
An empirical biometric-based study for user identification 
with different neural networks in the online game League 
of Legends

DA SILVA, V R and DA COSTA ABREU, Marjory <http://orcid.org/0000-0001-
7461-7570>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/25393/

This document is the Accepted Version [AM]

Citation:

DA SILVA, V R and DA COSTA ABREU, Marjory (2018). An empirical biometric-
based study for user identification with different neural networks in the online game 
League of Legends. In: 2018 International Joint Conference on Neural Networks 
(IJCNN) 2018 proceedings. IEEE. [Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


An empirical biometric-based study for user
identification with different neural networks in the

online game League of Legends
Valmiro Ribeiro da Silva

DIMAp-UFRN
valmirozunoribeiro@gmail.com

Marjory Da Costa-Abreu
DIMAp-UFRN

marjory@dimap.ufrn.br

Abstract—The popularity of computer games has grown expo-
nentially in the last years. Although such games were created to
promote competition and promote self-improvement, there are
some recurrent issues. One that has received the least amount
of attention so far is the problem of ”account sharing” which
is when a player shares his/her account with more experienced
players to make progress in the game. The companies running
those games tend to punish this behaviour, but this specific case
is hard to identify. Since, the popularity of neural networks
has never been higher, the aim of this study is to investigate
how different neural network algorithms behave when analysing
a database of biometric information (keystroke and mouse
dynamics) regarding the game League of Legends, and how those
algorithms are affected by how frequently a sample is collected.

I. INTRODUCTION

Online games have become very popular and diverse since
their beginning in the 80’s, and each device gives us several
biometric modalities to be exploited, such as gait, keystroke
dynamics, mouse dynamics, touch-screen dynamics, etc. The
diversity of input data is endless and it makes the game an
unique experience for the player.

Even though all the previously listed biometrics are used
for the same purpose in the gaming universe, they can be
very different when analysed in the traditional security and
authentication applications. Thus, it is important to understand
its differences from the traditional approaches[1], [2].

As a very simple example of how different the security
application is from a traditional authentication task to a game
authentication using biometric data, take it the keystroke
dynamics modality in a continuous verification scenario:

• In a traditional verification problem, the user’s behaviour
is expected to suffer very little variation while typing an
e-mail.

• On the other hand, in a game verification problem, the
user’s behaviour is expected to change and that change
will be based on the configurations of the game he/she is
using, e.g. the role in the game, the abilities it chose to
use, the character he/she is playing with and so on.

The second case can not be considered the same as the first,
because, despite the fact they are both verification problems
and are using the same base data, the user’s behaviour is
different which makes the security system to model it in a

different way. To the best of our knowledge, no other work
has tried to investigate this specific problem.

The main goal of this paper is to investigate how different
neural networks perform when classifying gaming biometric
data, using the software WEKA to run experiments with
different datasets created from the same samples, with different
time windows to collect features in each one of this datasets.

II. BIOMETRIC MODALITIES USED IN DESKTOP BASED
GAME PLAYING

The market of egames is huge and, with the recent advance-
ment of virtual reality, the range of consoles (the hardware
you need to play games) has increased greatly. The kinds of
devices used to play go from simple keyboard and mouse
to very expensive virtual reality glasses. However, the most
popular is still the computer-based one for it is indisputable
the cheapest [3].

In a security point of view, each different kind of console
will have different vulnerabilities, but the ”black-box” type,
the ones you buy and does not need to install any software
are, until certain extent, more secure. When we are talking
about private computer-based games, we have a limitation in
devices that we can use to play, but the possibility of a user
to play with another user’s account is more evident.

Considering that we are using League of Legends as our
case study, the modalities chosen to investigate are mouse and
keystroke dynamics, because both peripherals are mandatory
used together during the matches.

Keystroke dynamics is the unique timing patterns embedded
in an individual’s typing and is most often developed in
a personal way, hence the use of keyboard dynamics as a
biometrics-based identification modality. Processing of such
data includes extracting keystroke timing features such as
the duration of a key press and the time elapsed between
successive key presses [4], [5].

