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Abstract Due to the increasing number of cores in Systems on Chip (SoCs),
bus architectures have suffered with limitations regarding performance. As
applications demand higher bandwidth and lower latencies, buses have not
been able to comply with such requirements due to longer wires and increased
capacitance. Facing this scenario, Networks-on-Chip (NoCs) emerged as a way
to overcome the limitations found in bus-based systems. Fully exploring all
possible NoC characteristics settings is unfeasible due to the vast design space
to cover. Therefore, some methods which aim to speed up the design process
are needed. In this work, we propose the use of machine learning techniques
to optimise NoC architecture components during the design phase. We have
investigated the performance of several different ML techniques and selected
the Random Forest one targeting audio/video applications. The results have
shown an accuracy of up to 90% and 85% for prediction involving arbitration
and routing protocols, respectively, and in terms of applications inference,
audio/video achieved up to 99%. After this step, we have evaluated other
classifiers for each application individually, aiming at finding the adequate
one for each situation. The best class of classifiers found was the Tree-based
one (Random Forest, Random Tree, and M5P) which is very encouraging and
it points to different approaches from the current state of the art for NoCs
latency prediction.
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1 Introduction

The evolution of lithography process has driven an increase in circuit inte-
gration leading to more complex architectures and higher development costs,
allowing that multiple circuits can be integrated into a single package, which
can be also known as System on Chip (SoC) [1,2]. This level of integration has
led multiple cores in an individual silicon wafer, creating Multiple Processors
Systems on Chip (MPSoCs) [3]. As the number of cores increased in a system,
we have seen an increased in the possible number of communications among
them. In order to improve performance, energy usage and scalability issues,
Networks on Chip were employed, which use some elements from Ethernet
networks, such as routers and links [4] to implement communications inside
SoCs.

Since each NoC internal router component can be implemented in many
different ways, finding optimised architectures rely on the understanding of
a vast design space. Architectural options for NoCs stand on several possible
different implementations which can range from buffering, scheduling, routing
and flow control, leading to an NP-hard combinatorial problem [5]. In such a
scenario, optimal architectures could only be obtained by testing each one of
all possible configurations, which is computationally unfeasible. However, since
applications constraints could be known before hand, optimised architectures
- the ones complying with application constraints - are usually satisfactory.
Even so, in order to get there, many different possible behaviors would need
to be tested. This task could be accomplished using meta-heuristics, such
as Genetic Algorithms [6], by traversing the design space smartly enough to
satisfy the constraints while avoiding testing all architectural scenarios. Still,
each architecture found by the heuristic must be simulated to verify how far
it is from the desired constraints. Usually, constraints are expressed in terms
of performance, energy consumption, area.

Traditional approaches rely on simulations to run the architectures and
get, for instance, performance figures. However, precise results (at cycle level)
could only be achieved when simulations run at lower abstraction levels, which
in turn, can take too much time, due to the high computation effort needed to
simulate all the components at each clock cycle. In order to overcome this sit-
uation, many approaches rely on simulations performed at higher abstraction
levels. Although this brings faster simulations times, results could be compro-
mised due to lower accuracy.

Nowadays a trend is to avoid simulations using a variety of methods, such
as Analytical Modeling [7] and Machine Learning [8-10]. This tendency is sat-
isfactory because it allows an improvement in accuracy (avoiding not obeying
restrictions of time, required area or energy consumption) and a speedup in
design time. Nonetheless, in all cases, designers seek to increase accuracy and
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to reduce the error rate. Despite this goal, NoCs have a non-linear behavior,
which compromises the accuracy, and it is a challenge by itself. The accuracy
loss could cause resource waste because the designer will use more resources
than necessary aiming to obey the deadlines. Thus, it is a possible disadvantage
of predictions.

Following this trend, this work proposes the usage of machine learning
methods to predict latency values based on NoC architecture details. The
choice by Machine Learning methods is useful for applications where the data
is difficult to model analytically and NoC has this characteristic [11]. According
to Ogras, Hu and Marculescu [12] and Qian et al. [13], there are at least three
main challenges in NoC design:

1. Assumptions in current queuing models (analytical models) are very tight,
not supporting a wide range of traffic patterns;

2. Efficient resources management strategies;

3. Scalability challenge in NoC simulations. The authors state that simulat-
ing NoCs with more than one hundred routers demand huge computation
effort, which leads to high simulation times.

