
On the expressiveness and monitoring of metric temporal
logic

HO, H.M. <http://orcid.org/0000-0003-0387-4857>, OUAKNINE, J and
WORRELL, J

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/25236/

This document is the Published Version [VoR]

Citation:

HO, H.M., OUAKNINE, J and WORRELL, J (2019). On the expressiveness and
monitoring of metric temporal logic. Logical Methods in Computer Science, 15 (2),
13:1-13:52. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Logical Methods in Computer Science
Volume 15, Issue 2, 2019, pp. 13:1–13:52
https://lmcs.episciences.org/

Submitted Mar. 13, 2018
Published May 10, 2019

ON THE EXPRESSIVENESS AND MONITORING OF METRIC
TEMPORAL LOGIC

HSI-MING HO a, JOËL OUAKNINE b, AND JAMES WORRELL a

a Department of Computer Science, University of Oxford, Oxford, UK
e-mail address: hsimho@gmail.com, jbw@cs.ox.ac.uk

b Max Planck Institute for Software Systems, Saarland Informatics Campus, Germany
e-mail address: joel@mpi-sws.org

Abstract. It is known that Metric Temporal Logic (MTL) is strictly less expressive than
the Monadic First-Order Logic of Order and Metric (FO[<,+1]) when interpreted over
timed words; this remains true even when the time domain is bounded a priori. In this
work, we present an extension of MTL with the same expressive power as FO[<,+1] over
bounded timed words (and also, trivially, over time-bounded signals). We then show that
expressive completeness also holds in the general (time-unbounded) case if we allow the
use of rational constants q ∈ Q in formulas. This extended version of MTL therefore
yields a definitive real-time analogue of Kamp’s theorem. As an application, we propose
a trace-length independent monitoring procedure for our extension of MTL, the first such
procedure in a dense real-time setting.

1. Introduction

Expressiveness of metric temporal logics . One of the most prominent specification formalisms
used in verification is Linear Temporal Logic (LTL), which is typically interpreted over the
non-negative integers or reals. A celebrated result of Kamp [Kam68] states that, in either
case, LTL has precisely the same expressive power as the Monadic First-Order Logic of Order
(FO[<]). These logics, however, are inadequate to express specifications for systems whose
correct behaviour depends on quantitative timing requirements. Over the last three decades,
much work has therefore gone into lifting classical verification formalisms and results to the
real-time setting. Metric Temporal Logic (MTL),1 which extends LTL by constraining the

Key words and phrases: Computer Science, Logic in Computer Science.
Part of this work appeared in the Proceedings of the 8th International Workshop on Reachability Problems

(2014), and in the Proceedings of the 5th International Conference on Runtime Verification (2014).
Joël Ouaknine was supported by ERC grant AVS-ISS (648701) and by DFG grant 389792660 as part

of TRR 248 (see https://perspicuous-computing.science). James Worrell was supported by EPSRC
Fellowship EP/N008197/1.

1In this article, we refer to the logic with constrained ‘Until’ and ‘Since’ modalities exclusively as ‘MTL’,
and use the term ‘metric temporal logics’ in a broader sense to refer to temporal logics with modalities
definable in FO[<,+1] (see below).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(2:13)2019
c© H.-M. Ho, J. Ouaknine, and J. Worrell
CC© Creative Commons

https://lmcs.episciences.org/
https://perspicuous-computing.science
http://creativecommons.org/about/licenses

13:2 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

modalities by time intervals, was introduced by Koymans [Koy90] in 1990 and has emerged
as a central real-time specification formalism. MTL enjoys two main semantics, depending
intuitively on whether atomic formulas are interpreted as state predicates or as (instantaneous)
events. In the former, the system is assumed to be under observation at every instant in
time, leading to a ‘continuous’ semantics based on signals, whereas in the latter, observations
of the system are taken to be (finite or infinite) sequences of timestamped snapshots, leading
to a ‘pointwise’ semantics based on timed words—this is the prevalent interpretation for
systems modelled as timed automata [AD94]. In both cases, the time domain is usually
taken to be the non-negative real numbers. Both semantics have been extensively studied;
see, e.g., [OW08] for a historical account.

Alongside these developments, researchers proposed the Monadic First-Order Logic
of Order and Metric (FO[<,+1]) as a natural quantitative extension of FO[<]. Like MTL,
FO[<,+1] can be interpreted over signals [HR04] or timed words [Wil94]. An obvious question
to ask is whether MTL has the same expressive power as FO[<,+1], i.e., an analogue of Kamp’s
theorem holds in the real-time setting. Unfortunately, Hirshfeld and Rabinovich [HR07]
showed that no ‘finitary’ extension of MTL—and a fortiori MTL itself—could have the same
expressive power as FO[<,+1] over the reals.2 Still, in the continuous semantics, MTL can
be made expressively complete for FO[<,+1] by extending the logic with an infinite family
of ‘counting modalities ’ [Hun13] or considering only bounded time domains [ORW09, OW10].
Nonetheless, and rather surprisingly, MTL with counting modalities remains strictly less
expressive than FO[<,+1] over bounded time domains in the pointwise semantics, i.e., over
timed words of bounded duration.

Monitoring of real-time specifications . In recent years, runtime verification (see [LS09, SHL11]
for surveys) has emerged as a light-weight complementary technique to model checking [CE81,
QS82]. It is particularly useful for systems whose internal details are either too complex to be
modelled faithfully or simply not accessible. Roughly speaking, while in model checking one
considers all behaviours of the model, in runtime verification one focusses on one particular
behaviour—the current one. Given a specification ϕ and a finite timed word ρ (which we call
a finite trace in this context), the prefix problem asks whether all infinite traces extending ρ
satisfy ϕ. The monitoring problem, as far as we are concerned here, can be seen as an online
version of the prefix problem where ρ grows incrementally (i.e., one event at a time): the
monitoring procedure (monitor) for ϕ is executed in parallel with the system under scrutiny,
and it is required to output an answer when either (i) all infinite extensions of the current
trace satisfy ϕ, or (ii) no infinite extension of the current trace can satisfy ϕ.

Ideally, we would also like to require a monitoring procedure to be trace-length indepen-
dent [Roş12, BKV13] in the sense that its time and space requirements should not depend
on the length of the input trace (this is important since input traces in practical applications
tend to be very long; cf., e.g., [BCE+14]). In the untimed case, this is not difficult to
achieve: one can translate LTL formulas into Büchi automata [GO03, DKL10] and turn
them into efficient trace-length independent monitors [ABLS05]. Unfortunately, a number of
obstacles hinder the application of this methodology to the real-time setting: it is known
that MTL is expressively incomparable with timed automata; even though certain fragments

2Hirshfeld and Rabinovich’s result was only stated and proved for the continuous semantics, but we
believe that their approach would also carry through for the pointwise semantics. In any case, using different
techniques Prabhakar and D’Souza [PD06] and Pandya and Shah [PS11] independently showed that MTL is
strictly weaker than FO[<,+1] in the pointwise semantics.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:3

Systemru

←−

←−

oi

←−

←−

va

←−

←−

he

←−

←−

bMonitor

Figure 1. A monitor receives the trace incrementally (one event at a time).

of MTL can be translated into timed automata, the latter are not always determinisable
as required for the purpose of monitoring [BBBB09]. For this reason, researchers purposed
automata-free monitoring procedures that work directly with metric temporal logic formulas
(e.g., [MN04, BKZ11]). However, it proved difficult to maintain trace-length independence
while allowing MTL in its full generality, i.e., with unbounded intervals and nesting of future
and past modalities. Almost all monitoring procedures for metric temporal logics in the
literature have certain syntactic or semantic limitations, e.g., only allowing bounded future
modalities or assuming integer time. A notable exception is [BN12] which handles full MTL
over signals, but which unfortunately fails to be trace-length independent.

Contributions. We study the expressiveness of various fragments and extensions of MTL
over timed words. In particular, we highlight a fundamental deficiency in the pointwise
interpretation of MTL. To amend this, we propose new (first-order definable) modalities
generalised ‘Until’ (U) and generalised ‘Since’ (S). With these new modalities and the
techniques developed in [PS11, ORW09, HOW13], we establish the following results:

(i). There is a strict hierarchy of metric temporal logics based on their expressiveness over
bounded timed words (see Figure 2 where the arrows indicate ‘strictly more expressive
than’ and the edges indicate ‘equally expressive’). Note that this hierarchy collapses
in the continuous semantics.

(ii). The metric temporal logic with the new modalities U and S (denoted MTL[U,S]) is
expressively complete for FO[<,+1] over bounded timed words.

(iii). The time-bounded satisfiability and model-checking problems for MTL[U,S] are
EXPSPACE-complete, the same as that of MTL.

(iv). Any MTL[U,S] formula is equivalent to a syntactically separated one.
(v). MTL[U,S] is expressively complete for FO[<,+Q] (the rational variant of FO[<,+1])

over unbounded (i.e., infinite non-Zeno) timed words if we allow the use of rational
constants in modalities.

For monitoring, we focus on a restricted version of the monitoring problem of MTL[U,S],
based on the notion of informative prefixes [KV01]. The main idea of our approach is to work
with MTL[U,S] formulas of a special form: LTL formulas over atomic formulas comprised
of bounded MTL[U,S] formulas.3 The truth values of bounded MTL[U,S] formulas can be
computed and stored efficiently with a dynamic programming algorithm; these values are
then used as input to deterministic finite automata obtained from ‘backbone’ LTL formulas.
As a result, we obtain the first trace-length independent monitoring procedure for a metric
temporal logic that subsumes MTL. The procedure is free of dynamic memory allocations,

3It follows from the syntactic separation result that no expressiveness is sacrificed in restricting to this
fragment.

13:4 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

FO[<,+1]

MTL[{Cn,
←
Cn}∞n=2]MTL

MTLfut

known results

MTL[U,S]FO[<,+1]

MTL[B�]

MTL MTL[{Cn,
←
Cn}∞n=2]

MTLfut[Φint]

MTLfut

our results

Figure 2. Expressiveness results over bounded timed words.

linked lists, etc., and hence can be implemented efficiently (the amortised running time per
event is linear in the number of subformulas in all bounded formulas). To be more precise:
(vi). We give a trace-length independent monitoring procedure (which detects informative

good/bad prefixes) for LTL formulas over atomic formulas comprised of bounded
MTL[U,S] formulas.

(vii). For an arbitrary MTL[U,S] formula, we show that its informative good/bad prefixes are
preserved by the syntactic rewriting rules (and thus can be monitored in a trace-length
independent manner).

Related work . Bouyer, Chevalier, and Markey [BCM05] showed that MTLfut (the future-only
fragment of MTL) is strictly less expressive than MTL in both the continuous and pointwise
semantics. This, together with the aforementioned results [HR07, PS11], form a strict
hierarchy of expressiveness that holds in the both semantics:

MTLfut (MTL (FO[<,+1] .

Ouaknine, Rabinovich, and Worrell [ORW09] showed that the hierarchy collapses in the
continuous semantics when one considers bounded time domains of the form [0, N). Our
results show that this is not the case in the pointwise semantics.

Another route to expressive completeness is by allowing rational constants. In particular,
counting modalities become expressible in MTL [BCM05]. Exploiting this observation, Hunter,
Ouaknine, and Worrell [HOW13] showed that MTL with rational constants is expressively
complete for FO[<,+Q] in the continuous semantics. However, as can be immediately
derived from a result of Prabhakar and D’Souza [PD06], this pleasant result does not hold
in the pointwise semantics. On the other hand, D’Souza and Tabareau [DT04] showed
that MTL with rational constants is expressively complete for rec-TFO[,] (an ‘input-
determined’ fragment of FO[<,+Q]) in the pointwise semantics. We complement these
results by extending MTL with the new modalities U and S to make it expressively complete
for FO[<,+Q] in the pointwise semantics.

In a pioneering work, Thati and Roşu [TR05] proposed a rewriting-based monitoring
procedure for MTL over integer-timed traces. Their procedure is trace-length independent
and amenable to efficient implementations. However, trace-length independent monitoring
of MTL is not possible in dense real-time settings: a monitor would have to ‘remember’ an
infinite number of timestamps. For this reason, researchers often impose a bounded-variability
assumption on input traces, i.e., only a bounded number of events may occur in any time

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:5

unit. Under such an assumption, Nickovic and Piterman [NP10] showed that MTLfut formulas
can be translated into deterministic timed automata. Unfortunately, their approach does not
easily extend to full MTL.

It is known that the non-punctual fragment of MTL, called MITL, can be translated
into timed automata. Since the standard constructions [AH92, AFH96] are notoriously
complicated, there have been some proposals for simplified or improved constructions [MNP06,
KKP11, DM13, BEG14, BGHM17]. The difficulty in using these constructions for monitoring,
again, lies in the fact that timed automata cannot be determinised in general. In principle
one can carry out on-the-fly determinisation for input traces of bounded variability (cf.,
e.g., [Tri02, BBBB09]); however, it is not clear that this approach can yield an efficient
procedure.

2. Preliminaries

2.1. Automata and logics for real-time.
Timed words. Let the time domain T be a subinterval of R≥0 that contains 0. A time
sequence τ = τ0τ1 . . . is a non-empty finite or infinite sequence over T (timestamps) that
satisfies the requirements below (we denote the length of τ by |τ |):
• Initialisation: τ0 = 0
• Strict monotonicity : For all i, 0 ≤ i < |τ | − 1, we have τi < τi+1.4

If τ is infinite we require it to be unbounded, i.e., we disallow so-called Zeno sequences.
Given a finite alphabet Σ, a T-timed word over Σ is a pair ρ = (σ, τ) where σ = σ0σ1 . . . is a
non-empty finite or infinite word over Σ and τ is a time sequence over T of the same length.
We refer to a T-timed word simply as a timed word when T = R≥0.5 We refer the pair
(σi, τi) as the ith event in ρ, and define the distance between ith and jth (i ≤ j) events to be
τj − τi. In this way, a timed word can be equivalently regarded as a sequence of events. We
denote by |ρ| the number of events in ρ. A position in ρ is a number i such that 0 ≤ i < |ρ|.
The duration of ρ is defined as τ|ρ|−1 if ρ is finite. We write t ∈ ρ if t is equal to one of the
timestamps in ρ. For a finite alphabet Σ, we write TΣ∗ and TΣω for the respective sets of
finite and infinite timed words over Σ. A timed (finite-word) language over Σ is a subset of
TΣω (TΣ∗).

Timed automata. The most popular model for real-time systems are timed automata [AD94],
introduced by Alur and Dill in the early 1990s. Timed automata extends finite automata by
real-valued variables (called clocks).

Definition 2.1. Given a set of clocks X, the set G(X) of clock constraints g is defined
inductively by

g ::= true | x ./ c | g1 ∧ g2

where x ∈ X, c ∈ N and ./ ∈ {<,≤, >,≥}.

Definition 2.2. A (non-deterministic) timed automaton A is a tuple 〈Σ, S, S0, X, I, E, F 〉
where

4This requirement is chosen to simplify the presentation; all the results still hold (with some minor
modifications) in the case of weakly-monotonic time, i.e., requiring instead τi ≤ τi+1 for all i, 0 ≤ i < |τ | − 1.

5By the non-Zeno requirement, if T is bounded then a T-timed word must be a finite timed word.

13:6 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

• Σ is a finite alphabet
• S is a finite set of locations
• S0 ⊆ S is the set of initial locations
• X is a finite set of clocks
• I : S 7→ G(X) is a mapping that labels each location in S with a clock constraint in G(X)
(an ‘invariant’)
• E ⊆ S×Σ×2X ×G(X)×S is the set of edges. An edge 〈s, a, λ, g, s′〉 denotes an a-labelled
edge from location s to location s′ where g (a ‘guard’) specifies when the edge is enabled
and λ ⊆ X is the set of clocks to be reset with this edge
• F is the set of accepting locations.

We say that A is deterministic if it (i) has only one initial location and (ii) for each s ∈ S,
a ∈ Σ and every pair of edges 〈s, a, λ1, g1, s1〉, 〈s, a, λ2, g2, s2〉, g1 and g2 are mutually
exclusive (i.e., g1 ∧ g2 is unsatisfiable). We say that A is complete if for each s ∈ S and
a ∈ Σ, the disjunction of the clock constraints of the a-labelled edges starting at s is a valid
formula.

Assume that A has n clocks. We define its set of clock values as Val = [0, cmax] ∪ {>}
where cmax is the maximum constant appearing in A. A state of A as a pair (s,v) where
s ∈ S is a location and v ∈ Valn is a clock valuation. Write v(x) for the value of clock x in
v. We denote by Q = S × Valn the set of all states of A. A run of A on a timed word can
be seen as follows: the automaton takes some edge when an event arrives, otherwise it stays
in the same location as time elapses. More precisely, A induces a labelled transition system
TA = 〈Q, ,→〉 where ⊆ Q× R>0 ×Q is the delay-step relation and → ⊆ Q× Σ×Q is
the discrete-step relation. In these steps, corresponding invariants and guards must be met
(define > > c for all constants c):

• For (s,v)
t
 (s′,v′), s′ = s, v′ = v + t and v + t′ |= I(s) for all 0 ≤ t′ ≤ t.

• For (s,v)
a→ (s′,v′), there is an edge 〈s, a, λ, g, s′〉 ∈ E such that v′ = v[λ := 0] and v |= g.

The clock valuation v + t maps each clock x to v(x) + t if v(x) + t ≤ cmax , otherwise >.
v[λ := 0] maps x to v(x) if x /∈ λ, otherwise 0. Formally, a run of A on ρ = (σ, τ) is an
alternating sequence of delay steps and discrete steps

(s0,v0)
σ0→ (s1,v1)

d0 (s2,v2)
σ1→ (s3,v3)

d1 (s4,v4)
σ2→ . . .

where di = τi+1−τi for i ≥ 0, s0 ∈ S0 and v0 = 0n. A finite timed word ρ′ is accepted by A if
there is an accepting run (i.e., ending in an accepting location) of A on u′. We can also equip
A with a Büchi acceptance condition; in this case, a run is accepting if it visits an accepting
location infinitely often, and an infinite timed word ρ is accepted by A if there is such a
run of A on ρ. The timed (finite-word) language defined by A is the set of (finite) timed
words accepted by A. Note that timed automata are not closed under complementation; for
example, the complement of the timed language accepted by the timed automaton in the
example below cannot be recognised by any timed automaton.

Example 2.3 [AM04]. Consider the timed automaton with Σ = {a, b} in Figure 3. The
automaton accepts timed words containing an a event at some time t such that no event
occurs at time t+ 1.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:7

l0 l1

a
x := 0

a, b
x 6= 1a, b

Figure 3. A timed automaton.

Monadic First-Order Logic of Order and Metric. We now define the Monadic First-Order
Logic of Order and Metric (FO[<,+1]) [Wil94] which subsumes all the other logics discussed
in this article.

Definition 2.4. Given a set of monadic predicates P, the set of FO[<,+1] formulas is
generated by the grammar

ϑ ::= true | P (x) | x < x′ | d(x, x′) ∼ c | ϑ1 ∧ ϑ2 | ¬ϑ | ∃xϑ ,

where P ∈ P, x, x′ are variables, ∼ ∈ {<,>} and c ∈ N.6

The fragment where d(x, x′) ∼ c is absent is called the Monadic First-Order Logic of
Order (FO[<]).

Metric temporal logics. Formulas of metric temporal logics are FO[<,+1] formulas (with a
single free variable) built from monadic predicates using Boolean connectives and modalities
(or operators). A k-ary modality is defined by an FO[<,+1] formula ϕ(x,X1, . . . , Xk)
with a single free variable x and k free monadic predicates X1, . . . , Xk. For example, the
MTL [Koy90] modality U(0,5) is defined by the FO[<,+1] formula

U(0,5)(x,X1, X2) = ∃x′
(
x < x′ ∧ d(x, x′) < 5 ∧X2(x′)

∧ ∀x′′
(
x < x′′ ∧ x′′ < x′ =⇒ X1(x′′)

))
.

The MTL formula ϕ1 U(0,5) ϕ2 (usually written in infix notation) is obtained by substituting
MTL formulas ϕ1, ϕ2 for X1, X2, respectively.

Definition 2.5. Given a set of monadic predicates P, the set of MTL formulas is generated
by the grammar

ϕ ::= true | P | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2 | ϕ1 SI ϕ2 ,

where P ∈ P and I ⊆ (0,∞) is an interval with endpoints in N ∪ {∞}.
The (future-only) fragment MTLfut is obtained by disallowing subformulas of the form

ϕ1 SI ϕ2. We write |I| for sup(I)− inf(I). If I is not present as a subscript then it is assumed
to be (0,∞). We sometimes use pseudo-arithmetic expressions to denote intervals, e.g., ‘≥ 1’
denotes [1,∞) and ‘= 1’ denotes the singleton {1}. We also employ the usual syntactic
sugar, e.g., false ≡ ¬true, I ϕ ≡ true UI ϕ, I ϕ ≡ true SI ϕ, I ϕ ≡ ¬ I ¬ϕ and
I ϕ ≡ false UI ϕ, etc. For convenience, we also use ‘weak’ temporal operators as syntactic

sugar, e.g., ϕ1 UwI ϕ2 ≡ ϕ1 ∧ (ϕ1 UI ϕ2) if 0 /∈ I and ϕ1 UwI ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ (ϕ1 UI ϕ2)) if
0 ∈ I (we allow 0 ∈ I in the case of weak temporal operators). We denote by |ϕ| the number
of subformulas in ϕ.