Mouse dynamics is the unique speed movements and fre-
quency of clicks generated by a user using the mouse. The
move speed is how fast the user moves the mouse in the
8 possible mapped directions and frequency of clicks is the
amount of clicks the users performs in a time interval [6].

Since we are using League of Legends as our case study, it
is important to understand how keystroke and mouse dynamics



are used in the context of the game. The next subsection will
introduce the basics of the game, as well as how our modalities
can be used in context, followed by subsections enumerating
the related work to mouse and keystroke dynamics.

A. League of Legends

League of Legends is a Multiplayer Online Battle Arena
(MOBA) game. The game is based around matches with two
teams of (normally) five players each, where each team tries to
destroy the main base of the other. Before each match starts,
each player chooses a champion to play, which is an avatar
that already exists in the game, with predetermined statistics
(stats) and skills. Two players of the same team cannot choose
the same champion.

Each champion has four unique skills, where three are
common skills and the last is a ultimate skill. Skills can grant
passive or active abilities, where each skill is activated by the
keys ’Q’, ’W’, ’E’ and ’R’, the last one used to activate the
ultimate ability.

Each team member follows one of the defined roles during
a match:

• Top Laner: know as ”top”, this player starts at the top of
the map, and usually is a melee attacker;

• Jungler: This player spends most of his time defeating
jungle’s monsters in order to gain bonus statistics to the
team. Champions with high mobility usually take this
role;

• Mid Laner: Also known as mid, this player starts in the
middle of the map, and uses his skill set to create combos
to deal damage. Champions with synergic skill set usually
take the role;

• Carry: also known as ADC (attack damage carry) is
responsible take down buildings and clear minions waves.
Ranged champions with high damage usually take the
role.

• Support: Starts in the bottom lane and is responsible to
support the ADC ans later the whole team. Champions
with good supporting abilities or tanks usually take the
role;

The main features used in League of Legends selected for
the analysis of this paper from both keyboard and mouse
dynamics can be described as follows:

• Keystroke dynamics: ’Q’, ’W’, E’, ’R’ (for the unique
skills) and ’SPACE’ (used to make the camera follow the
player’s champion);

• Mouse dynamics: Move the character (point and click in
a empty space using the right mouse button), basic attacks
(clicking in a enemy using the right mouse button) and
target skills (using the left mouse button);

As already said previously, to the best of our knowledge,
there is no other work which has investigates the individual
variations of keystroke dynamics and mouse dynamics (bio-
metrics) in the context of online games. Section III will present
the main works that can be found using mouse and keystroke
dynamics.

III. KEYSTROKE DYNAMICS, MOUSE DYNAMICS AND
GAME-RELATED WORK

Keystroke dynamics is a much older biometrics modality
than the mouse dynamics, thus the number of databases
available is larger. This is expected because the use of ”mouse”
is very much associated with the personal computer whereas
the keystroke exists since the use of Morse code.

In [7] data from 16 graduate students from Seul Na-
tional University was collected to try to detect user/password
sharing, where each of them typed a fixed set of 25 user-
name/passwords 30 times using their own keyboards. A
generic approach was used, using the information known about
keystroke dynamics, where a user’s pattern is consistent and
different from other individuals, and assuming that each user’s
patterns form a ”cluster” in Euclidean space, making possible
to estimate the number of sharers by the number of clusters
formed. This experiment had an EER (Equal Error Rate)
estimating the sharers of 6.51%.

In [8] a database containing soft-biometrics and keystroke
dynamics from 110 volunteers from France and Norway is
presented, where users were classified using Support Vector
Machine (SVM) with an EER of 21% to 4% when the soft-
biometrics were added. The work was expanded in [9] using
a fusion approach, where the SVM algorithm was used to
classify the fused data, with an EER of 10%.

In [10] a new approach to emotion recognition using pres-
sure sensor keyboards was described. Fear, happiness, anger,
sadness, surprise and neutral emotions were tested, with a EER
of 12.02% when using only traditional keystroke methods to
classify the subjects with the KNN algorithm.

