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Abstract: 14 

Façade buildings are generally highly glazed and energy-intensive especially in countries 15 

with hot weather. Power consumption in these buildings is even more significant when air 16 

conditioning (AC) is added to the figures.  Building with semi-transparent photovoltaic 17 

(STPV) materials is bringing advantageous energy-saving features to these façade structures.  18 

Energy is saved by more heat being reflected resulting in less AC power consumption with 19 

the STPV thermal properties. In addition, the optical and electrical properties provide indoor 20 

sunlight with power generation. This paper investigates the net potential energy saving via 21 

applying cadmium telluride (CdTe) in Façade buildings.  The analysis has been carried out 22 

using indoor and outdoor experiments considering different orientations and transparencies.  23 

Compared to a single glazing case as a reference, the application CdTe achieved a net energy 24 

saving to be as high as 20%.  Furthermore, a trade-off between saving energy and 25 

environment comfort has been discussed as less transparency windows lead to more artificial 26 

light consumption.  The findings indicate that STPV is a promising solution for sustainable 27 

buildings. 28 
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 30 

HIGHLIGHTS 31 

• Performance assessment of CdTe-based STPV for saving Façade buildings power      32 

• Calculation, evaluation, and comparison of different glazing and its effect on the air 33 

conditioning power and temperatures 34 

• Estimation the lighting energy consumption for different glazing 35 

 36 



 37 

1. Introduction 38 

Currently, the transport sector has the highest percentage of total primary energy 39 

consumption in the world.  However, further scenarios of the International Energy Agency 40 

(IEA) indicate that the domestic sector will lead the total consumption by 2035 41 

(“International Energy Agency, World Energy Statistics and Balances 2017,” n.d.).  42 

Therefore, there is a great necessity to develop solutions that minimize heat transfer through 43 

buildings to their surrounding areas. 44 

The increase in attention to the aesthetic aspects of buildings leads to the adoption of highly 45 

glazed fronts for façade and high-rise buildings.  The roof area of a high-rise building is a lot 46 

less compared to a facade.  Therefore, installing a photovoltaic system is an option for 47 

facades.  However, the building is still considered energy intensive because of the 48 

comparison of the available area and the generated solar energy. 49 

Another aesthetic aspect is windows.  Windows play a significant role in buildings.  Not only 50 

do they provide visual comfort, but they also reflect the environment thermally and optically 51 

(Baldinelli et al. 2014).   Windows influence on energy loss from buildings becomes much 52 

more drastic when the window area is large like patio doors (Cuce, Young, and Riffat 2014).  53 

Current conventional residential windows are responsible for around 47% of heat loss 54 

because of the building fabric (Cuce, Young, and Riffat 2015).  Due to being able to reduce 55 

the heat requirement and energy consumption of buildings the significance of windows is 56 

given considerable attention for improvement. 57 

Recently, Semi-Transparent Photovoltaics (STPV) solar cells have been developed and are 58 

popular in research (Peng et al. 2016; Chen et al. 2012; Fung and Yang 2008; Miyazaki, 59 

Akisawa, and Kashiwagi 2005; Olivieri et al. 2015; Yoon, Song, and Lee 2011; Yun, 60 

McEvoy, and Steemers 2007).  This new technology provides relatively light transmittance 61 

for a building beside power generation.  So adopting it in façade buildings is a promising 62 

solution especially when the area of coverage is large, but several factors need to be 63 

considered for optimization purposes such as orientation, place of installation, weather 64 

conditions, and PV transparency (Catita et al. 2014).  Although PV might reflect some heat 65 

and reduce the air conditioning (AC) units' consumption, it might also degrade the light 66 

intensity inside the building.   67 

Emerging STPV technology such as CdTe has enormous potential, but the BIPV application 68 

has not gotten much attention in the available research work. Furthermore, the effects of the 69 

angle of incidence on power generation are subject to the place of installation, module 70 

orientation, and transparency. This factor has rarely been studied and reported in the energy 71 

calculation of the STPV window (Barman et al. 2018).  72 

Through literature research, it was found that most of the research related to PV windows or 73 

facades focused on the thermal performance such as the solar heat gain coefficients (SHGC), 74 

heat losses, the impact on the air-conditioning cooling load reduction, and energy-saving 75 



potential.  In previous literature, little research regarding the overall energy performance 76 

rather than on individual thermal or power performance of BIPV windows or facades was 77 

reported.  78 

In addition, the effects of orientation and module transparency on power generation, daylight, 79 

and heat ingress into the occupant area have been studied by a few researchers (Sharma and 80 