6Note that whilst we refer to the logic as FO[<,+1], we adopt an equivalent definition where binary
distance predicates d(x, x′) ∼ c (as in [Wil94]) are used in place of the usual +1 function symbol.

13:8 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

The pointwise semantics. With each T-timed word ρ = (σ, τ) over ΣP = 2P we associate a
structure Mρ. Its universe Uρ is the subset {τi | 0 ≤ i < |ρ|} of T. The order relation <
and monadic predicates in P are interpreted in the expected way, e.g., P (τi) holds in Mρ iff
P ∈ σi. The binary distance predicate d(x, x′) ∼ c holds iff |x − x′| ∼ c. The satisfaction
relation is defined inductively as usual. We write Mρ, t0, . . . , tn−1 |= ϑ(x0, . . . , xn−1) (or
ρ, t0, . . . , tn−1 |= ϑ(x0, . . . , xn−1)) if t0, . . . , tn−1 ∈ Uρ and ϑ(t0, . . . , tn−1) holds in Mρ. We
say that two FO[<,+1] formulas ϑ1(x) and ϑ2(x) are equivalent over T-timed words if for
all T-timed words ρ and t ∈ Uρ,

ρ, t |= ϑ1(x) ⇐⇒ ρ, t |= ϑ2(x) .

We say that a metric logic L′ is expressively complete for metric logic L over T-timed words
iff for any formula ϑ(x) ∈ L, there is an equivalent formula ϕ(x) ∈ L′ over T-timed words.
We say that L′ is at least as expressive as (or more expressive than) L over T-timed words
(written L ⊆ L′) iff for any formula ϑ ∈ L, there is an initially equivalent formula ϕ ∈ L′
over T-timed words (i.e., ϑ and ϕ evaluates to the same truth value at the beginning of any
T-timed word). If L ⊆ L′ but L′ * L then we say that L′ is strictly more expressive than L
(or L is strictly less expressive than L′) over T-timed words.

As we have seen earlier, each MTL formula can be defined as an FO[<,+1] formula with
a single free variable. Here, for the sake of completeness we give an (equivalent) traditional
inductive definition of the satisfaction relation for MTL over timed words. We write ρ |= ϕ if
ρ, 0 |= ϕ.

Definition 2.6. The satisfaction relation ρ, i |= ϕ for an MTL formula ϕ, a timed word
ρ = (σ, τ) and a position i in ρ is defined as follows:
• ρ, i |= true
• ρ, i |= P iff P (τi) holds in Mρ

• ρ, i |= ϕ1 ∧ ϕ2 iff ρ, i |= ϕ1 and ρ, i |= ϕ2

• ρ, i |= ¬ϕ iff ρ, i 6|= ϕ
• ρ, i |= ϕ1 UI ϕ2 iff there exists j, i < j < |ρ| such that ρ, j |= ϕ2, τj − τi ∈ I and ρ, k |= ϕ1

for all k with i < k < j
• ρ, i |= ϕ1 SI ϕ2 iff there exists j, 0 ≤ j < i such that ρ, j |= ϕ2, τi − τj ∈ I and ρ, k |= ϕ1

for all k with j < k < i.

Example 2.7. The MTLfut formula

ϕ = (P =⇒ <3Q) (2.1)

is satisfied by a timed word ρ if and only if there is a P -event in ρ (say at time t), and there
is a Q-event in ρ with timestamp in (t, t+ 3).

Safety relative to the divergence of time. Recall that we require the timestamps of any infinite
timed word to be a strictly-increasing divergent sequence. Based upon this assumption, we
define safety properties in exactly the same way as in the qualitative case [AS87]; for example,
(2.1) is a safety property as any infinite timed word u′ violating ϕ must have a prefix u such
that there is a P -event in u with no Q-event in the following three time units. On the other
hand, had we allowed Zeno timed words, ϕ would not be safety as

({P}, 0)({P}, 1)({P}, 1 +
1

2
)({P}, 1 +

1

2
+

1

4
) . . .

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:9

violates ϕ without having a prefix that cannot be extended into an infinite timed word
satisfying ϕ. The notion we adopt here is called safety relative to the divergence of time in
the literature [HMP92].

The continuous semantics. Another way to interpret metric logics is to regard time as a
continuous entity; a behaviour of a system can thus be viewed as a continuous function.
Formally, a T-signal over finite alphabet Σ is a function f : T 7→ Σ that is finitely variable,
i.e., the restriction of f to a subinterval of T of finite length has only a finite number of
discontinuities. We refer to a T-signal simply as a signal when T = R≥0. With each signal
f over ΣP we associate a structure Mf . Its universe Uf is T. The order relation < and
monadic predicates in P are interpreted in the expected way, e.g., P (x) holds in Mf iff
P ∈ f(x). The binary distance predicate d(x, x′) ∼ c holds iff |x − x′| ∼ c. We write
Mf , t0, . . . , tn−1 |= ϑ(x0, . . . , xn−1) (or f, t0, . . . , tn−1 |= ϑ(x0, . . . , xn−1)) if t0, . . . , tn−1 ∈ Uf
and ϑ(t0, . . . , tn−1) holds in Mf . The notions of equivalence of formulas, expressiveness of
metric logics, etc. are defined as in the case of timed words.

The satisfaction relation for MTL over signals is defined as follows. We write f |= ϕ if
f, 0 |= ϕ.

Definition 2.8. The satisfaction relation f, t |= ϕ for an MTL formula ϕ, a signal f and
t ∈ Uf is defined as follows:
• f, t |= P iff P (t) holds in Mf

• f, t |= true
• f, t |= ϕ1 ∧ ϕ2 iff f, t |= ϕ1 and f, t |= ϕ2

• f, t |= ¬ϕ iff f, t 6|= ϕ
• f, t |= ϕ1 UI ϕ2 iff there exists t′ > t, t′ ∈ T such that f, t′ |= ϕ2, t′ − t ∈ I and f, t′′ |= ϕ1

for all t′′ with t < t′′ < t′

• f, t |= ϕ1 SI ϕ2 iff there exists t′ < t, t′ ∈ T such that f, t′ |= ϕ2, t− t′ ∈ I and f, t′′ |= ϕ1

for all t′′ with t′ < t′′ < t.

Relating the two semantics. Note that timed words can be regarded as a particular kind of
signal: for a given T-timed word ρ over ΣP , we can introduce a ‘silent’ monadic predicate Pε
and construct the corresponding T-signal fρ over ΣP′ , where P′ = P ∪ {Pε}, as follows:
• fρ(τi) = σi for all i, 0 ≤ i < |ρ|
• fρ(τi) = {Pε}.
This enables us to interpret metric logics over timed words ‘continuously’. We can thus
compare the expressiveness of metric logics in both semantics by restricting the models
of the continuous interpretations of metric logics to signals of this form (i.e., fρ for some
timed word ρ). For example, we say that continuous FO[<,+1] is at least as expressive
as pointwise FO[<,+1] since for each FO[<,+1] formula ϑpw (x), there is an ‘equivalent’
FO[<,+1] formula ϑcont(x) such that ρ, t |= ϑpw (x) iff fρ, t |= ϑcont(x).

Example 2.9. Consider the timed word ρ illustrated in Figure 4 where the red boxes denote
P -events. The MTLfut formula

ϕ = (=1 P)

does not hold at the beginning of ρ in the pointwise semantics (i.e., ρ 6|= ϕ) since there is no
event at exactly one time unit before the second event in ρ. On the other hand, ϕ holds at
the beginning of ρ in the continuous semantics (i.e., fρ |= ϕ) since there is a point (at which

13:10 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

Pε holds) at exactly one time unit before the second event in fρ. We can, however, simulate
the pointwise semantics with

ϕ′ =
(
¬Pε ∧

(
=1(¬Pε ∧ P)

))
,

for which we have π |= ϕ iff fπ |= ϕ′ for all timed words π.

ρ

0 0.5 1 1.5 2

Figure 4. The timed word ρ.

As we see in the example above, the pointwise and continuous interpretations of metric
logics differs in the range of first-order quantifiers. While the ability to quantify over time
points between events appears to increase the expressiveness of metric logics, this is not the
case for FO[<,+1] as both interpretations are indeed equally expressive (when one considers
only signals of the form fρ) [DHV07].7 By contrast, MTL is strictly more expressive in the
continuous semantics than in the pointwise semantics [PD06].

2.2. Model checking. A key advantage in using LTLfut (or LTL) in verification is that its
model-checking problem is PSPACE-complete [SC85], much better than the complexity of
the same problem for FO[<] (non-elementary [Sto74]). Given a Büchi automaton A that
models the system and a specification written as an LTLfut formula Φ, the corresponding
model-checking problem asks whether the language defined by A is included in the language
defined by Φ. By a fundamental result in verification—LTLfut formulas can be translated
into Büchi automata [WVS83]—this reduces to the emptiness problem on the product Büchi
automaton of A and the Büchi automaton B¬Φ translated from ¬Φ. The latter problem can
be solved, e.g., by a standard fixed-point algorithm [EL86]. This is sometimes called the
automata-theoretic approach to LTLfut model checking.

In the real-time setting, given a timed (Büchi) automaton A and a specification ϕ
(e.g., a formula of some metric logic), the corresponding model-checking problem asks
whether the timed (finite-word) language defined by A is included in the timed (finite-word)
language defined by ϕ. By analogy with the untimed case, one may solve this problem
by first translating ¬ϕ into a timed automaton A¬ϕ and then checking the emptiness of
the product of A and A¬ϕ. This methodology works for certain metric logics; for example,
each formula of MITLfut (the non-punctual fragment of MTLfut) can be translated into a
timed automaton, and the model-checking problem for timed automata against MITLfut is
EXPSPACE-complete [AFH96]. However, this does not apply to MTLfut as MTLfut formulas,
in general, cannot be translated into timed automata.

7The translation in [DHV07] also holds in a time-bounded setting with trivial modifications.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:11

2.3. Monitoring. The prefix problem [BKV13] asks the following: given a specification Φ
and a finite word u, do all infinite extensions of u satisfy Φ? If the answer is ‘yes’, then we
say that u′ is a good prefix for Φ. Similarly, u is a bad prefix for Φ if the answer to the dual
problem is ‘yes’, i.e., none of its infinite extensions satisfies Φ. The monitoring problem takes
instead a specification Φ and an infinite word u′ as inputs. In contrast to standard decision
problems, the latter input is given incrementally, i.e., one symbol at a time; a monitor (a
procedure that ‘solves’ the monitoring problem) is required to continuously check whether
the currently accumulated finite word u (a prefix of u′) is a good/bad prefix for Φ and report
as necessary.

3. Expressive completeness of MTL[U,S] over bounded timed words

In this section, we study the expressiveness of MTL (and its various fragments and extensions)
in a time-bounded pointwise setting, i.e., all timed words are assumed to have durations
less than a positive integer N . We first recall MTL EF games [PS11], which serves as our
main tool in proving expressiveness results. Then we demonstrate a strict hierarchy of metric
temporal logics (based on their expressiveness over bounded timed words) as we extend
MTLfut incrementally towards FO[<,+1]. Finally, we show that MTL, equipped with both the
forwards and backwards temporal modalities generalised ‘Until’ (UcI) and generalised ‘Since’
(Sc

I), has precisely the same expressive power as FO[<,+1] over bounded time domains in the
pointwise semantics. For the time-bounded satisfiability and model-checking problems, we
show that the relevant constructions (and hence the complexity bounds) for MTL in [ORW09]
carry over to our new logic MTL[U,S].

3.1. MTL EF games. Ehrenfeucht-Fraïssé games are handy tools in proving the inexpress-
ibility of certain properties in first-order logics. In many proofs in this section, we resort
to (extended versions of) Pandya and Shah’s MTL EF games on timed words [PS11], which
itself is a timed generalisation of Etessami and Wilke’s LTL EF games [EW96].

An m-round MTL EF game starts with round 0 and ends with round m. The game
is played by two players (Spoiler and Duplicator) on a pair of timed words ρ and ρ′.8 A
configuration is a pair of positions (i, j), respectively in ρ and ρ′. In each round r (0 ≤ r ≤ m),
the game proceeds as follows. Spoiler first checks whether the two events that correspond to
the current configuration (ir, jr) in ρ and ρ′ satisfy the same set of monadic predicates. If
this is not the case then he wins the game. Otherwise if r < m, Spoiler chooses an interval
I ⊆ (0,∞) with endpoints in N ∪ {∞} and plays either of the following moves:
• UI-move: Spoiler chooses one of the two timed words (say ρ). He then picks i′r such that
ir < i′r and τi′r − τir ∈ I where τi′r and τir are the corresponding timestamps in ρ (if there
is no such i′r then Duplicator wins the game). Duplicator must choose a position j′r in
ρ′ such that the difference of the corresponding timestamps in ρ′ is in I. If she cannot
find such a position then Spoiler wins the game. Otherwise, Spoiler plays either of the
following ‘parts’:
– -part : The game proceeds to the next round with (ir+1, jr+1) = (i′r, j

′
r).

– U-part : If j′r = jr + 1 the game proceeds to the next round with (ir+1, jr+1) = (i′r, j
′
r). If

i′r = ir + 1 but j′r 6= jr + 1 then Spoiler wins the game. Otherwise Spoiler picks another
position j′′r in ρ′ such that jr < j′′r < j′r. Duplicator have to choose a position i′′r in ρ

8We follow the convention that Spoiler is male and Duplicator is female.

13:12 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

such that ir < i′′r < i′r in response. If she cannot find such a position then Spoiler wins
the game; otherwise the game proceeds to the next round with (ir+1, jr+1) = (i′′r , j

′′
r).

• SI-move: Defined symmetrically.
We say that Duplicator has a winning strategy for the m-round MTL EF game on ρ and ρ′
that starts from configuration (i, j) if and only if, no matter how Spoiler plays, he cannot
win the m-round MTL EF game on ρ and ρ′ with (i0, i0) = (i, j). If this is not the case then
we say that Spoiler has a winning strategy.

It is obvious that the moves in MTL EF games are closely related to the semantics of
modalities in MTL formulas. For example, the UI -move can be seen as Spoiler ’s attempt to
verify that a formula of the form ϕ1 UI ϕ2 holds at ir in ρ if and only if it holds at jr in
ρ′: the -part and the remaining rounds verify that ϕ2 holds at i′r in ρ iff it holds at j′r in
ρ′, whereas the U-part and the remaining rounds verify that ϕ1 holds at all i′′r , ir < i′′r < i′r
in ρ iff it holds at all j′′r , jr < j′′r < j′r in ρ′. Formally, the following theorem relates the
number of rounds of MTL EF games to the modal depth (i.e., the maximal depth of nesting
of modalities) of MTL formulas.

Theorem 3.1 [PS11]. For (finite) timed words ρ, ρ′ and an MTL formula ϕ of modal depth
≤ m, if Duplicator has a winning strategy for the m-round MTL EF game on ρ, ρ′ with
(i0, j0) = (0, 0), then

ρ |= ϕ ⇐⇒ ρ′ |= ϕ .

In other words, ρ, ρ′ can be distinguished by an MTL formula of modal depth ≤ m if
and only if Spoiler has a winning strategy for the m-round MTL EF game on ρ, ρ′ with
(i0, j0) = (0, 0). Note that specialised versions of Theorem 3.1 also hold for sublogics of MTL;
for example, the corresponding theorem for MTLfut is obtained by banning the SI -move.

Example 3.2. Consider the timed words ρ and ρ′ illustrated in Figure 5 where the white,
red and blue boxes represent events at which no monadic predicate holds, P -events, and
Q-events, respectively. The positions are labelled above the events.

ρ

ρ′

0 1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

Figure 5. ρ and ρ′ can be distinguished by P U Q.

In the 1-round MTL EF game on ρ, ρ′ with (i0, j0) = (0, 0), a winning strategy for Spoiler
can be described as follows:
(1) The two events that correspond to (i0, j0) = (0, 0) in ρ and ρ′ satisfy the same set of

monadic predicates, so Spoiler does not win here.
(2) Spoiler chooses I = (0,∞) and i′0 = 6 in ρ.
(3) If Duplicator chooses j′0 6= 6 in ρ′, she will lose at the beginning of round 1. So she

chooses j′0 = 6.
(4) Spoiler plays the U-part and chooses j′′0 = 3 in ρ′.
(5) Duplicator can only choose i′′0 in ρ such that 1 ≤ i′′0 ≤ 5. But she will then lose at the

beginning of round 1.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:13

It follows that there is an MTL formula of modal depth 1 that distinguishes ρ and ρ′. One
such formula is P U Q, which can be obtained from Spoiler ’s winning strategy above.

3.2. A hierarchy of expressiveness. We now present a sequence of successively more
expressive extensions of MTLfut over bounded timed words. The technique we use here is to
construct two families of models—parametrised by m—such that there is a certain formula
of the more expressive logic telling them apart for all m, yet they cannot be distinguished by
any formula of the less expressive logic with modal depth ≤ m (i.e., Duplicator has a winning
strategy in the corresponding m-round MTL EF game). Along the way we highlight the key
features that give rise to the differences in expressiveness. The necessity of new modalities is
justified by the fact that no known extension can lead to expressive completeness.

Definability of the beginning of time. Recall that MTLfut and FO[<,+1] have the same
expressiveness over [0, N)-signals [ORW09]. This result fails in the pointwise semantics.

Proposition 3.3 (Corollary of [PD06, Section 8]). MTL is strictly more expressive than
MTLfut over [0, N)-timed words.9

To explain this discrepancy between the two semantics, observe that a distinctive feature
of the continuous interpretation of MTLfut is exploited in [ORW09]: in any [0, N)-signal, the
formula =(N−1) true holds in [0, 1) and nowhere else. One can make use of conjunctions
of similar formulas to determine the integer part of the current instant (where the relevant
formula is being evaluated). Unfortunately, since the duration of a given bounded timed
word is not known a priori, this trick does not work for MTLfut in the pointwise semantics.
For example, the formula =1 true does not hold at any position in the [0, 2)-timed word
ρ = (σ0, 0)(σ1, 0.5). However, the same effect can be achieved in MTL by using past modalities.
Let

ϕi,i+1 = [i,i+1)(¬ true)

and Φint = {ϕi,i+1 | i ∈ N}. Note that the subformula ¬ true can only hold at the very
first event (with timestamp 0), thus ϕi,i+1 holds only at events with timestamps in [i, i+ 1).
Denote by MTLfut[Φint] the extension of MTLfut obtained by allowing these formulas as atomic
formulas. It turned out that this very restrictive use of past modalities strictly increases the
expressiveness of MTLfut over bounded timed words. Indeed, the main result of this section
(Theorem 3.15) crucially depends on the use of these formulas.

Proposition 3.4. MTLfut[Φint] is strictly more expressive than MTLfut over [0, N)-timed
words.

Proof. For a given m ∈ N, we construct the following models:
Am = (∅, 0)(∅, 1− 1.5

2m+5)(∅, 1− 0.5
2m+5) . . . (∅, 1 + m+2.5

2m+5) ,

Bm = (∅, 0)(∅, 1− 0.5
2m+5)(∅, 1 + 0.5

2m+5) . . . (∅, 1 + m+3.5
2m+5) .

The models are illustrated in Figure 6, where each white box represents an event (at
which no monadic predicate holds). We play an m-round MTL EF game on Am, Bm and allow
only UI -move. After round 0, either (i) i1 = j1 ≥ 1 (in which case Duplicator can, obviously,
win the remaining rounds) or (ii) (i1, j1) = (2, 1) (Spoiler chooses position 2 in Am) or
(i1, j1) = (3, 2) (Spoiler chooses position 2 in Bm). In the latter case, it is easy to verify that in

9The models constructed in [PD06, Section 8] are bounded timed words.

13:14 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

Am

Bm
0 1 1.5 2

Figure 6. Models Am and Bm.

any remaining round r, Duplicator can make ir+1 = jr+1 ≥ 1 or (ir+1, jr+1) = (ir + 1, jr + 1).
It follows from the MTL EF Theorem that no MTLfut formula of modal depth ≤ m can
distinguish Am and Bm; however, the formula

(0,1)(ϕ0,1 ∧ ϕ0,1) ,

which says “in the next time unit there are two events with timestamps in [0, 1)”, distinguishes
Am and Bm for any m ∈ N (when evaluated at position 0).

Past modalities. The conservative extension above uses past modalities in a very restricted
way. This is not sufficient for obtaining the full expressiveness of MTL: the following
proposition says that non-trivial nesting of future modalities and past modalities gives more
expressiveness.

Proposition 3.5. MTL is strictly more expressive than MTLfut[Φint] over [0, N)-timed words.

Proof. For a given m ∈ N, we construct
Cm = (∅, 0)(∅, 0.5

2m+3)(∅, 1.5
2m+3) . . . (∅, 2− 0.5

2m+3) .

Dm is constructed as Cm except that the event at time m+1.5
2m+3 = 0.5 is missing.

Cm

Dm
0 1 2

Figure 7. Models Cm and Dm.

