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Abstract
Smp24 and Smp43 are novel cationic AMPs identified from the venom of the Egyptian scorpion Scorpio maurus palmatus, 
having potent activity against both Gram-positive and Gram-negative bacteria as well as fungi. Here we describe cytotoxic-
ity of these peptides towards three non-tumour cell lines  (CD34+ (hematopoietic stem progenitor from cord blood), HRECs 
(human renal epithelial cells) and HACAT (human skin keratinocytes) and two acute leukaemia cell lines (myeloid (KG1a) 
and lymphoid (CCRF-CEM) leukaemia cell lines) using a combination of biochemical and imaging techniques. Smp24 and 
Smp43 (4–256 µg/mL) decreased the cell viability (as measured by intracellular ATP) of all cells tested, although keratino-
cytes were markedly less sensitive. Cell membrane leakage as evidenced by the release of lactate dehydrogenase was evident 
throughout and was confirmed by scanning electron microscope studies.
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Introduction

Over the last decades, an increasing number of pathogenic 
microorganisms have developed resistance to conventional 
antibiotics posing problems in the management of infection. 
The rapid increase in drug-resistant infections emphasizes 
the urgent need to develop novel reagents with new modes 
of action (see, inter alia Bahar and Ren 2013). The develop-
ment of agents with a low potential to resistance is techni-
cally challenging and is a contributing factor in the declining 
discovery of novel classes of antibiotics.

Antimicrobial peptides (AMPs) are essential to the innate 
immune system across all phyla and have the potential as a 
novel therapeutic class of broad-spectrum antibiotics due to 

their selectivity for prokaryotic membranes (Bahar and Ren, 
2013). AMPs are generally positively charged, amphipathic 
molecules between 12 and 70 amino acids in length. They 
target and disrupt prokaryotic membranes due to the initial 
electrostatic attraction to the negatively charged membrane 
surface (Huang 2000; Zasloff 2002). A threshold concentra-
tion is (often) then required before membrane disruption 
occurs. A multitude of models and mechanisms have been 
proposed to account for this subsequent disruption (Teixeira 
et al. 2012; Heath et al. 2018). One key challenge to develop-
ing AMPs as therapeutic agents is to minimize and hopefully 
eliminate any cytolytic effects on eukaryotes. The lack of 
overall surface charge on eukaryotic membranes provides 
hope that this particular goal can be achieved. Although 
healthy eukaryotic cell membranes are zwitterionic, the 
transbilayer movement of phosphatidylserine to the outer 
membrane leaflet in tumour cells (for a review, see Sharma 
and Kanwar 2018), also provides cancer cells, analogously 
to prokaryotic cells, with a negatively charged outer mem-
brane. The appearance of phosphatidylserine on the outer 
membrane leaflet regulates malignant transformation by pri-
marily suppressing anti-tumour immune responses (Utsugi 
et al. 1991). These observations have led to many sugges-
tions that AMPs might be effective anti-cancer agents (Wang 
and Wang 2016; Crusca et al. 2018), providing that there is 
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a sufficient distinction (effective therapeutic index) between 
cytolytic effects on tumour and non-tumour cell membranes.

Scorpion venoms are cocktails of diverse biologically 
active compounds (see, inter alia, Rodriguez de la Vega and 
Possani, 2005; Rodriguez de la Vega et al. 2010; Cao et al. 
2014; Abdel-Rahman et al. 2015; Cid-Uribe et al. 2018; 
Kazemi and Sabatier, 2019) and provide a rich source of 
AMPs (for reviews see Harrison et al. 2014; Wang and 
Wang, 2016; El-Bitar et al. 2019). Abdel-Rahman et al. 
(2013) identified two novel amphipathic cationic AMPs 
(Smp43 and Smp24) through cDNA sequencing of the 
venom gland of the Egyptian scorpion Scorpio maurus 
palmatus. Both peptides showed a potent activity against 
both Gram-positive and Gram-negative bacteria as well 
as fungi (Harrison et al. 2016a) and also formed pores in 
model prokaryotic and eukaryotic phospholipid membranes. 
The mechanism of membrane disruption caused by Smp24 
depended on phospholipid composition; the peptide formed 
toroidal pores in prokaryotic-like membranes but hexagonal 
phase non-lamellar phase structures were seen in eukary-
otic-like membranes (Harrison et al. 2016b). In comparison, 
Smp43 disrupted both types of membranes by a common 
mechanism that involves elements of both the carpet model 
and the expanding pore mechanism, that we have termed 
“diffusion-limited disruption” (Heath et al. 2018). Here in 
more detail, we have set out to study the cytotoxic effects 
of Smp24 and Smp43 on non-tumour (hematopoietic stem 
cells, primary renal cells and immortalised keratinocytes) 
and tumour (myeloid and lymphoid leukaemia) eukaryotic 
cells lines.

