factors impact tool wear in hard metal
cutting (Gangopadhyay et al 2010). Various methods have been used to optimise tool wear
(Sasada et al 2006). Tool is manufactured by selection of strong metal, as tool material is
one of the important parameters affecting shear stress generated in shearing (Pawade et al
2008). Each metal has different properties including strength, hardness, smoothness and
elasticity (Wang et al X.2018). Some of these properties have advantages while other
properties may have negative impact on tool life (Luo 1999). Tool quality and life span may
be improved by optimising tool geometry, material and polish (Das et al 2015). Tool
geometry is optimised to reduce shear stress in cutting process (Gustafsson et al 2016). Tool
life is important in the metal cutting procedure (Das et al 2015). Various factors are
considered in manufacturing and selection of shearing tool (Mian et al 2011). Tool

parameters are optimised to enhance tool life, strength, durability, cost effectiveness and
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smoothness of cutting metal sheet. Many types of materials including high quality hard steel
are used in manufacturing of stronger cutting tool (Gustafsson et al 2016). The hardest
material like diamond has been used in cutting tool manufacturing (Budinski 1992). Diamond
tools are excellent in hard metal cutting process (Amin et al 2012). As many factors affect
wear of various metals, a cutting tool may be made of reinforced metal matrix composites
(Horton et al 2017). The tools made of reinforced material have better life span (Edward et al
2000). However, there are various factors affecting the machinability of metal matrix
composites (Mastanamma et al 2012)

One of the most significant parameters of shearing is the friction between metal sheet and
tool during cutting process (Sasada et al 2006). The friction between metal sheet and tool
may well be explained by considering Coulomb conditions (Suraratchai et al 2008). Various
friction forces are created during a metal sheet cutting process between metal plate and tool
profile (Turnbull et al 2011). Friction forces may well be understood by describing the
paradoxes of the shear stress and length of the shear (Edmund 2003). Friction between tool
and metal sheet directly affects cutting process (Gomez et al 2012). By using appropriate
mathematical equation, it is possible to estimate the impact of increasing friction on
deformation of the sheet metal (Gutknecht et al 2015). In a cutting procedure, the increase in
friction demand high cutting force (Brosius et al 2011). Friction between tool and work piece
may be reduced by use of lubricants (Ojolo et al 2011). The lubricant reduces the contact
length between metal sheet and tool ( Juneja 2003). Lubricants act on the rake face of the
blade to decrease interfacial shear stress between metal sheet and tool (Viktor 1999). The
parameters affecting both straight angle cutting and shearing have been presented in figure 7
and detailed in table 1-3.
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Figure 7; Cutting parameters
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Tool Factor

Tool Geometry

Blade edge angle

Rake angle

Tool life span

Tool geometry including tool
size, shape, thickness and edge
determines surface integrity of
metal sheet, stress during cutting
process and wear of the tool itself
(Dipak et al 2008). Temperature
rise because of cutting process is
due to material flow around the
tool edge (Meenu et al 2014).
Sharpness of edge determines the
quality of metal sheet (Lalwani et
al 2008). For example, less stress
is generated in case of sharp edge
cutting as compared to chamfered
edge.

Tool edge geometry includes
chamfered angle, chamfered
width and edge hone. Tool edge
geometry has great influence on
tool life (Gangopadhyay et al
2010). For extra hard metal sheet,
negative rake angle with strong
edge (Chamfered horned)
geometry is successful to avoid
early tool wear (Ben et al 2008).
Tool must be strong enough to
withstand high mechanical and
thermal stress when cutting hard

metal. The cutting tool edge
geometry impact on various
outcomes of cutting process

including cutting force, metal
sheet edge finish, temperature
due to cutting, tool wear, tool life
and stress at the site of cutting(
Das et al 2015)

Rake angle contributes to the
generation of stress and strain in
tool and on metal sheet during
cutting process. The rake angle
may be negative or positive and
plays a vital role in cutting
process. Back rake angle is
important in single edge cutting
tool (Dipak et al 2008). Positive
rake angle reduces cutting force.
Reduced cutting force decreases
the deflection of metal sheet and
tool (llhan et al 2008). High back
rake angle reduces the tool
strength and heat conduction.

Wear and tear of a blade results
in early replacement of blade,
therefore the life span of a blade
is economically significant as it
determine the final cost of the
metal sheet (Wen et al 2013). The
optimised blade with a longer life
span and excellent reliability may
be evolved by FEM analysis. The
cutting process includes various
phenomenons like plastic and
elastic  deformation,  friction
forces, thermal stresses, other
forces like abrasion, adhesion,
absorption etc.

Table 1; Tool Factor
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Metal sheet Factors

Metal sheet Material

Metal sheet Thickness

Speed of metal sheet movement

Material has its specific properties including
Young’s Modulus, elastic and plastic strength,
shear strength and many other qualities.
Material properties are enough to define a
material. A material undergoes failure if a
shear force is applied more than its shear
strength. Once shear force more than material’s
shear strength is applied, material is failed and
a part is separated that define full process of
shear (Suhail et al 2010). Wide ranges of
cutting tools have been in use for centuries.
The Finite Element Method in Plane Stress
Analysis has also been used in analysis of
stress at tool and metal sheet in metal cutting
process. Cutting tools may be polished or
coated. The coated material may help to
decrease stress and roughness in cutting
process.

During the shear cut phenomenon, micro
cracks appear at the site of shear combining
into a complete shear (Turnbull et al 2011).
Experiments in the investigation of micro
hardness on shear zone have indicated that a
thickness of metal sheet determine the number
of micro hardness on the metal sheet.
Therefore, the thicker the metal sheet, the more
will be micro hardness in number and thinner is
the metal sheet, less will be micro hardness.
The shear zone understandingly is significant to
the design of a shear cut machine (Ulutan et al
2011). The cutting process has been examined
in straight angle metal sheet cutting providing a
basic understanding of changes in shear zone
during and after the shear (Suhail et al 2010).

The motion of a metal sheet has major
impact on the continuity of cutting process.
A continuous contact between blade and the
metal sheet is required to create a continuous
shear across the metal sheet (Mastanamma et
al 2012). A metal cutting process is
dependent on cutting speed, efficiency of
cutting machine and quality of cut
(Chaussumier et al 2012). In a metal cutting
process design, the selection of an accurate
cutting device and speed of cutting machine
determines the economic viability of metal
cutting process.

Table 2; Metal sheet parameters
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Cutting process parameters

Friction

Cutting Speed

Temperature

Friction has great impact on cutting process.
The metal sheet flow pattern in lubricated
cutting process has been explained the lip line
field for the flow to be calculated (Amin et al
2012). Similarly, the shear stress distribution
on the plastic part of the metal sheet blade
contact length has been evolved from the
angles at which the slip lines join at the rake
face of the blade. However, good lubrication
or even dipping metal sheet in Carbon
tetrachloride cannot totally remove sticking
friction. However, the adhesion force may be
reduced to a limit depending upon blade and
metal sheet material, lubricant properties and
temperature of the cutting process (Pawade et
al 2008). Therefore, it may be concluded that
the lubricant acts to induce steep interfacial
shear stress gradient along the metal sheet
blade contact length (Lalwani et al 2008).

At high speed of cutting process, the tool and
metal sheet compression ratio decreases
resulting in longer blade life. In other words,
various combinations of impacting factors
may be used to describe the relationship
between cutting speed and blade life
(Uhlmann et al 2011). For example, cutting
speed and cutting force and metal sheet
compression ratio have significant impact on
life of blade. Various liquids may be used to
decrease adhesive force and thus to increase
cutting speed and blade life. The fluids may
increase cutting speed and blade life by
decreasing adhesive force between blade and
the metal sheet. Therefore, the dry cutting
phenomenon without the use of any adhesion
reducing oil may decrease blade life because
of resultant increase in stress.