The models are illustrated in Figure 7, where each white box represents an event (at
which no monadic predicate holds). We play an m-round MTL EF game on Cm and Dm,
allowing only UI -move. For simplicity, assume that we can use special monadic predicates to
refer to formulas in Φint . In each round r, Duplicator can either make (i) ir+1 = jr+1 + 1
and ir+1 ≥ m+ 3 (in which case she can win the remaining rounds) or (ii) ir+1 = jr+1 and
ir+1 is not equal to 2m+ 2, 2m+ 3 or 4m+ 5. It follows from the MTL EF Theorem that no
MTLfut[Φint] formula of modal depth ≤ m can distinguish Cm and Dm; but the formula

(1,2)(=1 true) ,

which says “for each event in (1, 2) from now, there is a corresponding event exactly 1 time
unit earlier”, distinguishes Cm and Dm for any m ∈ N (when evaluated at position 0).

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:15

Counting modalities. The modality Cn(x,X) asserts that X holds at least at n points in
the open interval (x, x + 1). The modalities Cn for n ≥ 2 are called counting modalities.
It is well-known that these modalities are not expressible in MTL over signals [HR07]. For
this reason, they (and variants thereof) are often used to prove inexpressiveness results for
various metric logics. For example, the following property
• P holds at an event at time y in the future
• Q holds at an event at time y′ > y
• R holds at an event at time y′′ > y′ > y
• Both the Q-event and the R-event are within (1, 2) from the P -event
can be expressed as the FO[<,+1] formula

ϑpqr (x) = ∃y
(
x < y ∧ P (y) ∧ ∃y′

(
y < y′ ∧ d(y, y′) > 1 ∧ d(y, y′) < 2 ∧Q(y′)

∧ ∃y′′
(
y′ < y′′ ∧ d(y, y′′) > 1 ∧ d(y, y′′) < 2 ∧R(y′′)

)))
,

yet it has no equivalent in MTL over timed words [PS11]. The difficulty here is that
while we can easily write ‘there is a Q-event within (1, 2) from a P -event in the future’ as

(P ∧ (1,2)Q), it is not possible to express ‘there is a R-event after the Q-event’ and ‘that
R-event is within (1, 2) from the P -event’ simultaneously in MTL. Indeed, it was shown
recently that in the continuous semantics, MTL extended with counting modalities and
their past counterparts (which we denote by MTL[{Cn,

←
Cn}∞n=2]) is expressively complete

for FO[<,+1] [Hun13]. In other words, counting modalities are exactly what separates the
expressiveness of MTL and FO[<,+1] in the continuous semantics. In the time-bounded
pointwise case, however, they add no expressiveness to MTL. To see this, observe that the
following formula is equivalent to ϑpqr (x) over [0, N)-timed words (we make use of the
formulas in Φint defined earlier):(∨

0≤i≤N−1

(
P ∧ ϕi,i+1 ∧

(
>1

(
Q ∧ (R ∧ ϕi+1,i+2)

)︸ ︷︷ ︸
Case (i)

∨ <2

(
R ∧ ϕi+2,i+3 ∧ (Q ∧ ϕi+2,i+3)

)︸ ︷︷ ︸
Case (ii)

∨
(

>1(Q ∧ ϕi+1,i+2) ∧ <2(R ∧ ϕi+2,i+3)
)︸ ︷︷ ︸

Case (iii)

)))
.

The three cases that correspond to the subformulas are illustrated in Figure 8 where time is
measured relative to the very first event (with timestamp 0). Note how we use the ‘integer
boundaries’ as an alternative distance measure and thus ensure that both the Q-event and
the R-event are within (1, 2) from the P -event.

The same idea can readily be generalised to handle counting modalities and their past
counterparts. We therefore have the following proposition.

Proposition 3.6. MTL is expressively complete for MTL[{Cn,
←
Cn}∞n=2] over [0, N)-timed

words.

13:16 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

i i+ 1 i+ 2

i i+ 1 i+ 2

i i+ 1 i+ 2

Case (i)

Case (ii)

Case (iii)

d d d

d d d

d d d

Figure 8. Counting modalities is expressible in MTL over [0, N)-timed words.
The red, blue, and green boxes represent P -events, Q-events, and R-events
respectively.

Non-local properties (one reference point). Proposition 3.6 shows that a part of the expressive-
ness hierarchy of metric logics over (R≥0-)timed words collapses in a time-bounded pointwise
setting. Nonetheless, MTL is still not expressive enough to capture the whole of FO[<,+1]
in such a setting. Recall that another feature of the continuous interpretation of MTLfut used
in the proof in [ORW09] is that =k ϕ holds at t iff ϕ holds at t+ k. Suppose that we want
to specify the following property over P = {P,Q} for some positive integer a (let the current
instant be t1):
• There is an event at time t2 > t1 + a where Q holds
• P holds at all events in (t1 + a, t2).
In the continuous semantics, the property can easily be expressed as the following MTLfut
formula

ϕcont1 = =a

(
(P ∨ Pε) U Q

)
over signals of the form fρ (over ΣP′ where P′ = P ∪ {Pε}); see Figure 9 for an example
where the formula ϕcont1 holds at t1 in the continuous semantics.

t1 t1 + a t2

Figure 9. ϕcont1 holds at t1 in the continuous semantics. The red boxes
denote P -events and the blue boxes denote Q-events.

Essentially, when the current instant is t1, the continuous interpretation of MTL allows
one to speak of events ‘from’ t1 +a, regardless of whether there is an actual event at t1 +a. As
we will show, it is not possible to do the same with the pointwise interpretation of MTL when
there is no event at t1 +a. To remedy this issue within the pointwise semantic framework, we
introduce a simple family of modalities B→I (‘Beginning’) and their past versions B←I . They
can be used to refer to the first (earliest or latest, respectively) event in a given interval. For

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:17

example, we define the modality that asserts “X holds at the first event in (a, b) relative to
the current instant” as the following FO[<,+1] formula:

B→(a,b)(x,X) = ∃x′
(
x < x′ ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X(x′)

∧ @x′′
(
x < x′′ ∧ x′′ < x′ ∧ d(x, x′′) > a

))
.

The property above can now be written as B→(a,∞)

(
Q ∨ (P U Q)

)
in the pointwise semantics.

We refer to the extension of MTL with B→I ,B←I as MTL[B�].10 The following proposition
states that this extension is indeed non-trivial.

Proposition 3.7. MTL[B�] is strictly more expressive than MTL over [0, N)-timed words.

Proof. The proof we give here is inspired by a proof in [PS11, Section 5]. Given m ∈ N, we
describe models Em and Fm that are indistinguishable by MTL formulas of modal depth ≤ m
but distinguishing in MTL[B�].

We first describe Fm. Let g = 1
2m+6 and pick positive ε < g

1
g
−1

. The first event (at

time 0) satisfies ¬P ∧ ¬Q. Then, a sequence of overlapping segments (arranged as described
below) starts at time 0.5

2m+5 ; see Figure 10 for an illustration of a segment. Each segment
consists of an event satisfying P ∧ ¬Q and an event satisfying ¬P ∧Q (we refer to them as
P -events and Q-events, respectively). If the P -event in the ith segment is at time t, then
its Q-event is at time t+ 2g + 1

2ε. All P -events in neighbouring segments are separated by
g − g

1
g
−1

. We put a total of 4m+ 12 segments.

g g ε

Figure 10. A single segment in Fm. The red box denotes a P -event and
the blue box denotes a Q-event.

Em is almost identical to Fm except the (3m+ 9)th segment. Let this segment start at
t3m+9. In Em, we move the corresponding Q-event to t+ 2g − 1

2ε (see Figure 11). Note in
particular that there are P -events at time 0.5 in both models (in their (m+ 4)th segment).

The only difference in two models is a pair of Q-events, which we denote by x and y
respectively and write their corresponding timestamps as tx and ty (see Figure 11). It is easy
to verify that no two events are separated by an integer distance. We say a configuration
(i, j) is identical if i = j. For i ≥ 1, we denote by seg(i) the segment that the ith event
belongs to, and we write P (i) if the ith event is a P -event and Q(i) if its a Q-event.

Proposition 3.8. Duplicator has a winning strategy for m-round MTL EF game on Em and
Fm with (i0, j0) = (0, 0). In particular, she has a winning strategy such that for each round
0 ≤ r ≤ m, the ithr event in Em and the jthr event in Fm satisfy the same set of monadic
predicates and

10Readers may find the modalities B→I similar to the modalities .I in Event-Clock Logic [HRS98]. The
difference is that the formula B→I ϕ requires ϕ to hold at the first event in I, whereas the formula .Iϕ requires
(i) ϕ to hold at some event in I and that (ii) ϕ does not hold at any other event between the current instant
and the time of that event.

13:18 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

Em

Fm
t3m+9 1.50.50

y′ y

x x′

g − g
1
g
−1

g g

Figure 11. A close-up near the (3m+ 9)th -segments in Em and Fm.

• if ir 6= jr, then
– seg(ir)− seg(jr) < r
– (m + 1 − r) < seg(ir), seg(jr) < (m + 5 + r) or (3m + 8 − r) < seg(ir), seg(jr) <

(3m+ 12 + r).

We prove the proposition by induction on r. The idea is to try to make the resulting
configurations identical. When this is not possible Duplicator simply imitates what Spoiler
does.
• Base step. The proposition holds trivially for (i0, j0) = (0, 0).
• Induction step. Suppose that the claim holds for r < m. We prove it also holds for r + 1.
– (ir, jr) = (0, 0):
Duplicator can always make (ir+1, jr+1) identical.

– (ir, jr) 6= (0, 0) is identical:
Duplicator tries to make (i′r, j

′
r) identical. This may only fail when

∗ P (ir), P (jr) and seg(ir) = seg(jr) = m+ 4.
∗ Q(ir), Q(jr) and seg(ir) = seg(jr) = 3m+ 9, i.e., x and y.
In these cases, Duplicator chooses another event in a neighbouring segment that minimises
|seg(i′r)− seg(j′r)|. For example, if (ir, jr) corresponds to x and y and Spoiler chooses
j′r such that P (j′r) and seg(j′r) = m + 4 in a S(1,∞)-move, Duplicator chooses i′r with
seg(i′r) = m+ 3. If Spoiler then plays -part, the resulting configuration (ir+1, jr+1) =
(i′r, j

′
r) clearly satisfy the claim. If she plays S-part, Duplicator makes (i′′r , j

′′
r) identical

whenever possible. Otherwise she chooses a suitable event that minimises |seg(i′′r) −
seg(j′′r)|. For instance, if Q(i′′r) and seg(i′′r) = m + 1, Duplicator chooses j′′r such that
Q(j′′r) and seg(j′′r) = m+ 2. The resulting configuration (ir+1, jr+1) = (i′′r , j

′′
r) clearly

satisfies the claim.
– (ir, jr) is not identical:
Duplicator tries to make (i′r, j

′
r) identical. If this is not possible, then Duplicator chooses

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:19

an event that minimises |seg(i′r) − seg(j′r)|. For example, consider seg(ir) = m + 4,
seg(jr) = m + 3 such that P (ir) and P (jr), and Spoiler chooses x in an U(0,1)-move.
In this case, Duplicator cannot choose y′, but she may choose the first Q-event that
happens before y′. Duplicator responds to U -parts and S-parts in similar ways as before.
It is easy to see that the claim holds.

Proposition 3.7 now follows from Proposition 3.8, the MTL EF Theorem, and the fact that
Em |= (P ∧ B→(1,2)P) but Fm 6|= (P ∧ B→(1,2)P).

Non-local properties (two reference points). Adding modalities B→I ,B←I to MTL allows one to
specify properties with respect to a distant time point even when there is no event at that
point. However, the following proposition shows that this is still not enough for expressive
completeness.

Proposition 3.9. FO[<,+1] is strictly more expressive than MTL[B�] over [0, N)-timed
words.

Proof. This is similar to a proof in [PD06, Section 7]. Given m ∈ N, we construct two models
as follows. Let

Gm = (∅, 0)(∅, 0.5
2m+3)(∅, 1.5

2m+3) . . . (∅, 1− 0.5
2m+3)

(∅, 1 + 0.5
2m+2)(∅, 1 + 1.5

2m+2) (∅, 2− 0.5
2m+2) .

Hm is constructed as Gm except that the event at time m+1.5
2m+3 = 0.5 is missing.

Gm

Hm
0 1 2

Figure 12. Models Gm and Hm for m = 2.

Figure 12 illustrates the models for the case m = 2 where white boxes represent events
at which no monadic predicate holds. Observe that no two events are separated by an integer
distance. We say that a configuration (i, j) is synchronised if they correspond to events with
the same timestamp. Here we extend MTL EF games with the following moves to obtain
MTL[B�] EF games:
• B→I -move: Spoiler chooses one of the two timed words (say ρ) and picks i′r such that (i)
τi′r − τir ∈ I in ρ and (ii) there is no position i′ < i′r in ρ such that τi′ − τir ∈ I. Duplicator
must choose a position j′r in ρ′ such that j′r is the first position in I relative to jr in ρ′. If
she cannot find such a position then Spoiler wins the game.
• B←I -move: Defined symmetrically.

Theorem 3.10 (MTL[B�] EF Theorem). For (finite) timed words ρ, ρ′ and an MTL[B�]
formula ϕ of modal depth ≤ m, if Duplicator has a winning strategy for the m-round
MTL[B�] EF game on ρ, ρ′ with (i0, j0) = (0, 0), then

ρ |= ϕ ⇐⇒ ρ′ |= ϕ .

13:20 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

Proposition 3.11. Duplicator has a winning strategy for m-round MTL[B�] EF game on
Gm and Hm with (i0, j0) = (0, 0). In particular, she has a winning strategy such that for
each round 0 ≤ r ≤ m, the ithr event in Gm and the jthr event in Hm satisfy the same set of
monadic predicates and
• if (ir, jr) is not synchronised, then

– |ir − jr| = 1
– (m+ 1− r) < ir, jr < (m+ 3 + r) or (3m+ 4− r) < ir, jr < (3m+ 5 + r).

We prove the proposition by induction on r. The idea, again, is to try to make the resulting
configurations identical.
• Base step. The proposition holds trivially for (i0, j0) = (0, 0).
• Induction step. Suppose that the claim holds for r < m. We prove it also holds for r + 1.
– (ir, jr) = (0, 0):
Duplicator tries to make (i′r, j

′
r) synchronised. If Spoiler chooses i′r = m+ 2, Duplicator

chooses either j′r = m+ 1 or j′r = m+ 2.
– (ir, jr) 6= (0, 0) is synchronised:
Duplicator tries to make (i′r, j

′
r) synchronised. If this is not possible then Duplicator

chooses a suitable event that minimises |i′r − j′r|. It is easy to see that the resulting
configuration (ir+1, jr+1) satisfies the claim regardless of how Spoiler plays.

– (ir, jr) is not synchronised:
The strategy of Duplicator is same as the case above.

Proposition 3.9 now follows from Proposition 3.11, Theorem 3.10, and the fact that the
FO[<,+1] formula

∃x′
(
d(x, x′) > 1 ∧ d(x, x′) < 2 ∧ ∃x′′

(
x′ < x′′ ∧ @y′ (x′ < y′ ∧ y′ < x′′)

∧ d(x, x′′) > 1 ∧ d(x, x′′) < 2

∧ @y′′
(
d(x′, y′′) < 1 ∧ d(x′′, y′′) > 1

)))
distinguishes Gm and Hm for any m ∈ N (when evaluated at position 0). This formula asserts
that there is a pair of neighbouring events in (1, 2) such that there is no event between them
if they are both mapped to exactly one time unit earlier.

One way to understand why MTL[B�] is still less expressive than FO[<,+1] is to consider
the arity of modalities. Let the current instant be t1, and suppose that we want to specify
the following property for some positive integers a and c (a > c):11

• There is an event at t2 > t1 + a where Q holds
• P holds at all events in

(
t1 + c, t1 + c+ (t2 − t1 − a)

)
.

See Figure 13 for an example. In the continuous semantics, this property can be expressed
as the following simple formula over signals of the form fρ:

ϕcont2 =
(

=c(P ∨ Pε)
)
U (=aQ) .

Observe how this formula talks about events from two (instead of just one) time points:
t1 + c and t1 + a. In the same vein, the following formula can be used to distinguish Gm and

11We remark that a closely related yet different property is used in [LW08] to show that one-clock
alternating timed automata and timed automata are expressively incomparable.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:21

t1 t1 + c t1 + a t2

t2 − t1 − a t2 − t1 − a

Figure 13. ϕcont2 holds at t1 in the continuous semantics. The red boxes
denote P -events and the blue boxes denote Q-events.

Hm (defined in the proof of Proposition 3.9) in the continuous semantics:

ϕcont3 = (1,2)

(
¬Pε ∧ (=1 Pε) U (¬Pε)

)
.

Indeed, to express such properties in the pointwise semantics, we need binary variants of
B→I ,B←I , which are exactly what we propose in the next section.

3.3. New modalities. We define a family of modalities which can be understood as
generalisations of the usual ‘Until’ and ‘Since’ modalities. Intuitively, these new modal-
ities closely mimic the meanings of formulas of the form (=k1

ϕ1) U<k3 (=k2
ϕ2) or

(=k1
ϕ1) S<k3 (=k2

ϕ2) in the continuous semantics.

Generalised ‘Until’ and ‘Since’ . Let I ⊆ (0,∞) be an interval with endpoints in N ∪ {∞}
and c ∈ N, c ≤ inf(I). The formula ϕ1 U

c
I ϕ2, when imposed at t1, asserts that

• There is an event at t2 where ϕ2 holds and t2 − t1 ∈ I

• ϕ1 holds at all events in the open interval
(
t1 + c, t1 + c+

(
t2 −

(
t1 + inf(I)

)))
.

For example, the formula P Uc(a,∞) Q (which is ‘equivalent’ to ϕcont2 when the latter is
interpreted over signals of the form fρ) holds at time t1 in Figure 13. Formally, for
I = (a, b) ⊆ (0,∞), a ∈ N, b ∈ N ∪ {∞} and c ∈ N with c ≤ a, we define the generalised
‘Until’ modality Uc(a,b) by the following FO[<,+1] formula:

Uc(a,b)(x,X1, X2) = ∃x′
(
x < x′ ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X2(x′)

∧ ∀x′′
(
x < x′′ ∧ d(x, x′′) > c ∧ x′′ < x′

∧ d(x′, x′′) > (a− c) =⇒ X1(x′′)
))
.

Symmetrically, we define the generalised ‘Since’ modality Sc
(a,b) as

Sc
(a,b)(x,X1, X2) = ∃x′

(
x′ < x ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X2(x′)

∧ ∀x′′
(
x′′ < x ∧ d(x, x′′) > c ∧ x′ < x′′

∧ d(x′, x′′) > (a− c) =⇒ X1(x′′)
))
.

We also define the modalities for I ⊆ (0,∞) being a half-open interval or a closed interval
in the expected way and refer to the logic obtained by adding these modalities to MTL as
MTL[U,S]. Note that the usual ‘Until’ and ‘Since’ modalities can be written in terms of the
generalised modalities. For instance,

ϕ1 U(a,b) ϕ2 = ϕ1 U
a
(a,b) ϕ2 ∧ ¬

(
true U0

(0,a] (¬ϕ1)
)
.

13:22 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

More liberal bounds. In defining modalities Uc(a,b) and Sc
(a,b) we required that 0 ≤ c ≤ a.

We now show that more liberal uses of bounds (constraining intervals and superscript ‘c’)
are indeed syntactic sugars, and we therefore allow them in the rest of this section. For
instance, suppose that we want to to assert the following property (which translates to(

=10(ϕ1 ∨ Pε)
)
U<3 (=2 ϕ2) in the continuous semantics) at t1:

• There is an event at t2 where ϕ2 holds and t2 − t1 ∈ (2, 5)
• ϕ1 holds at all events in

(
t1 + 10, t1 + 10 + (t2 − t1 − 2)

)
.

This can be expressed in FO[<,+1] as

∃x′
(
x < x′ ∧ d(x, x′) > 2 ∧ d(x, x′) < 5 ∧X2(x′)

∧ ∀x′′
(
x < x′′ ∧ d(x, x′′) > 10 ∧ d(x′, x′′) < 8 =⇒ X1(x′′)

))
where X1, X2 are to be substituted with ϕ1, ϕ2. While we could define a modality

U10
(2,5)(x,X1, X2)

by this formula, this is not necessary as the formula is indeed equivalent to

(2,5) ϕ2 ∧ ¬
(

(¬ϕ2) U2
(10,13)

(
¬ϕ1 ∧ ¬(=8 ϕ2)

))
.

In the continuous semantics we can, of course, also refer points in the past in such formulas,
e.g., (=k1

ϕ1) U<k3 (=k2
ϕ2). We now generalise the idea above to handle these cases.

Proposition 3.12. Let the current instant be t1. The property (and its past counterpart):
• There is an event at t2 where ϕ2 holds and t2 − t1 ∈ I

• ϕ1 holds at all events in
(
t1 + c, t1 + c+

(
t2 −

(
t1 + inf(I)

)))
where I ⊆ (−∞,∞), inf(I) ∈ Z, sup(I) ∈ Z ∪ {∞} and c ∈ Z can be expressed with the
modalities defined earlier (i.e., UcI ,S

c
I with I ⊆ (0,∞) and c ≤ inf(I)).