Chandel 2013).  Plus, some studies provided a performance assessment of using STPV for a 81 

specific location (Sharma and Chandel 2013), but a need for a generalized case as an energy 82 

assessment tool is crucial. Therefore, it is essential and meaningful to investigate the energy 83 

performance of the emerging STPV technology integrated window system. 84 

In this paper, a thermal performance analysis and electrical power saving assessment have 85 

been carried out for a CdTe-based STPV integrated window system in the climate of the UK. 86 

The experimental process of the power and thermal performance testing was presented in 87 

detail. In addition, the thermal performance, which was quantified as solar heat gain 88 

coefficient (SHGC) and U-value, was measured and compared for different PV 89 

transparencies. Included in the study is the impacts of two key parameters: orientation of the 90 

installed STPV and the transparency.  Furthermore, the resultant AC units' power 91 

consumption reduction in different scenarios has been assessed and compared with a single 92 

glazing. 93 

 94 

2. PV Cells Properties 95 

In order to investigate the optical properties of the STPV cells (S1, S2, and S3 are shown in 96 

figure 1) the transmittance and reflectance were measured using AvaSpec-ULS2048L Star 97 

Line Versatile Fiber-optic Spectrometer.  The measurements were compared to a clear single 98 

glazing, S0.  The results are presented below in figures 1 and 2. 99 

 100 

 101 

  

 

 
 102 

Fig. 1:  The STPV cells S1, S2, and S3 103 

 104 

S1 S2 S3 

 



 105 

 106 

Fig. 2:  The Spectral irradiance and transmittance of the STPVs (S1, S2, S3) and the single 107 

glazing (S0) 108 

 109 

As shown in figure 2, the transmittance of S1, S2, and S3 are 24.83%, 18.66%, and 0.46%, 110 

which are less than that of the single clear glazing whose transmittance was 90%.  The 111 

provision of the difference transparencies is one of thin-film PVs advantages.  These results 112 

give STPV the opportunity to be used in different applications such as building facades or 113 

office room facades in BIPV, windows, and others.  114 

Figure 3 shows the reflectance of S1, S2, S3 and the single glazing, S0.  Their average values 115 

are 15.6%, 15.9%, 16.12%, and 11.97% respectively.  All tested PV cells showed almost 116 

equal average values of reflectance as well as similar behavior with changing wavelength.  At 117 

low wavelengths, the reflectance of all PVs showed their minimum values.  After a 118 

wavelength of almost 1300 nm, reflectance started to increase until reaching maximum 119 

values at 2500 nm. However, for the single glazing, reflectance showed more uniform 120 

variation with wavelength than the PVs. 121 

 122 

 123 



 124 

Fig. 3:  The spectral irradiance and reflectance of the STPVs and the single glazing 125 

 126 

Two factors that affect heat transfer through the glazing is transmission and reflection.  The 127 

heat is transferred through three different methods: conduction, convection, and radiation.  In 128 

radiation, as the fraction of reflected beam in reference to total incident beam increases, the 129 

heat transferred through the glazing decreases.  In contrast, as the fraction of the transmitted 130 

beam in reference to total incident beam increases, the rate of heat transfer increases. 131 

Radiation has only three behaviors when passing through a glazing, which are a reflection, 132 

transmission, and absorption. Hence, the summation of percentages of the three behaviors 133 

gives a value of 100%.  Therefore the average absorbance of the above PVs can be calculated 134 

and presented in figure 4.  The properties of the STPV and the single glazing are summarized 135 

in table 1. 136 

 137 
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 139 

Fig. 4:  The spectral irradiance and absorbance of the STPVs and the single glazing 140 