Materials and Methods

Materials

Cell Titre-Glo® reagent kit was obtained from Promega 
(Southampton, UK). RPMI media was obtained from Invit-
rogen (Paisley, Scotland). DMEM media was obtained from 
Lonza (Cologne, Germany). Epithelial growth media was 
obtained from Innoprot (Deria, Spain). 96-well white micro-
plates were obtained from Fisher Scientific (Loughborough, 
UK). All other reagents were the highest grade available and 
were obtained from Sigma (Gillingham, UK).

Peptides

The sequence of both Smp24 (IWSFLIKAATKLLPSLF-
GGGKKDS) and Smp43 (GVWDWIKKTAGKIWN-
SEPVKALKSQALNAAKNFVAEKIGATPS) (Abdel-
Rahman et al. 2013) were synthesized (> 90% pure) using 

solid-phase chemistry and were purchased from Think Pep-
tides® (Oxford, UK).

Cell Lines

Non-tumour haematopoietic progenitor stem cells  (CD34+) 
were obtained from Stem Cell Technologies (Grenoble, 
France). Primary Human renal epithelial cells (HRECS) 
were obtained from Innoprot (Spain). Immortalized human 
skin keratinocytes (HaCaT) was obtained from Thermofisher 
Scientific (UK). Human lymphoid leukaemia cells (CCRF-
CEM, acute lymphoblastic leukaemia, ATCC: CCL-119) 
and human myeloid leukaemia cells (KG-1a, acute mylog-
enous leukaemia, ATCC: CCL-243) were obtained from the 
ATCC (Teddington, UK). MycoAlert™ mycoplasma detec-
tion kits were obtained from Lonza (Cologne, Germany).

Culture Conditions

Suspended cells  (CD34+, CCRF-CEM and KG-1a) were 
seeded in  T75cm2 flasks in RMPI 1640 medium supple-
mented with 10% (v/v) foetal bovine serum (FBS), 1.5 mM 
l-glutamine and 100 µg/mL penicillin/streptomycin. HaCaT 
cells were seeded in  T75cm2 flasks in DMEM medium sup-
plemented with 10% FBS, 1.5 mM l-glutamine and 100 µg/
mL penicillin/streptomycin. HRECs were seeded in T75 cm2 
flasks in epithelial cell media containing 2% FBS, 1% epi-
thelial cell growth supplement (EPICGS) and 1% penicillin/
streptomycin. Cells were incubated at 37 °C with 5%  CO2 
and tested regularly for mycoplasma contamination; all cells 
were negative throughout the study.

Cell Viability Assay

Cell viability was determined by measuring intracellular 
ATP levels, using a Cell Titre-Glo® luminescent cell viabil-
ity assay (Promega). Cells were seeded into white 96-well 
plates at 2.5 × 104 cells/well and were treated with either 
Smp24 and Smp43 or water (vehicle control) and 10% Tri-
ton X-100 (positive control). Cells were incubated (37 °C) 
for 24 h, followed by addition of Cell Titer-Glo® reagent 
(100 µL), according to the manufacturer’s instructions. 
Luminescence (proportional to the amount of ATP present 
in the cells) was measured using a Victor 1420 lumines-
cence detector (Perkin Elmer, Cambridge, UK). Mean values 
from three independent experiments were calculated and all 
treated samples were normalised to controls. The  LC50 was 
determined for each peptide in each cell line.  LC50 was cal-
culated from a linear regression equation of each standard 
curve for each peptide with each cell line. The percentage 
of ATP level normalized to vehicle controls.
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Lactate Dehydrogenase Assay