Proof. Without loss of generality, we shall only focus on expressing the future version of
the property for the case of I being an open interval. To ease the presentation, we use the
following convention in all the illustrations in this proof: the red boxes denote ϕ1-events,
blue boxes denote ϕ2-events, and white boxes denote events where neither ϕ1 nor ϕ2 hold.
We prove the claim in each of the following cases:
• a ≥ 0 and 0 ≤ c ≤ a: This corresponds to the standard version of UcI that we have already
defined.
• a ≥ 0 and c > a: ϕ1 U

c
(a,b) ϕ2 does not hold at t1 if and only if one of the following holds

at t1:
– There is no ϕ2-event in (t1 + a, t1 + b): This can be enforced by

¬((a,b) ϕ2) .

– ¬ϕ1 holds at an event at t3 ∈
(
t1 + c, t1 + c + (b − a)

)
and there is no ϕ2-event in

(t1 + a, t1 + a+ (t3 − t1 − c)]: This can be enforced by

(¬ϕ2) Ua(
c,c+(b−a)

) (¬ϕ1 ∧ ¬(=(c−a) ϕ2)︸ ︷︷ ︸
ψ

)
.

We need the subformula ψ to ensure that there is no ϕ2-event at t1 + a+ (t3 − t1 − c).
The desired formula is the conjunction of the negations of these two formulas.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:23

t1 t1 + a t1 + b t1 + c t3

t3 − t1 − c t3 − t1 − c

• a ≥ 0 and c < 0: Let t2 be the first time instant in (t1 +a, t1 + b) where there is a ϕ2-event.
Consider the following subcases:
– There is no event in

(
t1, t1 + (t2 − t1 − a)

)
: This can be enforced by

ϕ = false U0
(a,b) ϕ2 .

Then we can enforce that ϕ1 holds at all events in 1 in the illustration below by

ϕ′ = (¬ϕ2) Ua(a,b)
(
ϕ2 ∧ (ϕ1 S

a+|c|
(a,b) true)︸ ︷︷ ︸
ψ′

)
.

Observe that the subformula ψ′ must hold at t2 if ϕ1 holds at all events in 1 . This is
because, by assumption, there must be an event at t1.

t1 + c t1 t1 + a t2

t1 + b

1

t2 − t1 − a t2 − t1 − a

– There are events in
(
t1, t1 + (t2− t1− a)

)
: In this case, ϕ′ can only ensure that ϕ1 holds

at all events in 2 (see the illustration below where d1 + d2 = t2 − t1 − a). We can
enforce that ϕ1 holds at all events in 1 by

ϕ′′ = ψ′′ U (ϕ ∧ ψ′′)
where

ψ′′ = (ϕ1 S
|c|
(0,b−a) true)︸ ︷︷ ︸
ψ′′′

∧¬(=|c| ¬ϕ1) .

It is easy to see that ϕ must hold at the last event in
(
t1, t1 + (t2 − t1 − a)

)
. The

correctness of our use of the subformula ψ′′′ here again depends on the fact that there is
an event at t1.

t1 + c t1 t1 + a t2

t1 + b

1 2

d1 d2 d1 d2

The desired formula is ϕ′ ∧ (ϕ ∨ ϕ′′).

13:24 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

• a < 0 and c ≥ 0: Without loss of generality we assume a < b < 0. Similar to the case
a ≥ 0 and c > a above, the desired formula is

(|b|,|a|) ϕ2 ∧ ¬
(

(¬ϕ2) Ua(
c,c+(b−a)

) (¬ϕ1 ∧ ¬(=(c−a) ϕ2)
))
.

• a < 0 and c ≤ a: Without loss of generality we assume a < b < 0. Let t2 be the first time
instant in (t1 + a, t1 + b) where there is a ϕ2-event. Similar to the case a ≥ 0 and c < 0
above, consider the following subcases:
– There is no event in

(
t1, t1 + (t2 − t1 − a)

)
: We enforce that ϕ1 holds at all events in

1 in the illustration below by

ϕ′′′ = false U0
(a,b)

(
ϕ2 ∧ (ϕ1 S

a+|c|
(a,b) true)

)
.

t1 + c t1 + a

t1 + b

t2 t1

1

t2 − t1 − a t2 − t1 − a

– There are events in
(
t1, t1 + (t2 − t1 − a)

)
: We enforce that ϕ1 holds at all events in 1

and 2 in the illustration below (in which d1 + d2 = t2 − t1 − a) by

(|b|,|a|) ϕ2 ∧
(
ψ′′ U (ϕ′′′ ∧ ψ′′)

)
,

where ψ′′ is defined in the case a ≥ 0 and c < 0 above.

t1 + c t1 + a

t1 + b

t2 t1

1 2

d1 d2 d1 d2

The desired formula is the disjunction of these two formulas.
• a < 0 and a < c < 0: Without loss of generality we assume a < b < 0. The desired formula
is identical to the formula in the case a < 0 and c ≥ 0 above.

We can now give an MTL[U,S] formula that distinguishes, in the pointwise semantics, the
models Gm and Hm in the proof of Proposition 3.9:

(1,2)

(
true ∧ (false U−1

>0 true)
)
.

This formula is ‘equivalent’ to the formula ϕcont3 which distinguishes Gm and Hm in the
continuous semantics.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:25

3.4. The translation. We now give a translation from an arbitrary FO[<,+1] formula with
a single free variable into an equivalent MTL[U,S] formula over [0, N)-timed words. Our
proof strategy closely follows [ORW09]: first convert the formula into a non-metric formula,
then translate this formula into LTL, and finally construct an MTL[U,S] formula equivalent to
the original formula. The crux of the translation is a ‘stacking’ bijection between [0, N)-timed
words over ΣP and a set of [0, 1)-timed words over an extended alphabet. Roughly speaking,
since the time domain is bounded, we can encode the integer parts of timestamps with a
bounded number of new monadic predicates. This enables us to work instead with ‘stacked’
[0, 1)-timed words, in which only the ordering of events are relevant.

Stacking bounded timed words. For each monadic predicate P ∈ P, we introduce fresh
monadic predicates Pi, 0 ≤ i ≤ N − 1 and let the set of all these new monadic predicates
be P. The intended meaning is that for x ∈ [0, 1), Pi(x) holds in a stacked [0, 1)-timed
word iff P holds at time i+ x in the corresponding [0, N)-timed word. We also introduce
Q = {Qi | 0 ≤ i ≤ N − 1} such that for x ∈ [0, 1), Qi(x) holds in a stacked [0, 1)-timed
word iff there is an event at time i+ x in the corresponding [0, N)-timed word, regardless of
whether any P ∈ P holds there. Let

ϑevent = ∀x

 ∨
0≤i≤N−1

Qi(x)

 ∧ ∀x
 ∧

0≤i≤N−1

(
Pi(x) =⇒ Qi(x)

)
and ϑinit = ∃x

(
@x′ (x′ < x) ∧Q0(x)

)
. There is an obvious ‘stacking’ bijection (indicated by

overlining) between [0, N)-timed words over ΣP and [0, 1)-timed words over ΣP∪Q satisfying
ϑevent ∧ ϑinit . For a concrete example, the stacked counterpart of the [0, 2)-timed word

ρ = ({A}, 0)({A,C}, 0.3)({B}, 1)({B,C}, 1.5)

with P = {A,B,C} is the [0, 1)-timed word:

ρ = ({Q0, Q1, A0, B1}, 0)({Q0, A0, C0}, 0.3)({Q1, B1, C1}, 0.5) .

Stacking FO[<,+1] formulas. Let ϑ(x) be an FO[<,+1] formula with a single free variable
x where each quantifier uses a fresh new variable. Without loss of generality, we assume
that ϑ(x) contains only existential quantifiers (this can be achieved by syntactic rewriting).
Replace the formula by(

Q0(x) ∧ ϑ[x/x]
)
∨
(
Q1(x) ∧ ϑ[x+ 1/x]

)
∨ . . . ∨

(
QN−1(x) ∧ ϑ[x+ (N − 1)/x]

)
where ϑ[e/x] denotes the formula obtained by substituting all free occurrences of x in ϑ by
(an expression) e. Then, similarly, recursively replace every subformula ∃x′ θ by

∃x′
((
Q0(x′) ∧ θ[x′/x′]

)
∨ . . . ∨

(
QN−1(x′) ∧ θ[x′ + (N − 1)/x′]

))
.

Note that we do not actually have the +k functions in our pointwise version of FO[<,+1];
they are only used as annotations here and will be removed later, e.g., x′ + k means that
Qk(x

′) holds. We then carry out the following syntactic substitutions:
• For each inequality of the form x1 + k1 < x2 + k2, replace it with
– x1 < x2 if k1 = k2

– true if k1 < k2

– false if k1 > k2

• For each distance formula, e.g., d(x1 + k1, x2 + k2) < 2, replace it with

13:26 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

– true if |k1 − k2| ≤ 1
– x2 < x1 if k2 − k1 = 2
– x1 < x2 if k1 − k2 = 2
– false if |k1 − k2| > 2
• Replace terms of the form P (x1 + k) with Pk(x1).
This gives a non-metric first-order formula ϑ(x) over P∪Q. Denote by frac(t) the fractional
part of a non-negative real t. It is not hard to see that for each [0, N)-timed word ρ = (σ, τ)
over ΣP and its stacked counterpart ρ, the following holds:
• ρ, t |= ϑ(x) implies ρ, t |= ϑ(x) where t = frac(t)
• ρ, t |= ϑ(x) implies there exists t ∈ ρ with frac(t) = t such that ρ, t |= ϑ(x).
Moreover, if ρ, t |= ϑ(x), then the integer part of t indicates which disjunct in ϑ(x) is satisfied
when x is substituted with t = frac(t), and vice versa. By Kamp’s theorem [Kam68] (applied
individually on each ϑ[x+ i/x]), ϑ(x) is equivalent to an LTL formula ϕ of the following form:

(Q0 ∧ ϕ0) ∨ (Q1 ∧ ϕ1) ∨ . . . ∨ (QN−1 ∧ ϕN−1) .

Unstacking . We construct inductively an MTL[U,S] formula ψ for each subformula ψ of ϕi
(for some i ∈ {0, . . . , N − 1}). Again, we make use of the formulas in Φint defined earlier.
• ψ = Pj : Let

ψ = (ϕ0,1 ∧ =j P) ∨ . . . ∨ (ϕj,j+1 ∧ P) ∨ . . . ∨ (ϕN−1,N ∧ =((N−1)−j) P) .

• ψ = Qj : Similarly, let

ψ = (ϕ0,1 ∧ =j true) ∨ . . . ∨ (ϕj,j+1 ∧ true) ∨ . . . ∨ (ϕN−1,N ∧ =((N−1)−j) true) .

• ψ = ψ1 U ψ2: Let ψj,k,l = ψ1 U
k
(j,j+1) (ψ2 ∧ ϕl,l+1). The desired formula is

ψ =
∨

0≤i≤N−1

ϕi,i+1 ∧
∨

−i≤j≤(N−1)−i
l=i+j

 ∧
−i≤k≤(N−1)−i

ψj,k,l

 .

• ψ = ψ1 S ψ2: This is symmetric to the case of ψ1 U ψ2.
The construction for the other cases are trivial and therefore omitted.

Proposition 3.13. Let ψ be a subformula of ϕi for some i ∈ {0, . . . , N − 1}. There is an
MTL[U,S] formula ψ such that for any [0, N)-timed word ρ, t ∈ ρ and frac(t) = t ∈ ρ, we
have

ρ, t |= ψ ⇐⇒ ρ, t |= ψ .

Proof. Induction on the structure of ψ and ψ, where the latter is constructed as described
above.
• ψ = Pj : Assume ρ, t |= ψ. If t = j + t, the disjunct (ϕj,j+1 ∧ P) of ψ clearly holds at t in
ρ. If t = j′ + t where j′ 6= j, since there is a P -event at time j + t in ρ, the j′-th disjunct
of ψ must hold at t in ρ. The proof for the other direction is similar.
• ψ = ψ1 U ψ2: Assume ρ, t |= ψ and let the ‘witness’ (i.e., where ψ2 holds) be at t′. By
construction and the induction hypothesis, there is an event at t′ = l + t in ρ for some
l ∈ {0, . . . , N − 1} such that ρ, t′ |= ψ2. Moreover, since we have ρ, t′′ |= ψ1 for all t′′,
t < t′′ < t′, we must have ρ, t′′ |= ψ1 for all t′′ ∈ ρ with t′′ = k′ + t′′ for some t < t′′ < t′

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:27

and 0 ≤ k′ ≤ N − 1. Now let t = i+ t for some i ∈ {0, . . . , N − 1} be a timestamp in ρ
and let j = l − i. It is clear that ρ, t |= ϕi,i+1 and

ρ, t |=
∧

0≤k′≤N−1
k=k′−i

ψj,k,l ,

as required. For the other direction, let t = i+ t for some i ∈ {0, . . . , N − 1} and let

ρ, t |=
∧

−i≤k≤(N−1)−i

ψj,k,l

for some j ∈ {−i, . . . , (N − 1) − i} and l = i + j. It follows that there is a (minimal)
t′ > t such that ρ, l + t′ |= ψ2 and ρ, k′ + t′′ |= ψ1 for all t′′ ∈ ρ with t′′ = k′ + t′′ for some
t < t′′ < t′ and 0 ≤ k′ ≤ N − 1. The claim follows by construction and the induction
hypothesis.

The other cases are trivial or symmetric.

Using the construction above, we obtain an MTL[U,S] formula ϕi for each ϕi. Substitute
them into ϕ and replace all remaining Qi by ϕi,i+1 to obtain our final formula ϕ, which is
equivalent to the original FO[<,+1] formula ϑ(x) over [0, N)-timed words.

Proposition 3.14. For any [0, N)-timed word ρ and t ∈ ρ, we have

ρ, t |= ϕ(x) ⇐⇒ ρ, t |= ϑ(x) .

We are now ready to state the main result of this section.

Theorem 3.15. MTL[U,S] is expressively complete for FO[<,+1] over [0, N)-timed words.

3.5. Time-bounded verification. We claim that the timed-bounded satisfiability and time-
bounded model-checking problems for MTL[U,S] are EXPSPACE-complete in both the
pointwise and continuous semantics.

Theorem 3.16. The time-bounded satisfiability problem for MTL[U,S] (in both the pointwise
and continuous semantics) is EXPSPACE-complete.

Proof. First note that for each MTL[U,S] formula over timed words one can construct, in
linear time, an ‘equivalent’ MTL[U,S] formula over signals of the form fρ. Then, in the
continuous semantics, one can replace all subformulas of the form ϕ1U

c
(a,b)ϕ2 in an MTL[U,S]

formula by
(=c ϕ1) U<b (=a ϕ2)

(this can incur at most a linear blow-up). The claim therefore follows from [ORW09]. However,
for the sake of completeness, we give a direct proof (for the case of pointwise semantics)
along the lines of [ORW09] here; see Section 6 for a discussion on the practical implication.

For each subformula ψ of a given MTL[U,S] formula ϕ and every i ∈ {0, . . . , N}, we
introduce a monadic predicate Fψi . We then add suitable subformulas into ϕ to ensure that
Fψi holds at t in ρ iff ψ holds at t = t+ i in ρ. As an example, let AU1

(2,3) B be a subformula
of ϕ. We require the following formula to hold at every point in time (assume that i ≤ N−4):

F
AU1

(2,3)
B

i ⇐⇒
(
(FQi+1 =⇒ FAi+1) U FBi+2

)
∨
(

(FQi+1 =⇒ FAi+1) ∧
(
FBi+3 ∧ (FQi+2 =⇒ FAi+2)

))
.

13:28 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

We also add the LTLfut equivalents of ϑevent and ϑinit into ϕ as conjuncts. It is clear that ϕ
is of size exponential in the size of ϕ. EXPSPACE-hardness follows from the corresponding
result of Bounded-MTL (in the pointwise semantics) in [BMOW07].

Since the time-bounded model-checking problem and satisfiability problem are inter-
reducible in both the pointwise and continuous semantics [Wil94, HRS98], we have the
following theorem.

Theorem 3.17. The time-bounded model-checking problem for timed automata against
MTL[U,S] (in both the pointwise and continuous semantics) is EXPSPACE-complete.

4. Expressive completeness of MTL[U,S] over unbounded timed words

Recall that the counting modality C2(x,X) asserts that X holds at at least two points in
(x, x + 1). While the modality is not expressible in MTL, it is equivalent to the following
MTL formula with rational constants:

(0, 1
2

)(X ∧ (0, 1
2

)X) ∨ (1
2
,1)(X ∧ (0, 1

2
)X) ∨ ((0, 1

2
)X ∧ (1

2
,1)X) .

Indeed, MTL with rational constants is expressively complete for FO[<,+Q] (the rational
version of FO[<,+1]) over signals [HOW13]. Unfortunately, even with rational endpoints,
MTL is still less expressive than FO[<,+1] in the pointwise semantics [PD06]. We show in
this section that expressive completeness of MTL over (infinite) timed words can be recovered
by adding (the rational versions of) the modalities generalised ‘Until’ (UcI) and generalised
‘Since’ (Sc

I) we introduced in the last section.
Our presentation in this section essentially follows [HOW13]. We first give a set of

rewriting rules that ‘extract’ unbounded temporal operators from the scopes of bounded
temporal operators. Then we invoke Gabbay’s separation theorem [GPSS80] to obtain a
syntactic separation result for MTL[U,S] in the pointwise semantics. Exploiting a normal
form for FO[<,+1] in [GPSS80], we show that any bounded FO[<,+Q] formula can be
rewritten into an MTL[U,S] formula. Finally, these ideas are combined to obtain the desired
result.

4.1. Syntactic separation of MTL[U,S] formulas. We present a series of logical equiva-
lence rules that can be used to rewrite a given MTL[U,S] formula into an equivalent formula
in which no unbounded temporal operators occurs within the scope of a bounded temporal
operator. Only the rules for open intervals are given, as the rules for other types of intervals
are straightforward variants.

A normal form for MTL[U,S]. We say an MTL[U,S] formula is in normal form if it satisfies:
(i). All occurrences of unbounded temporal operator are of the form U(0,∞), S(0,∞), (0,∞),

(0,∞).
(ii). All other occurrences of temporal operators are of the form UI , SI , UcI , Sc

I with
bounded I.

(iii). Negation is only applied to monadic predicates or bounded temporal operators.
(iv). In any subformula of the form ϕ1 UI ϕ2, ϕ1 SI ϕ2, I ϕ2, I ϕ2, ϕ1 U

c
I ϕ2, ϕ1 S

c
I ϕ2

where I is bounded, ϕ1 is a disjunction of subformulas and ϕ2 is a conjunction of
subformulas.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:29

We now describe how to rewrite a given formula into normal form. To satisfy (i) and (ii),
apply the usual rules (e.g., I ϕ ⇐⇒ ¬ I ¬ϕ) and the rules:

ϕ1 U(a,∞) ϕ2 ⇐⇒ ϕ1 U ϕ2 ∧ (0,a](ϕ1 ∧ ϕ1 U ϕ2)

ϕ1 U
c
(a,∞) ϕ2 ⇐⇒ ϕ1 U

c
(a,2a] ϕ2 ∨

(
w
[0,c]

(
ϕ1 U(a,∞) (ϕ2 ∨ ≤a−c ϕ2)

))
.

To satisfy (iii), use the usual rules and the rule:

¬(ϕ1 U ϕ2) ⇐⇒ ¬ϕ2 ∨
(
¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1)

)
.

For (iv), use the usual rules of Boolean algebra and the rules below:

φ UI (ϕ1 ∨ ϕ2) ⇐⇒ (φ UI ϕ1) ∨ (φ UI ϕ2)
(ϕ1 ∧ ϕ2) UI φ ⇐⇒ (ϕ1 UI φ) ∧ (ϕ2 UI φ)
φ UcI (ϕ1 ∨ ϕ2) ⇐⇒ (φ UcI ϕ1) ∨ (φ UcI ϕ2)
(ϕ1 ∧ ϕ2) UcI φ ⇐⇒ (ϕ1 U

c
I φ) ∧ (ϕ2 U

c
I φ) .

The rules for past temporal operators are as symmetric. We prove one of these rules as the
others are simpler.

Proposition 4.1. The following equivalence holds over infinite timed words:

ϕ1 U
c
(a,∞) ϕ2 ⇐⇒ ϕ1 U

c
(a,2a] ϕ2 ∨

(
w
[0,c]

(
ϕ1 U(a,∞) (ϕ2 ∨ ≤a−c ϕ2)

))
.

Proof. Let the current position be i and the witness be at position w. Consider the following
cases:
• τw ∈ (τi + a, τi + 2a]: ϕ1 U

c
(a,2a] ϕ2 clearly holds.

• τw ∈ (τi + 2a,∞): Consider the following subcases:
– ϕ1 holds at all positions j < w such that τj > τi + c: ϕ1 U(a,∞) ϕ2 holds at the maximal

position j′ such that τj′ ∈ [τi, τi + c].
– ϕ1 holds at all positions j < w such that τj > τi+ c and τw− τj > a− c: By assumption,

there is a position j′ at which ϕ1 does not hold and τw − τj′ ≤ a− c. Since τw > τi + 2a,
we have τj′ > τi + a + c. It follows that ϕ1 U(a,∞) (≤a−c ϕ2) holds at the maximal
position in [τi, τi + c].

