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Abstract 

The study of fluid flow characteristics in collapsible elastic tubes is useful to understand 

biofluid mechanics encountered in the human body. The research work presented here is 

aimed to thoroughly investigate the influence of both Newtonian and/or non-Newtonian fluid 

(low and high shear thinning) during steady flow through an elastic tube on various tube 

deformations, which enables understanding of the interaction between wall motion, fluid flow 

and intestinal transmembrane mass transfer as a crucial contribution to a mechanistic 

understanding of bio-accessibility/ bio-availability. It is observed that for a given steady 

volume flow rate, the tube is buckled from an elliptical shape to a line or area contacted two 

lobes as the critical external pressure is increased. The downstream transmural pressure is 

found to get more negative than that at the upstream as the outlet pressure decreased due to 

stronger tube collapse resulting in a reduced cross-sectional area. The experimental results 

depict that the tube cross-sectional area decreased by only about factor of one for PEG 

(Polyethylene Glycol) and about factor of six for both CMC (Carboxymethyl Cellulose) and 

PAA (Polyacrylamide) from the undeformed one under an applied external pressure of 105 

mbar. The corresponding maximum velocity increased by a factor of two during steady flow 

of shear-thinning fluids. The shear-thinning behavior of both CMC and PAA solutions are 

clearly observed at a constant flow rate of 17 ml/s as the tube cross-sectional area decreased 

due to increase in compressive transmural pressure. In addition, the viscosity of PAA is 

drastically decreased due to its high shear-thinning behavior than that of the CMC under 

same applied external pressure.   

Introduction 

The investigation of fluid flow characteristics in elastic inflatable and collapsible tubes is 

important to bio-fluid mechanics encountered in the human body and other applications; for 

instance, transport of food and liquids in human throat (pharynx), tube (esophagus) 

connecting the throat and stomach, and intestines; blood flow through the veins capillaries 

and arteries (Wyk et al., 2015; Cherry and Eaton, 2013); airflow in the pulmonary airways. 

The knowledge of the mechanisms of pharyngeal, esophageal and intestinal transport of food 

and liquids is very useful for the treatment of patients with the malfunctioning of these 

transport processes. The physiology of these applications in the human body is very complex 

and is not fully understood. Therefore, the presented research work is motivated to 

investigate in model experiments the flow behavior of Newtonian and non-Newtonian fluids 

in a collapsible elastic tube under the influence of expansive and compressive transmural 

(internal minus external) pressures using Starling Resistor.  
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Fluid flow in elastic tubes is a large displacement fluid-structure interaction problem 

encountered in biofluid mechanics (Meng et al., 2005), peristaltic pumping (Shapiro et al., 

1969, Nahar et al., 2012b) and other applications. Several works on the study of flows in 

collapsible tubes and channels have been well documented based on the intended biological 

applications (Grotberg and Jensen, 2004; Kamm and Pedley, 1989; Pedley, 1980; Rana and 

Murthy, 2016; Shapiro, 1977a,b). Biofluid mechanics is important to the flow of fluids 

through vessels in the human body, as numerous fluid conveying vessels are elastic and 

subject to buckle non-axisymmetrically when the transmural pressure falls below a critical 

value (Heil, 1997). The interactions between the internal flow and wall deformation of these 

flexible elastic vessels determine the biological function or dysfunction. The examples of 

such vessels are the veins above the level of the heart, the airways during forced expiration, 

the pulmonary capillaries and the blood vessels in the heart muscle during systole (Conrad, 

1969; Pedley, 1980). Holt (1941) investigated how the collapse of veins might affect 

peripheral venous pressure. He set up a model where water flowed through a rigid pipe to a 

collapsible segment of thin-walled rubber tubing and out through a more rigid pipe. The exact 

flow and wave propagation in distended tubes is well understood (Lighthill, 1975), whereas 

the flow structure in collapsed vessels is not fully understood. The problem of flow in 

collapsible tubes has been extensively studied experimentally by many authors (e.g. (Bertram 

et al., 1990; Conrad, 1969; Elad et al., 1992; Gavriely et al., 1989). The Starling Resistor is a 

classical bench-top experimental set up which is widely used (Grotberg and Jensen, 2004; 

Hazel and Heil, 2003; Heil, 1997; Holt, 1941; Katz et al., 1969; Knowlton and Starling, 1912; 

