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Abstract: In this work, the effect of mixed La-Y doping on the water resistance of 

xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 (x=0, 4, 8, 12, 16 mol%) glasses was studied. 

The glass structure, glass transition temperature (Tg), dc conductivity (σdc) and water 

resistance of glass were respectively characterized by Fourier transform infrared 

spectroscopy (FTIR), differential scanning calorimeter (DSC), electrochemical workstation 

and water resistance test. The results show that with the gradual replacement of Y2O3 by 

La2O3, the value of Q
(2)

 (Q
2
 content as a percentage of the sum of Q

1
 and Q

2
 contents in 
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glass structure) and water resistance characterized by mass loss per unit surface area 

indicate strong “mixed rare earth effect”. It is obvious that the change of glass structure 

causes water resistance of glass to vary nonlinearly and exhibit a positive deviation from 

linearity. The results can provide some useful information for tailoring the chemical 

durability of glass by mixed rare earth doping. 

Keywords: Phosphate glass; Water resistance; Mixed rare earth effect; Glass structure 

1. Introduction 

In recent years, phosphate glass has been widely used in many fields by virtue of its 

excellent properties. Phosphate glass has good biocompatibility and it can be completely 

degraded in vivo. The degradation rate of phosphate glass can vary by several orders of 

magnitude depending on the chemical composition, so that the degradation rate of glass 

can be adjusted in a wide range. In the field of biomedicine, phosphate glass can be used to 

prepare artificial bone, repair damaged nerves and act as a carrier for carrying 

radiopharmaceutical in cancer radiotherapy [1-3]; Phosphate glass has lower melting 

temperature and viscosity, higher coefficient of thermal expansion, and it has received 

much attention in the field of sealing materials [4, 5]; In the field of optical materials, 

phosphate glass has the advantages of high UV transmittance, low preparation temperature 

and optical transmission loss, it is used as host materials for preparing optical waveguide 

device, optical amplifier and solid state laser doped with neodymium elements [6]; Iron 

phosphate glass with high chemical durability and simple preparation process has been 

widely used in the field of solidification of nuclear waste [7]; The solid electrolyte 

prepared by phosphate glass has the performance of high conductivity, isotropy, no grain 
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boundary and good processability [8]. 

Functional phosphate glasses put forward extremely high demand for chemical 

durability. For example, the therapeutic effect of phosphate bioglass is achieved by 

controlling the degradation rate of glass as well as the specie and rate of ion release during 

the degradation process [9]; Phosphate laser glass will be eroded by water molecules 

during processing, transportation and service stages. The corrosion of glass surface by 

water molecules not only leads to subcritical crack growth, the OH
-
 produced in the 

process of corrosion will also reduce the luminous performance of phosphate laser glass 

[10-12]; The extremely high water resistance is required for phosphate glass used to 

nuclear waste immobilization, which ensures that the solidified body’s unexpected contact 

with groundwater will not lead to a large number of radioactive elements release [13]. It is 

not difficult to find that the chemical durability of phosphate glass directly affects the 

application effect and service life of the material in different fields. Therefore, it is very 

necessary to study the chemical durability of phosphate glasses. 

At present, there are many researches on the chemical durability of phosphate glasses 

and many control methods of chemical durability have been developed. However, it is still 

a question how to control the chemical durability of glass without significant fluctuation of 

other properties. When it comes to this issue, we have to mention MME (mixed modifier 

effect). Mixed modifier effect means that in the glass system, the total content of network 

modifier remains constant, and one type of network modifier is gradually replaced by 

another, during the process of gradual replacement, some properties of glass will deviate 

from the linear additivity. Especially, properties related to ion migration, such as viscosity, 
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ion diffusion, electrical conductivity, dielectric loss, hardness and chemical durability have 

a large deviation from linearity [14, 15]. The chemical durability of the glass can be 

effectively controlled by the MME [16-18]. At present, most researches regarding MME in 

phosphate glasses focus on mixed alkali effect and mixed alkaline earth effect [18-20]. 