The other direction is obvious.

Extracting unbounded operators from bounded operators. We now provide a set of rewriting
rules that extract unbounded temporal operators from the scopes of bounded temporal
operators. In what follows, let ϕxlb = false U(0,b) true, ϕylb = false S(0,b) true and

ϕugb =
(

(ϕxlb =⇒ (b,2b) ϕ1) ∧
(
¬ϕylb =⇒ (ϕ1 ∧ (0,b] ϕ1)

))
U

((
ϕ1 ∧ (ϕ1 U(b,2b) ϕ2)

)
∨
(
¬ϕylb ∧

(
ϕ2 ∨

(
ϕ1 ∧ (ϕ1 U(0,b] ϕ2)

))))
,

ϕggb =
(

(ϕxlb =⇒ (b,2b) ϕ1) ∧
(
¬ϕylb =⇒ (ϕ1 ∧ (0,b] ϕ1)

))
.

The intended meanings of the formulas ϕugb and ϕggb are similar (yet not identical) to
ϕ1 U

b
>b ϕ2 and ¬

(
true Ub>b (¬ϕ1)

)
, respectively. Indeed, the equivalences in the following

proposition still hold if we replace all occurrences of ϕugb and ϕggb by these simpler formulas.
We, however, have to use these complicated formulas here as we aim to pull the unbounded
‘Until’ operator to the outermost level. The subformulas (b,2b) ϕ1 and (0,b] ϕ1 assert that

13:30 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

ϕ1 holds continuously in short ‘strips’, and we use the subformulas ϕxlb and ϕylb to ensure
that each event before the point where ϕ2 holds is covered by such a strip.

Proposition 4.2. The following equivalences hold over infinite timed words:

θ U(a,b)
(
(ϕ1 U ϕ2) ∧ χ

)
⇐⇒ θ U(a,b)

(
(ϕ1 U(0,2b) ϕ2) ∧ χ

)
∨
((
θ U(a,b) ((0,2b) ϕ1 ∧ χ)

)
∧ ϕugb

)
θ U(a,b) (ϕ ∧ χ) ⇐⇒

(
θ U(a,b) ((0,2b) ϕ ∧ χ)

)
∧ ϕggb

θ U(a,b)
(
(ϕ1 S ϕ2) ∧ χ

)
⇐⇒ θ U(a,b)

(
(ϕ1 S(0,b) ϕ2) ∧ χ

)
∨
((
θ U(a,b) ((0,b) ϕ1 ∧ χ)

)
∧ ϕ1 S ϕ2

)
θ U(a,b) (ϕ ∧ χ) ⇐⇒

(
θ U(a,b) ((0,b) ϕ ∧ χ)

)
∧ ϕ(

(ϕ1 U ϕ2) ∨ χ
)
U(a,b) θ ⇐⇒

(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

(ϕ1 U(0,2b) ϕ2) ∨ χ
)
U(0,b) ((0,2b) ϕ1)

)
∧ (a,b) θ ∧ ϕugb

)
(
(ϕ) ∨ χ

)
U(a,b) θ ⇐⇒ χ U(a,b) θ ∨

(
χ U(0,b) ((0,2b) ϕ1) ∧ (a,b) θ ∧ ϕggb

)(
(ϕ1 S ϕ2) ∨ χ

)
U(a,b) θ ⇐⇒

(
(ϕ1 S(0,b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

(0,b) ϕ1 ∨ (ϕ1 S(0,b) ϕ2) ∨ χ
)
U(a,b) θ

)
∧ ϕ1 S ϕ2

)
(
(ϕ) ∨ χ

)
U(a,b) θ ⇐⇒ χ U(a,b) θ ∨

((
((0,b) ϕ ∨ χ) U(a,b) θ

)
∧ ϕ

)
.

Proof. We sketch the proof for the first rule. In what follows, let the current position be i.
For the forward direction, let the witness be at position w. If τw < τj + 2b for some j

such that τj ∈ (τi + a, τi + b), the subformula ϕ1 U(0,2b) ϕ2 clearly holds at j and we are done.
Otherwise, let j be the maximal position such that τj ∈ (τi+a, τi+b). We know that (0,2b) ϕ1

must hold at j, so (ϕxlb =⇒ (b,2b) ϕ1), ϕylb, and hence
(
¬ϕylb =⇒ (ϕ1 ∧ (0,b] ϕ1)

)
must hold at all positions j′, i < j′ < j. Let l > j be the minimal position such that
τw ∈ (τl + b, τl + 2b). Consider the following cases:
• There exists such l: It is clear that

(
ϕ1 ∧ (ϕ1 U(b,2b) ϕ2)

)
holds at l. Since (b,2b) ϕ1 holds

at all positions j′′, j ≤ j′′ < l by the minimality of l, (ϕxlb =⇒ (b,2b) ϕ1) also holds at
these positions. For the other conjunct, note that ϕylb holds at j and ϕ1 ∧ (0,b] ϕ1 holds
at all positions j′′′, j < j′′′ < l.
• There is no such l: Consider the following cases:
– ¬ϕylb and ¬ =b true hold at w: By assumption, there is no event in (τw − 2b, τw). The

proof is similar to the case where l exists.
– ¬ϕylb and =b true hold at w: Let l′ be the position such that τl′ = τw − b. By

assumption, there is no event in (τl′−b, τl′). It follows that ¬ϕylb and
(
ϕ1∧(ϕ1U(0,b]ϕ2)

)
hold at l′. The proof is similar.

– ϕylb holds at w: By assumption, there is no event in (τw − 2b, τw − b). It is easy to see
that there is a position such that ¬ϕylb ∧

(
ϕ1 ∧ (ϕ1 U(0,b] ϕ2)

)
holds. The proof is again

similar.
We prove the other direction by contraposition. Consider the interesting case where (0,2b) ϕ1

holds at the maximal position j such that j ∈ (τi + a, τi + b), yet ϕ1 U ϕ2 does not hold at j.
By assumption, there is no ϕ2-event in (τj , τj + 2b). If ϕ2 never holds in [τj + 2b,∞) then
we are done. Otherwise, let l > j be the minimal position such that both ϕ1 and ϕ2 do not
hold at l (note that τl ≥ τj + 2b). It is clear that((

ϕ1 ∧ (ϕ1 U(b,2b) ϕ2)
)
∨
(
¬ϕylb ∧

(
ϕ2 ∨

(
ϕ1 ∧ (ϕ1 U(0,b] ϕ2)

))))

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:31

does not hold at all positions j′, i < j′ ≤ l. Consider the following cases:
• ¬ϕylb holds at l: ϕ1 ∧ (0,b] ϕ1 does not hold at l, and therefore ϕugb fails to hold at i.
• ϕylb holds at l: Consider the following cases:
– There is an event in (τl − 2b, τl − b): Let j′′ be the maximal position of such an event.
We have j′′ + 1 < l, τj′′+1 − τj′′ ≥ b and τl − τj′′+1 < b. However, it follows that ϕylb
does not hold at j′′ + 1 and ϕ1 ∧ (0,b] ϕ1 holds at j′′ + 1, which is a contradiction.

– There is no event in (τl − 2b, τl − b): Let j′′ be the minimal position such that τj′′ ∈
[τl − b, τl). It is clear that ϕylb does not hold at j′′ and ϕ1 ∧ (0,b] ϕ1 must hold at j′′,
which is a contradiction.

Proposition 4.3. The following equivalences hold over infinite timed words:

θ Uc
(a,b)

(
(ϕ1 U ϕ2) ∧ χ

)
⇐⇒ θ Uc

(a,b)

(
(ϕ1 U(0,2b) ϕ2) ∧ χ

)
∨
((
θ Uc

(a,b) ((0,2b) ϕ1 ∧ χ)
)
∧ ϕugb

)
θ Uc

(a,b) (ϕ ∧ χ) ⇐⇒
(
θ Uc

(a,b) ((0,2b) ϕ ∧ χ)
)
∧ ϕggb

θ Uc
(a,b)

(
(ϕ1 S ϕ2) ∧ χ

)
⇐⇒ θ Uc

(a,b)

(
(ϕ1 S(0,b) ϕ2) ∧ χ

)
∨
((
θ Uc

(a,b) ((0,b) ϕ1 ∧ χ)
)
∧ ϕ1 S ϕ2

)
θ Uc

(a,b) (ϕ ∧ χ) ⇐⇒
(
θ Uc

(a,b) ((0,b) ϕ ∧ χ)
)
∧ ϕ(

(ϕ1 U ϕ2) ∨ χ
)
Uc
(a,b) θ ⇐⇒

(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
Uc
(a,b) θ

∨
(((

(ϕ1 U(0,2b) ϕ2) ∨ χ
)
Uc(

c,c+(b−a)
) ((0,2b) ϕ1)

)
∧ (a,b) θ ∧ ϕugb

)
(
(ϕ) ∨ χ

)
Uc
(a,b) θ ⇐⇒ χ Uc

(a,b) θ ∨
(
χ Uc(

c,c+(b−a)
) ((0,2b) ϕ1) ∧ (a,b) θ ∧ ϕggb

)(
(ϕ1 S ϕ2) ∨ χ

)
Uc
(a,b) θ ⇐⇒

(
(ϕ1 S(0,b) ϕ2) ∨ χ

)
Uc
(a,b) θ

∨
(((

(0,b) ϕ1 ∨ (ϕ1 S(0,b) ϕ2) ∨ χ
)
Uc
(a,b) θ

)
∧ ϕ1 S ϕ2

)
(
(ϕ) ∨ χ

)
Uc
(a,b) θ ⇐⇒ χ Uc

(a,b) θ ∨
((

((0,b) ϕ ∨ χ) Uc
(a,b) θ

)
∧ ϕ

)
.

Lemma 4.4. For any MTL[U,S] formula ϕ, we can use the rules above to obtain an
equivalent MTL[U,S] formula ϕ̂ in which no unbounded temporal operator appears in the
scope of a bounded temporal operator. In particular, all occurrences of UcI ,S

c
I have I bounded.

Proof. Define the unbounding depth ud(ϕ) of an MTL[U,S] formula ϕ to be the modal depth
of ϕ counting only unbounded operators. We demonstrate a rewriting process on ϕ which
terminates in an equivalent formula ϕ̂ such that any subformula ψ̂ of ϕ̂ with outermost
operator bounded has ud(ψ̂) = 0.

Assume that the input formula ϕ is in normal form. Let k be the largest unbounding
depth among all subformulas of ϕ with bounded outermost operators. We pick all minimal
(w.r.t. subformula order) such subformulas ψ with ud(ψ) = k. By applying the rules in
Section 4.1, we can rewrite ψ into ψ′ where all subformulas of ψ′ with bounded outermost
operators have unbounded depths strictly less than k. We then substitute these ψ′ back into
ϕ to obtain ϕ′. We repeat this step until there remain no bounded temporal operators with
unbounding depth k. The rules that rewrite a formula into normal form are used whenever
necessary on relevant subformulas—this never affects their unbounding depths, and note
that we never introduce UcI or Sc

I . It is easy to see that we will eventually obtain such a
formula ϕ∗. Now rewrite ϕ∗ into normal form and start over again. This is to be repeated
until we reach ϕ̂.

13:32 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

Completing the separation. We now have an MTL[U,S] formula ϕ̂ in which no unbounded
temporal operator appears in the scope of a bounded temporal operator. If we regard each
bounded subformula as a new monadic predicate, the formula ϕ̂ can be seen as an LTL
formula Φ, on which Gabbay’s separation theorem is applicable.

Theorem 4.5 [GPSS80, Theorem 3]. Every LTL formula is equivalent (over discrete complete
models) to a Boolean combination of
• atomic formulas
• formulas of the form ϕ1 U ϕ2 such that ϕ1 and ϕ2 use only U
• formulas of the form ϕ1 S ϕ2 such that ϕ1 and ϕ2 use only S.

Lemma 4.6. Every MTL[U,S] formula is equivalent to a Boolean combination of
• bounded MTL[U,S] formulas
• formulas that use arbitrary UI but only bounded SI , UcI , Sc

I
• formulas that use arbitrary SI but only bounded UI , UcI , Sc

I .

We now prove the main theorem of this subsection: each MTL[U,S] formula is equivalent to
a syntactically separated MTL[U,S] formula.

Theorem 4.7. Every MTL[U,S] formula can be written as a Boolean combination of
• bounded MTL[U,S] formulas
• formulas of the form false UM≥M ϕ where M ∈ N
• formulas of the form falseSM

≥M ϕ where M ∈ N.

Proof. Suppose that we have an MTL[U,S] formula ϕ with no unbounded S. If ϕ is bounded
then we are done. Otherwise we can apply Lemma 4.4 (note in particular that it does not
introduce new unbounded U operators) and further assume that ϕ = ϕ1 U ϕ2. Then, for any
M ∈ N, we can rewrite ϕ into

ϕ1 U<M ϕ2 ∨

(
<M ϕ1 ∧

(
false UM≥M

(
ϕ2 ∨

(
ϕ1 ∧ (ϕ1 U ϕ2)

))))
.

It is clear that ϕ1 and ϕ2, and therefore ϕ1U<Mϕ2 and <M ϕ1, have strictly fewer unbounded
U operators than ϕ. By the induction hypothesis, ϕ is equivalent to a syntactically separated
MTL[U,S] formula. The case of formulas with no unbounded U is symmetric.

4.2. Expressing bounded FO[<,+1] formulas. In this section, we describe how to express
bounded FO[<,+1] formulas with a single free variable in MTL[U,S]. The use of rational
constants is crucial here; by [HR07], MTL[U,S] cannot express all counting modalities (which
can be written as bounded FO[<,+1] formulas) if only integer constants are allowed. As
some techniques here are exactly similar to that of Section 3.4, we omit certain explanations.

Suppose that we are given such a formula ϑ(x). As before, we assume that each quantifier
in ϑ(x) uses a fresh new variable and ϑ(x) contains only existential quantifiers. We say that
ϑ(x) is N -bounded if each subformula ∃x′ ψ of ϑ(x) is of the form

∃x′
(
(x′ > x =⇒ d(x, x′) < N) ∧ (x′ < x =⇒ d(x, x′) ≤ N) ∧ . . .

)
.

Namely, ϑ(x) only refers to the events in the half-open interval [x−N, x+ n). Similarly, we
say that ϑ(x) is a unit formula if each subformula ∃x′ ψ of ϑ(x) is of the form

∃x′
(
x′ ≥ x ∧ d(x, x′) < 1 ∧ . . .

)
.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:33

In this case, ϑ(x) only refers to the events in [x, x+ 1).

Stacking events around a point . Let ρ be an infinite timed word over ΣP, P = {Pi | P ∈
P,−N ≤ i < N} and Q = {Qi | N ≤ i < N}. For each t ∈ ρ, we can construct a (finite)
[0, 1)-timed word ρt over ΣP∪Q that satisfies the following:
• For all t ∈ [0, 1) and −N ≤ i < N , Pi holds at t ∈ ρt iff P holds at i+ t ∈ ρ.
• For all t ∈ [0, 1) and −N ≤ i < N , Qi holds at t ∈ ρt iff i+ t ∈ ρ.

Stacking N -bounded FO[<,+1] formulas . Now let ϑ(x) be an N -bounded FO[<,+1] formula.
Recursively replace every subformula ∃x′ θ by

∃x′
((
Q−N (x′) ∧ θ[x′ + (−N)/x′]

)
∨ . . . ∨

(
QN−1(x′) ∧ θ[x′ + (N − 1)/x′]

))
where ϑ[e/x] denotes the formula obtained by substituting all free occurrences of x in ϑ by e.
We then carry out the following syntactic substitutions:
• For each inequality of the form x1 + k1 < x2 + k2, replace it with
– x1 < x2 if k1 = k2

– true if k1 < k2

– false if k1 > k2

• For each distance formula, e.g., d(x1 + k1, x2 + k2) < 2, replace it with
– true if |k1 − k2| ≤ 1
– x2 < x1 if k2 − k1 = 2
– x1 < x2 if k1 − k2 = 2
– false if |k1 − k2| > 2
• Replace terms of the form P (x1 + k) with Pk(x1).
Finally, recursively replace every subformula ∃x′ θ by ∃x′

(
x′ ≥ x ∧ d(x, x′) < 1 ∧ θ

)
. This

gives a unit formula ϑ(x) such that for each t ∈ ρ,
ρ, t |= ϑ(x) ⇐⇒ ρt, 0 |= ϑ(x) .

Unstacking . For each ρt, we add an event at time 1 (at which no monadic predicate holds)
and call the resulting [0, 1)-timed word ρt′. It is clear that

ρt, 0 |= ϑ(x) ⇐⇒ ρt
′, 0, 1 |= ϑ

′
(x, y)

where ϑ′(x, y) is a non-metric FO[<] formula obtained by replacing all distance formulas of the
form d(x, x′) < 1 with x′ < y in ϑ(x). We now invoke a normal form lemma from [GPSS80]
to rewrite ϑ′(x, y) into a disjunction of decomposition formulas.

Lemma 4.8 [GPSS80]. Every FO[<] formula θ(x, y) in which all quantifications are of the
form ∃x′ (x′ ≥ x ∧ x′ < y ∧ . . .) is equivalent to a disjunction of decomposition formulas,
i.e., FO[<] formulas of the form

x < y ∧ ∃z0 . . . ∃zn (x = z0 < · · · < zn = y)
∧
∧
{Φi(zi) : 0 ≤ i < n}

∧
∧
{∀u

(
zi < u < zi+1 =⇒ Ψi(u)

)
: 0 ≤ i < n}

where Φi and Ψi are LTLfut formulas.12

12This version of the lemma follows from Lemma 4 and Main Lemma in [GPSS80].

13:34 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

In fact, when the underlying order is discrete (as is the case here), we can further
postulate that Φi and Ψi are simply Boolean combinations of atomic formulas [Dam94]. It
follows that ϑ(x) is equivalent to a disjunction of unit formulas δ(x) of the form

∃z0 . . . ∃zn−1 (x = z0 < · · · < zn−1) ∧ d(x, zn−1) < 1
∧
∧
{Φi(zi) : 0 ≤ i < n}

∧
∧
{∀u

(
zi < u < zi+1 =⇒ Ψi(u)

)
: 0 ≤ i < n− 1}

∧ ∀u
(
zn−1 < u ∧ d(x, u) < 1 =⇒ Ψn−1(u)

)
where Φi and Ψi are Boolean combinations of atomic formulas.

It remains to show that for each such unit formula δ(x) and each t ∈ ρ, we can construct
an MTL[U,S] formula ϕ such that

ρt, 0 |= δ(x) ⇐⇒ ρ, t |= ϕ .

For later convenience, we prove a stronger claim, i.e., we can handle FO[<,+Q] formulas of
the following form for any rational number r, 0 ≤ r < 1:
∃z0 . . . ∃zn−1 (x = z0 < · · · < zn−1) ∧ d(x, z1) > r ∧ d(x, zn−1) < 1

∧
∧
{Φi(zi) : 1 ≤ i < n}

∧ ∀u
(
x < u ∧ u < z1 ∧ d(x, u) > r =⇒ Ψ0(u)

)
∧
∧
{∀u

(
zi < u < zi+1 =⇒ Ψi(u)

)
: 1 ≤ i < n− 1}

∧ ∀u
(
zn−1 < u ∧ d(x, u) < 1 =⇒ Ψn−1(u)

)
.

The proof is by induction on the number of existential quantifiers in δ(x). Before we proceed
with the proof, we define a function f that maps a Boolean combination Ω of atomic formulas
over P ∪Q and i, −N ≤ i < N to an MTL[U,S] formula f(Ω, i) over P:

• f(Pj , i) =

=(i−j) P if i > j

P if i = j

=(j−i) P if i < j

• f(Qj , i) =

=(i−j) true if i > j

true if i = j

=(j−i) true if i < j

• f(true, i) = true
• f(Ω1 ∧ Ω2, i) = f(Ω1, i) ∧ f(Ω2, i)
• f(¬Ω, i) = ¬f(Ω, i).
Now first consider the base step. We have

δ(x) = ∀u
(
x < u ∧ d(x, u) > r ∧ d(x, u) < 1 =⇒ Ψ(u)

)
where Ψ is a Boolean combination of atomic formulas. It is clear that

ϕ =
∧

0≤i<N

(
(i+r,i+1) f(Ψ, i)

)
∧

∧
−N≤i<0

(
(|i+1|,|i+r|) f(Ψ, i)

)
.