The temperature generated during a cutting
process also affects the cutting-edge finish
(Mian et al 2011). Cutting tools may be coated
with special materials to reduce friction and
temperature during cutting process. The finish
at the edge of sheared metal sheet depends
upon two main factors; blade sharpness and
clearance between blade and the metal sheet
(Jin et al 2013).

Table 3; Cutting process parameters
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2.6 Surface finish in shearing process

Surface finish of metal sheet edge is significant in manufacturing industry (Asilturk et al
2011). Cutting of metal sheet with smooth edge is one of the significant reasons of using
shearing instead of straight angle cutting in manufacturing industry (Gangopadhyay et al
2010). Long life of a tool and fine metal sheet quality are desirable for most of manufacturing
industries (Li 2000). Geometry of the tool, edge angle, attack angle, tool material and cutting
force determines metal sheet quality and tool life (Tugrul et al 2005). Straight angle cutting
creates rough edged and poor quality metal sheet due to high stress generated during cutting
process (Suraratchai et al 2008).

The surface roughness is the quality of surface, which plays an important role in defining the
characteristic of a surface. Surface roughness may be defined as the surface level of shininess
or asperity (Ulutan et al 2011). Surface irregularities derived from wide range of tool and
metal sheet factors is known as surface roughness (Luo 1999). The roughness properties like
form, size, shape, pattern and dept. of irregularities affect the quality, character and function
of the metal sheet (Lalwani et al 2008).

Visual examination by two examiners may result in two subjective opinions about roughness
of a surface. Therefore, an electric measurement instrument known as profilo-meter is used to
measure roughness in very small measurement in mille microns (llhan et al 2008). In a
profilo-meter, a very sharp stylus touches across the surface at a constant speed for a set
distance (Figure 8). An electrical stimulus created by movement of stylus results in signal
formation that is amplified to draw a graphical display on screen or print on paper or saved
digitally (Figure 9). The numerical values of variable signals represent the values and texture
of a surface roughness (Figure 10).
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Figure 8; Basic principle of roughness test.

LN ANALNAN

Figure 9; Basic principle of roughness test

Source; www.taylor.Hobson.com
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Armature
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Figure 10; Basic principle of roughness test.
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3. Chapter 3; Methodology

The present study consists of four parts. In the first part of the study, impact of stress
generated on tool and metal sheet in various attack angles of tool models is investigated. Tool
attack angle ranging 15 Degrees to 90 Degrees has been investigated.

In the second part of the study, straight angle cutting of various metal materials has been
investigated for stress generated on metal sheet and tool. In straight angle cutting, blade edge
IS at 90 ‘deg.” angle to metal sheet and keeps continuous contact with metal sheet from one
end to another end. Virtual software environment of ANSYS 19-R has been used for CAD
modelling and FEM analysis. A combine approach has been used by analysing stress on
metal sheet and tool by using explicit dynamic analysis module of in ANSYS 19-R. Explicit
dynamic analysis module provides opportunity to observe stress simultaneously on both
metal sheet and moving tool during cutting process.

In third part of the present study, shearing of metal sheet has been investigated. In shearing,
the tool edge has an oblique attack angle and therefor creates progressive contact from one
end of metal sheet to other end of the metal sheet during cutting process. The shearing has
been investigated for various combinations of material, attack angle, friction between metal
sheet and tool and cutting velocity. Both cutting processes have been compared to evaluate
difference of stress generated on tool and metal sheet.

In fourth part a comparison of straight angle cutting and shearing processes have been
investigated for various impacting parameters of tool, metal sheet and cutting process. The
current study methodology approach has been illustrated in figurell.
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Figure 11; Present study Methodology

35



3.1 Experimental Design

Experimental design of the current study consists of four parts. A principal experimental
model (CAD model) was designed in ANSYS 19-R in software virtual environment. A
geometry consisting on two parts, tool and metal sheet was designed in Workbench 19-R by
using concept of Hydraulic or mechanical press with straight attack angle blade. Properties of
both materials were defined in engineering material database. The interaction between both
tool and metal sheet was frictionless in default definition. It was changed to frictional and
friction was defined to create real environment. Then metal sheet was applied fixed support
on four faces. Displacement was applied to metal sheet on six faces with step movement at Z-
axis while other two axes remain free. The tool was selected and velocity was applied at the
rate of -10m/sec in y direction. In analysis setting, time step was defined. The energy error
was set at 100. The desired solution was set for equivalent stress, elastic and plastic strain and
deformation. Explicit dynamic analysis module of software ANSYS 19-R was used in present
study investigation. Both tool and metal sheet were meshed in adjustable mesh size. In the
beginning, tool material was used as tool steel H13 with young modulus of 215 GPa and
metal sheet material was used as Aluminium.

In the first part of study, the tool attack angle was modified in principal experimental model
to investigate the impact of various tool attack angles on cutting process. In second part, the
in principal experimental model with tool attack angle of 90 degree was used to investigate
straight angle cutting process. Various parameters affecting straight angle cutting process
were investigated. In third part, principal experimental model with tool attack angle of 30 deg
was used to investigate shearing process. Various parameters of shearing were investigated.
In final and fourth part of investigation, the stress generated on tool and metal sheet for
various variable parameters was compared and presented in graphical manner to illustrate
difference between straight angle cutting and shearing process. The properties of materials

used in present study are presented in appendix 8, (Fig.277-286).
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3.2 Experimental CAD model

A simple, principle CAD model was designed in ANSYS 19-R with tool and metal sheet. A
concept of mechanical press punching downward was used while designing experimental
model. If tool edge is kept straight, it makes attack angle of 90 with metal sheet surface and if
tool edge is designed with angle less than 90, then it creates an oblique attack angle with
metal surface presenting an environment of shearing.

The experimental CAD model consists on two parts; Tool and metal sheet strip. Tool with
thickness of 1.6 mm and with straight edge as presented in Fig.14 was designed. The metal
sheet thickness of 1 mm was designed. Tool material was kept tool material H13 with Young
modulus of 215 GPa and metal sheet material was kept Aluminium Alloy high strength as
default. The orientation of tool and work piece metal sheet is perpendicular like a mechanical
or hydraulic press punch a metal strip. Dimensions of present study experimental model are
represented in Fig 12-13. The detail of experimental (CAD model) designed for present study
has been presented in Fig 12-17. The tool angle with value of 30 Degree was used in oblique

attack angle /shearing investigations as presented in Fig.15.

3.3 Simulation protocol

To keep similar environment in each simulation, all parameters were kept similar while
changing the under investigation parameter. The interaction between both parts was changed
from frictionless to frictional with value of friction co-efficient of 0.1 and dynamic co-
efficient 0.2. Similarly, end time for analysis was set for 0.000125 and total energy error was
set to 100. Displacement, fixed support and velocity with appropriate direction were also
applied on the CAD model. A clearance of 20 % of the tool thickness equal to 0.32 mm to
left on both side of tool. To avoid buckling of metal sheet, it should be supported on both
sides of tool at upper and lower surface as shown in Fig.16. Fixed support was applied on
four faces instead of designing supporting blocks as represented in Fig 17. The simulation
protocol for various investigations of current study is represented in appendix 11, table 6-11.
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Figure 12; Tool Dimensions
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Figure 13: Metal sheet Dimensions

Figure 14; Tool Thickness 1.6mm, Work piece thickness 1.6 mm (90
Angle)

Figure 15; Tool angle 30 in shearing investigations
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Figure 16; Concept of shearing in present study
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Figure 17; Experimental model used in current study
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3.4 Data collection and results

In the current study, an investigation into straight angle cutting and shearing is conducted by
using virtual environment of ANSYS 19-R. Explicit dynamic analysis of work bench was
used to observe cutting process outcome in metal sheet and tool simultaneously. Stress was
analysed for various tool material, metal sheet material, tool speed, tool thickness, metal
sheet thickness, friction co-efficient and attack angle.