Lyon et al., 1980; Shapiro, 1977b) to investigate flow through elastic tubes relevant to many 

applications. This involves a pressure chamber that encloses a finite-length elastic tube 

mounted between two rigid tubes and fluid is pumped through the tube at a steady volume 

flow rate. The tube’s large deformation during the buckling is found to lead to a strong 

interaction between the fluid and solid mechanics which is described by non-linear shell 

theory (Heil, 1997). Steady flow through a collapsible tube is found to be a multiple-valued 

function of the pressure drop across it, named as flow-controlled nonlinear resistance, 

(QNLR) (Conrad, 1969), where systematic experimental pressure-flow curves for both steady 

and unsteady flow conditions are presented. The significant system parameter for changes in 

tube cross-section is transmural pressure, which in turn affect the flow geometry. The typical 

fluid-structure interaction problem involving the flow passing a collapsible tube has been 

studied both experimentally and theoretically, and represented with a relationship between 

transmural pressure and cross-sectional area and the factors which influence it (Bertram, 

1986, 1987; Elad et al., 1987; Flaherty et al., 1972; Jensen and Pedley, 1989; Katz et al., 

1969; Scroggs et al., 2004; Shapiro, 1977b; Zhu and Wang, 2003, Neelamegam and Shankar, 

2015, Raj et al. 2018, Amaouche and Labbio, 2016). On the other hand, Lyon et al. (1980) 

proposed the hypothesis for the pressure-flow relationships by the waterfall model studied in 

a Starling Resistor described, only for flows with lower Reynolds numbers. Whereas, the 

minimum Reynolds number for self-excited oscillation is precisely determined 

experimentally by Bertram and Tscherry (2006). There are few theoretical investigations of 

both the flow and the wall mechanics in three-dimensional collapsible tubes (Heil, 1997, 

1998; Heil and Pedley, 1996; Marzo et al., 2005; Roser and Peskin, 2001, Anand et al. 2019). 

In addition, the wall deformation and fluid flow have been modeled using geometrically 

nonlinear shell theory and lubrication theory respectively (Heil and Pedley, 1996; Rosmery et 

al., 1977; Unhale et al., 2005; Whittaker et al., 2010). If the transmural pressure acting on the 

tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent 

large deformations lead to a strong interaction between the fluid and solid mechanics (Hazel 

and Heil, 2003). The extensive experimental and theoretical contributions (Ghazy et al., 

2018; Kozlovsky et al., 2014, Nahar et al., 2013) made by several authors mentioned above 
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are of great value for the scientific community as well in the many biomedical and 

biomechanical applications. These enable a better understanding of the laminar and turbulent 

flows of Newtonian fluids through collapsible tubes and the solid mechanics of the tube. In 

contrast, there is little literature (Dodson et al., 1974; Nahar et al., 2012a) on the experimental 

flow characteristics of non-Newtonian fluids through elastic tubes under the influence of 

different transmural pressures involving the interaction of the deformed tube wall with the 

fluids. In addition, there is also little information available on the unsteady-periodic flow or 

peristaltic-squeezing of elastic tubes for the transport of such fluids. This investigation is 

important as the determination of time scales involved in the transport of non-Newtonian 

fluids is relevant to the transport of food in the human gastrointestinal tract and other 

applications. The investigation methods for the shape of the deformed elastic tube and the 

corresponding flow field are also not yet well established. The local tube cross-sectional area 

has been measured by an electrical impedance technique (Kececioglu et al., 1981) or 

ultrasound imaging (Bertram and Ribreau, 1989) or remote sensing technique (Elad et al., 

1989). The cross-section is assumed to remain the same throughout the tube as the same 

amount of liquid is flowing with same mean velocity through each cross-section at any given 

time (Holt, 1959). In contrast, different cross-section of vessel or rubber tube showing 

changes in shape during oscillations of pressure is also observed (Brooks and Luckhardt, 

1916). Kresch and Noordergraaf (1972) has proposed a mathematical analysis for the cross-

sectional shape of a flexible tube as its internal pressure varies. Quantitative results are 

presented in terms of the physical parameters of the tube, such as wall thickness and Young’s 

modulus. In the present study, the different degree of deformed tube shapes are aimed to 

quantify by means of computer tomography method where a grid line pattern is constructed 

on the tube surface and several images are taken at different angles around the tube radius.  

Experiment 

The study of flow behavior in a collapsible elastic tube includes the investigation of the fluid-

structure interaction involving the flow passing through it (Zhu and Wang, 2003). There is 

very few published literature (Dodson et al., 1974; Nahar et al., 2012a) on the experimental 

flow characteristics of non-Newtonian fluids in collapsed elastic tubes under the influence of 

compressive external pressures. Therefore, aqueous solutions of one Newtonian and two non-

Newtonian shear-thinning fluids have been used. The solutions have been characterized by 

rheological measurements. The collapsed elastic tube shapes (under the influence of 

transmural pressures) are determined using computer tomography (CT) based image analysis 

and the corresponding fluid flow velocity profiles are monitored by UVP technique. These 

CT and UVP methods are described in detail elsewhere (Nahar et al., 2012a). 