Introduction of rare earths into phosphate glass has great influence on many properties 

including chemical durability [21, 22]. However, little research has been carried out on 

controlling the chemical durability of glass by mixed rare earth doping. Further, during the 

practical application of phosphate glass, water is the most common corrosive medium. 

Therefore, the water resistance of mixed La2O3-Y2O3 doped phosphate glass was studied in 

this work, which could provide a new idea for regulating the chemical durability of 

phosphate glass. 

2. Experimental 

2.1. Glass synthesis 

Glass was prepared by melting the mixture of La2O3 (99.5% Aladdin), Y2O3 (99.5% 

Aladdin), Al2O3 (McLean 99.8%), NH4H2PO4 (McLean 99.5%) and Na2CO3 (McLean 

99.5%). All the raw materials were required analytical reagent grade. The specific chemical 

composition of xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 (x=0, 4, 8, 12, 16 mol%) 

glasses is shown in Table1. The raw materials required for melting 100g glass were 

uniformly mixed and ground, then placed in a corundum crucible. The mixture was hold at 

300 °C for 90 min and then melted at 1300 °C for 2 h, finally the homogenized melt was 

poured into the preheated graphite mold. After molding, the glasses annealed for 2 h in the 

temperature range of 460−480 °C depending on the composition, and then cooled in the 
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furnace. 

Table 1 The chemical composition of samples (mol%) 

Sample Y2O3 La2O3 P2O5 Al2O3 Na2O 

X=0 16 0 66 8 10 

X=4 12 4 66 8 10 

X=8 8 8 66 8 10 

X=12 4 12 66 8 10 

X=16 0 16 66 8 10 

2.2. Water resistance 

The examined samples were cut into 20×20×4 mm pieces, sanded with 600, 800, 

1000, 1200 and 1500 mesh sandpapers successively and polished by polishing powder 

until the surface was smooth without scratches, then accurately measured the surface area 

of glass pieces. Glass pieces were washed with anhydrous ethanol in ultrasonic oscillator 

for 15 minutes, then rinsed with deionized water and dried for use. The prepared glass 

pieces were placed in the PTFE bottle containing 50 ml deionized water. After 30 days of 

water resistance test at room temperature, the mass loss per unit surface area was 

calculated based on the mass loss in the aqueous solution and the surface area of the glass. 

The relative error in these measurements was about ±0.1 g/m
2
. 

2.3 Dc conductivity 

Dc conductivity was measured by electrochemical workstation (Zahner IM6e). Glass 

sample is 10mm in diameter, which was drilled from 1 mm thick sheet. The surface of the 

glass was sanded to ensure that both the upper and lower surface were parallel, and then 

accurately measured the diameter and thickness, so as to calculate the dc conductivity. In 
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order to get the silver electrode, glass coated with conductive silver paste was sintered at 

195 ℃ for 2 h. The measurement frequency range of glass conductivity was 20 mHz−1 

MHz, and the measurement was taken every 50 K from 503 K to 653 K. The error of ionic 

conductivity is about 5% from the experiments and calculation. 

2.4 Density, molar volume and oxygen density 

According to Archimedes' principle, the density of glass was measured by the 

electronic densitometer (GH-128E) at room temperature, and the immersion liquid was 

distilled water. Each sample was measured three times, and the glass density was taken as 

an average of three measurements. The estimated error limits are ±0.01 g/cm
3
. The 

relationship between molar volume (Vm), density (ρ) and relative molecular mass (M) of 

glass is as follows: 

/m MV   

Oxygen density was calculated by dividing the mass of oxygen atoms in one mole of 

glass (mo) by the molar volume of the glass. 

)3533(Mm ONaOAlOLaOYOO 232523232 XXXXX OP   

where, MO is the atomic weight of oxygen, X is the mole fraction of each component in 

glass. 