In [11], a database using various fusion approach on
keystroke dynamics was collected. Each user was allowed
to choose their preferable username and password during the
enrolment process and they were asked to type one fixed text
for fifteen consecutive times, with an EER of 9% using SVM
and combining features.

A login method for accessing computer systems using
mouse dynamics was described by [6]. 28 users performed a
fixed task of moving the mouse between two lines. They were
classified using Levenshtein distance to calculate similarities,
also know as edit distance, with an EER of 26.8%.

In [12] the experiment focused in behavioral variability,
where they provided free use of the mouse. Data from 5
users were gathered. A preprocessing was made using PCA,
decreasing the number of important mouse features to 8, and
after that an artificial neural network was used to classify the
volunteers, with an EER of 5%. Later, in [13] the goal was
to compare two hypo-optimum feature selectors and evaluate
the methods to obtain the best combination of features for
continuous identity authentication and monitoring. 20 users
were asked to install on his/her workstations and to continue
to work normally while the mouse data was collected. After
a preprocessing to select the best features, the users were
classified using SVM with an EER of 5.32%.

Pattern-growth-based mining was used to extract frequent
behavior segments in obtaining stable mouse characteristics



in [14], using classification algorithms to perform continuous
user authentication. 22 users performed Internet surfing, word
processing, online chatting and programming for 30 minutes.
The best result was an EER of 1.49% using a One-Class SVM
detector.

The literature does not have a large amount of multimodal
systems using mouse and keystroke biometric data. Addition-
ally, work related to online games are very limited.

An approach using game-play activities was proposed in
[15] with the purpose to attack the account sharing problem,
where the idle time distribution of a player in-game was
proved to be a representative feature, and the RET scheme
was proposed for user identification, which is based on the
Kullback-Leibler divergence between idle time distributions.
The results showed that the RET scheme achieves higher than
90% accuracy with a 20-minute detection time given a 200-
minute history size.

According to [16], the behavior of a player in a match can be
used as a metric for identification in some cases. The authors
used poker as case study, calculating the percentage of folds,
calls, checks, raises, re-raises and all-ins, using euclidean
distance to calculate similarity to verify 30 players identities,
with an EER of 22.67%.

In [17], a total of 24 subjects were asked to perform a fixed
task using their own computers, where the objective was to
analyze both biometric modalities together and isolated. The
classifier had an EER of 8.21%. The mouse dynamics isolated
had a EER of 22.41% and the keystroke dynamics alone had
an EER of 24.78%.

In [18], 25 volunteers participated in the experiment and
four different machine learning approach were use:, Decision
Tree (DT), Counter-Propagation Artificial Neural Network
(CPANN), Artificial Neural Network (ANN) and SVM. In this
work, an identification accuracy of 62.2% was obtained in a
closed-set experiment and a Detection and Identification Rate
of 58.9% in an open-set experiment.

For this work we have used the biometrics database col-
lected in [3] using League of Legends as case study. Data
from 56 different users were collected, using the same type of
keyboard and mouse to all volunteers, where 18 users played
more than one time, sometimes using different characters
and/or positions. Our analysis will focus on this group. The
original proposition was to verify if a user is himself/herself,
attacking the account sharing problem more precisely, but
the amount of data collected was not sufficient to make the
experiments, thus changing the subject to try to identify the
the volunteers. More accurate, real data could not be used
to experiment because the game is from a private company,
making it difficult to have access to the company’s data.

The goal in [3], and then [1] and [2], was to use the database
for identification. For this purpose, the software WEKA was
utilised in order to run machine learning algorithms trying
to identify correctly each user. The best result combining
keystroke and mouse dynamics in [1] and [2] was 90.77%
using the Random Forest algorithm, as shown in both works.