PEG aqueous solution as a Newtonian fluid 

Polyethylene Glycol (PEG, MW ≈ 3.5 × 104 g/mol; Clariant, Switzerland) aqueous solution 

(19.67 % w/w) is used as a Newtonian fluid to investigate the steady flow behavior through 

collapsible elastic tubes. The solution is prepared using a rotor-stator device (Polytron 

PT6000, Kinematica AG) at a constant temperature, T = 22 oC. 

CMC and PAA aqueous solutions as non-Newtonian fluids 

Carboxymethyl-cellulose (CMC; Blanose CMC 7MF, IMCD Switzerland AG) at 1.5 % w/w 

(with 0.1 M NaCl; MW = 2.5 × 105 g/mol) and Polyacrylamide (PAA; SNF FLOERGER, 

France) at 0.01 % w/w (MW ≈ 14 × 106 g/mol) aqueous solutions are used as non-Newtonian 
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shear-thinning fluids. CMC and PAA aqueous solutions are found to be less and highly shear-

thinning respectively with about the same value of zero shear viscosity. All those aqueous 

solutions are again prepared using a rotor-stator device at T = 22 oC. 

Elastic tube 

A silicone elastic tube (Lindemann GmbH, Germany) with 20 mm inner diameter and 1 mm 

thickness is used in the model flow experiments. The elastic modulus of the tube is measured 

by the stress-strain curve using Zwick device (Zwick Roell Z010, Zwick GmbH, Germany). 

It was seen that the elastic modulus (stress to strain ratio) of the tube decreased with increase 

in strain. Since tube deformation in the present study is expected to be low, therefore, the 

elastic modulus of the tube (E = 4.7MPa) was taken by linear fit of the stress-strain curve at 

the lower deformation region. 

Starling Resistor 

Several authors e.g. (Lyon et al., 1980) used the Starling Resistor setup for Newtonian fluid 

flow investigations in elastic tubes relevant to many applications. Figure-1 shows the present 

experimental setup consisting of a 300 mm inner diameter, 5.66 mm thick and 620 mm long 

cylindrical plexiglass (PG) pressure chamber fixed on each side a metal flange with an 

aluminum pipe. A silicone elastic tube (320 mm in length, 20 mm inner diameter, 1 mm 

thickness), is mounted between the two aluminum pipes with a slight axial extension to avoid 

the longitudinal bending especially when the tube inflates. The different states of the tube 

geometry are achieved by increasing the hydrostatic head connected with the water-filled PG 

pressure chamber. The aluminum pipe on the right side is connected to a gear pump (MCP-Z, 

ISMATEC) and a PVC tank, which contains the investigated fluids for flow through the 

collapsible elastic tube. All the consequent measurements are carried out at 22 oC in this 

study. 

 

Figure-1: Experimental set up for flow behavior study of different fluids (Newtonian and non-Newtonian) 

through a collapsible elastic tube using Starling Resistor.  
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Results and Discussion 

Rheology of fluids 

The rheological properties such as shear rate dependent viscosities and frequency-dependent 

dynamic storage and loss moduli are measured using an Anton Paar Physica (MCR 300) 

rheometer with concentric cylinder geometry (CC27, shear gap width = 1.13 mm) to confirm 

the concentration for similar zero shear viscosity and the corresponding inelastic behavior of 

the investigated fluids. The rheological measurements are carried out at T = 22 oC, which is 

also maintained in the flow loop used during the experiment. 

Shear rate dependent viscosity 

The measured shear rate dependent viscosities of the investigated fluids (PEG, CMC and 

PAA aqueous solutions at 19.67, 1.5 and 0.01 % w/w respectively) showed about the similar 

value of shear viscosity (η0 ≈ 0.143 Pa.s) at the shear rate of 0.11/s as in Figure-2. Both non-

Newtonian (1.5 % CMC and 0.01 % PAA) aqueous solutions represented the shear thinning 

behavior, while one being highly shear-thinning (0.01 % PAA) than the other (1.5 % CMC) 

at the same applied shear rate ranges. No significant variation in the solution properties and 

the temperature is observed while passing through the flow loop used in the experiment (the 

duration was ≈ 30min to 1h). The shear rate dependent viscosity of the investigated solution 

is measured again after performing the flow experiment and no change in the flow curve is 

attained.  