2.5 Glass transition temperature 

DSC curve of glass was determined by differential scanning calorimeter (Netzsch 

STA 449C). Glass transition temperature can be obtained from DSC curve by tangent 

method, and the accuracy of Tg is ±1 °C. Glasses were broken, ground, and sifted through 

100 mesh to prepare samples for testing. 15 mg powdered glass was tested. The test 
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temperature varied from room temperature to 1000 ℃ with a heating rate of 10 ℃/min. 

During the process of testing, nitrogen was used as protective gas and α-Al2O3 was used as 

standard reference material.  

2.6 Fourier transform infrared spectroscopy 

Ground glass powder and KBr powder were mixed and grinded in an agate mortar 

with a mass ratio of 1:100. Then the mixture was under the press of 20 MPa provided by 

the tablet press for 1−2 min to obtain translucent discs for testing. In this experiment, the 

infrared absorption spectra of the glasses were recorded by Fourier transforminfrared 

spectrometer (Perkin Elmer) in the range of 400−4000 cm
-1 

with the resolution of 4 cm
−1 

at 

room temperature.  

3. Results and discussion 

3.1 Effect of mixed La2O3-Y2O3 doping on water resistance 

The water resistance of glass is characterized by the mass loss per unit surface area, 

and the result is presented in Fig. 1. It can be seen that with the gradual replacement of 

Y2O3 by La2O3, the mass loss per unit surface area of glass increases firstly and then 

decreases, varies nonlinearly and exhibits a positive deviation from linearity. It reaches 

maximum when the molar ratio of [La2O3]/([La2O3]+[Y2O3]) is 0.5. The experimental data 

indicates that mixed rare earth doping reduces the water resistance of the studied glass. 

Hydrolytic process of phosphate glass can be generally divided into two stages. In the 

first stage, when the phosphate glass contacts with water, water molecules will permeate 

into the interior of glass, and then sodium ions in the surface layer of glass exchanges with 

H
+ 

and H3O
+ 

from aqueous solution, finally a hydrated layer forms on the surface. In the 
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second stage, hydrated layer extends into the interior of glass, and the extending rate 

depends on the breaking rate of glass network in the hydrated layer. In phosphate glass, the 

destruction of the glass network is mainly due to the attack of H2O and H
+
 on P−O−P bond 

between the [PO4] units in the hydration layer, which will cause chain-like structures in 

different lengths consisting of Q
1
 and Q

2
 units to break away from the glass network and 

enter the water solution (Phosphorus-oxygen tetrahedrons are usually classified by Q
i
, “i” 

represents the number of bridging oxygen in [PO4] unit). When the glass is hydrolyzed at a 

constant rate, the expansion rate of the hydration layer reaches a dynamic balance with the 

breaking rate of the P−O−P bond [23]. 

There are many factors affecting the hydrolysis of phosphate glass. In the research on 

the stage of water molecules diffusing and ion exchanging, it was found that mixed alkali 

effect can effectively reduce the rate of water molecules diffusing and ion exchanging in 

the hydration layer, and thereby obtain the effect of inhibiting the glass hydrolysis. It 

indicates that the difficulty degree of ion migration can significantly affect the water 

resistance of glass [24, 25]. In the hydrolysis process of glass network, compared with 

M−O−P bonds the P−O−P bonds are vulnerable to attack by water molecules, therefore 

cross-linked network structure formed by Q
3 

units has the worst water resistance. It is 

generally recognized that, when the content of Q
1
 is increased, the corresponding content 

of Q
2
 will decrease, which leads to a decrease in the average chain length of chain-like 

structures. The longer the average length of chain-like structure, the more vulnerable it is 

to the attack by water molecules [26, 27]. In the glass networks, the field strength of the 

modifier ion affects the topology of the network forming atoms, thus affecting the 
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dissolution kinetics. The rigidity of the glass network can be enhanced by changing the 

network modifier. The more rigid glass structure will give the glass network greater 

chemical durability [28]. Therefore, in order to further explore the reason why the mass 

loss per unit surface area of glass positively deviates from linearity, ionic migration 

characteristics, changes in structural units and the effect of changes in network 

modification on structure should be studied during the process of gradual replacementof 

Y2O3 by La2O3. 