 141 

Table 1:  The properties of a single glazing and STPV 142 

 
S3 

 
S2 S1 S0 

Maximum Transmittance 0.46% 18.66% 24.83% 90% 

Average Transmittance 0.157% 9.3% 12% 85% 

Maximum Reflectance 40.37% 40% 41.12% 15.2% 

Average Reflectance 16.12% 15.9% 15.6% 11.97% 

Maximum Absorbance 95.02% 93.78% 94.11% 93.61% 

Average Absorbance 83.6 % 74.74% 72.3% 3.94% 

 143 

 144 

The electrical properties of the STPVs were also investigated using WACOM AAA solar 145 

simulator.  The IV curves for STPVs used are presented in figure 5.  The IV curves reveal 146 

that the maximum power point (MPP) of S3 is the highest compared to S2 and S1, which has 147 

the lowest value of MPP.  Detailed results of STPVs properties are presented in table 2.  The 148 

results show that the efficiency and power generation were found to be inversely proportional 149 

to transmittance.  The maximum efficiency and power generation for both orientations was 150 

registered for S3 whereas S1 showed the lowest efficiency and power generation.  151 

 152 
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 154 

Fig. 5:  The IV curve of STPVs used in south-west oriented test cell 155 

 156 

Table 2: Electrical properties of STPV cells 157 

Parameters South West Orientation South Orientation 

S3 S2 S1 S3 S2 S1 

Nominal Power [Pm] (W) 1.53 0.99 0.815 1.41 0.987 0.815 
Short Circuit Current [Isc] (A) 0.22 0.16 0.14 0.21 0.16 0.14 
Open Circuit Voltage [Voc] (V) 11.21 10.39 9.734 11.14 10.08 9.734 
Current at Maximum Power Point [Imp] (A) 0.18 0.13 0.115 0.163 0.13 0.115 
Voltage at Maximum Power Point [Vmp] 

(V) 
8.49 7.57 7.05 8.65 7.43 7.05 

Efficiency [η] (%) 12.6 8.23 6.7 11.69 8.15 6.7 

 158 

 159 

3. Methodology 160 

In order to establish a performance assessment for all cells under the same conditions, an 161 

experimental setup had been built consisting of eight sample rooms.  A data acquisition and 162 

logging system had been used to gather data and save it in an excel sheet.  The setup was 163 

installed at ESI building, Exeter University, UK. 164 

The design had two identical sets of four rooms set to the south and south-west directions.  165 

Because of the constraint of a fixed size of the available STPV (20 X 20 cm
2
) the rooms had 166 

been designed with dimensions of 20 X 20 cm
2
.  It is worth mentioning that the active area of 167 

the STPV is within the 10 X 10 cm
2
. 168 

Each room had insulated sides made of polystyrene sheets (thickness of 2.5 cm) to provide 169 

good insulation so that we could neglect any side thermal disturbances except for one side, 170 
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which represented the window.  The rooms utilized Peltier-based cooling systems for 171 

mimicking the AC units in the buildings.  Also, each room was equipped with: 172 

- K-type temperature sensors, outer and inner cell surfaces inside the room for 173 

thermal evaluation 174 

- a light sensor in the middle of the room 175 

- voltage and current sensors for AC power consumption measurements 176 

- a voltage sensor for the STPV power generation measurement 177 

 178 

 179 

 180 

Fig. 6:  The schematic diagram of the experimental setup. 181 

 182 

All rooms are installed in a box provided by ventilation holes and fans.  Figure 7 shows the 183 

completed experimental setup.  Also, each room can be tested individually indoor under the 184 

AAA solar simulator to provide different radiation conditions. 185 

 186 

 187 



 188 

Fig. 7:  The Completed view of the whole setup: (a) test cell (b) solar tracker (1) global and 189 

diffuse radiation (2) the direct radiation (c) data logger (3) IV-tracer (4) thermocouple data 190 

logger (d) weather station   191 

 192 

The indoor experiments were carried out on each room by thermal performance evaluations 193 

and for AC power consumption assessments under various irradiances with different 194 

transparencies. 195 

Outdoor experiments were dedicated to the overall system energy evaluations in real weather.  196 