 

 

 

 

 

 

 

Figure-2: Measured shear rate dependent viscosities of aqueous fluids of  PEG (19.67%), CMC (1.5%) and  

PAA (0.01%) representing the similar value of shear viscosity at a shear rate of 0.01s-1. 

Inelastic behavior of the shear-thinning fluids  

The two shear-thinning aqueous solutions (1.5 % CMC and 0.01 % PAA) are further 

investigated to measure the viscous modulus, G'' and elastic modulus, G' under linear 

viscoelastic conditions of the oscillatory shear. G'' is seen to be an order of magnitude higher 

than G' for 1.5 % CMC (Figure-3a). Whereas 0.01 % PAA (Figure-3b) shows a slightly 

higher value of G'' than G', indicating their inelastic shear thinning behavior. In contrast, the 

aqueous solution of 2.5 % CMC depicts dominating elastic properties with increasing 

frequency (Figure-3a), which is typical viscoelastic behavior. The inelastic shear-thinning 
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(a) (b) 

fluids are chosen in the present study to avoid the complex behavior under imposed flow 

conditions.  

 

 

 

Figure-3: Frequency dependent elastic (G') and loss (G'') moduli using oscillatory shear measurements with a 

constant deformation of 5 % at 22 oC for (a) CMC and (b) PAA aqueous solutions. 

Tube shapes under various Transmural pressures (Ptm) at a constant flow rate (𝑄)̇  

Experimentally adjusted hydrostatic head connected with the water-filled PG pressure 

chamber (as in Figure-1) resulted to various states of the tube shapes; uncollapsed (at Pe = 18 

mbar or Ptm(down) = 79 mbar) and collapsed (at Pe = 105 mbar or Ptm(down) = - 18 mbar), while 

flowing of Newtonian (PEG) and non-Newtonian (CMC & PAA) aqueous solution through 

it. The investigated length for tube shape (both uncollapsed & collapsed) is chosen to be 190 

mm from the rigid tube connection from the outlet. The collapsed tube shape is representing 

the region of strongest collapse near the downstream end as the fluid pressure decreases 

continuously in the stream-wise direction leading to a higher compression of the tube wall. 

Figure-4 represents the influence of flowing fluid properties on the variation in deformation 

along the tube length under different applied external pressures. The boundary lines around 

the tube are drawn for clear visualization of tube deformation depending on the fluid flowing 

through it. The elastic tube is seen to be less collapsed for the Newtonian (19.67 % PEG) 

fluid, whereas it is more collapsed for inelastic shear-thinning fluids (1.5 % CMC and 0.01 % 

PAA) exhibiting the same shear viscosity at a shear rate of 0.1 s−1 and under same imposed 

external pressures. The reason is that the internal pressure is minimized by increasing the 

fluid velocity during tube collapse by external pressure for the shear-thinning fluids. 

Figure-5 shows the variation in tube geometry and the corresponding velocity profiles at 

constant length (X = 7 cm from the rigid tube connection at the outlet) and �̇� = 17 ml/s under 

various downstream transmural pressures Ptm(down). The inserted tube geometries were 

analyzed under different applied Pe while a steady flow of 1.5 % CMC aqueous solution 

through the tube. The detail description of tube shape analysis (CT-method) and flow profile 

measurement (UVP) are given elsewhere (Nahar et al., 2012a). The tube geometries were 

also assumed to attain the same shapes with slight variation in the cross-sectional area during 

steady flow of 19.67 % PEG or 0.01 % PAA solution in the tube. It can be seen that the tube 

shape changed from circular to two-lobed shape, and the corresponding velocity profiles 
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transformed from parabolic to bimodal for both Newtonian and non-Newtonian fluids. The 

elastic tube exhibited a circular shape for positive Ptm(down) with a parabolic velocity profile, 

where the more shear-thinning fluid (0.01 % PAA) showed flattened profile at the tube center 

as expected. The Ptm(down) was found to be more positive for Newtonian fluid than that of the 

shear-thinning fluids, since the internal pressure Po was much higher than the applied external 

pressure Pe. As long as the Ptm(down) became sufficiently negative, the elastic tube started to 

buckle from an elliptical to a two-lobed shape. 

 

A reduction in the tube cross-sectional area can lead to an increase in both the near-wall and 

average shear rates during a steady flow of both Newtonian and shear-thinning fluids. The 

average shear rate can be calculated using the obtained average velocity (�̇�/A) in the tube 

where the cross-sectional area A was estimated by the image analysis. Since the maximum 

shear rate was estimated near the tube wall, therefore it was calculated with the 

corresponding velocity gradient at that regime. The approximated average and near-wall 

shear rates in the deformed elastic tube with the different cross-sectional area during flow of 

Newtonian and non-Newtonian fluids are summarized in Table-1. 