In both straight angle cutting and shearing investigations, stress was observed against
variation of investigated parameter while keeping other parameters constant. Straight angle
study investigation protocol and shearing investigation protocol was kept similar except
change in attack angle. The experimental protocol of simulation of present study is presented
in appendix 11, table 6- 11. The steps of simulation in ANSYS 19-R used in present study are
presented in Fig.18-32.

In shearing, the tool attack angle is oblique to the surface of the metal plate. An attack angle
of 30 Degree was adapted for shearing investigation in present study. In shearing / oblique
attack angle cutting, the blade touch metal plate surface from one edge of metal plate and
propagate to the other edge when cutting process progress. Straight angle investigations were

performed with tool attack angle of 90 degree.
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4. Chapter 4; Results
4.1 Impact of attack angle variation on cutting process

To investigate various attack angles, the principle experimental CAD model was used. The
tool angle was changed from 15 ‘deg.” to 90 ‘deg.” The CAD models with tool angle of 15,
20, 25, 30, 35, 40, 45, 59, 55, 60, 70, 75, 80, 85, and 90 degrees were investigated. To keep
similar environment in each simulation, all other parameters were kept similar. The
equivalent stress, elastic strain, plastic strain and deformation generated for various attack
angles has been presented in figure 36 in graphical form. Result images have been presented

in figures 57 to 59 in appendix 7.1.

4.2 Straight angle cutting

In straight angle cutting, blade, edge is 90 'deg' angle to the metal sheets and blade is in
contact with metal sheet from one end to other end. An experimental CAD model with tool
and metal sheet was designed to investigate straight angle cutting in virtual environment of
ANSYS 19-R. Explicit dynamic analysis module of software ANSYS 19-R was used to
investigate straight angle cutting. Straight angle cutting process was investigated for
parameters including tool material, tool thickness, metal sheet material and metal sheet
thickness, friction co-efficient variation and relative speed of tool. The results of variations
have been presented in figure 34-40 in graphical form. The result images for simulations for
various variable values have been presented in appendix 7.3, in figures 165-276. The result
images for stress generated for various tool materials have been presented in appendix Fig
253-272 of appendix 7.3.5. The result images for stress generated for various metal sheet
materials have been presented in Fig.273-276 of appendix 7.3.6. The result images for
simulations for various friction values have been presented in appendix 7.3.3 in figures 193-
232. The results for thickness variation of tool are presented in graphical form in Fig. 36. and
metal sheet thickness variation are presented in graphical form in Fig.37.The result images
for simulation for various tool thickness are presented in appendix 7.3.1 in figures 165-176.
The result images for stress generated for various metal sheet thicknesses are presented in
appendix 7.3.2 in figures 177-192.The result of stress generated for various speeds of tool are
presented in graphical form in Fig.35 and result images are presented in Fig.233-252 of
appendix 7.3.4. The result of stress generated for various applied force is presented in
graphical form in Fig.39.
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Attack angle variation versus stress
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Figure 33; Attack angle variation versus stress
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Figure 36; Tool thickness versus stress(Straight angle cutting)
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Sheet material versus Stress (pa)(Attack angle 90 Deg)
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Figure 38; Sheet material versus stress(Straight angle cutting)
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4.3 Shearing

The principle CAD model with two parts, metal sheet and tool was designed in ANSYS 19-R
for present study was used in shearing investigations. The attack angle war changed to 30
degree. Individual parameters were investigated while keeping other parameters constant.

4.3.1 Stress versus various metal sheet material

Only metal sheet material was changed while keeping other parameters constant. Metal
sheet materials of Aluminium Alloy high strength, Aluminium AL6061-T6, Aluminium
7039, Aluminium AL 1100-O, Aluminium AL5083H116 were investigated for stress on tool
and metal sheet in simulations. The results were collected for stress, strain and deformation.
The stress generated for various metal sheet materials is presented in Fig.45 in graphical
form. The result images for stress generated for various metal sheet materials are presented
in Fig.161-164 of appendix 7.2.6.

4.3.2 Stress versus various tool material

Only tool material was changed while keeping other parameters constant. Tool materials of
T1 tool steel, H22 tool steel, W1 tool steel, D2 tool steel, H 13, were investigated for stress
on tool and metal sheet in simulations. The results were collected for stress, strain and
deformation. The stress generated for various metal sheet materials are presented in Fig.47 in
graphical form. The result images for stress generated for various tool materials are presented
in appendix Fig.141-160 of appendix 7.2.5.

4.3.3 Stress versus various friction values

Only Friction co-efficient was changed from 0.1 to 0.9 keeping other parameters constant.
The results for stress, strain and deformation were observed in simulations. The results of
friction variation are presented in figure 41 in graphical form. The result images for
simulations for various friction values are presented in appendix 7.2.3 in figures 89-120.

4.3.4 Stress versus various tool speed values

The results of tool speed variation are presented in figure 44 in graphical form. The result
images for simulations for various friction values are presented in appendix 7.2.3 in figures

121-140.
4.3.5 Stress versus Force applied

The results of applied force variation are presented in figure 46 in graphical form. The graph
shows that stress increases by increasing applied force. The amount of stress is comparatively
high in straight angle cutting than shearing.
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4.3.6 Stress versus metal sheet thickness & stress versus Tool thickness

The tool and metal sheet thickness have impact on cutting process. In stress versus metal
sheet thickness investigation, tool thickness was taken 1.6 mm constant. In tool thickness
versus stress investigation, metal sheet thickness was taken constant as 1 mm. All other
parameters were same in both investigations. The results for thickness variation for tool are
presented in graphical form in Fig. 42. In addition, metal sheet thickness variations are
presented in graphical form in Fig.43.

The result images for simulation for various tool thicknesses are presented in appendix 7.2.1
in figures 61-72. The result images for stress generated for various metal sheet thicknesses
are presented in appendix 7.2.2 in figures 73-88.

4.4 Roughness Test

Roughness test was performed as an independent investigation on laboratory sheared metal
strips. Some strips were guillotine sheared by using hydraulic press in laboratory. As the
attack angle was kept 30, deg, it presents a shearing environment. Roughness was
investigated on the cut edges of the samples using a roughness test machine. Roughness in
variation of applied forces and metal sheet thickness were investigated. Both parameters were
investigated separately. The cut edge was checked for roughness by using profilo-meter. The
results of applied force versus roughness are presented in Fig.48. The results of sheet

thickness versus roughness are presented in Fig.59.
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Sheet material versus stress
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Figure 46; Force versus stress
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5. Chapter 5; Discussion & Conclusion
5.1 Discussion

The nature of cutting is defined by attack angle of tool edge with surface of metal sheet
(Mian et al 2011). If tool attack angle is 90 ‘deg.’, then tool makes continuous contact with
metal sheet at the beginning of cutting process, from one end of metal sheet to the other end
of metal sheet (Goijaerts et al 2001).This type of cutting process is defined as straight angle
cutting. Straight angle cutting is mechanical cutting used to cut small strips of metal sheet and
iron bars. Mechanical, hydraulic and pneumatic press are used in straight angle cutting (Shim
et al 2004). Manual puncher is another simple example of straight angle cutting. For
example, a paper punch is an example of simple punching process. Large-scale hydraulic
press is used to cut large paper sheet rolls. Straight angle cutting depend upon variable
parameters of cutting process (Ojolo et al 2011).