Regarding the first item above, this work supports seven NoC character-
istics and two application attributes to reliably predict latency, enabling the
verification of more NoC configurations. The attributes are: topology, size,
routing protocol, virtual channel, input buffer depth, output buffer depth, ar-
biter, number of packets, and required bandwidth. These last two attributes
are provided by application. It impacts directly in challenge 2, as being able
to explore diverse architectural configurations allows the adoption of more
efficient resource management strategies. Concerning the last challenge cited
above, scalability in simulations, our predictor was trained with up to 144
routers. Still, it is possible to increment this number even further, because,
with our approach, it is not necessary to simulate the NoC behavior on every
single iteration of the classifier, only what is required to feed the classifier.
The main goal of this work is applying the ML method, to analyse its ability
to predict (correctly or not) and investigate the reason behind the accuracy
predicted.

The paper is organised as follows: In Section 2, we present the related
works. Section 3 explains the proposed framework, which is discussed in more
details in Section 4. Section 5 presents the obtained results, followed by con-
clusions and future directions.

2 Related Works

There are two major options to avoid having to perform all possible simulations
during design space exploration:

— the use of Analytical Models; and
— the use of Machine Learning techniques (ML).
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This section presents some related works and their contributions to this
problem.

2.1 Analytical Models

Many NoC latency models use the queuing theory, and it implies in restrictions,
such as packet length and traffic follows a Poisson distribution [14].

Feng, Ge, and Wu presented an analytical model that assumes infinite
buffers to predict latency in 3D NoCs [15]. It also supports multi-application
mapping. It, initially, uses a Genetic Algorithm to realise the task mapping
and, the resulting mapping is applied to an analytical model to verify if it obeys
the designer restriction for each application. Task Graphs For Free (TGFF) [16]
was used to generate synthetic graph applications, and the result of Genetic
Algorithm (GA) was simulated using NoC simulator Nirgam. This model can
save power consumption up by 21% and decrease the latency up to 17% when
compared with random mapping.

Quian et al. developed a model that uses a G/G/1/K queuing model that
supports heavy traffic, finite buffer, arbitrary packet length, and round-robin
arbiter, under synthetic traffic patterns, the model achieved less than 12% of
error in prediction the network saturation point. Using real applications, the
proposed model can achieve 91.4-97.9% of accuracy, comparing the required
time to simulate (using Booksim simulator) and the speedup was 70x over the
simulation [17].

Bhattacharya and Jha created a model that uses a G/G/1/K and M/G/1/K
that can reflect the influence of buffers size, number of virtual channels, and flit
size. The model was evaluated using gemb5 and GARNET simulator with PAR-
SEC benchmark suite. The obtained results show that the number of virtual
channels and flits contention are inversely proportional; besides it, the authors
cannot demonstrate the influence of buffers size in packet latency. Comparing
the simulations results with predictions, the accuracy was superior to 85% in
all scenarios [18].

Kurihara and Li proposed a model that supports four topologies, mesh,
torus, hypercube, and metacube. The goals is to estimate the ratio cost-
performance for these topologies. In relations to other NoC characteristics
(buffers size, kind of arbiter.), anyone was considered in the model. According
to the obtained results, torus and metacube topologies only achieve better
cost-performance when the number of cores overcomes 100 units [19].

Fischer, Fehske, and Fettweis also created a model based on queuing the-
ory, differently to the previously cited papers, they did not take into account
information such as topology or routing scheme and assumed two characteris-
tics: infinite buffers in input channels and that the traffic follows the Poisson
distribution. It considers an NoC such a hierarchical structure, in this way,
is possible to split in three steps: local arrives rate, forwarding probabilities,
and path delays. Thanks to this division, the model can calculate each router
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individually and after sum all. The accuracy, in obtained results, achieved 96%
[20].