 

 

Figure-4: Influence of flowing fluid properties through the tube (with an inner diameter of 2.0 cm in the circular 

case and the wall thickness of 1.0 mm) on the variation in deformation along the tube length (front view) under 

different applied external pressures at �̇�= 17 ml/s. 

 

2.2 cm 
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Figure-5: Influence of various applied transmural pressures on the change in tube shapes and the corresponding 

velocity profiles in the tube during a steady volume flow rate (�̇� = 17 ml/s) of PEG, CMC and PAA aqueous 

solutions. 

 

Table-1: Comparison of the experimental and theoretical values of rheological properties for the investigated 

fluids (PEG, CMC, PAA) under different geometries of the collapsed elastic tube and applied pressures Pe. vavg 

is the average velocity in the tube, and req and Re are the equivalent radius and Reynolds number respectively. 

γ0,avg and η0avg are the average shear rate and viscosity in the tube respectively, γ0,local and η0local are the average 

shear rate and viscosity near the tube wall respectively. 

P
E

G
 

Applied 

Pe mbar 

A mm2  

(CT method) 

vavg  

m/s 

req 

m 

γ0,avg  

s-1 

η0avg  

Pa.s 

Re γ0,wall  

s-1 

ηwall  

Pa.s 

18 342 0.049 0.0104 19.03 0.143 7.25 10.52 0.143 

90 329 0.051 0.0102 20.13 0.143 7.38 - - 

100 326 0.052 0.0100 20.42 0.143 7.42 - - 

105 266 0.063 0.0092 27.64 0.143 8.74 25.5 0.143 

110 235 0.072 0.0086 33.35 0.143 8.21 - - 

C
M

C
 

18 342 0.050 0.0104 12.49 0.135 7.7 10.66 0.143 

90 285 0.059 0.0095 16.45 0.134 8.5 - - 

100 114 0.149 0.0060 64.73 0.116 15.5 - - 

105 52 0.327 0.0040 211.11 0.089 29.6 35.8 0.134 

110 32 0.538 0.0032 445.25 0.075 45.3 - - 

P
A

A
 

18 342 0.049 0.0104 11.69 0.0098 106 13.92 0.0095 

90 247 0.069 0.0088 19.06 0.0074 165 - - 

100 82 0.21 0.0051 99.81 0.0028 748 - - 

105 49 0.34 0.0039 211.75 0.0018 1487 57.4 0.0041 

110 22 0.77 0.0026 718.45 0.0009 4540 - - 

Channel (-) 

F
lo

w
 v

el
o

ci
ty

, 
m

/s
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Effect of external pressure on variation in pressure drop with volume flow rate 

The flow behavior of fluids in elastic tubes depends on the micro-structural properties of the 

fluids, solid mechanics of the tube, and the interaction between the deformation of the tube 

and fluids. The applied external pressure Pe should exceed a critical value to approach the 

different geometry of the tube shape (elliptical to line or area contacted two lobes). Figure-6a, 

6b, 6c are representing the pressure drop in the tube (∆P = Pi − Po) as a function of Pe and �̇� 

during a steady flow of the investigated fluids (PEG, CMC, PAA). It is seen that while 

flowing of Newtonian fluid (19.67 % PEG), ∆P at a given  �̇� does not change until it reaches 

a critical Pe when the transition of partial to complete tube collapse occurs with reduced tube 

cross-sectional area. The applied critical Pe region is about 105 to 120 mbar as seen in 

Figure-6a. The three distinct regions of applied critical Pe for the tube deformation are also 

clearly observed. The value of critical Pe depends on the balance of the fluid normal FN(P) 

and tube wall compression Ftube forces with the applied external force Fe(Pe), where the 

forces are almost at the equilibrium (FN + Ftube ≅ Fe(Pe)). It also shows that ∆P in the tube 

increases linearly with an increase in �̇� (schematic deformed tube shapes at Pe = 120 mbar 

for different �̇� and also at constant �̇�= 17 ml/s for various applied Pe are also given) below 

the critical Pe region due to higher frictional force, as �̇� is a function of Re rather than 

reduction in tube cross-sectional area A. On the other hand, ∆P is higher for lower �̇� at higher 