 

Fig. 1. Mass loss per unit surface area of xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 glasses 

3.2 Effect of mixed La2O3-Y2O3 doping on the ion migration  

Although the research on MME has made some progress and established a series of 

theoretical models to describe the process of ion migration in glass, such as strong and 

weak electrolyte models, diffusion controlled relaxation model, jump diffusion model and 

dynamic structure model. However, the mechanism of MME and ion diffusion in glass 
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have not been determined so far [29-31]. The dc conductivity of glass can be used to 

characterize the difficulty degree of ion migration in glass. Therefore, the dc conductivity 

of mixed La-Y doped phosphate glass was studied. 

Fig. 2 shows the conductivity spectra of 16Y2O3-8Al2O3-10Na2O-66P2O5 glass at 

different temperature. In the low frequency region, the conductivity of glass is independent 

of frequency and does not change with the increase of frequency, which reflect the dc 

conductivity of the glass. When the frequency exceeds a characteristic frequency, the 

conductivity will increase with the increases of the frequency. In this frequency range, it is 

hard for ionic charge carriers and network atoms to overcome the percolation barrier, so 

most of them forward-backward hopping [32-35]. 

 

Fig. 2. Conductivity spectra of 16Y2O3-8Al2O3-10Na2O-66P2O5 glass at different temperature 
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Fig. 3. The relationship between temperature and dc conductivity of 

xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 glasses 

The relationship between temperature and dc conductivity of xLa2O3-(16-x)Y2O3-8 

Al2O3-10Na2O-66P2O5 glasses is shown in Fig. 3. For the same glass sample, the higher 

the temperature is, the higher the dc conductivity of glass is. At the same temperature, with 

La2O3 gradually replaces Y2O3, the dc conductivity gradually decreases. It is obvious that 

Dc conductivity curves have a linear shape with the replacing content of La2O3. In order to 

research the effect of structural changes on dc conductivity, the density was measured and 

molar volume of glass was calculated. Fig. 4 shows density and molar volume, with the 

gradual replacement of Y2O3 by La2O3, density increases linearly and molar volume 

decreases linearly as the replacing content of La2O3 increase. Oxygen density is used to 

evaluate the compactness of the glass network. Oxygen density is shown in Fig. 5, with 

La2O3 gradually replaces Y2O3, the oxygen density gradually increases indicating that the 
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glass network become contracted [34, 35]. It is precisely the gradual contraction of the 

glass network that causes the molar volume decreases linearly. When substituting La2O3 

for Y2O3, the atomic weight of La (138.91 g/mol) is higher than the atomic weight of Y 

(88.91 g/mol) and the glass network is gradually contracts during this substitution process, 

so the density of the glass increases linearly. 

It suggests that the glass network gradually contracts and free volume gradually 

decreases with the increase of La2O3 doping amount. It is precisely the contraction of free 

volume that inhibits the migration of alkali ions [36, 37]. 

   

Fig. 4. The density and molar volume of xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 glasses 
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Fig. 5. The oxygen densityof xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 glasses 

From the conclusion of dc conductivity, with the gradual replacement of Y2O3 by 

La2O3, the migration of alkali ions in glass becomes more difficult and the dc conductivity 

gradually decreases. In this study, if the water resistance of glass is primarily related to the 

migration of alkali ions, the water resistance of glass will be enhanced with the increasing 

of the La2O3 content. In fact, the mass loss per unit surface area of glass varies nonlinearly 

and exhibits a positive deviation from linearity. It is clear that ion migration is not the 

dominant factor affecting the water resistance of glass in this experiment.  

3.3 Effect of mixed La2O3-Y2O3 doping on glass structure 

The glass transition temperature has a close relation with the glass structure [38]. 

Fig.6 shows DSC curves of xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 glasses. The 

tangent method has been used to determine the Tg, the result is shown in Fig. 7. As La2O3 

gradually replaces Y2O3, the Tg of glass decreases from 537 ℃ to 524 ℃ and has a linear 



14 

 

relation with the content of La2O3.  