The present study has developed an understanding between straight angle cutting and
shearing in virtual environment of explicit dynamic analysis of ANSYS 19-R software. High
cutting force is required in straight angle cutting (Uhlmann et al 2011). Attack angle is a
significant factor in cutting process (Gustafsson et al 2016). In shearing, less force is required
as compared to straight angle cutting (Behrens et al 2014). Software simulation of current
study revealed that an attack angle of 55 ‘deg.’ is the best angle, as it requires less cutting
force. However, tool life span may be increased by keeping attack angle between 45 and 55
‘deg.” because normal force and cutting force is same at the attack angle of 45 ‘deg.’
Therefore, the resultant force becomes parallel to pick axis, thus minimising the bending
moment, tensile stress and the risk of tool failure (Wyeth 2008).

The present study has investigated impact of attack angle versus stress generated on tool and
work piece. A blade with more than 30 ‘deg.” of edge angle is durable with less wear and
tear. The attack angle of tool depends upon the hardness of metal sheet material. The edge
angle under 30 ‘deg.” is used to cut softer tissues because the tool bears minimum stress
(Turnbull et al 2011). The minimum blade edge angle used in razor blades ranges between 7
to 10 ‘deg.” (Roy et al 2009). The edge of razor blade may easily be damaged if used to cut
hard material limiting its use for soft tissues only (Dalloz et al 2009). Another, angle range of
ten to seventeen ‘deg.’ is used in most of delicate blades. The range of ten to seventeen ‘deg.’
angles is much better than angle range of 20 to 30 ‘deg.” and therefore knife is sharp with fine

edge (Asilturk et al 2011). These knifes are used in slicing soft tissues and cannot be used to
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cut hard material. The investigation results of attack angle versus stress for various angles
used in present study is presented in Fig.33. The comparison results revealed that stress
increases by increasing attack angle. However, stress behaviour is complex as stress increase
sharply at lower angles rather than higher angles.

Cutting process is affected by parameters of tool, metal sheet and cutting process (Ben et al
2008). The factors impacting cutting process include tool material, metal sheet material,
cutting process parameters, cutting process set up, machine size, shape, scale, set up, cutting
process environment, temperature, friction, use of lubrication during cutting process, rake
angle, attack angle, tool edge angle, , speed of cutting, tool thickness, metal sheet thickness
and applied force (Das et al 2015).

The impact of friction is significant in both straight angle cutting and shearing (Lemiale et al
2009). The effect of lubricant may be introduced by replacing constant friction theory by an
independent friction and normal force quantitative model of lubrication (Ojolo et al 2011). In
present study, the comparison of investigation results between straight angle and sheering for
each parameter are presented in graphical form to see various out comes including equivalent
stress, shear stress, elastic and plastic strain and deformation. The results revealed that
dynamic friction co-efficient has an inverse impact on stress generated in straight angle
cutting and shearing. The stress increases with increase in dynamic friction co-efficient. The
stress is high in straight angle cutting as compared to shearing. However, the pattern of
increase in stress by an increase in friction co-efficient is similar. The comparison of results
for Friction co-efficient versus stress on tool and metal sheet are presented in Fig 50. As
stress generated on tool and metal sheet is important in designing an optimised cutting
process, the stress was compared for each investigated parameter including tool material, tool
thickness, attack angle and metal sheet parameters including metal sheet material and metal
sheet thickness, friction co-efficient variation and relative speed variation.The comparison
results have been presented in figure 50-56.

Tool and metal sheet material are affecting factors in cutting process irrelevant of the nature
of cutting process (Mastanamma et al 2012). The selection of tool material is significant as
tool undergoes huge stress during cutting process ( llhan et al 2008). As indicated by present
study, the stress is comparatively high in straight angle cutting than shearing. Selection of
tool material for hard metal shearing, depends upon factors like material of metal sheet ,
thickness of metal sheet, cutting parameters, cutting speed, friction, use of lubricants,
temperature and pressure (Hardeep et al 2011). The present study has used tool material of
T1 tool steel (Young modulus 190 Gpa), H22 tool steel (Young modulus 200 Gpa), W1 tool
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steel (Young modulus 205 Gpa), D2 tool steel (Young modulus 210 Gpa), H 13(Young
modulus 215 Gpa) while keeping metal sheet material as Aluminium Alloy high strength.
The comparison results of straight angle cutting and shearing indicated that the less stress is
generated for stronger tool material. Similarly stress generated in straight angle was
comparatively more than shearing for same tool material. The comparison of tool material
versus stress generated is presented in fig 55.

Stronger and harder tool material is used for cutting stronger metal sheets (Hambli et al
2000). Selection of tool material depends upon material to be cut (Wen et al 2013). As a
principle tool material is always stronger and powerful than work piece material (Pawade et
al 2008). Tool material goes under huge stress in cutting process and stress generated
depends upon material to be cut (Sasimurugan et al 2011). Normally, blade material is high-
grade structural steel but in extreme case, tool made of diamond is also used to cut hardest
and strongest metal sheet (Dipak et al 2008). If tool material is too hard, it may break easily
and if it is too soft, it might not be suitable for cutting. Therefore, material is carefully
selected for tool manufacturing by considering suitable combination of hardness and
toughness in the manufacturing industry (Dong et al 2008).

The metal sheet material has great impact on cutting tool and cutting process (Klingenberg et
al 2003). Metals have material property defining stiffness, ductability, elasticity, strength and
hardness of metal sheets (Barlat et al 2003). Among the material properties, the hardness is
understandable quality to select best material for tool manufacturing (Lalwani et al 2008).
The toughness of material is the ability of material to stand against fracture (Wang et al
2018). More is the toughness, better is the material strength (Cholewa et al 2009). The
hardness of the material is measured on a special scale known as Rockwell C scale. However,
the hardness and toughness are entirely different properties of a material. A material may be
hard but not though or a material may be tough but not hard (Chaussumier et al 2012). For
example, glass is a material that is hard but not tough. Heat treatment is performed on steel to
create a balance between hardness and toughness during the preparation of tool blades. Metal
sheet material has great impact on stress generated on tool and metal sheet in straight angle
cutting and shearing. More stronger tool material is required for cutting harder metal sheet.
The present study has investigated impact of various metal sheet materials while keeping tool
material and other parameters constant. In metal sheet material variation tool material of H13
with young modulus of 215 is kept constant for sheet materials of Aluminium Alloy high
strength, Aluminium AL6061-T6, Aluminium 7039, Aluminium AL 1100-O, Aluminium

AL5083H116. Various grades of Aluminium were used to observe how stress variation
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happens against sheet material variation. Both straight angle cutting and shearing comparison
indicated that more stress is generated for stronger metal sheet material. Similarly stress
generated in straight angle cutting was comparatively more than shearing for same sheet
material. The comparison of sheet material versus stress generated is presented in fig 54. A
best combination of metal sheet and tool material is required to get economical and better
cutting process (Pawade et al 2008). Due to oblique angle, shearing is much better for smooth
edge cutting and provide less wear and tear on tool. Other conditions like friction,
temperature and use of various sizes and shapes of tool and metal sheet also affect