Fresse et al. dimensioned an NoC from mathematical models, to compare,
they synthesised in FPGA board and analysed the results. An explicit restric-
tion was the use of one fixed configuration during the experiments (Mesh 2D,
two virtual channels, round robin arbiter, and XY routing algorithm). It lim-
ited the analysis of obtained results, and the authors affirmed that changing
the kind of arbiter, the accuracy falls. In the worst case, this solution reached
up by 88% of accuracy. Another characteristic is the low accuracy for small
NoCs, and it allows us to conclude that the model can not represent all situ-
ations adequately (do not capture the non-linear behavior) [21].

According to the Quian et al., analytical models cannot represent the real
applications, because they assume hard restrictions, trying to relax these as-
sumptions, they developed a new model that uses a Support Vector Machine
to improve the model accuracy [22]. However, besides it, the SVM fed the
analytical model. This combination achieved a result of 10% better than the
previous work for the same authors - only using a mathematical model.

As mentioned earlier, the goal is to predict the value for the desired metric
and an accurate inference, the number and the possibilities for each attribute
are essential because it allows the model to create a realistic representation
of NoC. These quoted analytical models need tight restrictions and are not
capable of representing real applications accurately. In this way, the proposed
framework operates with a high degree of freedom about the requirements.
About the time distribution of arrived packets, our solution was trained with
a variety of packet time distributions. Other difference regards on the possi-
bility to choose among several NoC topologies sizes. The proposed solution
was trained with two topologies ranging from 4 to 144 routers. Each author
adopted a set of information to feed his model and to predict the desired
metric, but anyone of the quoted paper informed the use of seven and two
NoC characteristics and applications, respectively. Thus, our approach sup-
ports a higher number of applications because the proposed model supports
more options for each attribute than the presented in the quoted papers, such
as routing protocol which this paper handles six different protocols.

2.2 Machine learning-based solutions

Machine Learning (ML) techniques are commonly used for design space ex-
ploration purposes. For instance, Chen et al. use an ML technique to speed
up networks up to 8 routers; they used RankBoost method to find the best
configuration and creates a configuration rank to choose the best one, based
on a defined metric threshold. However, this work did not focus on NoC DSE,
but in CPU DSE [23].

Few works use ML methods to focus on regular NoC topologies, while
the opposed happen for irregular ones. Specifically, about irregular topologies,
Chou and Marculescu created a platform focused in user experience to explore



6 Jefferson Silva et al.

the design space using Machine Learning techniques to cluster the traces from
similar users and, for each cluster, an algorithm for automatically architec-
ture generation. This algorithm in a second phase implements an analytical
model and takes into consideration many characteristics such as architecture
template (resources of computation, communication, protocols), applications
specification (task graph, deadlines, power consumption), and user traces (re-
strictions about latency, power consumption) [24].

In this direction, Zhang et al., used a congestion matrix to predict the worst
packet latency in NoCs. According to the authors, the worst-case traffic model
can adequately reflect the dynamic behaviors of packet switching networks. To
find the best configuration (the solution supports seven attributes) for the per-
formance they used a local search algorithm to explore NoC configurations; the
platform also provides an area and power consumption estimations, generated
using ORION [25] and DSENT [26] tools. The results showed that the bigger
is the NoC size, lesser is the solution accuracy. They also presented accuracy
results over injection rates. In this case, for lower injection rates, such as from
0.1 to 0.3, the accuracy found was less than 70% [27].

Aiming at obtaining an adequate NoC configuration, Ayari et al. developed
a hypervolume-based approach to refining the DSE. They used as metric the
load variation, power consumption, and communication costs. Because it is a
multi-objective solution, the authors used a Reduced Pareto front (RPF) to
facilitate the designer solution choice. The proposed approach had two stages:
first, Pareto optimal solutions are clustered using K-means algorithm, and,
as the second stage, a subset of solutions that maximises the hypervolume is
selected through a genetic algorithm [28].

Different from the other approaches, our solution supports a significant
number of routing and arbiters implementations. This is important since Fresse
et al. argue that these characteristics may lead to improvements on the predic-
tion errors due to the nonlinearity behavior of communications [21]. Comparing
with irregular topologies, our work presents some advantages, such as minor
design cost and, hence, higher possibility of reuse. Minor design cost happens
because the architectures found can be shared among several applications.
Contrasting with other approaches, our work is more flexible, not being tied
to specific network sizes or target applications.