The field strength of Y
3+ 

(3.70 Å
-2

) is higher than that of La
3+ 

(2.81 Å
-2

). With the low 

field strength ions gradually replace the high field strength ions, the glass transition 

temperature decreases gradually. Generally, the higher the Tg is, the more rigid glass 

structure will be [39, 40]. In present research system, if only from the perspective of 

network modifier, with the replacing content of La2O3 increasing, water resistance of glass 

will decrease linearly. However, the fact that the water resistance of glass varies 

nonlinearly, it means that other factors, rather than network modifier mainly affect the 

water resistance of glass. Thereby, in order to research the effect of structural unit changes 

on water resistance of glass, FT-IR spectra of studied glasses were recorded and 

deconvoluted. 

 

Fig. 6. DSC curves of xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 glasses. Tg (glass transition temperature), TP1 (the first 

peak crystallization temperature), TP2 (the second peak crystallization temperature) 
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Fig. 7. Tg of xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 glasses 

Pure P2O5 glass is composed of [PO4] tetrahedrons. In each [PO4] tetrahedron there 

are three bridging oxygens connecting with adjacent tetrahedrons and another oxygen atom 

forming P=O with a phosphorus atom. Therefore the P2O5 glass has a three-dimensional 

layered network structure. In pure phosphate glass O/P = 2.5, and the cross-linked network 

is formed by Q
3
 units. With the increasing of the doping content of metallic oxide, the 

number of non-bridging oxygen is increased, when 2.5<O/P<3, cross-linked network 

structure formed by Q
3
 units is partially converted into chain-like structure which formed 

by Q
2
 units; At O/P =3, metaphosphate glass is formed, and the glass network is entirely 

based on chain and ring structures. These chain and ring structures are connected by ionic 

bonds between metal cations and non-bridging oxygens; If the number of non-bridging 

oxygens continues increasing, when 3<O/P<3.5, part of Q
2 

units will be converted into Q
1
 

units, which curtails the average chain length of chain-like structures formed by Q
2
 units; 
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Pyrophosphate glass will be formed when O/P = 3.5, the glass network is mainly composed 

of phosphate dimers and each phosphate dimer consists of two Q
1
 units linked by a 

bridging oxygen. When O/P>3.5, isolated Q
0
 units appear in the glass structure, and its 

content increases as the number of non-bridged oxygen increases [41]. 

In present research system, the ratio of O/P is calculated to be 3.12. According to the 

structure theory of phosphate glass, there are almost no Q
3 

units in glass structure which is 

mainly composed of Q
2 

and Q
1
 units. When the O/P>3, the mutual conversion of 

2Q
1
Q

0
+Q

2
 exists in the structural units of glass [42]. Due to the mutual conversion 

between structural units, a small amount of Q
0
 units will be formed, and Q

0 
is an isolated 

unit which does not affect the length of the chain-like structure. So in this paper, lays 

emphasis on the research of the changes of the relative contents of Q
2
 and Q

1
 units by 

infrared spectroscopy. FTIR spectra of xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 (x=0, 

4, 8, 12, 16 mol%) glasses are shown in Fig. 8. In order to quantify the changes of the glass 

structural units, FT-IR spectra are deconvoluted in the range of 400−1600cm
-1

. For 

example, Fig. 9 shows deconvoluted FT-IR spectrum of 16La2O3-8Al2O3-10Na2O-66P2O5 

glass. 
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Fig. 8. FTIR spectra of xLa2O3-(16-x)Y2O3-8Al2O3-10 Na2O-66P2O5 glasses 

 
Fig. 9. Deconvoluted FT-IR spectrum of 16La2O3-8Al2O3-10Na2O-66P2O5 glass 

The assignments of vibrational bands are shown in Table 2. The vibrational band in 

the range of 473 to 493 cm
-1 

can be attributed to harmonics of bending vibrations of 
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O−P−O and Al–O stretching vibrations [43-45]. The absorption band at 537−557 cm
-1 

is 

due to harmonics of bending vibrations of O=P−O linkages and Al−O stretching vibrations 