smoothness on metal sheet edges.
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Metal sheet material versus stress
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Tool and metal sheet undergo huge stresses during cutting process due to applied force
(Lalwani et al 2008). The blade’s life span is enhanced if the stress generated due to shear
force create minimum and uniformly distributed stress on blade (Fu et al 2005). Another
significant finding in the straight angle cutting process is the magnitude of normal cutting
force that remains constant despite the change in one of the four components of friction
(Gangopadhyay et al 2010). A huge cutting force is required in straight angle cutting process
as compared to shearing with same cutting parameters. Shear is an easy cutting process as
compared to straight angle cutting process (punching) process (Suraratchai et al 2008). In
present study, comparison results for applied force versus stress indicated that stress increases
by increasing applied force. The amount of stress increase is higher in straight angle cutting
than shearing for same amount of force. The comparison results for force versus stress are
presented in Fig.56. The roughness on metal sheet cut edge increases with increase in cutting
force (Tugrul et al 2005).
Thickness of tool and metal sheet impact stress generated in shearing and straight angle
cutting (Dipak et al 2008). More stress is generated for thicker metal sheet and with thicker
blade. Thickness of metal sheet impact roughness as roughness increases with increase in
metal sheet thickness (Ilhan et al 2008). The comparison results of present study for stress
versus tool and metal sheet thickness are presented in Fig. 51-52. The thickness of metal
sheet impact roughness as roughness increases with increase in metal sheet thickness. The
present study results indicate that stress increases versus increase in thickness of tool or metal
sheet. However, the stress generated versus tool thickness or metal sheet thickness is
comparatively high in straight angle cutting than shearing. The roughness on metal sheet cut
edge increases with increase in cutting force and metal sheet thickness. It was revealed in
laboratory investigations of Aluminium sheet thickness versus roughness and as presented in
applied force versus roughness in Fig.48-49.
The motion of tool towards metal sheet surface is significant. If Tool edge direction is
perpendicular to the surface of the metal sheet, it is called straight cutting. If tool moment
towards metal sheet surface is oblique, then shearing is defined. The speed of tool is
important as stress increases with increase in tool speed. The present study has also
investigated tool speed as a parameter of cutting process and found that stress on tool and
work piece increases with increase in speed of tool. However, the increase in stress is
comparatively high in straight angle cutting than in shearing for tool speed versus stress
investigations. The comparison results of present study for speed versus stress are presented
in Fig.53
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A clever approach is required to select tool attack angle, material, shape and size, thickness
and material of metal sheet to design an optimised cutting process (Yoshi et al 2013). In most
of cases, more than one cutting processes are combined to get precision cut and longer tool
life. Therefore, optimisation of cutting process is complex and need further research and

study.

5.2 Conclusion

The present study has been focused to create understanding of straight attack angle and
shearing process. In addition to designing and investigating shearing process, a critical
straight angle cutting process was also investigated and compared. A guillotine cutting
approach was adopted to understand straight angle and oblique cutting in present study. If
blade angle is at 90 ‘deg.’ to the surface of metal sheet, it is called guillotine punching and it
presents a picture of straight angle cutting. Similarly, if guillotine blade is oblique and makes
an attack angle less ninety, it presents a picture like oblique cutting and is called as guillotine
shearing.

The present study has also investigated the impact of blade edge angle, tool and metal sheet
material, friction between metal sheet, cutting speed, tool and metal sheet thickness and tool
attack angle for stress generated on tool and the work piece. Stress generated in both straight
angle and oblique cutting process for various materials of tool and metal sheet is different.
The current study has revealed that tool must be made of stronger material than metal sheet
otherwise tool will be damaged if metal sheet is harder than tool.

The tool edge angle below 30 ‘deg.’ is considered less durable. A balance of angle selection
in preparation of cutting blades for hard metal sheets therefore depends upon many factors
including metal sheet, tool and cutting process parameters. A blade with more than 30 ‘deg.’
of edge angle is considered more durable in cutting hard metal sheets. The roughness of metal
sheet cut edge is increased with increasing the edge angle. The current study has revealed that
an attack angle of 55 ‘deg.” is the best angle. Tool life span may further be increased by
keeping attack angle between 45 and 55 ‘deg.’s as normal force and cutting force is same at
the attack angle of 45 ‘deg.” and stress generated is minimum.

The current study has revealed that material properties of metal sheet and tool material have a
direct link with stress generated on tool and metal sheet. Various materials have been
investigated for tool and metal sheet. More harder is the metal sheet, more stress is generated.
To cut a hard and stronger metal sheet material, the tool made of harder and stronger material

is required. High-grade steel has been found better in cutting hard metal sheets.
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Tool and metal sheet thickness affect both straight angle and shearing process. More stress is
generated for thicker metal sheet and with thicker tool. When compared between straight
angle and shearing, it was revealed that less stress is generated in shearing for same thickness
of metal sheet and tool while keeping other values constant.

Similarly, more stress is generated if friction is high between metal sheet and tool. When
compared between straight angle and shearing, it was found that less stress is generated in
shearing for same friction between metal sheet and tool while keeping other cutting
parameters constant.

Cutting speed is another important factor that impact stress generated on metal sheet and tool
as a result of cutting process. Cutting speed is an indirect index of cutting force. High cutting
speed and high cutting force also result in increased stress on metal sheet and tool. When
compared between straight angle and shearing, it was found that less stress is generated in
shearing for same cutting speed while keeping other cutting parameters constant.

Similarly, comparison of stress generated in straight angle and shearing process revealed that
less stress is generated in shearing as compared to straight angle cutting process for same
cutting force while keeping other cutting parameters constant.

Comparatively, shearing generate less stress as compared to straight angle cutting process
under same values for cutting parameters. It is not possible to investigate all cutting
parameters simultaneously. Therefore, one parameter was investigated keeping other

parameters constant.

5.3 Further research and study

Although present study is quite comprehensive in creating an understanding between straight
attack angle and shearing process by using virtual environment of ANSYS 19-R software, a
laboratory investigation may enhance the demonstration and clarity of both processes.
Although, the current study has also investigated the optimisation of tool and metal sheet
cutting parameters, more parameter may be optimised to reduce stress on metal sheet and
tool. The current study has considered most of cutting parameters but some may need further
investigation to prolong tool life and achieve better finish metal sheet.

The present study has taken software simulation approach by using FEM analysis to
investigate various cutting parameters. It would be better to use laboratory investigations as
well for each part of the study to practically validate simulation and numerical results.
Although laboratory investigation has been carried out to understand learning of roughness

measurement, it would be better if laboratory investigations were carried out to validate each
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result of the current study. Theoretical results obtained by numerical optimisation and
simulation may provide an economical approach to optimise parameters, a prototype must be
designed before manufacturing of actual product. Present study has focused on straight angle
and shearing by considering Guillotine machine. Many factors including health and safety,
environmental factors, use of blade, nature of cut material, room temperature, stiffness of
material, blade handle, size of blade and the nature of blade has not been considered
properly.

Further study and more research is required to design an optimised, economical, safe and
environmentally friendly cutting process. It may add more value if carbon foot print and
complete carbon life cycle of blade manufacturing is considered in blade designing. A more
comprehensive study may include industrial approach and customer’s opinion to

development a perfect design of cutting blade and smooth edged metal sheet.
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7. Chapter 7; Appendix-Shearing
7.1 Attack angle Investigations

7.1.1 Attack angle 45
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Figure 57; Elastic strain;Attack angle investigation
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Figure 58; Plastic strain
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Figure 59; Equivalent stress
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Figure 60; shear stress
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7.2 Oblique angle — Investigations
7.2.1 Tool Thickness versus stress

a. Tool thickness= 1mm
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Figure 61;Deformation (oblique angle simulation)
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Figure 63;Equuivalent Stress (tool thickness 1mm)
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Figure 62;Elastic strain
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Figure 64;Shear stress
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b. Tool thickness=1.3 mm
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Figure 65:Deformation
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Figure 67; Stress
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Figure 68; Shear stress
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c. Tool thickness= 1.6 mm

1438
0.076256
0.038128
0 Min

Figure 69:Deformation
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Figure 72; Shear stress