Lactic dehydrogenase (LDH) was measured using a Pierce 
LDH Cytotoxicity Assay Kit (Thermo Scientific, UK). 
Cells were seeded in 96 well plates at 2.5 × 104 cells/well 
and treated with either Smp 24 and Smp43 or water (nega-
tive control) and 10% Triton X-100 (positive control). Cells 
were incubated (37 °C) for 24 h. A maximum LDH activ-
ity control was included by treating cells with 10 × lysis 
buffer (10 µL), included in the kit. Following treatments, 
cell supernatants (50 µL) were treated with detection reagent 
(50 µL) according to the manufacturer’s instructions. LDH 
activity was measured at 490 nm and the % LDH released 
was determined, relative to the maximum activity control. 
The experiment was performed in triplicate and mean values 
from three independent experiments were calculated.

Scanning Electron Microscopy (SEM)

Suspended cells were seeded in 6 well plates at 0.5 × 106 
cells/well while adherent cells were cultured on a cover slip 
in 6 well plates at 0.5 × 106 cells/well. The cells were then 
treated for 24 h with different concentrations of Smp24 or 
Smp43 and water as vehicle control. The suspended cells 
were harvested and centrifuged at 5000 rpm at 4 °C (5 min) 
and the supernatant was removed and cell pellets were col-
lected. The cell pellets and cover slips (carrying adherent 
cells) were washed twice in 200 µL cold 0.1 M phosphate 
buffer solution (PBS). Then these cells were fixed by add-
ing 100 µL of 3% glutaraldehyde in 0.1 M PBS 24 h at 4 °C. 
The cells were washed twice with cold 0.1 M PBS each for 
15 min at RT but without spinning. Secondary fixation was 
carried out in 1% aqueous osmium tetraoxide for one hour 
at RT. Cells were then washed twice with 0.1 M PBS at 
4 °C followed by ascending series of ethanol for dehydration 
(75%, 95%, and then twice in 100% each step 15 min). After 
discarding ethanol, equal amount (1:1) of 100% ethanol and 
100% hexamethyldisilazane were added for 30 min followed 
by 100% hexamethyldisilazane for another 30 min at RT to 
ensure complete removal of water from samples. After com-
pletion of drying, the samples were mounted on 12.5 mm 
diameter stumps and attached with Carbon-Sticky Tabs and 
then coated in an Edwards S150B sputter gold coater with 
approximately 25 nm of gold. Finally, the cells were then 
examined and photographed by a scanning electronic micro-
scope (Philips XL20, Germany).

Statistical Analysis

Data were analysed (unpaired student-t test) using Prism 6 
software (Graph Pad). Means and standard errors were cal-
culated and results were considered statistically significant 
at P ≤ 0.05 and highly significant at P ≤ 0.001.

Results

Smp24 and Smp43 (at concentrations between 4 and 
256 μg/mL) both significantly reduced cell viability after 
24 h in all cells tested  (CD34+, HREC, HaCaT, KG1-a 
and CCRF-CEM), as evidenced by concentration-depend-
ent reductions in intracellular ATP levels (Fig. 1). Both 
myeloid (KG1-a) and lymphoid (CCRF-CEM) leukemic 
tumour cell lines (Fig. 1a and b respectively) were more 
sensitive to Smp peptides than non-tumour cell lines 
(Fig. 1c, d and e). The mean  LC50 value of the two tumour 
cell lines (16 and 14.5 μg/mL for Smp24 and Smp43, 
respectively) was significantly different (p ≤ 0.05) from the 
mean  LC50 value of the three non-tumour cells (36.7 and 
70 μg/mL for Smp24 and Smp43, respectively). There was 
a considerable variation in the sensitivity to non-tumour 
cells  (CD34+ stem cells, primary renal cells (HREC) 
and the transformed keratinocyte cell line, HaCaT) and 
no apparent correlation between the cytotoxic profiles of 
Smp24 and Smp43 (Table 1).