For the induction step we need to consider how z1, . . . , zn−1 are scattered in (r, 1). Let us
split (r, 1) into an open interval (r, r+ 1−r

2n) and 2n−1 half-open intervals [r+ 1−r
2n , r+ 2(1−r)

2n),
[r + 2(1−r)

2n , r + 3(1−r)
2n), . . . , [r + (2n−1)(1−r)

2n , 1). Consider the following cases:

(i). {z1, . . . , zn−1} ⊆ (r, r + 1−r
2n) or {z1, . . . , zn−1} ⊆ [r + k(1−r)

2n , r + (k+1)(1−r)
2n) for some

k, 1 ≤ k < n.
(ii). {z1, . . . , zn−1} ⊆ [r + k(1−r)

2n , r + (k+1)(1−r)
2n) for some k, n ≤ k < 2n.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:35

(iii). There exists k, 1 ≤ k < 2n and l, 1 ≤ l < n − 1 such that zl < r + k(1−r)
2n ≤ zl+1

(i.e., z1, . . . , zn−1 are not in a single interval).
We detail the construction of a formula ψ in each case; the desired formula ϕ is the
disjunction of these ψ. The correctness proofs are omitted as they are similar to the proof of
Proposition 3.13.
• Case (i): Consider the subcase z1 > r + k(1−r)

2n . Let
−→ϕ i
n−1 =

∧
0≤j<N−i

(
(j,j+ 1−r

2n
) f(Ψn−1, i+ j)

)
∧

∧
−N−i≤j<0

(
(|j+ 1−r

2n
|,|j|) f(Ψn−1, i+ j)

)
for all i, −N ≤ i < N and recursively define

−→ϕ i
m =

∨
−N−i≤j<N−i

(∧
−N−i≤h<N−i

((
f(Ψm, i+ h)

)
Uh

(j,j+ 1−r
2n

)

(
f(Φm+1, i+ j) ∧ −→ϕ i+j

m+1

)))
for all i, −N ≤ i < N and m, 1 ≤ m < n− 1. Let αk be the conjunction of∧

0≤i<N

(
(i+r,i+r+

k(1−r)
2n

]
f(Ψ0, i)

)
∧

∧
−N≤i<0

(
[|i+r+ k(1−r)

2n
|,|i+r|) f(Ψ0, i)

)
and ∨

−N≤j<N

(∧
−N≤h<N

((
f(Ψ0, h)

)
U
h+r+

k(1−r)
2n

(j+r+
k(1−r)

2n
,j+r+

(k+1)(1−r)
2n

)

(
f(Φ1, j) ∧ −→ϕ j

1

)))
and∧

0≤i<N

(
[i+r+

(k+1)(1−r)
2n

,i+1)
f(Ψn−1, i)

)
∧

∧
−N≤i<0

(
(|i+1|,|i+r+ (k+1)(1−r)

2n
|] f(Ψn−1, i)

)
.

Similarly, we construct α′k to handle the subcase z1 = r + k(1−r)
2n . The formula ψ is the

disjunction of formulas {αk | 0 ≤ k < n} and {α′k | 0 < k < n}.
• Case (ii): Let

←−ϕ i
1 =

∧
0<j<N−i

(
(j− 1−r

2n
,j) f(Ψ0, i+ j)

)
∧

∧
−N−i≤j≤0

(
(|j|,|j− 1−r

2n
|) f(Ψ0, i+ j)

)
for all i, −N ≤ i < N and recursively define

←−ϕ i
m =

∨
−N−i≤j<N−i

(∧
−N−i≤h<N−i

((
f(Ψm−1, i+h)

)
Sh

(j,j+ 1−r
2n

)

(
f(Φm−1, i+ j)∧←−ϕ i+j

m−1

)))
for all i, −N ≤ i < N and m, 1 < m ≤ n− 1. Let βk be the conjunction of∧

0≤i<N

(
[i+r+

(k+1)(1−r)
2n

,i+1)
f(Ψn−1, i)

)
∧

∧
−N≤i<0

(
(|i+1|,|i+r+ (k+1)(1−r)

2n
|] f(Ψn−1, i)

)
and∨

−N≤j<N

(∧
−N≤h<N

((
f(Ψn−1, h)

)
S
−(h+r+

(k+1)(1−r)
2n

)

(−(j+r+
(k+1)(1−r)

2n
),−(j+r+

k(1−r)
2n

)]

(
f(Φn−1, j) ∧←−ϕ j

n−1

)))
and ∧

0≤i<N

(
(i+r,i+r+

k(1−r)
2n

)
f(Ψ0, i)

)
∧

∧
−N≤i<0

(
(|i+r+ k(1−r)

2n
|,|i+r|) f(Ψ0, i)

)
.

The formula ψ is the disjunction of βk, n ≤ k < 2n.

13:36 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

• Case (iii): Suppose that zl < r+ k(1−r)
2n ≤ zl+1 for some k, 1 ≤ k < 2n and l, 1 ≤ l < n− 1.

Consider the following subcases:
– r + k(1−r)

2n < zl+1: This can be handled by the conjunction of the formulas below:
∗ {z1, . . . , zl} ⊆ (r, r + k(1−r)

2n): We can scale the corresponding FO[<,+Q] formula by
1

r+
k(1−r)

2n

, apply the induction hypothesis (with r′ = r

r+
k(1−r)

2n

) and scale the resulting

MTL[U,S] formula by r + k(1−r)
2n .

∗ {zl+1, . . . , zn−1} ⊆ (r+ k(1−r)
2n , 1): We can set r′ = r+ k(1−r)

2n and apply the induction
hypothesis.

– r + k(1−r)
2n = zl+1: Exactly similar except that we also use the following formula as a

conjunct:∨
0≤i<N

(
=i+r+

k(1−r)
2n

f(Φl+1, i)
)
∨

∨
−N≤i<0

(
=|i+r+ k(1−r)

2n
| f(Φl+1, i)

)
.

The formula ψ is the disjunction of these formulas for all k, 1 ≤ k < 2n and l, 1 ≤ l < n−1.
Finally, observe that the original claim can be achieved by setting r = 0 and using the
conjunct f(Φ0, 0). We can now state the following theorem.

Theorem 4.9. For every N -bounded FO[<,+1] formula ϑ(x), there exists an equivalent
MTL[U,S] formula ϕ (with rational constants).

4.3. Expressive completeness of MTL[U,S]. In this section, we show that any FO[<,+Q]
formula with one free variable can be expressed as an MTL[U,S] formula. The crucial idea
here is that we can separate formulas ‘far enough’ that all references to a certain variable
become vacuous. To this end, we define fr(ϕ) and pr(ϕ) (future-reach and past-reach) for an
MTL[U,S] formula ϕ as follows:
• fr(true) = pr(true) = fr(P) = pr(P) = 0 for all P ∈ P
• fr(ϕ1 UI ϕ2) = sup(I) + max

(
fr(ϕ1), fr(ϕ2)

)
• pr(ϕ1 SI ϕ2) = sup(I) + max

(
pr(ϕ1), pr(ϕ2)

)
• fr(ϕ1 SI ϕ2) = max

(
fr(ϕ1), fr(ϕ2)− inf(I)

)
• pr(ϕ1 UI ϕ2) = max

(
pr(ϕ1), pr(ϕ2)− inf(I)

)
• fr(ϕ1 U

c
I ϕ2) = max

(
c+ |I|+ fr(ϕ1), sup(I) + fr(ϕ2)

)
• pr(ϕ1 S

c
I ϕ2) = max

(
c+ |I|+ pr(ϕ1), sup(I) + pr(ϕ2)

)
• fr(ϕ1 S

c
I ϕ2) = max

(
fr(ϕ1)− c, fr(ϕ2)− inf(I)

)
• pr(ϕ1 U

c
I ϕ2) = max

(
pr(ϕ1)− c, pr(ϕ2)− inf(I)

)
.

The cases for Boolean connectives are defined in the expected way. Intuitively, these are
meant as over-approximations of the lengths of the time horizons needed to determine the
truth value of ϕ.

Theorem 4.10. For every FO[<,+1] formula ϑ(x), there exists an equivalent MTL[U,S]
formula ϕ (with rational constants).

Proof. The proof is by induction on the quantifier depth of ϑ(x). In what follows, let the set
of monadic predicates be P. As before, we assume that each quantifier in ϑ(x) uses a fresh
new variable.
• Base step. ϑ(x) is a Boolean combination of atomic formulas P (x), x < x, d(x, x) ∼ c,
true. We can replace them by P , false, 0 ∼ c and true respectively to obtain ϕ.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:37

• Induction step. Without loss of generality assume that ϑ(x) = ∃y θ(x, y). Our goal here is
to remove x from θ(x, y). For this purpose, we can remove x < x and d(x, x) ∼ c as before
and use a mapping γ : P 7→ {true, false} to determine the truth value of P (x) for each
P ∈ P. Thus we can rewrite ∃y θ(x, y) as∨

γ

(
ηγ(x) ∧ ∃y θγ(x, y)

)
(4.1)

where
ηγ =

∧
P∈P

(
P (x) ⇐⇒ γ(P)

)
and θγ(x, y) is obtained by replacing P (x) with γ(P) for all P ∈ P in θ(x, y). Observe that
in each θγ(x, y), x only appears in atomic formulas of the form x < z, z < x, d(x, z) ∼ c
and d(z, x) ∼ c where ∼ ∈ {<,>}. We now introduce new monadic predicates P<, P>,
and P∼c for each d(x, z) ∼ c or d(z, x) ∼ c that correspond to these atomic formulas.
Namely, we write x < z as P<(z), z < x as P>(z), and d(x, z) ∼ c or d(z, x) ∼ c as P∼c(z).
Apply these substitutions to (4.1) yields∨

γ

(
ηγ(x) ∧ ∃y θ′γ(y)

)
(4.2)

where x does not occur in each θ′γ(y). In particular, (4.1) and (4.2) have the same truth
value at any given point if P<, P> and all P∼c are interpreted correctly with respect to
that point. Each ηγ(x) is clearly equivalent to an MTL[U,S] formula ψγ . By the induction
hypothesis, each θ′γ(y) is also equivalent to an MTL[U,S] formula ϕγ . It follows that (4.2)
is equivalent to the following MTL[U,S] formula:

ϕ′ =
∨
γ

(
ψγ ∧ (ϕγ ∨ ϕγ ∨ ϕγ)

)
.

By Theorem 4.7 and noting that M ∈ N can be chosen arbitrarily, ϕ′ is equivalent to a
Boolean combination ϕ′′ of
– bounded formulas
– formulas of the form false UM≥M ψ such that M > cmax + pr(ψ)

– formulas of the form falseSM
≥M ψ such that M > cmax + fr(ψ).

where cmax are the largest constants appearing in monadic predicates of the form P∼c
in respective formulas ψ. Now suppose that ϕ′′ is evaluated at t1. For the formulas of
the second type, since all references to P<, P> and all P∼c must happen at time strictly
greater than t1 + cmax , we can simply replace them with true, false and cmax + 1 ∼ c to
obtain equivalent MTL[U,S] formulas over P. The formulas of the third type can be dealt
with similarly. Finally, for the formulas of the first type, we replace P<, P> and all P∼c
with x < z, z < x and d(x, z) ∼ c. The resulting formulas are clearly bounded FO[<,+Q]
formulas. We can scale them to bounded FO[<,+1] formulas, apply Theorem 4.9 and then
scale back to obtain equivalent MTL[U,S] formulas over P.

The main result of this chapter now follows from a simple scaling argument.

Theorem 4.11. MTL[U,S] with rational constants is expressively complete for FO[<,+Q]
over infinite timed words.

13:38 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

5. Monitoring of MTL[U,S] properties

While the expressive completeness result in the last section may be interesting from a
theoretical point of view, it is unclear how it can benefit practical verification tasks as the
model-checking problem for MTLfut is already undecidable [OW06]. Nonetheless, we show
that those results can be very useful in monitoring, a core element of runtime verification.
We first define some basic notions used throughout this section. Then we give a bi-linear
offline trace-checking algorithm for MTL[U,S], which is later modified to work in an online
fashion (under a bounded-variability assumption) and used as the basis of a monitoring
procedure for an ‘easy-to-monitor’ fragment of MTL[U,S].13 The main advantage of the
proposed procedure is that it is trace-length independent, i.e., the space usage is independent
of the length of the (growing) trace. Finally, we show that our approach extends to arbitrary
MTL[U,S] formulas via the syntactic rewriting rules in Section 4.1.

5.1. Satisfaction over finite prefixes.
Truncated semantics . As one is naturally concerned with truncated traces in monitoring, it is
useful to define satisfaction relations of MTL[U,S] formulas over finite timed words. To this
end, we adopt a timed version of the truncated semantics [EFHL03] which offers strong and
weak views on satisfaction over finite timed words. Intuitively, these views indicate whether
the satisfaction of the formula on the whole (infinite) trace is ‘clearly’ confirmed/refuted
by the finite prefix read so far. In the strong view, one is pessimistic on satisfaction—for
example, P can never be strongly satisfied by any finite timed word, as any such finite
timed word can be extended into an infinite timed word that violates the formula. Conversely,
in the weak view one is optimistic on satisfaction—for example, <5 P is weakly satisfied by
any finite timed word whose timestamps are all strictly less than 5, since one can always
extend such into an infinite timed word that satisfies the formula. We also consider the
neutral view, which extends the traditional LTL semantics over finite words [MP95] to MTL.
In what follows, we denote the strong, neutral and weak satisfaction relations by |=+

f , |=f
and |=−f respectively. We write ρ |=+

f ϕ (ρ |=f ϕ, ρ |=
−
f ϕ) if ρ, 0 |=

+
f ϕ (ρ, 0 |=f ϕ, ρ, 0 |=

−
f ϕ).

Definition 5.1. The satisfaction relation ρ, i |=+
f ϕ for an MTL[U,S] formula ϕ, a finite

timed word ρ = (σ, τ) and a position i, 0 ≤ i < |ρ| is defined as follows:
• ρ, i |=+

f P iff P ∈ σi
• ρ, i |=+

f true

• ρ, i |=+
f ϕ1 ∧ ϕ2 iff ρ, i |=+

f ϕ1 and ρ, i |=+
f ϕ2

• ρ, i |=+
f ¬ϕ iff ρ, i 6|=−f ϕ

• ρ, i |=+
f ϕ1 UI ϕ2 iff there exists j, i < j < |ρ| such that ρ, j |=+

f ϕ2, τj− τi ∈ I, and ρ, k |=+
f ϕ1

for all k with i < k < j
• ρ, i |=+

f ϕ1 SI ϕ2 iff there exists j, 0 ≤ j < i such that ρ, j |=+
f ϕ2, τi− τj ∈ I, and ρ, k |=+

f ϕ1

for all k with j < k < i
• ρ, i |=+

f ϕ1 U
c
I ϕ2 iff there exists j, i < j < |ρ| such that ρ, j |=+

f ϕ2, τj− τi ∈ I, and ρ, k |=+
f ϕ1

for all k, i < k < j such that τk − τi > c and τj − τk > a− c where a = inf(I)

13In this section we assume that all timestamps are rational, can be finitely represented (e.g., with a
built-in data type), and additions and subtractions on them can be done in constant time.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:39

• ρ, i |=+
f ϕ1 S

c
I ϕ2 iff there exists j, 0 ≤ j < i such that ρ, j |=+

f ϕ2, τi− τj ∈ I, and ρ, k |=+
f ϕ1

for all k, j < k < i such that τi − τk > c and τk − τj > a− c where a = inf(I).

Definition 5.2. The satisfaction relation ρ, i |=f ϕ for an MTL[U,S] formula ϕ, a finite
timed word ρ = (σ, τ) and a position i, 0 ≤ i < |ρ| is defined as follows:
• ρ, i |=f P iff P ∈ σi
• ρ, i |=f true

• ρ, i |=f ϕ1 ∧ ϕ2 iff ρ, i |=f ϕ1 and ρ, i |=f ϕ2

• ρ, i |=f ¬ϕ iff ρ, i 6|=f ϕ
• ρ, i |=f ϕ1 UI ϕ2 iff there exists j, i < j < |ρ| such that ρ, j |=f ϕ2, τj− τi ∈ I, and ρ, k |=f ϕ1

for all k with i < k < j
• ρ, i |=f ϕ1 SI ϕ2 iff there exists j, 0 ≤ j < i such that ρ, j |=f ϕ2, τi− τj ∈ I, and ρ, k |=f ϕ1

for all k with j < k < i
• ρ, i |=f ϕ1 U

c
I ϕ2 iff there exists j, i < j < |ρ| such that ρ, j |=f ϕ2, τj− τi ∈ I, and ρ, k |=f ϕ1

for all k, i < k < j such that τk − τi > c and τj − τk > a− c where a = inf(I)
• ρ, i |=f ϕ1 S

c
I ϕ2 iff there exists j, 0 ≤ j < i such that ρ, j |=f ϕ2, τi− τj ∈ I, and ρ, k |=f ϕ1

for all k, j < k < i such that τi − τk > c and τk − τj > a− c where a = inf(I).

Definition 5.3. The satisfaction relation ρ, i |=−f ϕ for an MTL[U,S] formula ϕ, a finite
timed word ρ = (σ, τ) and a position i, 0 ≤ i < |ρ| is defined as follows:
• ρ, i |=−f P iff P ∈ σi
• ρ, i |=−f true

• ρ, i |=−f ϕ1 ∧ ϕ2 iff ρ, i |=−f ϕ1 and ρ, i |=−f ϕ2

• ρ, i |=−f ¬ϕ iff ρ, i 6|=+
f ϕ

• ρ, i |=−f ϕ1 UI ϕ2 iff either of the following holds:
– there exists j, i < j < |ρ| such that ρ, j |=−f ϕ2, τj − τi ∈ I, and ρ, k |=−f ϕ1 for all k with
i < k < j

– τ|ρ|−1 − τi < sup(I) and ρ, k |=−f ϕ1 for all k with i < k < |ρ|
• ρ, i |=−f ϕ1 SI ϕ2 iff there exists j, 0 ≤ j < i such that ρ, j |=−f ϕ2, τi− τj ∈ I, and ρ, k |=−f ϕ1

for all k with j < k < i
• ρ, i |=−f ϕ1 U

c
I ϕ2 iff either of the following holds:

– there exists j, i < j < |ρ| such that ρ, j |=−f ϕ2, τj − τi ∈ I, and ρ, k |=−f ϕ1 for all k,
i < k < j such that τk − τi > c and τj − τk > a− c where a = inf(I)

– τ|ρ|−1 − τi < sup(I) and ρ, k |=−f ϕ1 for all k, i < k < |ρ| such that τk − τi > c and
τ|ρ|−1 − τk ≥ a− c where a = inf(I)

• ρ, i |=−f ϕ1 S
c
I ϕ2 iff there exists j, 0 ≤ j < i such that ρ, j |=−f ϕ2, τi− τj ∈ I, and ρ, k |=−f ϕ1

for all k, j < k < i such that τi − τk > c and τk − τj > (a− c) where a = inf(I).

Proposition 5.4. For a finite timed word ρ, a position i in ρ and an MTL[U,S] formula ϕ,

ρ, i |=+
f ϕ =⇒ ρ, i |=f ϕ and ρ, i |=f ϕ =⇒ ρ, i |=−f ϕ .

Informative prefixes. We say that ρ is informative for ϕ if either of the following holds:
• ρ strongly satisfies ϕ, i.e., ρ |=+

f ϕ. In this case we say that ρ is an informative good prefix
for ϕ; or

13:40 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

• ρ fails to weakly satisfy ϕ, i.e., ρ 6|=−f ϕ. In this case we say that ρ is an informative bad
prefix for ϕ.14

The following proposition follows immediately from the definition of informative prefixes.
In words, negating (syntactically) a formula swaps its set of informative good prefixes and
informative bad prefixes.

Proposition 5.5. For an MTL[U,S] formula, a finite timed word ρ is an informative good
prefix for ϕ if and only if ρ is an informative bad prefix for ¬ϕ.
Example 5.6. Consider the following formula over {P}:

ϕ = (¬P) ∧ (P =⇒ <3 P) .

We say that the finite timed word ρ = ({P}, 0)({P}, 2)(∅, 5.5) is an informative bad prefix for
ϕ as the second conjunct has been ‘clearly’ violated, i.e., there is a P -event with no P -event
in the following three time units (ρ |=+

f ¬ϕ, or equivalently ρ 6|=
−
f ϕ). On the other hand, while

ρ′ = ({P}, 0)({P}, 2)({P}, 4) is indeed a bad prefix for ϕ, it is not informative as both the
first and second conjuncts are not yet ‘clearly’ violated (ρ′ 6|=+

f ¬ϕ, or equivalently ρ
′ |=−f ϕ).

Example 5.7. Consider the following formula over {P}:
ϕ′ = (¬P) ∧ (P =⇒ <3 P) .

This formula is equivalent to the formula ϕ in the previous example. However, all the bad
prefixes ρ for ϕ′ are informative (ρ |=+

f ¬ϕ, or equivalently ρ 6|=
−
f ϕ).

5.2. Offline trace-checking algorithm. Trace checking can be seen as a much more
restricted case of model checking where one is only concerned with a single finite trace.
Formally, the trace-checking problem for MTL[U,S] asks the following: given a finite trace ρ
and an MTL[U,S] formula ϕ, is ρ |=f ϕ? An offline algorithm for the problem is shown as
Algorithms 1 and 2. For given ρ and ϕ, the algorithm maintains a two-dimensional Boolean
array table of |ψ| rows and |ρ| columns. Each row is used to store the truth values of
a subformula at all positions. The algorithm proceeds by filling up the array table in a
bottom-up manner, starting from minimal subformulas. We only detail the cases for ϕ1 UI ϕ2

and ϕ1 U
c
I ϕ2 as other cases are either symmetric or trivial. In what follows, we write x ≤ I

for x < sup(I) if I is right-open and for x ≤ sup(I) otherwise. To ease the presentation we
omit the array-bounds checks, e.g., the algorithm should stop when ptr (ptr1) reaches −1.