[43-46]. The vibrational band centered at 720−730 cm
-1 

is due to symmetric stretching 

vibrations of P−O−P in the Q
2
 tetrahedron [47, 48]. The band appeared at 777−783 cm

-1
 is 

assigned to symmetric stretching vibrations of the bridging oxygen of P−O−P linkages of 

(PO3)
2- 

groups in Q
1
 structural units [49, 50]. The band at 882−896 cm

-1 
is assigned to 

asymmetric stretching vibrations of P−O−P in Q
2
 units linked with linear metaphosphate 

chain [45-47]. The peak around 925−933 cm
-1

 can be considered as asymmetric stretching 

vibrations of P–O–P in Q
2
 units linked with large metaphosphate rings [46-48]. The band 

around 1001−1013 cm
-1 

is ascribed to symmetric stretching vibrations of P−O
–
 bonds of 

(PO4)
3− 

groups in Q
0
 units [45, 49, 50]. The assignment of the band between 1091 and 1113 

cm
-1 

is associated to asymmetric stretching mode of chain-terminating Q
1
 groups [45, 51]. 

The band at 1174−1191 cm
-1 

is related to symmetric stretching vibrations of non-bridging 

oxygens of O−P−O linkages of (PO2)
 − groups in Q

2
 units [45, 49]. The wavenumber of the 

band at 1248−1257 cm
-1 

is ascribed to asymmetric stretching vibrations of non-bridging 

oxygens of O−P−O linkages of (PO2)
− 

groups in Q
2
 units [49, 50]. The band at 1300−1329 

cm
-1 

is attributed to P=O asymmetric stretching mode of the phosphate tetrahedra [52]. The 

bands at 1372−1411 cm
-1 

is attributed to P=O stretching mode of the phosphate tetrahedra 

[52]. 
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Table 2 Band assignment in the 400-1600 cm
-1

 range for studied phosphate glasses 

Band frequency (cm
-1

) Assignment 

473−493 
Harmonics of bending vibrations of O−P−O and Al–O stretching 

vibrations [43-45] 

537−557 
Harmonics of bending vibrations of O=P−O linkages and Al–O 

stretching vibrations [43-46] 

720−730 Symmetric stretching vibrations of P−O−P in the Q
2
 tetrahedra [47, 48] 

777−783 
Symmetric stretching vibrations of the bridging oxygens of P–O–P 

linkages of (PO3)
2- 

groups in Q
1
 structural units [49, 50] 

882−896 
Asymmetric stretching vibrations of P−O−P in Q

2
 units linked with 

linear metaphosphate chain [45-47] 

925−933 
Asymmetric stretching vibrations of P−O−P in Q

2
 units linked with large 

metaphosphate rings [46-48] 

1001−1013 
Symmetric stretching vibrations of P−O

–
 bonds of (PO4)

3−
 groups in Q

0
 

units [45, 49, 50] 

1091−1113 Asymmetric stretching mode of chain-terminating Q
1
 groups [45, 51] 

1174−1191 
Symmetric stretching vibrations of non-bridging oxygens of O−P−O 

linkages of (PO2)
−
 groups in Q

2
 units [45, 49] 

1248−1257 
Asymmetric stretching vibrations of non-bridging oxygens of O−P−O 

linkages of (PO2)
− 

groups in Q
2
 units [49, 50] 

1300−1329 P=O asymmetric stretching mode of the phosphate tetrahedra [52] 

1372−1411 P=O stretching mode of the phosphate tetrahedra [52] 

 

Deconvolution parameters of FT-IR spectra for studied glasses are listed in Table 3. The 

Q
(2) 

is used to quantify the changes of relative contents of Q
2
 and Q

1 
units, which represents the 

content of Q
2
 structural units as a percentage of the total contents of Q

1
 and Q

2 
in glass. The 

calculation method of Q
(2) 

and Q
(1) 

are as follows [53]: 
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where A2 is the sum of the absorption band areas related to the Q
2
 structural units (bands 

center at 720−730 cm
-1

, 882−896 cm
-1

, 925−933 cm
-1

, 1174−1191 cm
-1

 and 1248−1257 

cm
-1

), A1 is the sum of the absorption band areas related to the Q
1
 structural units (bands 

center at 777−783 cm
-1 and 1091−1113 cm

-1
). 