The evaluations included orientation aspects, wind and shading disturbances, and inside-light 197 

measurement when the facades were vertically assembled. 198 

 199 

4. Thermal properties evaluation  200 

The U-values and SHGC of the tested glazing are presented in Table 3 below.  In the results, 201 

if S0 has the highest U-value among all the tested cells, then the other cells can be arranged in 202 

descending order of U-value as S1, S2, and finally S3.  This pattern is applicable for both the 203 

south and south-west orientations.  As for the SHGC, S0 was shown to have the highest value 204 

in both orientations.  The other glazings of SHGC can be arranged again in descending order 205 

as S1, S2, and S3.  Nevertheless, table 3 demonstrates the effects of orientation on the 206 

insulation properties of the glazing. 207 



 208 

Table 3:  The U-values and SHGC of the tested glazing 209 

 

SPTV/Glass 

U-value in South 

Orientation 

U-value in South 

West Orientation 

SHGC in South 

Orientation 

SHGC in South 

West Orientation 

 

S0 

 

5.6 W/m
2
K 

 

5.58 W/m
2
K 

 

0.105 

 

0.113 

S1 3.2 W/m
2
K 2.85 W/m

2
K 0.0958 0.1043 

S2 2.7 W/m
2
K 2.5 W/m

2
K 0.095 0.1039 

S3 0.25 W/m
2
K 0.49 W/m

2
K 0.0944 0.1032 

 210 

The U-values and SHGC values in the south orientation are slightly larger than that of the 211 

south-west, which is because of the difference in solar irradiance.  The change in U-value and 212 

SHGC leads to a significant shift in cooling and heating demands.  As these values increase, 213 

the cooling load increases and the heating load decreases.  Therefore, to have the best thermal 214 

insulation in cold climate regions, it is preferable to use high U-values in the south orientation 215 

so that lower heating load is needed.  However, in hot climate regions, the use of such 216 

systems can lead to excessive cooling load.  217 

 218 

5. Room temperature and Air conditioning 219 

As per Lomas and Kane (Lomas and Kane 2013), the range of comfort temperature in winter 220 

and summer seasons is below 24°C.  Also according to Seppanen, Fisk, and Lei (Seppanen, 221 

Fisk, and Lei 2006), the performances increase with temperatures up to 22°C and decreases 222 

with temperatures above 24°C.  In this trial, the thermostat was set at 20°C for cooling to 223 

calculate the AC loads.  According to the UK weather, keeping the inside temperature of the 224 

room below 20°C is not hard. However, in hot countries, i.e. in the Middle East, it needs the 225 

AC to work for a longer time with higher capacity to achieve the 20°C regulation. 226 

The Fig. 8, Fig. 9, and Fig. 10 depict the temperature profiles for three different days; 6 May 227 

2018, 23 NOV 2017, and 12 DEC 2017 respectively.  These figures show that for hot days in 228 

May the AC units needed to work harder and longer than the other days in November and 229 

December.  On those days in November and December, the units were hardly required or not 230 

at all.  On the November 23
rd

 sample, the AC in rooms with S0 and S1 ran for a short period 231 

during the day, while rooms with S2 and S3 kept the temperature below 20°C.  This 232 

contributes to the objective of the paper and the feasibility of using STPV.  To emphasis the 233 

value of saving even more, sample days that has relatively higher temperature profiles will be 234 

selected between May to September over the year. 235 

 236 

 237 
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Fig. 8:  The inner-temperature profiles of the south-facing rooms on 6 May 2018 239 
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Fig. 9:  The inner-temperature profiles of the south-facing rooms on 23 November 2017 243 
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Fig. 10:  The inner-temperature profiles of the south-facing rooms on 12 December 2017 248 
 249 

 250 

6. Results and discussion 251 

 252 

6.1. AC power consumption 253 

The power consumption data has been recorded during the May sample day for the four rooms in both 254 
directions: south and south-west.   255 

Fig. 11 shows the accumulated energy consumption over the twenty-four hour period for both 256 

orientations with the various transparencies.  The consumption of the S0 room in both 257 

orientations is proven to be the most while S3 is the least.  Respectively, the energy savings 258 

for S1, S2, and S3 compared to the reference room S0 are 4.8%, 8.6%, and 11.6% for the 259 

south orientation and 7.9%, 14.4%, and 23.2% for the south-west-oriented rooms. 260 