Pe since the tube cross-sectional area is reduced above the critical Pe region. Moreover, 

reduction in A is much higher at lower �̇� than that of the higher �̇� (𝐹𝑁ℎ𝑖𝑔ℎ𝑒𝑟 �̇�  ≥ 𝐹𝑁𝑙𝑜𝑤𝑒𝑟 �̇�) 

for a given Pe. Therefore, ∆P increases with increasing �̇� below critical Pe, and decreases 

above critical Pe until a given �̇� when the elastic tube is reopened to its original shape. The 

region of applied critical Pe (about 97 to 105 mbar) is again clearly observed in Figure-6b, 6c, 

where the transition of partial to complete tube collapse occurs, during steady flow of 1.5 % 

CMC and 0.01 % PAA solutions respectively. The same feature is also observed for various 

values of �̇� and the transition region for tube collapse is also found to be common for the 

range of �̇� used in the present work. It is also seen that ∆P in the tube increases slightly 

linearly with increase in Pe at a constant �̇� below the critical Pe region. In contrast, above the 

critical Pe region, ∆P increased drastically involving a small non-linearity for the same �̇� 

since the tube walls come closer reducing A at higher Pe and increased the fluid friction on 

the tube wall. In addition, the slope in the upper critical Pe region is found to be about 48 

times higher than that at the lower critical Pe region. Since ∆P in a pipe is a nonlinear 

function of the cross-sectional area (according to Darcy-Weisbach equation: ∆P = fLρv2/2D 

(Green and Perry, 2008), where f is the friction factor, D = √4𝐴/𝜋  is the diameter of tube of 

length L and v is the average velocity of fluid of density ρ), the nonlinearity present in the 

upper critical Pe region can, therefore, be due to reduction in tube A. Figure-6b shows that 

∆P(= Pi − Po) increases with increase in �̇� of CMC aqueous solution up to critical Pe due to 

increasing of velocity and corresponding friction force in uncollapsed tube. When the applied 

Pe is further increased from the critical value so that the transmural pressure difference 

becomes more negative, then the collapsed tube walls come closer reducing in A and ∆P is 

increased at a given �̇�. On the other hand, as �̇� is further increased, internal pressure is 

gradually increased and the tube recovered its original shape at higher �̇� thereby decreasing 

∆P due to increase of A and decreasing the corresponding average flow velocity in the tube. 

The situation is better explained by the observation of the tube geometry at the highest 

applied Pe in this experiment (the change in the observed tube shape at the corresponding 

flow rate is schematically drawn in Figure-6). It is seen that an area contacted collapsed tube 

shape is formed in the lower �̇� range with reduced A. As �̇� is slowly increased, the tube 
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opens up and increasing its A (due to deformability caused by tube elasticity), which results 

in a decrease of ∆P in the tube. 

 

Figure-6: Influence of applied external chamber pressure on the variation in pressure drop with a steady volume 

flow of (a) Newtonian (PEG) and (b) (c) non-Newtonian (CMC, PAA) aqueous solution in the elastic tube 

together with its schematic deformed shapes at constant �̇� = 17 ml/s for various applied Pe. 

On the other hand, for high shear-thinning fluid (PAA) the critical Pe is found to be closer to 

each other for all �̇� compared to the other investigated fluids as in Figure-6c. The reason is 

that, �̇� does not have much influence on the increase in tube internal pressure rather than a 

reduction in A, which can be observed above the critical Pe. In addition, the investigated 

range of �̇� is not to be high enough to increase the tube internal pressure due to increase in 

the fluid velocity (high shear thinning). Therefore, the shape of the tube at a given Pe does not 

change while increasing �̇�, and correspondingly ∆P is increased for higher �̇� due to increase 

in frictional force inside the tube as shown in Figure-6. It is also seen that ∆P is much higher 

for the deformed tube due to much higher reduction in A compared to the other investigated 

fluids (PEG and CMC). 

Effect of collapsed elastic tube geometry and velocity profile on fluid rheological properties 

Figures-7a, 7b, 7c show the qualitative summary of the flow characteristics of the 

investigated fluids (Newtonian and non-Newtonian) through a deformed elastic tube. The 

variation in average flow velocity, the shear rate, and the viscosity are represented as a 

function of tube cross-sectional area, where all the quantities are defined as dimensionless. 