Each sample collected in these works have data of 33

different features:
• 13 keystroke features:

– Three combination of keys, using the distance be-
tween keys, C1 (Q & W, W & E, E & R), C2 (Q &
E, W & R) and C3 (Q & R) , also called combos;

– Frequency (per minute of match) for each key
pressed (FQ, FW, FE, FR and FSPACE);

– Latency for each key pressed (Q, W, E, R and
SPACE).

• 20 mouse features:
– Move speed of the 8 directions - ’Down’, ’Down +

Left’, ’Left’, ’Up + Left’, ’Up’, ’Up + Right’, ’Right’
and ’Down + Right - represented by D1, D2, D3, D4,
D5, D6, D7 and D8, respectively;

– The acceleration for each direction, represented by
AD1, AD2, AD3, AD4, AD5, AD6, AD7 and AD8,
respectively;

– Frequency and Latency for right and left clicks,
represented as CFR, CFL (for frequency) and CTR
and CTL (for latency).

IV. EXPERIMENTAL AND STATISTICAL ANALYSIS

In order to discover which network can give us the best
results for our data the software WEKA (Waikato Environment
for Knowledge Analysis) was used to perform experiments
[19]. We have selected all the available networks in this
platform to evaluate the data: Multilayer Perceptron, Bayesian
Network and Radial Basis Function Network. The three next
subsections will describe the networks and the parameters used
in our experiments, and the later subsections will detail how
the more appropriate time stamp to extract the features was
chosen and also how the different networks performed when
trying to classify the data.

A. Multilayer Perceptron (MLP)

MultiLayer Perceptron (MLP) is an artificial network model
with at least three layers that maps inputs to a set of appropri-
ate outputs [20]. The layers commonly are input layer, hidden
(or intermediate) layers and output layer.

Input layers are responsible for receiving and propagate the
input information, without the need of do any processing.
Hidden layers are composed by nodes, and are responsible
for processing data and transmitting the information through
connections between inputs and outputs. To ensure that a
network is keeping knowledge, these connections save the
weights that will be multiplied by the inputs. Output layers
are composed of neurons, which receives the information from
the hidden layers, yielding the output (answer to the problem).

WEKA’s implementation [21] treat all nodes as sigmoid
(can be used in backpropagation), and it let us change
atributtes as Momentum Rate for backpropagation, Learning
Rate, training time, and the number of hidden Layers.

Our experiments with MLP were conducted using two dif-
ferent configurations, and only the training time was changed.
Bellow we can see the configurations used in our experiments.



Config1: hiddenLayers = a, learning Hate = 0.7, momentum
= 0.6, trainingTime = 5000, threshold = 20, validationSet =
0.

Config2: hiddenLayers = a, learning Hate = 0.7, momentum
= 0.6, trainingTime = 500, threshold = 20, validationSet = 0.

B. Bayesian Network

Bayesian Network is a probabilistic graphical model that
represents a set of random variables and their conditional
dependencies using a directed acyclic graph (DAG). Nodes
represent random variables and edges represent conditional
dependencies. When two different nodes are not connected this
represents that they are conditionally independent. Each node
then is associated with a probability function, which takes as
inputs a set of values for the node’s parent variables, giving the
probability of the variable represented by the node as output
[22].

Weka’s implementation of Bayesian Networks can use
different search algorithms and quality measures [23]. The
search algorithms used in this experiment were K2, that uses
a hill climbing strategy restricted by an order on the variables
[24][25][26], and the Tabu Search, which is a hill climbing
until an optimum is reached, where the following step in the
search is the least worst step [27][28]. The only estimator
used for our experiments is the Simple Estimator, estimating
directly from data the conditional probability tables of a Bayes
network once the structure has been learned [29].

Two different configurations of Bayesian Networks were
tested in our experiments, using the following configurations:

Config1: Estimator = simpleEstimator (default configura-
tion), search algorithm = TabuSearch.

Config1: Estimator = simpleEstimator (default configura-
tion), search algorithm = K2.