 261 



  
 262 

Fig. 11:  The AC energy consumption for different orientations and different transparencies 263 
on 6 May 2018 264 

 265 

 266 

It was noticed that the consumption of the south-west oriented S0 room is slightly less than 267 

the south-oriented, which is close to the south-west oriented S1 room, yet the power 268 

consumption savings is relatively twice for the south-west rooms.  This is because the south 269 

rooms are facing the sun for more extended periods of time with higher radiation, which 270 

transfer more heat inside the rooms.  Therefore, the south rooms require more cooling energy 271 

for all STPVs. 272 

A caveat can be concluded for very hot weathers and south-facing facades, but the savings 273 

could be insignificant.  This is also shown for the power consumption on 24 November in 274 

Fig. 12, which is a relatively colder day.  The energy saving figures for that day are 43.5%, 275 

54.5%, and 61.1% for the south-facing S1, S2, and S3 rooms respectively. 276 

 277 

 278 



  
Fig. 12:  The AC energy consumption for different orientations and different transparencies 279 

on 24 Nov 2017 280 

 281 

Furthermore, the working hours for the AC units in May is about thirteen hours while it is six 282 

hours in November.  This contributes to more savings in November than May.  According to 283 

the finding by Barman, Chowdhury, S. Mathur, and J. Mathur [14], the determining factors 284 

for cooling loads, U-value and SHGC, for window systems are higher than for the opaque 285 

wall.  Therefore, as the window to wall ratio (WWR) increases, the thermal load of the 286 

building rises. 287 

6.2. STPV generation 288 

Instead of the clear glazing, using STPV introduces more reflectance and absorption to the 289 

visual light penetrating the windows. Therefore, less sunlight will serve the interior lighting 290 

during the working hours and more artificial light consumption will be required.  Fig. 13 291 

illustrates the direct, diffused, and global irradiance on 6 May, which reflects a relatively 292 

sunny day. 293 

 294 

 295 



 296 

Fig. 13:  The direct, diffused, and global irradiance on 6 May 2018 297 

 298 

 299 

As the STPVs are used to decrease the heat transfer to the building and save cooling energy, they also contribute 300 
to power generation.  For example, the S1 STPV sample can generate 30 kJ of energy, which can be directly 301 
used by some loads or stored in energy storage systems.  This amount of energy is small when it is compared 302 

with the AC power consumption, which on the same day, exceeded the 4.5 MJ as shown in  303 
Fig. 11.  The calculated average power and accumulated energy generation of the S1 STPV 304 

results are shown in Fig. 14.  Moreover, the solar PV module has the same area and 305 

reflectance as the STPVs, but because of the modules lesser transmittance it absorbs more 306 

radiation.  This is subsequently converted into electrical energy.   Therefore, the S2 and S3 307 

are expected to provide more power of up to 70% of the S1 production, which is limited to 51 308 

kJ.  These energy generations are expectable from the finding in a previous research work 309 

(Peng et al. 2016).   310 

 311 

 312 



 313 

Fig. 14:  The generated power and energy of the S1 STPV room 314 

 315 

 316 

6.3.Interior lighting compensation 317 

In UK standards, the lighting requirement for a façade building for offices is about 500 318 

lumen/m
2
 (Butcher, Craig, and Chartered Institution of Building Services Engineers, n.d.).  319 

This can be translated into 9 – 13 W/m
2
 if tubular fluorescent lighting is used (Jenkins and 320 

Newborough 2007).  For twelve hours (7 am to 7 pm) a 10 W/m
2
 had been chosen as the 321 

average required value.  With an artificial lighting dimming control system introduced the 322 

artificial lighting will be activated and reach the required illuminance level, with the extra 323 

electricity consumption calculated when the daylight illuminance level is below 500 Lux.  324 

Fig. 15 shows the required irradiance and the available interior irradiance for one of the 325 

rooms, which has window S1 with the highest STPV transparency. It is evident that the 326 

available light can meet the required value for a short time on that sunny day (6 May 2018). 327 

However, it does need some artificial lighting to satisfy the entire duration.  Also, for cloudy 328 

days or winter days, the expectations from the penetrated sunlight is less. 329 

  330 



 331 

Fig. 15:  The inner irradiance of the room (S1) and the required lighting energy 332 