The reference average flow velocity (v0 = �̇�/A0) in the undeformed tube used is about 0.05 

(c) PAA 

(a) PEG 
(b) CMC 
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m/s at �̇� = 17 ml/s for PEG, CMC and PAA aqueous solutions. It can be seen that the 

velocity ratio (β = v/v0) increases by an order of magnitude fitting with a power law (β = 

1.0005α−1) for a decrease in area ratio by less than a factor of two during steady flow of PEG 

aqueous solution. The average shear rate γ0 for �̇� = 17 ml/s in the undeformed tube is 

estimated by γ0 = 4 v0/r0 = 21s−1 for Newtonian fluid. The equivalent radius req (= √𝐴
2

/π) is 

calculated from the experimentally obtained tube cross-sectional area A by tube shape 

analysis (described elsewhere by Nahar et al., 2012). It is found that the shear rate ratio (�̇� = 

�̇� /�̇�0) in the deformed tube increased only by a factor of two, which is again fitted well by a 

power law as �̇� = 1.0008 α −1.5 and the corresponding average viscosity in the tube is found to 

be constant for PEG. All the calculated relevant flow parameters for PEG are summarized in 

Table-1. On the other hand, β also increases by an order of magnitude for moderate shear-

thinning fluid (CMC) fitting with a power law (β = 1.0109 α −1.0037) where the area ratio 

decreases by more than an order of magnitude. Here, the average shear rate γ0 for �̇� = 17 ml/s 

in the undeformed tube is estimated by �̇�0 = ∫ �̇�𝑟𝑑𝑟
𝑟𝑒𝑞

0
 =∫ 𝑟𝑑𝑟

𝑟𝑒𝑞

0
 = (2v0/req)(3n+1)/(2n+1) = 

14s−1 assuming a non-Newtonian shear thinning power-law liquid. The power-law index n is 

0.8208 for CMC solution and the corresponding average viscosity in the tube is calculated 

using the Carreau equation. It is found that the shear rate ratio (�̇�) in the deformed tube 

increased by a factor of 50, which is again fitted well by a power law �̇� = 1.0156 α −1.5056. 

The corresponding viscosity ratio (Λ =η /η0) decreased by a factor of two is fitted by Λ = Λ0 

+ k1(1 − e−k2α) where the fitted constants are Λ0 = 0.1407, k1 = 0.85 and k2 = 6.243. Λ0 = ηm/ 

η0 = 0.1407 is the minimum viscosity ratio, where ηm = 0.0193 Pa.s is the average minimum 

viscosity when the tube cross-sectional area A → 0, and 0 = 0.137 Pa.s is the average 

viscosity in the undeformed tube. In addition, β is also seen to be increased by an order of 

magnitude for high shear-thinning fluid (PAA) fitting with a power law (β =1.0005α−1) for a 

decrease in area ratio also by more than an order of magnitude. The average shear rate �̇�0 in 

the undeformed tube is 13 s−1 (assuming non-Newtonian shear-thinning power-law liquid). 

The power-law index n is 0.42 for high shear thinning PAA solution and the corresponding 

average viscosity in the tube is obtained using the Carreau equation. The shear rate ratio (�̇�) 

in the deformed tube increased by more than a factor of 90, which is again fitted well by a 

power law �̇� = 1.0022α−1.5. The corresponding viscosity ratio (Λ) decreased by a factor of 

fourteen is fitted by Λ = 0.9996α0.87. Here the ηm = 0.00038 Pa.s (the average minimum 

viscosity when the tube cross-sectional area A → 0) is approximated by a linear fit (Λ = Λ0 + 

kα, with Λ0 = 0.0414 and k = 0.9625). The viscosities of CMC and PAA solutions are found 

to decrease while flowing at �̇� = 17 ml/s through an elastic tube under different compressive 

Ptm, the values of which are well comparable with the off-line rheological measurement 

(Table-1). As Pe increases from 18 to 105 mbar, the average shear rate near the tube wall 

increases from 10.66 to 35.8 s−1 with the corresponding viscosity of 0.143 to 0.134 Pa.s (for 

CMC). Whereas the average wall shear rate also increases from 13.92 to 57.4 s−1 for PAA 

with a decrease in shear-thinning regime. The viscosity of PAA is drastically decreased due 

to its high shear-thinning behavior than that of the CMC under same applied Pe. At low Pe = 

18 mbar, the average shear rates in the tube and near the wall are found to be same value of 

about 11 s−1 and 13 s−1 for CMC and PAA respectively. At high Pe = 105 mbar, the average 

shear rate in the tube becomes almost equal to the average shear rate near tube wall thereby 

causing the fluid shear-thinning over whole of the tube cross-section for both shear-thinning 

fluids. The decrease in the viscosity of a non-Newtonian fluid is useful to enhance the 

nutrient transport through the small intestine during digestion. The calculated Reynolds 

number Re (= 2ρvavg req/ηavg, as listed in Table-1, Table-2, Table-3) increased by a factor of 

seven for CMC in deformed tube (Re = 55.8 at Ptm = - 30 mbar) compared to that in the 

undeformed tube (Re = 7.7), which confirms the flow region as laminar in the collapsible 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
23

18
2



12 
 

elastic tube. Whereas, for PAA the calculated Re increased by a factor of sixty in deformed 

tube (Re = 6729 at Ptm = - 30 mbar) compared to that in the undeformed tube (Re = 105), 

which indicates that the flow is transforming to the turbulent regime due to high increase in 

the velocity for shear-thinning fluid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-7: Fluid flow characteristics of (Top) Newtonian (PEG), (middle) non-Newtonian (CMC), and (bottom) 

non-Newtonian (PAA) aqueous solution during steady flow through a deformed elastic tube. 