C. Radial Basis Function Network (RBF Network)

A Radial Basis Function (RBF) Network is a neural network
that uses radial basis functions as activation functions. RBF
networks can be regarded as feedfoward neural networks with
a single layer for hidden nodes. The inputs for these neural
networks is the distance between the input vector (activation)
and its center (location) [30].

Their performance depends on the number and positions of
the radial basis functions, their shape, and the method used
to determine the weights. The outputs for this kind of neural
network is a linear combination of radial basis functions of
the inputs and neuron parameters.

WEKA’s implementation of RBF Network uses the k-means
clustering algorithm to provide the basis functions[31], which
uses the gradient-descent method until convergence as default,
making larger sets to run extremely slowly [32]. Putting a limit
to the number of interactions can make de algorithm faster, but
we can not guarantee that it will converge, thus making it hard
to tell if there is a possibility to improve results.

Two configurations were tested, one with and one without
limiting the number of iterations, with the following parame-
ters:

Config1: Clusttering seed = 1; maxIterations = -1 (until
convergence), minStdDev = 0.1, number of Clusters = 2.

Config2: Clusttering seed = 1; maxIterations = 5, minStd-
Dev = 0.1, number of Clusters = 2.

Config3: Clusttering seed = 1; maxIterations = 10, minSt-
dDev = 0.1, number of Clusters = 2.

D. Time Stamp Selection

In [3] the authors extracted the features every 5 minutes
played, but it was not certain that this time frame was the best
for the problem. In order to verify which time stamp is good
enough to give us information to classify correctly our game
biometric data a preprocessing using the original information
of each user was applied to create five new bases, each one
with a different time frame to extract the features (5 minutes,
4 minutes, 3 minutes, 2 minutes and 1 minute).

We may incorrectly think that shrinking the time window
will give us more information simply because it generates
more samples, but these samples do not always have enough
significant information to perform the identification correctly.

E. Results

Tables I, II, IV, V,VII, VIII and IX show us the classification
algorithms results. In Table I and II, we can see that the best
cases were with the databases of 5 minutes and 4 minutes.
However, the 4 minutes database have a lower standard devi-
ation and more instances, indication that 4 minutes is a time
window big enough to be representative to the MLP algorithm.
A simple T-Test show us that the difference between the two
databases is not big enough to be representative, consequently,
4 minutes is a better time stamp to run this algorithm. Here,
the results using config1 for MLP is better, because this set o
parameters has a bigger training time.

TABLE I
MLP RESULTS FOR DIFFERENT TIME WINDOWS (CONFIG1)

5min 4min 3min 2min 1min
Mean 86.27% 86.14% 82.46% 70.7% 8.21%
StdDev 5.25% 3.81% 3.75% 8.36% 4.75%
Median 86.27% 86.76% 82.11% 73.15% 7.07%

TABLE II
MLP RESULTS FOR DIFFERENT TIME WINDOWS (CONFIG2)

5min 4min 3min 2min 1min
Mean 83.84% 85.39% 81.96% 68.45% 7.74%
StdDev 5.58% 3.67% 3.75% 9.62% 2.74%
Median 84.62% 85.29% 81.05% 70.47% 7.23%

For the Bayesian Network, we can see in Table IV and V
that the 3 minutes database being better than the other datasets
following the same logic we used to pick the 4 minutes
database for the MLP algorithm, but the result is not as good as
the MLP algorithm. Table VI shows that there is a significant
difference between the 3 minutes and 4 minutes databases,
indicating that 3 minutes is indeed the best pick for this case.