 333 

The required lighting energy using 10 W/m
2
 as a reference, has been calculated during the 334 

twelve hours as shown in Fig. 15.  In total, 220 kJ is needed.   The generated energy from S1 335 

STPV as shown in Fig. 14 might be used to cover a portion of this consumption, which 336 

represents 13.1%.  This saving will be less with the lower transparency STPV (S2 and S3) as 337 

less sunlight is allowed to penetrate. 338 

6.4.Net energy performance 339 

The effects of the STPV window systems on the net energy performance has been analyzed 340 

by using the following relation: 341 

Net energy performance = AC energy consumption + Artificial lighting energy consumption 342 

− STPV energy generation 343 

Fig. 16 shows the net energy performance for both orientations and all STPV transparencies-344 

based rooms considering the rooms (S0) as references.  The AC power consumption 345 

decreases with lower transparency PVs.  For the south-facing rooms, the S1, S2, and S3 346 

consumption relative to S0 are 4.85%, 8.6%, and 11.6% less respectively, while the figures 347 

are 7.97%, 14.4%, and 23.27% for the south-west oriented-rooms.  Furthermore, more details 348 

are found in Table 1. 349 

 350 

 351 



 352 

Fig. 16:  Net generation performance 353 

 354 

The clear glazing allows more sunlight to serve the interior lighting of the rooms, while 355 

STPV introduces shading and reflection so that less sunlight penetrates. Thus, more lighting 356 

consumption is observed to be used relative to the S0 rooms.  The results are 33.3%, 60.4%, 357 

and 82.9% more for the S1, S2, and S3 south rooms respectively.  The south-west rooms 358 

figures are 67.3%, 82.2%, and 83.7% more for S1, S2, and S3. 359 

Compared to the total power consumption of the single glazing S0 case, the energy savings 360 

for S1 is about 3.77%, S2 is 6.28%, and S3 is 8.5% for the south facing rooms while the 361 

savings are 5% for S1, 18.1% for S2, and 19.2% for S3 south-west facing rooms.  The saving 362 

of the south-west rooms compared to the south rooms are 4.86% for S1, 15.77% for S2, and 363 

14.86% for S3.  Therefore, installing this technology is promising for south-west faces. 364 

Lastly, it is essential to consider the friendly environment and health sides for the residents.  365 

Using low transparency PVs might affect health issues and mental states (Aries, Veitch, and 366 

Newsham 2010).   As a trade-off, using the S1 sample on the south-west facing windows 367 

might be a good choice according to the results in  368 

Table . 369 



 370 
Table 4:  The net energy saving 371 

 372 

 South-facing Rooms South-West-facing Rooms 

  (S0)  (S1)  (S2)  (S3)  (S0)  (S1)  (S2)  (S3) 

AC consumption (MJ) 4.825 4.591 4.410 4.263 4.640 4.270 3.970 3.560 

Light consumption (kJ) 219.3 292.4 352.0 401.2 222.2 371.8 395.9 408.3 

STPV generation (kJ) 0 293.3 348.3 524.2 0 234.6 278.6 419.4 

Net Energy (kJ) 504.4 485.4 472.7 461.1 486.2 461.8 398.1 392.6 

Saving (kJ) 0 190.1 317.1 432.5 0 243.8 880.5 935.8 

Saving (%) 0 3.77 6.28 8.57 0 5.01 18.10 19.24 
 373 

 374 

 375 

7. Conclusion 376 

In this paper, a thermal performance analysis and electrical power saving assessment have 377 

been carried out for a CdTe-based STPV integrated window system in the climate of the UK. 378 

The experimental results of the power and thermal performance testing were presented in 379 

detail. The thermal performance, which was quantified as solar heat gain coefficient (SHGC) 380 

and U-value, for the STPVs promoting them as good insulators compared with the single 381 

glazing case. The south-west facing rooms introduced more savings when it is compared to 382 

the south facing rooms.  The saving is higher when the transparency is lower. A trade-off can 383 

be achieved by using a 40% STPV on the south-west oriented rooms to keep the impact on 384 

the mental state at a minimum. 385 
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