3 Proposed approach

This work aims to expand the use of classifier techniques to NoCs architec-
tural characteristics in order to maximise its overall accuracy. The goal of this
classifier is to predict average latency values based on NoCs and traffic pat-
tern characteristics. For reaching this goal, we defined a sequence of work as
presented in Figure 1.
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Instances

» Perform simulations (RedScarf)
s collect the results

Dataset

* model data
= create dataset

* Evaluate all possible classifiers

Fig. 1: Sequence of this approach.

Figure 1 defines the workflow. The first step is to perform simulations and
to gather the results. In our case, we stopped this phase when we aggregated
496 instances. The data follows the requirements of Weka tool dataset. In
the sequence, we identified all classifiers which operate in a regressive way
implemented in the tool, and we evaluated all of them. We present more details
for each step in the next subsections.

3.1 Machine Learning classifiers

Seeking out to predict accurately, the solution uses a regressive supervised
method. We evaluated all regressive classifiers already implemented in Weka
software. The list is presented below:

— Isotonic Regression: Selects the attribute that results in the lowest
squared error;

— Linear Regression: It works by estimating coefficients for a line or hy-
perplane that best fits the training data;

— MLP Regressor: Trains a Multilayer Perceptron (MLP) with one hidden
layer by minimising the given loss function plus a quadratic penalty with
the Broyden-Fletcher-Goldfarb-Shanno method;

— MLP: An MLP consists of at least three layers of nodes. Except for the
input nodes, all nodes using a nonlinear activation function. MLP uses a
technique called backpropagation for training;

— RBF Network and RBF Regressor: An RBFN performs classification
by measuring the inputs similarity to examples from the training set. When
we want to classify a new input, each neuron computes the Euclidean
distance between the input and its prototype;

— SMOreg: Implements the Support Vector Machine (SVM) for regression;

— IBk: K-nearest neighbours classifier. It uses the Euclidean Distance to
calculate the distance between the instance and k neighbours;
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— Mb5Rules: Generates a series of M5 trees, where only the "best” (highest
coverage) leaf/rule is retained from each tree. At each stage, the instances
covered by the best rule are removed from the training data before gener-
ating the next tree;

— M5P: This technique works as ordinary decision trees with linear regres-
sion models at the leaves that predict the value of observations that reach
the leaf. The nodes of the tree represent variables and branches represent
split values;

— Random Forest: The Random Forest algorithm consists of a random
collection of decision trees. Hence, this algorithm is just an extension of
the decision tree algorithm.

In order to use a well-known platform for others to be able to replicate
our experiments, we have used the Weka! software, version 3.8. Each dataset
represents an application. The statistical test Student t-test was applied to
validate the results [29].

All needed simulations were performed on RedScarf Simulator [30]. It oper-
ates in Register Transfer Level (RTL) and has high accuracy, also has support
to manipulate seven NoC attributes. Models for latency and flow rate follow
the model‘s Dally and Towles [31].

3.2 Datasets

Audio/Video dataset contains 496 instances, each instance mapped to a spe-
cific NoC configuration plus two specific information about the application,
precisely number of packets and required bandwidth, and the latency’s value.
Traffic generation was based in [32], and the communication distribution uses
four models: Bit-reversal, Perfect Shuffle, Butterfly, and Transpose Matrix.

An instance has a network size between 2x2 to 12x12. These sizes were
needed because the nonlinear variation in some circumstances, such as latency
using nondeterministic routing algorithm, due to the occurred contention and
possibility of deadlocks. Each instance represents a performed simulation on
RedScarf simulator.

In addition to NoC attributes, two pieces of information about the appli-
cation traffic pattern were used, the number of packets (NoP) and required
bandwidth (RB). For NoP, values were 128, 1024, and 8192 per communication
flow and for RB, 64, 512, and 1024 Mbps. All experiments were performed us-
ing all values for NoP and RB. This range is necessary to improve the accuracy
of the classifiers.