An important observation about both Table IV and Table
V is that when we shrink the time frame to extract data



TABLE III
TWO TAILED T-TEST RESULT FOR THE MLP ALGORITHM, WITH A LEVEL

OF SIGNIFICANCE α = 0, 05

4min 5min
Run 1 84,690518 84,15912519
Run 2 86,15891133 86,30467572
Run 3 86,29938543 83,97435897
Run 4 86,31035996 83,99698341
Run 5 86,89201054 86,50452489
Run 6 85,85820896 85,88612368
Run 7 87,33318701 87,25113122
Run 8 86,4596137 84,7586727
Run 9 86,29719052 84,7586727
Run 10 85,11633011 85,31297134
P = 0,068503993

TABLE IV
BAYESIAN NETWORK RESULTS FOR DIFFERENT TIME WINDOWS

(CONFIG1)

5min 4min 3min 2min 1min
Mean 72.50% 72.20% 75.55% 73.85% 65.60%
StdDev 4.64% 4.20% 4.25% 3.50% 2.70%
Median 72.80% 75% 75.53% 73.15% 65.60%

TABLE V
BAYESIAN NETWORK RESULTS FOR DIFFERENT TIME WINDOWS

(CONFIG2)

5min 4min 3min 2min 1min
Mean 75.5% 75.16% 75.31% 71.36% 65.58%
StdDev 4.61% 4.43% 4.25% 3.38% 2.7%
Median 72.81% 75% 75.53% 73.15% 65.6%

TABLE VI
TWO TAILED T-TEST RESULT FOR THE BAYESIAN NETWORK, WITH A

LEVEL OF SIGNIFICANCE α = 0, 05

3min 4min
Run 1 75,59014558 75,26558385
Run 2 74,74580067 74,52589991
Run 3 75,46696529 74,51931519
Run 4 75,67861142 75,55750658
Run 5 74,8331467 75,11413521
Run 6 74,73348264 75,84723442
Run 7 75,16573348 73,77085162
Run 8 75,78051512 74,67515364
Run 9 76,82866741 76,28841089
Run 10 74,3225084 76,13257243
p = 0,6761545659

the standard deviation also decreases, indicating that with
more data to infer statistic rules the Bayesian Network can
be more accurate within itself. Another important information
from these tables is that this algorithm is powerful enough to
classify correctly our users with the 1 minute dataset, implying
a certain advantage over the MLP algorithm when we see how
much info the algorithms need to correctly classify users.

For this algorithm, the one using Tabu Search had a result
a little bit better, even with a lot of common results between
tables, indicating that hill climbing approaches, in this case,
lead us to similar results.

Table VII shows us that, with exception of the 1 minute
time frame, the longer the time window shrinks the better
the algorithm works. This happens because with the increased

number of samples of each class (users) more radial basis
functions are needed to try to classify and learn patterns,
increasing the accuracy. However, the processing of the RBF
Network increases a lot with a higher number of instances, so,
a smaller dataset with a reasonable result is more indicated for
this classifier.

In Tables VII,VIII and IX, we can see how the database be-
have when the RBF Network algorithm is applied. We can treat
the case where the algorithm executed until convergence as
the general case, because in forensic investigation to discover
whether some specific user is playing as another user the ideal
would be to let the algorithm run until convergence. The mean
and median results show us that 5 iterations of the algorithm
give us the best result overall, needing the least amount of
computational time to achieve them. Th is algorithm also
behave better than the MLP when the samples are collected
with the 1 minute time stamp, but it is worse when compared
to the Bayes algorithm. Since the difference between the best
and the second to best results are not close enough, a T-test
is not needed to infer that 3 minutes in this cases the better
time-stamp.

TABLE VII
RBF NETWORK RESULTS FOR DIFFERENT TIME WINDOWS (CONFIG1,

UNTIL CONVERGENCE)

5min 4min 3min 2min 1min
Mean 74.92% 76% 76.1% 70.36% 55.66%
StdDev 5.45% 5.36% 4.33% 6.08% 3.7%
Median 75 75% 75.55% 69.8 53.1

TABLE VIII
RBF NETWORK RESULTS FOR DIFFERENT TIME WINDOWS (CONFIG2, 5

ITERATIONS)

5min 4min 3min 2min 1min
Mean 75.37% 75.19% 76.26% 70.29% 53.06%
StdDev 6.26% 5.45% 4.48% 3.61% 3.23
Median 75% 75% 76.71% 69.60% 52.73

TABLE IX
RBF NETWORK RESULTS FOR DIFFERENT TIME WINDOWS (CONFIG3, 10

ITERATIONS)