0.040

ANSYS

2019 R2
ACADEMIC

ANSYS

2019 R2
ACADEMIC

78




7.2.2 Metal sheet Thickness versus stress

a. Metal sheet Thickness; 1 mm
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Figure 73;Deformation
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Figure 75; Equivalent stress (sheet thickness 1mm)
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Figure 74;Elastic strain
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Figure 76;Shear stress
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b. Metal sheet Thickness; 1.3 mm
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c. Metal sheet Thickness; 1.6 mm
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Figure 84;Shear stress
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d. Metal sheet Thickness; 2.8 mm
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Figure 85;Deformation
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Figure 86;Elastic strain
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7.2.3 Friction versus stress — Investigations

a. Friction eo-efficient versus stress; 0.9
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Figure 91; Equivalent stress (F coefficient 0.2)
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Figure 90; Elastic strain
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b. Friction Co-efficient versus stress; 0.8
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Figure 93; Deformation
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Figure 94; Elastic strain
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c. Friction eo-efficient versus stress; 0.7
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Figure 100; Shear stress
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d. Friction eo-efficient versus stress; 0.6
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e. Friction eo-efficient versus stress; 0.5
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Figure 107; Equivalent stress

ANSYS

2019 R2
ACADEMIC

Figure 106;Elastic strain
ANSYS

2019 R2
ACADEMIC

967
-7.2285¢7 ¥

-8.9901e7
-1.0752e8 Min
X

Figure 108; Shear stress

87




f. Friction eo-efficient versus stress; 0.4
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g. Friction eo-efficient versus stress; 0.3
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h. Friction eo-efficient versus stress; 0.2
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7.2.4 Velocity of the tool relative to the work piece — Investigations

a. Cutting speed ( 50 m/sec) versus stress
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b. Velocity of the tool relative to the work piece (40 m/sec) versus stress
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c. Velocity of the tool relative to the work piece (30 m/sec) versus stress
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d. Velocity of the tool relative to the work piece (20 m/sec) versus stress
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e. Velocity of the tool relative to the work piece (10 m/sec) versus stress
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7.2.5 Tool material versus Stress

a. Tool material steel (T1 tool steel)
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b. Tool material steel (H22 tool steel)
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c. Tool material steel (W1 tool steel)
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d. Tool material steel (D2 tool steel), versus stress
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e. Tool material steel (H 13)
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7.2.6 Metal Sheet material versus Stress

Metal Sheet material (Aluminium Alloy high strength) versus Stress
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7.3 Straight Angle investigations
7.3.1 Tool Thickness versus stress — Investigations

a. Tool thickness= 1mm
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b. Tool thickness= 1.3 mm

Figure 169:Deformation
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c. Tool thickness= 1.6 mm
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7.3.2 Metal sheet Thickness versus stress

a. Metal sheet Thickness; 1 mm
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b. Metal sheet Thickness; 1.3 mm
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C.

Metal sheet Thickness; 1.6 mm
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d. Metal sheet Thickness; 2.8 mm
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7.3.3 Friction versus stress — Investigations

a. Friction eo-efficient versus stress; 0

Figure 193; Deformation

2.5025e8
1.6683e8
8.3416e7
0 Min

0.070(m)

0.035
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Figure 194; Elastic strain
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Figure 196; shear stress
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b. Friction eo-efficient versus stress; 0.9
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Figure 200; shear stress
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c. Friction eo-efficient versus stress; 0.8
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d. Friction Co-efficient versus stress; 0.7
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e. Friction eo-efficient versus stress; 0.6
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f. Friction eo-efficient versus stress; 0.5

0.10758
0.071719
0.03586
0 Min

Figure 213; Deformation

17e8
130128
6.5058e7
0 Min

Figure 215; Equivalent stress

ANSYS

2019 R2
ACADEMIC

ANSYS

2019 R2
ACADEMIC

0.1557
0.1038
0.051501
0 Min

Figure 214; Elastic strain

11177
-8.8235e7
-1.1535e8
-1.4247e8
-1.6959e8 Min

Figure 216; Shear stress

ANSYS

2019 R2
ACADEMIC

ANSYS

2019 R2
ACADEMIC

117




g. Friction eo-efficient versus stress; 0.4
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h. Friction eo-efficient versus stress; 0.3
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i. Friction eo-efficient versus stress; 0.2
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Figure 226; Elastic strain
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J. Friction eo-efficient versus stress; 0.1
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7.3.4 Velocity of the tool relative to the work piece — Investigations

a. Cutting speed 50 m/sec) versus stress
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b. Velocity of the tool relative to the work piece (40 m/sec) versus stress
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Figure 237; Deformation
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c. Velocity of the tool relative to the work piece (30 m/sec) versus stress
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Figure 241; Deformation Figure 242; Elastic strain
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Figure 244; Shear stress
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d. Velocity of the tool relative to the work piece (20 m/sec) versus stress
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Figure 245; Deformation
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Figure 246; Elastic strain
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Figure 248; Shear stress
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e. Velocity of the tool relative to the work piece (10 m/sec) versus stress

012314
0.08209
0.041045
0 Min

Figure 249; Deformation

Figure 251; Equivalent stress

ANSYS

2019 R2
ACADEMIC

ANSYS

2019 R2
ACADEMIC

01216
0.08107
0.040535
0 Min

Figure 250; Elastic strain

-3.1275e7
-4.205e7 Min

Figure 252; Shear stress

ANSYS

2019 R2
ACADEMIC

ANSYS

2019 R2
ACADEMIC

126




7.3.5 Tool material versus Stress

a. Tool material steel (T1 tool steel)
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Figure 255;Equivalent stress (Tool material T1)

ANSYS

2019 R2
ACADEMIC

ANSYS

2019 R2
ACADEMIC

0.040 {m)

Figure 254; Elastic strain

-84422e7
-1.1231e8
-1.402e8
-1.68098

-1.9599e8 Min

Figure 256; Shear stress

ANSYS

2019 R2
ACADEMIC

ANSYS

2019 R2
ACADEMIC

127




b. Tool material steel ((H22 tool steel)
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c. Tool material steel (W1 tool steel)
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Figure 263; Equivalent stress
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Figure 262; Elastic strain
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Figure 264; Shear stress
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d. Tool material steel (D2 tool steel), versus stress

Figure 265; Deformation
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Figure 267; Equivalent stress
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Figure 266; Elastic strain
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Figure 268; Shear stress
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e. Tool material steel (H 13)
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Figure 269; Deformation
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Figure 271; Equivalent stress
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Figure 270; Elastic strain
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7.3.6 Metal Sheet material versus Stress

f. Metal Sheet material (Aluminium Alloy high strength) versus Stress
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Figure 273; Defoermation
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Figure 274; Elastic strain
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Figure 275; Equivalent stress (sheet material)
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Figure 276; Shear stress
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8. Appendix- Material properties
8.1 Material used in tool investigations

8.1.1 Tool material steel (T1 tool steel)

Country usAa German Japan
Standard ASTM A600 DIM EN 1SO 4957 JIS G4403
Grades T1 HS$18-0-1/1.3355 SKHz2
3.AIS1 T1 Tool Steel and Equivalents’ Chemical Composition Properties
ASTM AB00 C Mn P S Si Cr W Mo w Co
T1 0.620.800.100.400.020.03 0.200.403.754.500.901.30 ... .. 17.2518.75 ... ..
DIMN 1SO 4957 C Mn P S Si Cr W Mo w Co
HS18-0-1/1.33550.73 0.85 0.653.604.5017.001.20 ... ..17.2018.70 ... ..
JIS G4403 C Mn P S Si Cr W Mo w Co
SKH2 0.730.832 0.400.02 0.02 0.453.804.501.001.20 .....17.2018.70

4. High Speed Steel T1 Tool Steel Mechanical Properties

» Physical Properties of HSS T-1 Steels

Properties Metric Imperial
Density 8.67 g/cm3 0.313 Ib/in3
= Mechanical Properties of T-1 Steel
Properties Metric Imperial
Hardness, Rockwell C 63.0 — 65.0 63.0 — 65.0
Poisson's ratio 0.27-0.30 0.27-0.30
Elastic modulus 190-210 GPa 27557-30457 ksi