Proposition 5.8. After executing FillTable(table, ϕ1 UI ϕ2), we have

table[ϕ1 UI ϕ2][i] ⇐⇒ ρ, i |=f ϕ1 UI ϕ2

for all 0 ≤ i < |ρ| if table[ϕ1] and table[ϕ2] were both correct.

Proof. Suppose that table[ϕ1 UI ϕ2][i] = >. Since each entry in table[ϕ1 UI ϕ2] is filled
exactly once, it must be filled at either line 8 or line 12. In the former case it is clear that
ρ, i |=f ϕ1 UI ϕ2. In the latter case we must have ptr ≤ j− 2. If ptr = j− 2 then we are done,
so we assume ptr < j − 2. If there is a maximal position ptr ′, ptr + 1 < ptr ′ < j such that
table[ϕ1][ptr ′] = ⊥, we must have ptr + 1 = ptr ′, which is a contradiction. We therefore
conclude that ρ, i |=f ϕ1 UI ϕ2.

14Note that informative good/bad prefixes are under-approximations of good/bad prefixes; see Section 6
for a discussion.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:41

Algorithm 1 FillTable(table, ϕ1 UI ϕ2)

1: ptr ← |ρ| − 1
2: for j = |ρ| − 1 to 0 do
3: if ptr = j then
4: table[ϕ1 UI ϕ2][ptr]← ⊥
5: ptr ← ptr − 1

6: if table[ϕ2][j] then
7: if ptr = j − 1 then
8: table[ϕ1 UI ϕ2][ptr]← (τj − τptr ∈ I)
9: ptr ← ptr − 1

10: while table[ϕ1][ptr + 1] ∧ τj − τptr ≤ I do
11: if τj − τptr ∈ I then
12: table[ϕ1 UI ϕ2][ptr]← >
13: else
14: table[ϕ1 UI ϕ2][ptr]← ⊥
15: ptr ← ptr − 1

For the other direction, assume ρ, i |=f ϕ1 UI ϕ2 and let j′ > i be the witness position,
i.e., τj′ − τi ∈ I, table[ϕ2][j′] = > and table[ϕ1][j′′] = > for all j′′, i < j′′ < j′. Now
consider j = j′. If ptr ≥ i then we are done. So we assume ptr < i. If we already have
table[ϕ1 UI ϕ2][i] = ⊥, then it must be the case that τj′ − τi /∈ I, which is a contradiction.
Therefore we must have table[ϕ1 UI ϕ2][i] = >.

Algorithm 2 FillTable(table, ϕ1 U
c
I ϕ2)

1: ptr1 , ptr2 ← |ρ| − 1
2: for j = |ρ| − 1 to 0 do
3: while τj − τptr2 ≤ inf(I)− c ∨ table[ϕ1][ptr2] do
4: ptr2 ← ptr2 − 1

5: if ptr1 = j then
6: table[ϕ1 U

c
I ϕ2][ptr1]← ⊥

7: ptr1 ← ptr1 − 1

8: if table[ϕ2][j] then
9: if ptr1 = j − 1 then

10: table[ϕ1 U
c
I ϕ2][ptr1]← (τj − τptr1 ∈ I)

11: ptr1 ← ptr1 − 1

12: while τj − τptr1 ≤ I ∧ τptr2 − τptr1 ≤ c do
13: if τj − τptr1 ∈ I then
14: table[ϕ1 U

c
I ϕ2][ptr1]← >

15: else
16: table[ϕ1 U

c
I ϕ2][ptr1]← ⊥

17: ptr1 ← ptr1 − 1

13:42 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

Proposition 5.9. After executing FillTable(table, ϕ1 U
c
I ϕ2), we have

table[ϕ1 U
c
I ϕ2][i] ⇐⇒ ρ, i |=f ϕ1 U

c
I ϕ2

for all 0 ≤ i < |ρ| if table[ϕ1] and table[ϕ2] were both correct.

Proof. Observe that after line 5, ptr2 is equal to the maximal position such that τj − τptr2 >
inf(I)− c and table[ϕ1][ptr2] = ⊥. The proof is very similar to the case of ϕ1 UI ϕ2.

5.3. Monitoring procedure. Conceptually, we can regard a monitor as a deterministic
automaton over finite traces. The monitoring process, then, can be carried out by simply
moving a token as directed by the prefix. However, it is well-known that in a dense real-time
setting, such a monitor (say, which accepts all the bad prefixes for ϕ) needs an unbounded
number of clocks and therefore cannot be realised in practice [AH92, MNP05, Rey14]. For
this reason, we shall from now on assume that all input traces have variability at most kvar ,
i.e., there are at most kvar events in any (open) unit time interval. Based on this assumption,
we give a monitoring procedure for MTL[U,S] formulas of the form

ϕ̂ = Φ(ψ1, . . . , ψm)

where ψ1, . . ., ψm are bounded MTL[U,S] formulas and Φ is an LTL formula. The main
idea is similar to the one used in the previous section: we introduce new propositions
Q = {Q1, . . . , Qm} that correspond to ψ1, . . ., ψm. In this way, we can monitor Φ as an LTL
property over Q.15 Since these propositions correspond to bounded formulas, their truth
values can be obtained by running the trace-checking algorithm on subtraces: as the input
trace has variability at most kvar , we only need to store a ‘sliding window’ of a certain size.

The untimed LTL part . We recall briefly the standard methodology to construct finite
automata that accept exactly the informative good/bad prefixes for a given LTLfut for-
mula [KV01]. Given such a formula Ψ, first use a standard construction [Var96] to obtain a
language-equivalent alternating Büchi automaton AΨ. Then redefine its accepting set to be
the empty set and treat it as an automaton over finite words; the resulting automaton Atrue

Ψ
accepts exactly all informative good prefixes for Ψ. In particular, one can determinise Atrue

Ψ
with the usual subset construction. The same can be done for ¬Ψ to obtain a deterministic
automaton that accepts exactly the informative bad prefixes for Ψ.

In our case, we first translate the LTL formulas Φ and ¬Φ into a pair of two-way
alternating Büchi automata [GO03]. With the same modifications, we obtain two automata
that accept informative good prefixes and informative bad prefixes for Φ. We then apply
existing procedures that translate two-way alternating automata over finite words into
deterministic automata (e.g., [Bir93]) and obtain Dgood and Dbad , respectively. To detect
both types of prefixes simultaneously, we will execute Dgood and Dbad in parallel.

Proposition 5.10. For an MTL[U,S] formula ϕ̂ of the form described above, the automata
Dgood and Dbad are of size 22O(|Φ|) where Φ is the ‘backbone’ LTL formula.

15A similar idea is used in [FK09] to synthesise smaller monitor circuits for LTLfut formulas.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:43

Naïve evaluation of the bounded metric parts. In what follows, let lfr (ψ) = kvar · dfr(ψ)e
and lpr (ψ) = kvar · dpr(ψ)e (the functions fr and pr are defined in Section 4.3). Suppose
that we want to obtain the truth value of ψi at position j in the input trace ρ = (σ, τ).
Since ψi is bounded, only the events occurring between τj − pr(ψi) and τj + fr(ψi) can
affect the truth value of ψi at j. This implies that ρ, j |= ψi ⇐⇒ ρ′, j |=f ψi where ρ

′ is
a prefix of ρ that contains all the events between τj − pr(ψi) and τj + fr(ψi) in ρ. Since
ρ is of bounded variability kvar , there can be at most lpr (ψi) + 1 + lfr (ψi) events between
τj − pr(ψi) and τj + fr(ψi). It follows that we can simply ‘record’ all events in this interval
with a two-dimensional array of lpr (ψi) + 1 + lfr (ψi) columns and 1 + |ψi| rows: the first
row is used to store the timestamps whereas the other rows are used to store the truth
values. Intuitively, the two-dimensional array acts as a sliding window around position
j in ρ. Now consider all the propositions in Q: their truth values at position j can be
evaluated using a two-dimensional array of lQpr + 1 + lQfr columns and 1 + |ψ1|+ · · ·+ |ψm|
rows where lQpr = max

1≤i≤m
lpr (ψi) and lQfr = max

1≤i≤m
lfr (ψi). Each row can be filled in time

O(lQpr + 1 + lQfr) with the trace-checking algorithm. Overall, we need a two-dimensional array
of size O(kvar · csum · |ϕ̂|) where csum is the sum of the constants in ϕ̂; for each position j,
we need time O(kvar · csum · |ϕ̂|) to obtain the truth values of all propositions in Q, which
are then used as input to Dgood and Dbad .

Incremental evaluation of the bounded metric parts. While the procedure above uses only
bounded space, it is clearly inefficient as for each j we have to fill the whole two-dimensional
array from scratch. This is because some of the filled entries (other than those for position
j) may depend on the events outside of the sliding window, and thus can be incorrect. We
now describe an optimisation which enables the reuse of previously filled entries.

We first deal with the simpler case of past subformulas. Observe that as the trace-
checking algorithm is filling a row for ϕ1 SI ϕ2 or ϕ1 Sc

I ϕ2, the variables ptr , ptr1 and
ptr2 all increases monotonically. This implies that for past subformulas, the trace-checking
algorithm can be used in an online manner: simply suspend the algorithm when we have filled
all entries using the truth values of ϕ1 and ϕ2 (at various positions) that are currently known,
and resume the algorithm when the truth values of ϕ1 and ϕ2 (at some other positions) that
are previously unknown become available.

The case of future subformulas is more involved. Suppose that we want to evaluate the
truth value of a subformula P1 U(a,b) P2 at position j in the input trace ρ = (σ, τ). It is clear
that the value may depend on future events if τj + b is greater than the timestamp of the
last acquired event. However, observe that even when this is the case, we may still do the
evaluation if any of the following holds:
• P1 fails to hold at some position j′ such that τj′ is less or equal than the timestamp of
the last acquired event. In this case, we know that all the truth values of P1 U(a,b) P2 at
positions < j′ cannot depend on the events at positions > j′.
• P2 holds at some position j′ > j and P1 holds at all positions j′′, j < j′′ < j′. In this case,
the truth values of P1 U(a,b) P2 at positions k < j′ where τj′ − τk ∈ (a, b) are > and do not
depend on the events at positions > j′.

We generalise this observation to handle the general case of updating the row for ϕ1 U(a,b) ϕ2.
First of all, we maintain indices jϕ1 , jϕ2 , jϕ1UIϕ2 which point to the first unknown entries in
the rows for ϕ1, ϕ2 and ϕ1 UI ϕ2. Let tmax = min{τ(jϕ1−1), τ(jϕ2−1)} and update its value

13:44 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

when either jϕ1 or jϕ2 changes. Whenever tmax is updated to a new value, we also update
the following indices:
• j1 is the maximal position such that τj1 + b ≤ tmax

• j2 is the maximal position such that τj2 ≤ tmax and ϕ2 holds at j2
• j3 is the maximal position such that τj3 + a < τj2
• j4 is the maximal position such that τj4 ≤ tmax and ϕ1 does not hold at j4.
Now, after both the rows for ϕ1 and ϕ2 have been updated, if any of j1, j3, j4 − 1 is greater
or equal than jϕ1UIϕ2 , we let j5 = max{j1, j3, j4 − 1} and start Algorithm 1 from line 3 with
ptr = j5 and j = j2. We run the algorithm till all the entries at positions ≤ j5 in the row
for ϕ1 UI ϕ2 have been filled. The crucial observation here is that j1, j2, j3, j4 all increase
monotonically, and therefore can be maintained in amortised linear time. Also, the truth
value of any subformula at any position will be filled only once. The case of ϕ1 Uc(a,b) ϕ2

is similar (but slightly more involved). These observations imply that each entry in the
two-dimensional array can be filled in amortised constant time. Assuming that moving a
token on a deterministic finite automaton takes constant time, we can state the following
theorem.

Theorem 5.11. For an MTL[U,S] formula ϕ̂ of the form described earlier and an infinite
trace of variability kvar , our monitoring procedure uses two DFAs of size 22O(|Φ|), a two-
dimensional array of size O(kvar · csum · |ϕ̂|) where csum is the sum of the constants in ϕ̂, and
amortised time O(|ϕ̂|) per event.

Correctness . We now show that our procedure is sound and complete for detecting informative
prefixes.

Proposition 5.12. For a bounded MTL[U,S] formula ψ, a finite trace ρ = (σ, τ) and a
position 0 ≤ i < |ρ| such that τi + fr(ψ) ≤ τ|ρ|−1, we have

ρ, i |=+
f ψ ⇐⇒ ρ, i |=f ψ ⇐⇒ ρ, i |=−f ψ .

Proposition 5.13. For an MTL[U,S] formula ϕ, a finite trace ρ and a position i in ρ, if ρ
is a prefix of a longer finite trace ρ′, then

ρ, i |=+
f ϕ =⇒ ρ′, i |=+

f ϕ and ρ, i 6|=−f ϕ =⇒ ρ′, i 6|=−f ϕ .

Theorem 5.14 (Soundness). In our procedure, if we ever reach an accepting state of Dgood

(Dbad) via a finite word u ∈ Σ∗Q, then we must eventually read an informative good (bad)
prefix for ϕ̂.

Proof. For such u and a corresponding ρ = (σ, τ) such that τ|u|−1 + lQfr ≤ τ|ρ|−1, we have

∀i ∈ [0, |u|)
(
(u, i |=+

f Ψ =⇒ ρ, i |=+
f ψ) ∧ (u, i 6|=−f Ψ =⇒ ρ, i 6|=−f ψ)

)
where Ψ is a subformula of Φ and ψ = Ψ(ψ1, . . . , ψm). This can easily be proved by structural
induction and Proposition 5.12. If u is accepted by Dgood , we have u, 0 |=+

f Φ by construction.
By the above we have ρ, 0 |=+

f Φ(ψ1, . . . , ψm), as desired. The case of Dbad is symmetric.

Theorem 5.15 (Completeness). Whenever we read an informative good (bad) prefix ρ = (σ, τ)
for ϕ̂, Dgood (Dbad) must eventually reach an accepting state.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:45

Proof. For the finite word u′ ∈ Σ∗Q obtained a bit later with |u′| = |ρ|,

∀i ∈ [0, |u′|)
(
(ρ, i |=+

f ψ =⇒ u′, i |=+
f Ψ) ∧ (ρ, i 6|=−f ψ =⇒ u′, i 6|=−f Ψ)

)
where Ψ is a subformula of Φ and ψ = Ψ(ψ1, . . . , ψm). This can be proved by structural
induction and Proposition 5.13. The theorem follows.

5.4. Preservation of informative prefixes. As we have seen earlier in Example 5.6
and 5.7, it is possible for two equivalent MTL[U,S] formulas to have different sets of
informative good/bad prefixes. In this section, we show that this is cannot be the case when
the two formulas are related by one of the rewriting rules in Section 4.1. In other words, the
rewriting rules in Section 4.1 preserves the ‘informativeness’ of formulas.

Lemma 5.16. For an MTL[U,S] formula ϕ, let ϕ′ be the formula obtained from ϕ by
applying one of the rules in Section 4.1 on some of its subformula. We have

ρ |=+
f ϕ ⇐⇒ ρ |=+

f ϕ
′ and ρ |=−f ϕ ⇐⇒ ρ |=−f ϕ

′ .

Given the lemma above, we can state the following theorem on any MTL formula ϕ and
the equivalent formula ϕ̂ (of our desired form) obtained from ϕ by applying the rewriting
rules in Section 4.1.

Theorem 5.17. The set of informative good prefixes of ϕ coincides with the set of informative
good prefixes of ϕ̂. The same holds for informative bad prefixes.

We now have a way to detect the informative good/bad prefixes for an arbitrary MTL[U,S]
formula ϕ: use the rewriting rules to obtain ϕ̂, and apply the monitoring procedure we
described in the last subsection. The monitor only needs a bounded amount of memory, even
for complicated MTL[U,S] formulas with arbitrary nestings of (bounded and unbounded)
past and future operators.

Proof of Lemma 5.16. Since the satisfaction relations are defined inductively, we can work
directly on the relevant subformulas. We would like to prove that for a finite timed word ρ
and a position i in ρ,

ρ, i |=+
f φ ⇐⇒ ρ, i |=+

f φ
′ and ρ, i |=−f φ ⇐⇒ ρ, i |=−f φ

′

where φ ⇐⇒ φ′ matches one of the rules in Section 4.1. For a group of similar rules we will
only prove a representative one, as the proof for others follow similarly. In the following let
the LHS be φ and RHS be φ′.

• ϕ1 U(a,∞) ϕ2 ⇐⇒ ϕ1 U ϕ2 ∧ (0,a](ϕ1 ∧ ϕ1 U ϕ2):

– ρ, i |=+
f φ ⇐⇒ ρ, i |=+

f φ
′:

Assume ρ, i |=+
f φ. By definition we have ρ, i |=+

f ϕ1 U ϕ2. If there is no event in (τi, τi +a],
since there must be an event in (τi + a, τ|ρ|−1], we are done. If there are events in
(τi, τi + a], then for all j such that τj − τi ∈ (0, a] we have ρ, j 6|=−f ¬ϕ1. Also for all
such j we have ρ, j 6|=−f ¬ϕ1 U ϕ2 since it is obvious that ρ, j |=+

f ϕ1 U ϕ2. For the other
direction, if the witness (for ρ, i |=+

f ϕ1 U ϕ2) is in (τi + a, τ|ρ|−1) then we are done. If
this is not the case, since ρ, i 6|=−f (0,a]

(
¬ϕ1 ∨ ¬(ϕ1 U ϕ2)

)
, we must have τ|ρ|−1 ≥ a.

Now for all j such that τj − τi ∈ (0, a] we have ρ, j |=+
f ϕ1 and ρ, j |=+

f ϕ1 U ϕ2, which
imply ρ, i |=+

f φ.

13:46 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

– ρ, i |=−f φ ⇐⇒ ρ, i |=−f φ
′:

Assume ρ, i |=−f φ. This holds if there is a witness in (a,∞) or ρ, i |=−f ϕ1. In both cases
we have ρ, i |=−f ϕ1 U ϕ2. If there is no event in (τi, τi + a] then we are done. If there is a
witness, then for all such j that τj − τi ∈ (0, a] we have ρ, j |=−f ϕ1 and ρ, j |=−f ϕ1 U ϕ2.
If there is no witness then for all such j we again have ρ, j |=−f ϕ1 and ρ, j |=−f ϕ1 U ϕ2.
For the other direction, if there is no event in (τi, τi + a] we are done. If there are events
in (τi, τi + a], all j such that τj − τi ∈ (0, a] will satisfy ρ, j |=−f ϕ1 and ρ, j |=−f ϕ1 U ϕ2.
This clearly gives ρ, i |=−f φ.

• ϕ1 U
c
(a,∞) ϕ2 ⇐⇒ ϕ1 U

c
(a,2a] ϕ2 ∨

(
w
[0,c]

(
ϕ1 U(a,∞) (ϕ2 ∨ ≤a−c ϕ2)

))
:

The proof is very similar to the proof of Proposition 4.1.

• ¬(ϕ1 U ϕ2) ⇐⇒ ¬ϕ2 ∨
(
¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1)

)
:

– ρ, i |=+
f φ ⇐⇒ ρ, i |=+

f φ
′:

Assume ρ, i |=+
f φ ⇐⇒ ρ, i 6|=−f ϕ1U ϕ2. This implies that ϕ1 fails to hold before ϕ2 holds,

and we have ρ, i |=+
f ¬ϕ2 U (¬ϕ2 ∧¬ϕ1). For the other direction note that ρ, i 6|=+

f ¬ϕ2,
the second disjunct must be satisfied, and it is easy to see that ρ, i |=+

f φ.

– ρ, i |=−f φ ⇐⇒ ρ, i |=−f φ
′:

Assume ρ, i |=−f ¬(ϕ1 U ϕ2) ⇐⇒ ρ, i 6|=+
f ϕ1 U ϕ2. This implies either ρ, j 6|=+

f ϕ2 ⇐⇒
ρ, j |=−f ¬ϕ2 for all j > i in ρ (this gives ρ, i |=−f ¬ϕ2) or ϕ1 fails to hold before ϕ2 holds—
ρ, i |=−f ¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1). For the other direction, if ρ, i |=−f ¬ϕ2 ⇐⇒ ρ, i 6|=+

f ϕ2

then ρ, i |=+
f ϕ1 U ϕ2 cannot hold. If ρ, i |=−f ¬ϕ2 U (¬ϕ2 ∧¬ϕ1) then either ρ, i |=−f ¬ϕ2

or there is a witness, and it is easy to see that ρ, i |=+
f ϕ1 U ϕ2 cannot hold.

• θ U(a,b)

(
(ϕ1 U ϕ2) ∧ χ

)
⇐⇒ θ U(a,b)

(
(ϕ1 U(0,2b) ϕ2) ∧ χ

)
∨
((
θ U(a,b) ((0,2b) ϕ1 ∧ χ)

)
∧ ϕugb

)
:

The proof is very similar to the proof of Proposition 4.2.