5min 4min 3min 2min 1min
Mean 75.76% 75.7% 75.22% 68.56% 57.09%
StdDev 6.09% 5.72% 4.79% 4.72% 3.12%
Median 74.75% 75% 74.73% 68.68% 56.75%

V. FINAL REMARKS

The results of our experiments showed us how different
neural networks behave with the League of Legends biometric
data and databases. The classifier with the better accuracy was
the Multilayer Perceptron, achieving its better result when the
features take a little bit more time to be gathered. In the other
hand, RBF and Bayesain networks indicate that its possible to
achieve or even increase results when we collect the samples
more often, sometimes under the cost processing.



Future work can go to a route where a separation between
early, mid and late game samples are analyzed individually,
because the current state of the games forces players to change
roles, which can lead to a changes in their biometric profiles,
or to a route where we investigate the impact of each set of
features in the outcome of machine learnng algorithms.

REFERENCES

[1] I. da Silva Beserra, “Using keystroke dynamics for user identification
in the online collaborative game League of Legends.” 2017, master’s
Thesis (Systems and Computing), UFRN (Universidade Federal do Rio
Grande do Norte), Natal, Brazil.

[2] L. Camara, “Acquisition and analysis of the first mouse dynamics bio-
metrics database for user identification in the online collaborative game
League of Legends.” 2017, master’s Thesis (Systems and Computing),
UFRN (Universidade Federal do Rio Grande do Norte), Natal, Brazil.

[3] I. da Silva Beserra, L. Camara, and M. Da Costa-Abreu, “Using
keystroke and mouse dynamics for user identification in the online
collaborative game league of legends,” 2016.

[4] F. Bergadano, D. Gunetti, and C. Picardi, “User authentication through
keystroke dynamics,” ACM Transactions on Information and System
Security (TISSEC), vol. 5, no. 4, pp. 367–397, 2002.

[5] S. P. Banerjee and D. L. Woodard, “Biometric authentication and
identification using keystroke dynamics: A survey,” Journal of Pattern
Recognition Research, vol. 7, no. 1, pp. 116–139, 2012.

[6] P. Bours and C. J. Fullu, “A login system using mouse dynamics,” in
Intelligent Information Hiding and Multimedia Signal Processing, 2009.
IIH-MSP’09. Fifth International Conference on. IEEE, 2009, pp. 1072–
1077.

[7] S.-s. Hwang, H.-j. Lee, and S. Cho, “Account-sharing detection through
keystroke dynamics analysis,” International Journal of Electronic Com-
merce, vol. 14, no. 2, pp. 109–126, 2009.

[8] S. Z. S. Idrus, E. Cherrier, C. Rosenberger, and P. Bours, “Soft biomet-
rics database: a benchmark for keystroke dynamics biometric systems,”
in Biometrics Special Interest Group (BIOSIG), 2013 international
conference of the. IEEE, 2013, pp. 1–8.

[9] S. Z. S. Idrus, E. Cherrier, C. Rosenberger, S. Mondal, and P. Bours,
“Keystroke dynamics performance enhancement with soft biometrics,”
in Identity, Security and Behavior Analysis (ISBA), 2015 IEEE Interna-
tional Conference on. IEEE, 2015, pp. 1–7.

[10] H.-R. Lv, Z.-L. Lin, W.-J. Yin, and J. Dong, “Emotion recognition based
on pressure sensor keyboards,” in Multimedia and Expo, 2008 IEEE
International Conference on. IEEE, 2008, pp. 1089–1092.

[11] R. Thanganayagam and A. Thangadurai, “Fusion approach on keystroke
dynamics to enhance the performance of password authentication,” in
Electrical, Computer and Communication Technologies (ICECCT), 2015
IEEE International Conference on. IEEE, 2015, pp. 1–6.

[12] C. Shen, Z. Cai, X. Guan, H. Sha, and J. Du, “Feature analysis of
mouse dynamics in identity authentication and monitoring,” in Commu-
nications, 2009. ICC’09. IEEE International Conference on. IEEE,
2009, pp. 1–5.