Figure 277; Tool material steel (T1 tool steel)
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8.1.2 Tool material steel ((H22 tool steel)

H22 Physical Properties

Tensile strength 115-234 ob/MPa
Yield Strength 23 o 0.2 =/MPa
Elongation 65 652 (%)

Y - p= (%)
Ak - Akv=()

HBS 123-321
HRC 30

H22 Mechanical Properties

Tensile strength 231-231 ob/MPa

Figure 278; Tool material steel ((H22 tool steel)
Source; https://www.steel-grades.com/Steel-Grades/Tool-Steel-And-Hard-Alloy/60/153/ASTM_H22.pdf
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8.1.3 Tool material steel (W1 tool steel)

Physical properties (avarage values) at ambient temperature

Modulus of elasticrty [103 x N/mm?2]: 210
Density [g/cm3]: 7.85

Thermal conductivity [W/m.K]: 45.0
Electric resistivity [Ohm mm?2/m]: 0.20
Spectfic heat capactty[J/q.K]: 0.46

Coefficient of Linear Thermal Expansion 10-6 oC-1
20-100C 20-2000C 20-3000C 20-4000C 20-5000C
1.1 121 129 135 139

Figure 279; Tool material steel (W1 tool steel),
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8.1.4 Tool material steel (W1 tool steel)

Physical properties (avarage values) at ambient temperature

Modulus of elasticity [103 x N/mm2]: 210
Density [g/cm3]: 7.85

Thermal conductivity [W/m.K]: 45.0
Electric resistivity (Ohm mm2/m: 0.20
Specific heat capacitylJ/g.K]: 0.46

Coefficient of Linear Thermal Expansion 10-6 oC-1
20-1000C 20-2000C 20-3000C 20-4000C 20-5000C
1] 121 129 135 139

Figure 280; Tool material steel (W1 tool steel)
Source; https://tubingchina.com/AISI-SAE-W1-tool-steel.htm
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8.1.5 Tool material steel (D2 tool steel), versus stress

Mechanical Properties Metric Imperial
H

ardness, Knoop (converted from Rockwell C 769 769
hardness)
Hardness, Rockwell C 62 62
Hardness, Vickers 748 748
lzod impact unnotched 77.0] 56.8 ft-Ib
Poisson's ratio 027030  0.27-0.30

| 190-210  27557-30457
Elastic modulus .
GPa ksi

Figure 281; Tool material steel (D2 tool steel)

Source; https://www.azom.com/article.aspx?ArticlelD=6214
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8.1.6 Tool material steel (H 13)

Properties Metric Imperial
Tensile strength, ultimate (@20°C/68°F, varies 1200 - 1590 174000 - 231000
with heat treatment) MPa psi
Tensile strength, yield (@20°C/68°F, varieswith 1000 - 1380 145000 - 200000
heat treatment) MPa psi
Reduction of area (@20°C/68°F) 50.00% 50.00%
Modulus of elasticity (@20°C/68°F) 215 GPa 31200 ksi
Poisson's ratio 0.27-0.30 0.27-0.30

Figure 282; Tool material steel (H 13)

Source; https://www.azom.com/article.aspx?ArticleID=9107
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8.2 Metal sheet materials used in simulations

8.2.1 Metal Sheet material (Aluminum Alloy high strength)

Aluminum alloy, high streng.. / @

Structural

|

W |sotropic Elasticity
Derive from

Young's Modulus
Poisson's Ratio

Bulk Modulus

Shear Modulus

Isotropic Secant Coefficient of Thermal Expansion

Tensile Ultimate Strength

Tensile Yield Strength

Thermal

Young's Modulus and Poisson's Ratio
7.38e+10 Pa
0337

7.546e+10 Pa

2.7599e+10 Pa
2.38e-05 1/°C
4.4%e+08 Pa
3.63e+08 Pa

|

Isotropic Thermal Conductivity

Specific Heat Constant Pressure

Electric

157 W/m-“C
875 Jfkg-"C

|

Isotropic Resistivity

Figure 283; Metal Sheet material (Aluminium Alloy high strength

4.4%e-08 chm-m
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8.2.2 Metal Sheet material (Aluminium AL2024 )

) AL 20242 /

L5-4167-M5. May 1 1969, Selected Hugoniots

Density 2785 kg/m’

' Shock EQS Linear

Gruneisen Coefficient 2
Parameter C1 5328 m/s
Parameter 51 1.338
Parameter Cuadratic 52 0 s'm
Shear Modulus 0.9 Pa

Figure 284; Metal Sheet material (Aluminium AL2024)
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8.2.3 Metal Sheet material (Aluminium 7039 With Young modulus)

AL 7039 / @
LA-4167-M5, May 1 1968, Selected Hugeniots: EOQS Tth Int. Symp. Ballistics, Jehnson + Cook
Density 2770 kg/m®
Thermal v
Specific Heat Constant Pressure 873 Jfkg-°C

“ Shock EOS Linear

Gruneisen Coefficient 2
Parameter C1 5328 m/s
Parameter 51 1338
Parameter Quadratic 52 0 s'm
“ Johnson Cook Strength

Strain Rate Correction First-Order
Initial Yield Stress 3.37e+08 Pa
Hardening Constant 3.43e+08 Pa
Hardening Exponent 0.4
Strain Rate Constant 0.0

Figure 285; Metal Sheet material (Aluminium 7039 With Young modulus
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8.2.4 Metal Sheet material (Aluminium AL 1100-O )

AL 1100-0O s 4
Drensity 2707 kgfm®
Specific Heat Constant Pressure 284 Jfkg-~C

W Shock EQS Linear

Gruneisen Coefficient 1.97
Parameter C1 5386 mJs
Parameter 51 1.339
Parameter Quadratic 52 0 s/'m

" Steinberg Guinan Strength

Initial Wield Stress ¥ 4e+07 Pa
Maximum Yield Stress Ymax 4.8e+08 Pa
Hardening Constant B 400
Hardening Exponent n 0.27
Derivative dG/dP G'P 1.767
Derivative dG/dT G'T -1.669e+07 Pa/~C

Figure 286; Metal Sheet material (Aluminium AL 1100-O with Young modulus)
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9. Appendix L: Roughness Test

Modified Profle samg:mp|e 433"]?_‘10 n?;{‘,TaﬁS?F”{LSS Line §8§3§i§8}§ } 1 }82}155 Modified Profile Sample 2-R - R/5x2.5mm/G/300/LS Line 30/07/2015 10:26:30
5 - 5 Sample 2 - 15.1mm/Jamie/FTS 30/07/2015 10:19:49
60+ 60
4 Z 4
7 7 40+ Fao
3 7z 3
7 20+ 20
g 2 2 . 2 Y I SR PPNV \/\ f\/\n/ W _________ Lo .
P 1 ‘ ‘ v P o ' V-
£ o a l i ! 7 0 g g 40 [-a0 g
1 7 1 F 7 - -60] 8o
2 7 7 -2 -80-] f-80
-3 / 3 100 r/’,,,_ 7 [-100
15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 3 32 33 34 B 24 25 26 27 VZHS 29 30 31 32 33 34 35 36 37 38 39 40 m:l 4‘2 43 44
millimetres milimetres
5 e — f= Er ——|
Figure 287; Roughness test; sample 1; 1 mm thickness Figure 288; Roughness test-sample 2;1,5 mm thickness
ifi i - - i 138 Madified Profil Sa le 4-R - R/17x0.8 /G/300/LS Li 30/07/2015 11:02:58
Medified Profile A s N e ryLS Lina ST eole 155eat ediied Frofile A e mple 4 - 16 mmAJBmieF TS 30/07/2015 110129
10| Z |20
04— — - — - Fio
| g ] bk
E 18 = -
204 -10
25+ F-15
a0l Z B s I O A S S T
21 22 23 24 25 26 27 28 29 30 31 3z 33 34 35 36 37 millimetres
millimatres E —— ﬁ
Az R e—
- ) ) ) . Figure 290; Roughness test; sample 3; 2 mm Thickness
Figure 289; Roughness test; sample 3; 1.8 mm Thickness
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10.Appendix 10; Straight angle versus Oblique cutting

Straight angle cutting

Oblique cutting

The cutting angle of the tool makes right angle to the direction of

motion

The cutting angle of the tool does not make right angle to the

direction of motion

The metal sheet flow in the direction normal to cutting edge.