There are three other datasets, one for each tested application: signal-
ing, read/write, and block transfer. They contain 1,488 instances each. This
number was reached varying NoC and application parameters. Similar to au-
dio/video dataset, the same NoC values to attributes were used. Besides, ap-
plications characteristics were expanded. Number of Packets were evaluated

L https://www.cs.waikato.ac.nz/ml/weka/
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with 128, 1024, 2048, and 8192; required Bandwidth was used four values: 64,
512, 1024, and 4096. The intention of using wide datasets was to achieve better
training for classifiers.

All configurations for all characteristics gave us the total number of possi-
bilities for a NoC, as showed in Table 1.

Characteristic Number of possibilities
Topology 2

Size 15

Routing Protocol 6

Virtual Channels 33

Input Buffer Depth 28

Output Buffer Depth 33

Arbiter Type 4

Total 21,954,240

Table 1: All possibilities to NoC Design Space Exploration in this work.

By analysing the data on Table 1, one can conclude that there is a massive
number of possibilities for each NoC and, hence, a high number of simulations
to deplete all options. Assuming each simulation executing in ten seconds,
60,984 hours will be necessary to simulate everything (sequential simulations).
Therefore, the DSE is huge and is almost unfeasible to evaluate all possibilities
in an affordable time. Besides, there is another problem: each change made may
impact in other attributes, leading designers to be forced to perform still more
simulations and analysis to know the NoC final performance, which requires
even more time. Based on this scenario, the values in Table 1 justify the use
of Al methods for predictions.

Dataset was formatted according to Weka software 2. Each experiment
execution was repeated ten times, this value is a suggestion of Weka developers.
Information about the RedScarf simulator is presented in the next Section.

3.3 RedScarf Simulator

RedScarf simulator implemented using System-C language with supports RTL
simulation and multi-threading operation [33]. It supports real-time and non
real-time applications. Figure 2 exhibits RedScarf configuration.

Figure 2 presents a topology with size equals to 8x8 and its traffic follow-
ing Butterfly distribution. Figure 2a specifies the created traffic, where the
designer can configure the traffic characteristic, some attributes are: distribu-
tion pattern of traffic, application (traffic class), number of packets, deadline

2 https://www.cs.waikato.ac.nz/ml/weka/downloading.html
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S~ Traffic Edit - [m] X

Source node:( **Multiple™* )

Destination node(s) Butterfly

Specific addressing Address: 0
Traffic class: RTO - Signalling

Type of injection Constant

Switching technique: Wormhole

Number of packets per flow: 4036 £

Deadiine (ns) o gl

Required bandwidth (Mbps): [1024] E

Message size (bits): [:2 =
p— 5 =

0 s

Function of probability Normal
Std. deviation (% of req. bw): 1 =
Pareto - alfa on: 1.25 s

Pareto - alfa off 1.90

e
(b) Mesh 8x8 topology with the spec-
(a) Traffic configuration in RedScarf. ification of traffic among routers.

Fig. 2: Example of NoC configuration in RedScarf.

(for real-time applications), required bandwidth (also is known as packet in-
jection rate), and message size. Figure 2b includes routers and its traffic (each
arrow represents a communication flow).

The dataset was modeled aiming to represent the implemented attributes
in RedScarf. The focus of simulator is performance simulation. Thus, it does
not provide any information about the demanded area or power consumption.
This tool offers a high precision because it operates in Register Transfer Level;
despite this, it takes a long time to perform each simulation, which may become
unfeasible a high number of simulations due the high demanded time.

Next Section will provide information about the Experiments.

4 Experiments and Results

For this research, the results were generated in two steps. First, it was neces-
sary to simulate several NoC configurations, focusing on the average latency
of packets. Each experiment was executed ten times. This value is the de-
fault in the simulator and is used by simulator’s authors in their tests. These
simulations were made using the RedScarf simulator running on a Debian 9
Linux.