[13] C. Shen, Z. Cai, X. Guan, and J. Cai, “A hypo-optimum feature selection
strategy for mouse dynamics in continuous identity authentication and
monitoring,” in Information Theory and Information Security (ICITIS),
2010 IEEE International Conference on. IEEE, 2010, pp. 349–353.

[14] C. Shen, Z. Cai, and X. Guan, “Continuous authentication for mouse
dynamics: A pattern-growth approach,” in Dependable Systems and Net-
works (DSN), 2012 42nd Annual IEEE/IFIP International Conference
on. IEEE, 2012, pp. 1–12.

[15] K.-T. Chen and L.-W. Hong, “User identification based on game-play
activity patterns,” in Proceedings of the 6th ACM SIGCOMM workshop
on Network and system support for games. ACM, 2007, pp. 7–12.

[16] R. V. Yampolskiy and V. Govindaraju, “Use of behavioral biometrics in
intrusion detection and online gaming,” in Proc. of SPIE Vol, vol. 6202,
2006, pp. 62 020U–1.

[17] I. Traore, I. Woungang, M. S. Obaidat, Y. Nakkabi, and I. Lai,
“Combining mouse and keystroke dynamics biometrics for risk-based
authentication in web environments,” in Digital Home (ICDH), 2012
Fourth International Conference on. IEEE, 2012, pp. 138–145.

[18] S. Mondal and P. Bours, “Combining keystroke and mouse dynamics for
continuous user authentication and identification,” in Identity, Security
and Behavior Analysis (ISBA), 2016 IEEE International Conference on.
IEEE, 2016, pp. 1–8.

[19] WEKA. Waikato environment for knowledge analysis. [Online].
Available: https://www.cs.waikato.ac.nz/ml/weka

[20] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory
of brain mechanisms,” CORNELL AERONAUTICAL LAB INC BUF-
FALO NY, Tech. Rep., 1961.

[21] WEKA. Class multilayerperceptron. [Online]. Avail-
able: http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/
MultilayerPerceptron.html

[22] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network clas-
sifiers,” Machine learning, vol. 29, no. 2-3, pp. 131–163, 1997.

[23] WEKA. Class bayesnet. [Online]. Available: http://weka.sourceforge.
net/doc.dev/weka/classifiers/bayes/BayesNet.html

[24] ——. Class k2 search. [Online]. Available: http://weka.sourceforge.net/
doc.dev/weka/classifiers/bayes/net/search/local/K2.html

[25] A Bayesian method for constructing Bayesian belief networks from
databases, 1990.

[26] G. Cooper and E. Herskovits, “A bayesian method for the induction of
probabilistic networks from data,” Machine Learning, vol. 9, no. 4, pp.
309–347, 1992.

[27] WEKA. Class tabu search. [Online]. Available: http://weka.sourceforge.
net/doc.stable/weka/classifiers/bayes/net/search/global/TabuSearch.html

[28] R. Bouckaert, “Bayesian belief networks: from construction to infer-
ence,” Ph.D. dissertation, Utrecht, Netherlands, 1995.

[29] WEKA. Class bayes simple estimator. [Online]. Avail-
able: http://weka.sourceforge.net/doc.stable/weka/classifiers/bayes/net/
estimate/SimpleEstimator.html

[30] N. B. Karayiannis and G. W. Mi, “Growing radial basis neural networks:
merging supervised and unsupervised learning with network growth
techniques,” IEEE Transactions on Neural networks, vol. 8, no. 6, pp.
1492–1506, 1997.

[31] WEKA. Class rbfnetwork. [Online]. Available: http://weka.sourceforge.
net/doc.packages/RBFNetwork/

[32] Y. Wu, H. Wang, B. Zhang, and K.-L. Du, “Using radial basis function
networks for function approximation and classification,” ISRN Applied
Mathematics, vol. 2012, 2012.