 

 

 

 

 

 

 

 

   

 

 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
23

18
2



13 
 

Conclusion 

The steady flow characteristics of both Newtonian and non-Newtonian shear-thinning fluids 

through a collapsible elastic tube are investigated under different compressive transmural 

pressures in a Starling Resistor setup. The present study shows the influence of inelastic fluid 

behavior, elastic tube and fluid interaction on the fluid flow characteristics, the effect of 

external pressure on variation in pressure difference and elastic tube deformation. At a certain 

applied external pressure, the deformation of an elastic tube depends not only on its modulus 

but also on the fluids flowing through it. It is found that higher tube deformation resulted for 

higher shear-thinning fluid, as the outlet pressure in collapsed tube is lower due to reduced 

cross-sectional area and the corresponding compressive downstream transmural pressure is 

more negative than that at the upstream. The tube cross-sectional area decreased by only 

about factor of one for PEG and about factor of six for both CMC and PAA from the 

undeformed one under an applied Pe of 105 mbar. The corresponding maximum velocity 

increased by a factor of two during steady flow of shear-thinning fluids. Furthermore, the 

cross-sectional area decreased by an order of magnitude from the undeformed one when 

Ptm(down) is about -30 mbar for both shear-thinning fluids due to increase in compressive 

transmural pressure. However, the viscosity of PAA is drastically decreased due to its high 

shear-thinning behavior than that of the CMC under same applied Pe. Therefore, the high 

shear-thinning fluids can be considered for efficient nutrient transport through the small 

intestinal wall during digestion. In addition, the steady flow of a non-Newtonian fluid 

through a collapsed elastic tube is simulated and compared with the corresponding 

experimental data reported elsewhere (Tanner et al., 2012). A good agreement between 

simulation and experiment is obtained with additional insight by considering the local 

quantities for shear rates and viscosities. 
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Notation 

Symbol Unit Meaning 

A m2 cross-sectional area of deformed tube 

A0 m2 cross-sectional area of undeformed tube 

D m elastic tube diameter 

E MPa elastic modulus of the tube 

f - friction factor 

Fe N applied external force 

FN N fluid normal force 

Ftube N tube wall compression force 

g ms-2 gravity constant 

G' Pa storage modulus 

G'' Pa loss modulus 

k1, k2 - fitting constant 

l, L m length of the tube 

n - power-law index 

Pe mbar external chamber pressure 

Pi mbar inlet pressure 

Po mbar outlet pressure 

Ptm mbar transmural pressure difference 

Ptm(down) mbar downstream transmural pressure 

Ptm(up) mbar upstream transmural pressure 

�̇� ml s-1 volume flow rate 

r0 m internal radius of undeformed tube 

Re - Reynolds number 

req m equivalent radius of deformed tube 

v0 ms-1 reference average flow velocity 

vavg ms-1 average fluid velocity in the undeformed tube 

α, ω - cross sectional area ratio (A/A0) 

β - velocity ratio (v/v0) 

�̇� s-1 average shear rate in the deformed tube 

�̇�0 s-1 average shear rate in the undeformed tube 

�̇�𝑎𝑣𝑔 s-1 average shear rate in the deformed tube 

�̇�𝑤𝑎𝑙𝑙 s-1 average shear rate near the tube wall 

�̇� - shear rate ratio (�̇� /�̇�0) 

∆P mbar pressure difference 

η Pa.s shear viscosity of the fluid 

η0 Pa.s zero shear viscosity 

ηavg Pa.s average viscosity in the deformed tube 

ηwall Pa.s average viscosity near the tube wall 

ηm Pa.s average minimum viscosity when A→0 

Λ - viscosity ratio (η/ η0) 

Λ0 - minimum viscosity ratio (ηm/ η0) 

π - Pi-number 

ρ kg m-3 density 

 

Abbreviations 

Symbol Definition 

CMC Carboxymethyl Cellulose 

CT Computer Tomography 

PAA Polyacrylamide 

PEG Polyethylene Glycol 

PG Plexiglass 

UVP Ultrasound Velocity Profiling 
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