•
(
(ϕ1 U ϕ2) ∨ χ

)
U(a,b) θ ⇐⇒

(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

(ϕ1 U(0,2b) ϕ2) ∨ χ
)
U(0,b) ((0,2b) ϕ1)

)
∧ (a,b) θ ∧ ϕugb

)
– ρ, i |=+

f φ ⇐⇒ ρ, i |=+
f φ
′:

Assume ρ, i |=+
f φ. It is obvious that ρ, i |=

+
f (a,b) θ holds. If the first disjunct of φ′ does

not hold, then ρ, i |=+
f

(
(ϕ1 U(0,2b) ϕ2)∨χ

)
U(0,b) ((0,2b) ϕ1) must hold. The last conjunct

holds by an argument similar to the proof of Proposition 4.2. For the other direction, if
the first disjunct of φ′ holds then we are done. If it does not hold, then there must be a
witness (at which ϕ2 holds) in [τi + 2b, τ|ρ|−1], and it is easy to see that ρ, i |=+

f φ.

– ρ, i |=−f φ ⇐⇒ ρ, i |=−f φ
′:

Assume ρ, i |=−f φ. If the first disjunct of φ′ does not hold then there must be events
in [τi + 2b, τ|ρ|−1]. It follows that ρ, i |=−f

(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
U(0,b) ((0,2b) ϕ1) and

ρ, i |=−f (a,b) θ must hold. The rest is similar to the proof to Proposition 4.2. For the

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:47

other direction, if the first disjunct of φ′ holds then we are done. Otherwise if τ|ρ|−1 < b,
it is easy to see that ρ, i |=−f φ. If this is not the case then the proof again follows
Proposition 4.2.

6. Conclusion and future work

Expressive completeness over bounded timed words. We showed that MTL extended with
our new modalities ‘generalised Until ’ and ‘generalised Since’ (MTL[U,S]) is expressively
complete for FO[<,+1] over bounded timed words. Moreover, the time-bounded satisfiability
and model-checking problems for MTL[U,S] remain EXPSPACE-complete, same as that of
MTL. The situation here is similar to LTL over general, possibly non-Dedekind complete, linear
orders (e.g., the rationals): in this case, LTL can be made expressively complete (for FO[<])
by adding the Stavi modalities [GHR94], yet the complexity of the satisfiability problem
remains PSPACE-complete [Rab10]. Along the way, we also obtained a strict hierarchy of
metric temporal logics based on their expressiveness over bounded timed words.

One drawback of the modalities UcI and Sc
I is that they are not very intuitive. However, as

we proved that simpler versions of these modalities (B→I and B←I) are strictly less expressive,
we believe it is unlikely that any other expressively complete extension of MTL could be
much simpler than ours.

The satisfiability and model-checking procedures for MTL over time-bounded signals
in [ORW09] are based on the satisfiability procedure for LTL over signals in [Rey10]. While
the satisfiability problem for LTL remains PSPACE-complete when interpreted over signals,
very few implementations are currently available [FMDR13]. This is in sharp contrast with
the discrete case where a number of mature, industrial-strength tools (e.g., SPIN [Hol97])
are readily available. Our results enable the direct application of these tools to time-bounded
verification. Whether this yields efficiency gains in practice, however, can only be evaluated
empirically, which we leave as future work.

Expressive completeness over unbounded timed words. Building upon a previous work of
Hunter, Ouaknine and Worrell [HOW13], we showed that the rational version of MTL[U,S]
is expressively complete for FO[<,+Q] over infinite timed words. The result answers an
implicit open question in a long line of research started in [AH90] and further developed
in [BCM05, PD06, DP06, PS11].

It is known that the integer version of MTL extended with counting modalities (and
their past counterparts) is expressively complete for FO[<,+1] over the reals [Hun13].16 We
conjecture that the analogous result holds in the pointwise semantics, i.e., the integer version
of MTL[U,S] becomes expressively complete for FO[<,+1] when we add counting modalities.
Adapting the proof in [Hun13] to the pointwise case, however, is not a straight-forward
task. In particular, the proof relies on the expressive completeness of MITL with counting
modalities for Q2MLO [HR04], a result that itself requires a highly non-trivial proof [HR06]
and seems to hold only in the continuous semantics.

Besides expressiveness, another major concern in the study of metric logics is decidability.
We intend to investigate whether the expressiveness of MITLfut or MITL can be enhanced

16This result is stronger than [HOW13] as counting modalities (and their past counterparts) can be
expressed in MTL with rational endpoints.

13:48 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

with the new modalities while retaining decidability. Specifically, we would like to answer the
following question: what is the complexity of the satisfiability problem for the logic obtained
by adding B→I (with non-singular I) into MITLfut? Since B→I can be expressed in one-clock
alternating timed automata, it can possibly be handled in the framework of [BEG14]. More
generally, we may consider MITL extended with B→I and B←I (with non-singular I); it is not
clear whether allowing these modalities simultaneously leads to undecidability.

Monitoring . We identified an ‘easy-to-monitor’ fragment of MTL[U,S], for which we proposed
an efficient trace-length independent monitoring procedure. This fragment is much more
expressive than the fragments previously considered in the literature. Moreover, we showed
that informative good/bad prefixes are preserved by the syntactic rewriting rules in Section 4.1.
It follows that the informative good/bad prefixes for an arbitrary MTL[U,S] formula can be
monitored in a trace-length independent fashion, thus overcoming a long-standing barrier to
the runtime verification of real-time properties.

For an arbitrary MTL[U,S] formula, the syntactic rewriting process could potentially
induce a non-elementary blow-up. In practice, however, the resulting formula is often of
comparable size to the original one, which itself is typically small. For example, consider the
following formula:(

ChangeGear =⇒ (0,30)(InjectFuel ∧ InjectAir)
)
.

The resulting formula after rewriting is(
ChangeGear =⇒ (0,30)(InjectFuel ∧ (0,30) InjectAir)

∨ ((0,30) InjectFuel ∧ InjectAir)
)
.

In fact, it can be argued that most common real-time specification patterns [KC05] belong
syntactically to our ‘easy-to-monitor’ fragment and thus need no rewriting. Another way to
alleviate the issue is to allow more liberal syntax (or more derived operators). For example,
the procedure described in Section 5.3 can handle subformulas with unbounded past without
modification.

To detect informative bad prefixes, our monitoring procedure uses a deterministic finite
automaton doubly-exponential in the size of the input formula. While such a blow-up is
rarely a problem in practice (see [BLS11, Section 2.5]), it would be better if it could be
avoided altogether. In the untimed setting, it is known that if a safety property can be
written as an LTL formula, then it is equivalent to a formula of the form ψ where ψ is
a past-only LTL formula [LPZ85]. So, if we restrict our attention to safety properties, it
suffices to consider formulas of this form, for which there is an efficient monitoring procedure
that uses O(|ψ|) time (per event) and O(|ψ|) space [HR01]. Unfortunately, the question of
whether a corresponding result holds for MTL (or similar metric temporal logics) is still open.

Our procedure detects only informative good/bad prefixes, which themselves can be
regarded as easily-checkable certificates for the fulfilment/violation of the property. While
we believe this limitation is in no way severe—in fact, the limitation is implicit in almost all
current approaches to monitoring real-time properties—there are certain practical scenarios
where detecting all good/bad prefixes is preferred. We could have used two deterministic
finite automata that detect all good/bad prefixes for the backbone LTL formula, but still
they cannot detect all good/bad prefixes for the whole formula (consider Example 5.6). We
leave as future work a procedure that detects all good/bad prefixes.

Finally, we remark that the offline trace-checking problem is of independent theoretical
interest [MS03]. It is known that the trace-checking problem for LTL [KF09] and MTL [BO14]

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:49

are both in AC1[log DCFL], yet their precise complexity is still open. It would be interesting
to see whether the construction for MTL in [BO14] carries over to MTL[U,S].

References

[ABLS05] Oliver Arafat, Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification
revisited. Technical Report TUM-I0518, Technische Universität München, 2005.

[AD94] Rajeev Alur and David Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[AFH96] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116–146, 1996.

[AH90] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness. In
Proceedings of LICS 1990, pages 390–401. IEEE Computer Society Press, 1990.

[AH92] Rajeev Alur and Thomas A. Henzinger. Back to the future: towards a theory of timed regular
languages. In Proceedings of FOCS 1992, pages 177–186. IEEE Computer Society Press, 1992.

[AM04] Rajeev Alur and Parthasarathy Madhusudan. Decision problems for timed automata: A survey.
In Formal Methods for the Design of Real-Time Systems, volume 3185 of LNCS, pages 1–24.
Springer, 2004.

[AS87] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Computing,
2(3):117–126, 1987.

[BBBB09] Christel Baier, Nathalie Bertrand, Patricia Bouyer, and Thomas Brihaye. When are timed
automata determinizable? In Proceedings of ICALP 2009, volume 5556 of LNCS, pages 43–54.
Springer, 2009.

[BCE+14] David A. Basin, Germano Caronni, Sarah Ereth, Matús Harvan, Felix Klaedtke, and Heiko
Mantel. Scalable offline monitoring. In Proceedings of RV 2014, volume 8734 of LNCS, pages
31–47. Springer, 2014.

[BCM05] Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL and
MTL. In Proceedings of FSTTCS 2005, volume 3821 of LNCS, pages 432–443. Springer, 2005.

[BEG14] Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed
automata over infinite words. In Proceedings of FORMATS 2014, volume 8711 of LNCS, pages
69–84. Springer, 2014.

[BGHM17] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. MightyL: A composi-
tional translation from MITL to timed automata. In Proceedings of CAV 2017, volume 10426 of
LNCS, pages 421–440. Springer, 2017.

[Bir93] Jean-Camille Birget. State-complexity of finite-state devices, state compressibility and incom-
pressibility. Mathematical Systems Theory, 26(3):237–269, 1993.

[BKV13] A Bauer, JC Küster, and Gil Vegliach. From propositional to first-order monitoring. In Proceedings
of RV 2013, volume 8174 of LNCS, pages 59–75. Springer, 2013.

[BKZ11] David Basin, Felix Klaedtke, and Eugene Zălinescu. Algorithms for monitoring real-time proper-
ties. In Proceedings of RV 2011, volume 7186 of LNCS, pages 260–275. Springer, 2011.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for LTL and
TLTL. ACM Transactions on Software Engineering and Methodology, 20(4):14, 2011.

[BMOW07] Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell. The cost of punctuality. In
Proceedings of LICS 2007, pages 109–120. IEEE Computer Society Press, 2007.

[BN12] Kevin Baldor and Jianwei Niu. Monitoring dense-time, continuous-semantics, metric temporal
logic. In Proceedings of RV 2012, volume 7687 of LNCS, pages 245–259. Springer, 2012.

[BO14] Daniel Bundala and Joël Ouaknine. On the complexity of temporal-logic path checking. In
Proceedings of ICALP 2014, volume 8573 of LNCS, pages 86–97. Springer, 2014.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Proceedings of IBM Workshop on Logic of Programs,
volume 131 of LNCS, pages 52–71. Springer-Verlag, 1981.

[Dam94] Mads Dam. Temporal logic, automata, and classical theories - an introduction, 1994.
[DHV07] Deepak D’Souza, Raveendra Holla, and Deepak Vankadaru. On the expressiveness of TPTL in

the pointwise and continuous semantics. Unpublished manuscript, 2007.

13:50 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

[DKL10] Christian Dax, Felix Klaedtke, and Martin Lange. On regular temporal logics with past. Acta
Informatica, 47(4):251–277, 2010.

[DM13] Deepak D’Souza and Raj Mohan Matteplackel. A clock-optimal hierarchical monitoring automa-
ton construction for MITL. Technical Report 2013-1, Department of Computer Science and
Automation, Indian Institute of Science, 2013.

[DP06] Deepak D’Souza and Pavithra Prabhakar. On the expressiveness of MTL in the pointwise and
continuous semantics. International Journal on Software Tools for Technology Transfer, 9(1):1–4,
2006.

[DT04] Deepak D’Souza and Nicolas Tabareau. On timed automata with input-determined guards. In
Proceedings of FORMATS/FTRTFT 2004, volume 3253 of LNCS, pages 68–83. Springer, 2004.

[EFHL03] Cindy Eisner, Dana Fisman, John Havlicek, and Yoad Lustig. Reasoning with temporal logic
on truncated paths. In Proceedings of CAV 2003, volume 2725 of LNCS, pages 27–39. Springer,
2003.

[EL86] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of the propositional
mu-calculus. In Proceedings of LICS 1986, pages 267–278. IEEE Computer Society Press, 1986.

[EW96] Kousha Etessami and Thomas Wilke. An until hierarchy for temporal logic. In Proceedings of
LICS 1996, pages 108–117. IEEE Computer Society Press, 1996.

[FK09] Bernd Finkbeiner and Lars Kuhtz. Monitor circuits for LTL with bounded and unbounded future.
In Proceedings of RV 2009, volume 5779 of LNCS, pages 60–75. Springer, 2009.

[FMDR13] Tim French, John Christopher McCabe-Dansted, and Mark Reynolds. Verifying temporal
properties in real models. In Proceedings of LPAR 2013, volume 8312 of LNCS, pages 309–323.
Springer, 2013.

[GHR94] Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal Logics: Mathematical Foundations
and Computational Aspects, Volume 1. Oxford University Press, 1994.

[GO03] Paul Gastin and Denis Oddoux. LTL with past and two-way very-weak alternating automata. In
Proceedings of MFCS 2003, volume 2747 of LNCS, pages 439–448. Springer, 2003.

[GPSS80] Dov Gabbay, Amir Pnueli, Sharanon Shelah, and J. Stavi. On the temporal analysis of fairness.
In Proceedings of POPL 1980, pages 163–173. ACM Press, 1980.

[HMP92] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clocks? In
Proceedings of ICALP 1992, volume 623 of LNCS, pages 545–558. Springer, 1992.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

[HOW13] Paul Hunter, Joël Ouaknine, and James Worrell. Expressive completeness of metric temporal
logic. In Proceedings of LICS 2013, pages 349–357. IEEE Computer Society Press, 2013.

[HR01] Klaus Havelund and Grigore Roşu. Testing linear temporal logic formulae on finite execution
traces. Technical Report RIACS 01.08, Research Institute for Advanced Computer Science, 2001.

[HR04] Yoram Hirshfeld and Alexander Moshe Rabinovich. Logics for real time: Decidability and
complexity. Fundamenta Informaticae, 62(1):1–28, 2004.

[HR06] Yoram Hirshfeld and Alexander Moshe Rabinovich. An expressive temporal logic for real time.
In Proceedings of MFCS 2006, volume 4162 of LNCS, pages 492–504. Springer, 2006.

[HR07] Yoram Hirshfeld and Alexander Rabinovich. Expressiveness of metric modalities for continuous
time. Logical Methods in Computer Science, 3(1), 2007.

[HRS98] Thomas A. Henzinger, Jean-François Raskin, and Pierre-Yves Schobbens. The regular real-time
languages. In Proceedings of ICALP 1998, volume 1443 of LNCS, pages 580–591. Springer, 1998.

[Hun13] Paul Hunter. When is metric temporal logic expressively complete? In Proceedings of CSL 2013,
volume 23 of LIPIcs, pages 380–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

[Kam68] Johan A. Kamp. Tense logic and the theory of linear order. PhD thesis, University of California,
Los Angeles, 1968.

[KC05] Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In Proceedings of ICSE
2005, pages 372–381. ACM Press, 2005.

[KF09] Lars Kuhtz and Bernd Finkbeiner. LTL path checking is efficiently parallelizable. In Proceedings
of ICALP 2009, volume 5556 of LNCS, pages 235–246. Springer, 2009.

[KKP11] Dileep Kini, Shankara N. Krishna, and Paritosh Pandya. On construction of safety signal
automata for MITL[U,S] using temporal projections. In Proceedings of FORMATS 2011, volume
6919 of LNCS, pages 225–239. Springer, 2011.

Vol. 15:2 ON THE EXPRESSIVENESS AND MONITORING OF METRIC TEMPORAL LOGIC 13:51

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

[KV01] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Formal Methods in
System Design, 19(3):291–314, 2001.

[LPZ85] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past. In Proceedings of
Logics of Programs 1985, volume 193 of LNCS, pages 196–218. Springer, 1985.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime verification. Journal of
Logic and Algebraic Programming, 78(5):293–303, 2009.

[LW08] Slawomir Lasota and Igor Walukiewicz. Alternating timed automata. ACM Transactions on
Computational Logic, 9(2), 2008.

[MN04] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In
Proceedings of FORMATS/FTRTFT 2004, volume 3253 of LNCS, pages 152–166. Springer, 2004.

[MNP05] Oded Maler, Dejan Nickovic, and Amir Pnueli. Real time temporal logic: Past, present, future.
In Proceedings of FORMATS 2005, volume 3829 of LNCS, pages 2–16. Springer, 2005.

[MNP06] Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed automata. In Proceedings
of FORMATS 2006, volume 4202 of LNCS, pages 274–289. Springer, 2006.

[MP95] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: safety, volume 2.
Springer, 1995.

[MS03] Nicolas Markey and Philippe Schnoebelen. Model checking a path (preliminary report). In
Proceedings of CONCUR 2003, volume 2761 of LNCS, pages 251–265. Springer, 2003.

[NP10] Dejan Nickovic and Nir Piterman. From MTL to deterministic timed automata. In Proceedings
of FORMATS 2010, volume 6246 of LNCS, pages 152–167. Springer, 2010.

[ORW09] Joël Ouaknine, Alexander Rabinovich, and James Worrell. Time-bounded verification. In Pro-
ceedings of CONCUR 2009, volume 5710 of LNCS, pages 496–510. Springer, 2009.

[OW06] Joël Ouaknine and James Worrell. On metric temporal logic and faulty turing machines. In
Proceedings of FoSSaCS 2006, volume 3921 of LNCS, pages 217–230. Springer, 2006.

[OW08] Joël Ouaknine and James Worrell. Some recent results in metric temporal logic. In Proceedings
of FORMATS 2008, volume 5215 of LNCS, pages 1–13. Springer, 2008.

[OW10] Joël Ouaknine and James Worrell. Towards a theory of time-bounded verification. In Proceedings
of ICALP 2010, volume 6199 of LNCS, pages 22–37. Springer, 2010.

[PD06] Pavithra Prabhakar and Deepak D’Souza. On the expressiveness of MTL with past operators. In
Proceedings of FORMATS 2006, volume 4202 of LNCS, pages 322–336. Springer, 2006.

[PS11] Paritosh K. Pandya and Simoni S. Shah. On expressive powers of timed logics: Comparing
boundedness, non-punctuality and deterministic freezing. In Proceedings of CONCUR 2011,
volume 6901 of LNCS, pages 60–75. Springer, 2011.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems
in CESAR. In Proceedings of Symposium on Programming 1982, volume 137 of LNCS, pages
337–351. Springer, 1982.

[Rab10] Alexander Rabinovich. Temporal logics over linear time domains are in PSPACE. In Proceedings
of RP 2010, volume 6227 of LNCS, pages 29–50. Springer, 2010.

[Rey10] Mark Reynolds. The complexity of temporal logic over the reals. Annals of Pure and Applied
Logic, 161(8):1063–1096, 2010.

[Rey14] Mark Reynolds. Metric temporal logics and deterministic timed automata (long report version).
Technical report, University of West Australia, 2014.

[Roş12] Grigore Roşu. On safety properties and their monitoring. Scientific Annals of Computer Science,
22(2):327–365, 2012.

[SC85] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal logics.
Journal of the ACM, 32(3):733–749, 1985.

[SHL11] Oleg Sokolsky, Klaus Havelund, and Insup Lee. Introduction to the special section on runtime
verification. International Journal on Software Tools for Technology Transfer, 14(3):243–247,
2011.

[Sto74] Larry Stockmeyer. The complexity of decision problems in automata theory and logic. PhD
thesis, TR 133, M.I.T., Cambridge, 1974.

[TR05] Prasanna Thati and Grigore Roşu. Monitoring algorithms for metric temporal logic specifications.
Electronic Notes in Theoretical Computer Science, 113:145–162, 2005.

13:52 H.-M. Ho, J. Ouaknine, and J. Worrell Vol. 15:2

[Tri02] Stavros Tripakis. Fault diagnosis for timed automata. In Proceedings of FTRTFT 2002, volume
2469 of LNCS, pages 205–224. Springer, 2002.

[Var96] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Con-
currency – Structure versus Automata (8th Banff Higher Order Workshop’95), volume 1043 of
LNCS, pages 238–266. Springer, 1996.

[Wil94] Thomas Wilke. Specifying timed state sequences in powerful decidable logics and timed automata.
In Proceedings of FTRTFT 1994, volume 863 of LNCS, pages 694–715. Springer, 1994.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite computation
paths. In Proceedings of FOCS 1983, pages 185–194. IEEE Computer Society Press, 1983.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Automata and logics for real-time
	2.2. Model checking
	2.3. Monitoring

	3. Expressive completeness of MTL[G, U] over bounded timed words
	3.1. MTL EF games
	3.2. A hierarchy of expressiveness
	3.3. New modalities
	3.4. The translation
	3.5. Time-bounded verification

	4. Expressive completeness of MTL[G, U] over unbounded timed words
	4.1. Syntactic separation of MTL[G, U] formulas
	4.2. Expressing bounded FO[<, +1] formulas
	4.3. Expressive completeness of MTL[G, U]

	5. Monitoring of MTL[G, U] properties
	5.1. Satisfaction over finite prefixes
	5.2. Offline trace-checking algorithm
	5.3. Monitoring procedure
	5.4. Preservation of informative prefixes

	6. Conclusion and future work
	References