The metal sheet makes an angle with normal to cutting edge.

In Straight angle cutting two components of force; cutting force and
thrust are considered and can be represented by 2D coordination

system.

In oblique cutting three components of force are considered; cutting
force, thrust force and radial force. It cannot be represented by 2D
coordination system and require 3D coordination system for

representation.

The tool has lesser cutting life as compared to oblique cutting.

The tool has higher cutting life as compared to straight angle

cutting.

The shear force act per unit area is high which increase the heat

development per unit area.

The shear force act per unit area is low which decreases the heat

development per unit area.

The metal sheets flow over the tool

The metal sheets flow along the sideways

Table 4; Straight angle versus Oblique cutting comparison
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11.Appendix; Experimental conditions

11.1 Tool edge angle variation versus stress

No | Study Constants Variables
5 | Stress versus Tool Edge Tool Edge angle variation
angle variation ° V?_l.o m/sec .. 15 Degree, 200 Degree,25 Degree,30 Degree, 35
* Friction Co-efficient=0.1 Degree, 40 Degree,45 Degree, 50 Degree, 55, Degree
o Metal sheet thickness= 1.6 mm 60, Degree 65, Degree 70 , Degree 75, 80 Degree, 85
e Tool Thickness= 1.6 mm Degree, 90 Degree
e Metal sheet=" Aluminium Alloy high
strength
e Tool material; Tool steel H 13 with Y
215GPa

Table 5; Tool edge angle variation versus stress
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11.2  Straight angle study experimental conditions

Appendix no

Study

Constants

Variables

1

Stress versus metal
sheet thickness

Tool edge angle 90
V=-10 m/sec

Friction Co-efficient=0.1
Tool material; Tool steel
H 13 with Y 215GPa
Metal sheet= Aluminium
Alloy high strength

Tool Thickness= 1.6 mm

Metal sheet Thickness Variation;1 mm, 1.5mm,
2.5mm,3.1mm,.

2mm,

Stress versus tool
thickness

Tool edge angle 90
V=-10 m/sec

Friction Co-efficient=0.1
Tool material; Tool steel
H 13 with Y 215GPa
Metal sheet= Aluminium
Alloy high strength

Metal sheet Thickness=1
mm

Tool Thickness Variation;1 mm, 1.5mm, 2mm, 2.5mm,3.1

Table 6; Straight angle study experimental conditions
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11.2.1 Straight angle study experimental conditions (continued)

Appendix no Study Constants Variables
3 Stress Versus Tool edge angle 90 Friction  co-efficient  variation;  Friction  co-efficient
friction co-efficient V=-10 m/sec 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9.
variation Tool material; Tool steel
H 13 with Y 215GPa
Metal sheet= Aluminium
Alloy high strength
Tool Thickness= 1.6 mm
Metal sheet Thickness=1
mm
4 Stress Versus Tool edge angle 90 Velocity of the tool relative to the work piece ; 10m/sec,

Velocity of the
tool relative to the
work piece
variation

Friction Co-efficient=0.1
Tool material; Tool steel
H 13 with Y 215GPa
Metal sheet= Aluminium
Alloy high strength

Tool Thickness= 1.6 mm
Metal sheet Thickness=1
mm

20m/sec, 30m/sec, 40m/sec, 50m/sec

Table 7; Straight angle study experimental conditions
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11.2.2 Straight angle study experimental conditions (continued)

No | Study Constants Variables
5 | Stress versus Tool material e Tool edge angle 90 Tool material ;
variation o V=10m/sec e T1tool steel
e Friction Co-efficient=0.1
e Metal sheet=" Aluminium Alloy high e H22 tool steel
strength_ e W1 tool steel
e Tool Thickness= 1.6 mm
e Metal sheet Thickness=1 mm e D2 tool steel
e HI13
6 | Stress versus metal sheet e Tool edge angle 90 Metal sheet material ;
material variation * V?'l_o m/sec o Aluminium Alloy high strength
e Friction Co-efficient=0.1 Aluminium AL6061-T6
e  Tool material; Tool steel H 13 with Y | Ajuminium 7039
215GPa Aluminium AL 1100-O
e Tool Thickness= 1.6 mm Aluminium AL5083H116
e Metal sheet Thickness=1 mm

Table 8; Straight angle study experimental conditions
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11.3 Oblique angle study experimental conditions

Appendix no

Study

Constants

Variables

1

Stress versus metal
sheet thickness

Tool edge angle 30

V=-10 m/sec

Friction Co-efficient=0.1
Tool material; Tool steel
H 13 with Y 215GPa
Metal sheet= Aluminium
Alloy high strength

Tool Thickness= 1.6 mm

Metal sheet Thickness Variation;1 mm, 1.5mm,
2.5mm,3.1mm,.

2mm,

Stress versus tool
thickness

Tool edge angle 30

V=-10 m/sec

Friction Co-efficient=0.1
Tool material; Tool steel
H 13 with Y 215GPa
Metal sheet= Aluminium
Alloy high strength

Metal sheet Thickness=1
mm

Tool Thickness Variation;1 mm, 1.5mm, 2mm, 2.5mm,3.1

Table 9; Oblique angle study experimental conditions
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11.3.1 Straight angle study experimental conditions (continued)

Appendix no Study Constants Variables

3 Stress Versus e Tool edge angle 30 Friction  co-efficient  variation;  Friction  co-efficient
friction co- e V=-10 m/sec 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9.
efficient variation e Tool material; Tool steel

H 13 with Y 215GPa

e Metal sheet= Aluminium
Alloy high strength

e Tool Thickness= 1.6 mm

e Metal sheet Thickness=1

mm
4 Stress Versus e Tool edge angle 30 Velocity of the tool relative to the work piece ; 10m/sec,
Velocity of the e Friction Co-efficient=0.1 | 20m/sec, 30m/sec, 40m/sec, 50m/sec
tool relative to the e Tool material; Tool steel
work piece H 13 with Y 215GPa
variation e Metal sheet=" Aluminium

Alloy high strength

e Tool Thickness= 1.6 mm

e Metal sheet Thickness=1
mm

Table 10; Oblique angle study experimental conditions
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11.3.2 Straight angle study experimental conditions (continued)

No | Study Constants Variables
5 | Stress versus Tool material e Tool edge angle 30 Tool material ;
variation e V=10m/sec e T1tool steel
e Friction Co-efficient=0.1
e Metal sheet="Aluminium Alloy high e H22tool steel
strength_ e W1 tool steel
e Tool Thickness= 1.6 mm
e Metal sheet Thickness=1 mm e D2 tool steel
e HI13

6 Stress versus Tool material

variation

Tool edge angle 30
V=-10 m/sec
Friction Co-efficient=0.1
Metal sheet= Aluminium Alloy high
strength
Tool Thickness= 1.6 mm
Metal sheet Thickness=1 mm

Metal sheet material ;

Aluminium Alloy high strength
Aluminium AL6061-T6
Aluminium 7039

Aluminium AL 1100-O
Aluminium AL5083H116

Table 11; Oblique angle study experimental conditions
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