After capturing the simulation results, the data was formatted in the Weka
dataset file. Each attribute is related to a specific NoC characteristic. Thus,
testing different NoCs account for changing any of the attributes (or even more
than one) at a time. The next step was to evaluate all quoted classifiers listed
in Section 3. Table 2 shows the student test result, and this statistical test
analysed the accuracy information, not latency’s result.
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Table 2: t-test statistical test execution over all classifiers. Three classifiers
obtained the same statistical significance.

Dataset (1) (2) (3) (4) (5)

latencyPrediction  0.95 £0.06 0.62+0.10 ¢  0.71+£0.08 ¢  0.894+0.07 ¢  0.8940.07 e

Dataset (6) (7) (8) 9) (10)

latencyPrediction  0.51+0.24 ¢  0.90+0.06 0.89+0.06 ¢  0.85+0.09 ¢  0.93£0.05

o, e statistically significant improvement or degradation

In Table 2, one can observe that three classifiers have obtained equivalent
results. Table 3 presents the used configuration for each classifier; these values
are the default in Weka software. Exploiting each hyperparameter of each
technique is out of scope for this paper.

(8)

(9)
(10)

Table 3: Classifiers configuration used during the experiments.

functions.IsotonicRegression ” 1679336022835454137
functions.LinearRegression ’-S 0 -R 1.0E-8 -num-decimal-places 4’
-3364580862046573747

functions. MLPRegressor -N 2 -R 0.01 -O 1.0E-6-P1-E1-S1

-L functions.loss.SquaredError -A functions.activation. ApproximateSigmoid’
-4477474276438394655

functions.MultilayerPerceptron ’-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20

-H a’ -5990607817048210779

functions. RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1’
-3669814959712675720

functions. RBFRegressor -N 2 -R 0.01 -L 1.0E-6 -C2-P1-E1-S 1’
-7847474276438394611

functions.SMOreg ’-C 1.0 -N 0 -I \”functions.supportVector.RegSMOImproved
-T 0.001 -V -P 1.0E-12 -L 0.001 -W 1\” -K \”functions.supportVector.Puk
-O 1.0 -S 1.0 -C 250007\”’ -7149606251113102827

lazy.IBk -K 1 -W 0 -A \”weka.core.neighboursearch.LinearNNSearch -A
\\\”weka.core.EuclideanDistance -R first-last\\\”\”’ -3080186098777067172
trees.M5P ’-M 4.0’ -6118439039768244417

trees.RandomTree -L 0 -M 1.0 -V 0.001 -S 1’

1116839470751428698

As can be seen in Table 2, three classifiers achieved the same performance.
Thus, aiming to choose the best classifier, we analysed the Mean Absolute
Error (MEA) as the second metric. Table 4 presents the results for this metric
for the best classifiers.

Table 4 shows percentage of error for each of three classifiers. Random Tree
method reached the minor error, without penalising accuracy.

Figure 3 presents an analysis of accuracy for each NoC size.

Figure 3 shows the accuracy of the Random Tree, Isotonic Regression, and
SMOreg (Support Vector Machine for regressive problems) for several net-
work sizes. Besides the high variation, from zero to near 1, the error rate
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Table 4: Obtained values of Mean Absolute Error metric for each of three
classifiers.

Classifier Mean Absolute Error (%)
Isotonic Regression 21

SMOreg 13

Random Tree 9

Accuracy of the best three classifiers over network size

0.7%
E
§ 0.5
0.25
o—
0
%2 3x3 4x4 5x8 6x6 =7 8x8 10210 12x12
Size of NoC
® RandomTree @ Isotonic Regression SMOreg

Fig. 3: Comparison between achieved accuracy using Isotonic Regression, Ran-
dom Tree, and SMOreg for a range of NoC sizes.

sustained lower values. Analysing the accuracy for size seven, the classifiers
almost missed all instances, but with a smaller error (less than 10%). In five
sizes, out of 9 in total, the classifier overcame 95% of accuracy. This kind of
behavior is expected because of the intrinsic behavior of NoCs, such as con-
tentions. Comparing them - all of them using the hyperparameter presented
in Table 3 - is possible to notice that the techniques had difficulty to infer the
latency in some sizes. This allows us to conclude that the problem is not the
adopted techniques by themselves rather the intrinsic behavior of NoCs, which
is non-linear and may get contentions depending on application or traffic pat-
tern distribution. For now on, all experiments were conducted using Random
Tree classifier. Figure 4 shows the classifier accuracy for four applications.
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Applications accuracy over network sizes

1.000 N 22
W x4
6x6
0.750 o axe
W 10x10
12x12
0.500 a
0.250
0.000
AudioVideo ReadWrite Block Transfer Signalling

Fig. 4: Achieved accuracy for a range of NoC sizes using four applications.