The cytotoxic effects of Smp24 and Smp43 were also 
evidenced by the concentration-dependent release of lac-
tate dehydrogenase (LDH) from all cells tested (Fig. 2). 
In parallel to measurements of intracellular ATP content 
(Fig. 1), leakage of LDH from the two leukaemia cell lines 
was more sensitive to Smp43 than either  CD34+ stem cells 
or primary renal cells. In comparison, the cytotoxic effects 
of Smp24 were indistinguishable. Interestingly, HaCaT 
plasma cell membranes were much more resistant to the 
cytotoxic effects of both Smp24 and Smp43 (Fig. 2e) and 
this was also reflected in the ATP assay (Fig. 1e). Scanning 
electron micrographs of cells treated with either Smp24 
or Smp43 showed evidence of loss of cell filipodia and 
membrane microvilli, as well as pore formation and the 
appearance of cell membrane blebs (Fig. 3). 

Discussion

Scorpion venoms have provided a rich source of AMPs and 
the possibilities of developing their therapeutic potential 
is enhanced when it can be demonstrated that such pep-
tides have limited cytotoxic effects on mammalian cells. 
For example, the considerably lower cytotoxic effects of 
Smp24 against stem cells (e.g.  CD34+) and primary cells 
(e.g. HRECs)  (LC50 20–37 μg/mL) described here is in 
contrast with the significantly higher antimicrobial activity 
of Smp24 against strains of Staphylococcus and Bacillus 
 (LC50 4–8 μg/mL) (Harrison et al. 2016a).

The present investigation of the cytotoxic effects of 
Smp24 and Smp43 revealed a concentration-dependent 



 International Journal of Peptide Research and Therapeutics

1 3

reduction in cellular ATP levels in both tumour and non-
tumour cell lines, resulting in the loss of cell viability. 
Although Smp24 and Smp43 appeared to inhibit the via-
bility of all cells, both lymphoid and myeloid leukaemia 
cell lines were more sensitive  (LC50 values 13–16 µg/mL) 
in comparison to the non -tumour cell lines (stem cells, 
primary renal cells and keratinocytes), with  LC50 values 
ranging from 20 to 53 µg/mL). The loss of membrane 
integrity, suggested by these ATP studies, was confirmed 
by complementary studies demonstrating leakage of LDH 
from all the cells tested. Previous studies have shown that 
scolopendrasin-VII, an AMP identified by de novo RNA 
sequencing of the centipede Scolopendra subspinipes 
mutilans (Lee et al 2015), ABP-CM4, a cecropin-like AMP 

from the haemolymph of the Chinese silkworm, Bombyx 
mori (Chen et al. 2010) and polybia-MP from the venom 
of the Brazilian social wasp, Polybia paulista (Wang et al 
2009) all reduced the viability of different leukaemia cell 
lines in concentration-dependent manner.

Moreover, the SEM studies were conducted to gain more 
details about morphological disruption induced by Smp24 
and Smp43. The results showed that both peptides induced 
various concentration-dependant morphological alternations 
on the cell membrane of all cells tested. These alternations 
were represented by losing cell membrane microvilli and 
filopodia, pore formation, development of membrane blebs 
and disintegrated cell membranes. These data confirmed 
the results obtained from the ATP and LDH assays. Pre-
viously, similar results were reported by different AMPs. 
For instance, Lu et al. (2016) observed that leukemia cell 
lines treated with the antimicrobial peptide of PFR displayed 
irregular shape, corrugated surface, cell swelling, bubbles 
protruding from their membranes and membrane disruption. 
Moreover, temporin-1CEa AMP incubated with breast can-
cer cells showed shriveled, invaginated and disrupted cell 
membranes (Wang et al. 2013). Similarly, hepcidin1–5 AMP 
induced pore formation and cell swelling in HepG2, HeLa, 
and HT1080 cell lines (Chang et al. 2011). Pore formation 
and membrane disruption were also reported in human 