Table 3 Deconvolution parameters of FT-IR spectra (C: band center (cm
-1

), A: relative area (%)) 

X=0 X=4 X=8 X=12 X=16 

C A C A C A C A C A 

493 10.28 475 4.46 476 4.97 475 5.37 473 3.45 

557 5.16 540 8.22 541 8.47 537 8.82 538 8.23 

730 2.18 725 2.60 720 2.03 721 1.83 722 2.37 

783 1.52 783 2.60 778 3.00 777 2.06 780 2.75 

896 4.90 893 5.34 890 5.38 891 2.98 882 5.21 

932 7.49 933 11.39 931 10.17 927 12.48 925 10.36 

1009 14.86 1013 11.02 1005 10.50 1009 10.48 1001 10.95 

1113 17.76 1100 15.97 1093 16.18 1097 16.49 1091 17.57 

1191 8.29 1183 10.23 1176 10.69 1180 11.01 1174 9.55 

1251 6.99 1250 7.43 1257 14.17 1251 10.85 1248 11.41 

1300 10.11 1305 8.74 1329 7.39 1312 10.13 1312 7.26 

1372 10.46 1374 12.00 1411 7.04 1399 7.50 1382 10.88 

Q
(1)

 and Q
(2) 

are plotted as a function of [La2O3]/([Y2O3]+[La2O3]) in Fig. 10. It can be 

seen from the figure that as La2O3 gradually replaces Y2O3, the value of Q
(2)

 increases 

firstly and then decreases, varies nonlinearly and has a positive deviation from linearity, 
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and Q
(2)

 reaches maximum when the molar ratio of [La2O3]/([La2O3]+[Y2O3]) equals to 0.5. 

Correspondingly, the value of Q
(1)

 decreases firstly and then increases, reaches minimum 

when the molar ratio of [La2O3]/([La2O3]+[Y2O3]) is 0.5. Accordingly, The non-linear 

variation of the relative contents of Q
2 

and Q
1
 units causes the average length of the 

chain-like structure increases firstly and then decreases, and has a positive deviation from 

the linear relationship, which consequently leads the mass loss per unit surface area of 

glass in the aqueous solution to increase firstly and then decrease, reach maximum when 

the molar ratio of [La2O3]/([La2O3]+[Y2O3]) equals to 0.5. The conclusions above indicate 

that the mixed rare earth doping reduces water resistance by affecting the structure of glass. 

 

Fig. 10. Q
(1)

 and Q
(2) 

are plotted as a function of [La2O3]/([Y2O3]+[La2O3]) 

4. Conclusions 

In xLa2O3-(16-x)Y2O3-8Al2O3-10Na2O-66P2O5 (x=0, 4, 8, 12, 16 mol%) glasses, with 

the gradual replacement of Y2O3 by La2O3, the glass density gradually increases and the 
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molar volume gradually decreases. The decrease of molar volume causes that the free 

volume inside the glass gradually decreases, eventually leading to a decrease in the dc 

conductivity of the glass. In terms of glass structure, Tg decreases with an increase in the 

replacing content of La2O3. The mixed rare earth doping causes a nonlinear variation of Q
(2)

 

value in the glass structure. It is precisely the Q
(2)

 value exhibits a nonlinear variation that 

causes the mass loss per unit surface area of the glass in the aqueous solution to vary 

nonlinearly and has a positive deviation from the linear relationship.The results show that 

the mixed rare earth doping weakens the water resistance of the studied glass. The results 

can provide some useful information for tailoring the chemical durability of glass by mixed 

rare earth doping. 
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