As can be seen in Figure 4, read/write application achieved an accuracy
higher than 99% from 6x6 to 12x12 networks. On the other hand, signaling
application had the worst accuracy; only two NoC sizes achieved over 50% of
accuracy. Audio/video application had similar results as shown in Figure 3.

For all applications, in 2x2 network size, the classifier reached up to 20%
of accuracy. Despite the training process has the same number of instances for
each network sizes, this result indicates that the Decision Tree used could not
predict the latency values correctly for small NoCs. This could happen due
to the nonlinear behavior of networks, imposing constraints for the learning
process. Comparing the application distribution as presented in Figure 5 we
can see some differences.

(a) Butterfly distribu- (b) Butterfly distribu- (c) Butterfly distribution for 8x8
tion for 2x2 mesh. tion for 6x6 mesh. mesh.

Fig. 5: Example of NoC applications using butterfly distribution, but with
three different sizes.
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Figure 5 shows three traffic patterns, one for each NoC size, 2x2, 6x6,
and 8x8. In all cases, the application was mapped using butterfly distribution.
Thus, the number of communications changes from two to thirty-two in Figure
5c¢. This change could impact directly in performance because it increases the
possibility to occur contention, saturate the channels, for instance. Therefore,
this NoC characteristic becomes more complex the task of the ML method to
understand and generate a suitable model to a wide range of NoC sizes. Figure
6 presents the classifier accuracy for buffer sizes.

Classifier accuracy for buffer sizes

1.00 w4
ms

0.75 12
w6

0.50 . 20

0.25

0.00

Audiovideo ReadWrite Block Transfer Signalling

Buffer

Fig. 6: Classifier accuracy for buffer sizes using four applications.

Figure 6 shows that the used classifier achieved, in two of five cases for sig-
naling application, accuracy up to 45%. For block transfer application, buffer
size equals to 16 and 20 had the worst accuracy, less than 70%, and 40%. In
other cases, the accuracy overcame 70%. Read/write application achieved an
accuracy greater than 80% in four scenarios. These results corroborate with
the expected performance when the designer increases the buffer sizes: at a
point, the performance increments proportionally, but, after reaching the limit,
increase the buffer take to waste of resources. This behavior is unique for each
application, each one has its resource usage. Therefore, the variation presented
in Figure 6 is habitual. Taking Figure 2b as example and assuming the use of
XY routing protocol [34], the router 25 forwards four communications: from
router 32 to 1; from 40 to 9; from 48 to 17; from 56 to 25. Thus, this router
needs the buffer to store the flits while it cannot forward ahead temporarily.
However, on the other hand, router 0 does not need any buffer, because, in
butterfly distribution, it does not receive any communication.

Based on previous results, it was analysed the possibility of usage of other
classifier and Table 5 shows the best classifier for each application analysed.

Although each application requires a specific technique, all belongs to De-
cision Trees class. So, for the suggested approach, this class of methods is



An investigation about NoC latency prediction 15

Table 5: Best classifier for each application

Application Method CC MAE RAE

Signaling Random Forest 0.9214  970.2602 14.3569%
Read/write Random Tree 0.8753 1012.8454  14.0498%
Block transfer M5P 0.906 466.6563 11.7552%

adequate. Figure 7 shows the accuracy using the best classifier for each appli-
cation.

Applications accuracy over network sizes

1.0000 W 2x2
W 4x4
6x6
0.7500
W\ 8x8
m 10x10
0.5000 m 12x12
0.2500
0.0000
AudioVideo ReadWrite Block Transfer Signalling

Fig. 7: Best classifiers accuracy to some NoC sizes using four applications.