Fig. 1  Effects of Smp24 and Smp43 on cellular ATP levels of tumour 
and non-tumour cell lines. Tumour (KG-1a and CCRF-CEM; Panels 
a and b, respectively) and non-tumour (HREC,  CD34+ and HaCaT; 
Panels c, d and e, respectively) cell lines were treated with either 

Smp24 or Smp43 and cellular ATP levels measured with a Cell Titre-
Glo assay. Treated cells showed a significant (**P ≤ 0.001) decrease 
from untreated controls. Data presented as mean ± SE, using an 
unpaired student t-test

Table 1  LC50 values (50%ATP levels, normalized to controls) of cell 
lines treated with Smp peptides (µg/mL)

Tumour or non-tumour cell lines were treated with either Smp24 or 
Smp43 for 24 h at 37 °C.  LC50 values presented as mean ± SE

Peptides Non-tumour cell lines Tumour cell lines

CD34+ HREC HaCaT KG1-a CCRF-CEM

Smp24 20 ± 0.3 37 ± 1.2 53 ± 1.5 16 ± 1.3 16 ± 0.9
Smp43 32 ± 0.6 28 ± 0.3 150 ± 2.9 16 ± 0.7 13 ± 1.5
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bladder cancer cells treated with magainin II and cecropin 
B AMPs (Lehmann et al. 2006; Suttmann et al. 2008).

It has previously been suggested that AMPs might be 
effective anti-cancer agents (Wang and Wang 2016; Crusca 
et al. 2018), due to surface membrane charge differences. 
The outer plasma membrane leaflet in normal cells exhibits 
an overall neutral charge as its main components are the 
zwitterionic phospholipids, phosphatidylcholine and sphin-
gomyelin (Dolis et al. 1997; Hoskin and Ramamoorthy, 
2008; Riedl et al. 2014). In contrast, membrane of cancer 
cells is negatively charged, due to the exposure of the nega-
tively charged phospholipid phosphatidylserine on their 
outer leaflet (Ran and Thorpe. 2002; Márquez et al. 2004; 
Schroder-Borm et al. 2005; Dobrzyn´ska et al. 2013). The 
electrostatic interaction between the positively charged 
AMPs and the negatively charged components in a cell 
membrane was believed to play a major role in target selec-
tivity (Lu et al. 2016). Therefore, the unique membrane com-
position in tumour cells may make them more susceptible 

to targeting by cationic AMPs such as the scorpion venom 
peptides studied here.

It is clear that a range of mammalian cell types need 
to be assayed when testing Smp peptides for toxicity. In 
a previous study (Harrison et al 2016a), we have shown 
that Smp43 has very low haemolytic activity (1.2% ± 0.5% 
lysis at 512 μg/mL) in comparison with the release of ATP 
from all the cell lines (tumour and non-tumour) tested 
here (ca. 100% at the same concentration). In compari-
son, Smp24 caused significant erythrocyte disruption 
(89.6% ± 5.6%) at 512 μg/mL and the dose-dependent 
effect of ATP release from the non-tumour cell lines stud-
ied here (Fig. 1) paralleled both the haemolytic activity 
and the ATP release from HepG2 cells studied previously 
(Harrison et al 2016a). Although Smp24 and Smp43 have 
highest potency against gram positive bacteria (MIC val-
ues 4–32 μg/mL), both myeloid (KG1-a) and lymphoid 
(CCRF-CEM) leukemic tumour cell lines were more sensi-
tive to Smp peptides than the non-tumour cell lines; how-
ever the sensitivity to the tumour cell lines was more akin 
to that of gram-negative bacteria (Harrison et al 2016a).
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Fig. 2  Effects of Smp24 and Smp43 on cell membrane integrity 
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tration dependent manner. Data presented as mean ± SE, using an 
unpaired student t-test
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