Analysing each application separately, it is possible to notice that all three
applications had an increase in accuracy. Signalling application overcame 70%
of accuracy on overall. Worst scenario for Read/Write application was 2x2,
but with the most adequate classifier, it overcame 55% of accuracy. Block
Transfer application in five, out of 6 in total, overcame 92% of accuracy. De-
spite this improvement, Audio/Video application still obtained a lower result
for sizes equal to 2x2 and 4x4. Thus, even the best classifier for this applica-
tion, could not achieve high accuracy for both scenarios. Both sizes gathered
the lowest accuracy for also Read/Write application, which demonstrates the
lower requirement for communication and the disability of classifier to handle
both sizes for these applications. However, for all applications, the accuracy
increased for sizes equal or major than 6x6; it represents the classifier could
modeling this behavior correctly.

Below, there is the Figure 8. It presents the accuracy for buffer sizes using
the adequate classifier.
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Classifier accuracy for buffer sizes
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Fig. 8: Best classifiers accuracy for buffer sizes using four applications.

As can be seen, there was an increase in accuracy for three applications (all
except Audio/Video) when adopted the best classifier for each application. For
the signaling application, the results overcame 80% of accuracy at the worst
scenario, and, for other scenario overcame 93% of accuracy. Block Transfer
application had a similar growth, having like the worst case when buffer size is
equal to 4 (less than 76% of accuracy). Read/write application had an accuracy
higher than 50% in the worst case (also when buffer size is 4) and overcame
91% in four of five cases. Although the error rate appears to be significant, the
error was always between 11% and 14%. In this way, it is possible to tune the
values based on this error rate. Figure 9 presents the accuracy for all routing
protocols supported.

Accuracy over Routing Protocols
0.95 B Accuracy

0.9
0.891 0.889

0.85

0.8

Accuracy

0.75

XY West First Negative NorthLast OddEven
First

0.7

Fig. 9: Accuracy of classifier for each routing protocol supported.
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By observing Figure 9, it is possible to notice that accuracy for OddEven
protocol is less than 80%. This can be explained by the adaptive nature of the
protocol that could lead to deadlocks, therefore making the prediction harder
than for the other protocols. For the other four protocols, accuracy overcame
85%, which can be justified because the deterministic behavior of these routing
protocols. Other similar situation is shown in Figure 10.

Accuracy over kind of arbiters

1 B Accuracy
0.9
0.888 0.901
g
E 0.8
§ 0.793
0.7
0.627
0.6 [ |
Static Rotative Random  Round Robin

Fig. 10: Accuracy of classifier for each arbiter supported

Figure 10 walks in the same way that the previous image: classifier had dif-
ficulty in predicting adaptive or random situations. More specifically, random
arbiter was the worst scenario, reaching less than 70% of accuracy. However,
for the other types of arbiters, the accuracy overcame 79%.

An option to improve the accuracy for all cases is the use of a committee
of classifiers. In this direction, Committee classification units could combine
the outputs of two or more classifiers to generate a unique result [35].

5 Conclusions and Future Works

This work presented research about latency prediction for Networks on Chip
communication architectures, based on the characteristics of the architectures
and applications. Artificial Intelligence techniques were employed to build so-
lutions able to predict latencies figures up to 99% in accuracy.

Networks on Chip were evaluated with mesh topologies ranging between 4
and 144 nodes. The experiments were conducted in two steps, taking simula-
tion results to train the predictor.
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Random Tree was used as Latency Predictor for nine attributes. The in-
stances were collected from the RedScarf simulation tool. In total, four real
applications were analysed.

Since good accuracy could be achieved by the predictor, it can be tuned
to help speeding up the design space exploration tools for NoC based com-
munication architectures. This is an essential contribution of the paper due
to the novel approach proposed to predict the average latency for distributed
applications.

As future works, we intend to extrapolate the experiments for other perfor-
mance metrics and to analyse the usage of a committee of classifiers to improve
even more the accuracy. Another possible direction relies on the use of heuris-
tics to select the adequate characteristics for target architectures, aiming at
reducing the needed resources and time to get optimised solutions.
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