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The utility of an enhanced chromodynamic, color gradient or phase-field multicomponent lattice Boltzmann
(MCLB) equation for immiscible fluids with a density difference was demonstrated by Wen et al. [Phys. Rev.
E 100, 023301 (2019)] and Ba et al. [Phys. Rev. E 94, 023310 (2016)], who advanced earlier work by Liu
et al. [Phys. Rev. E 85, 046309 (2012)] by removing certain error terms in the momentum equations. But
while these models’ collision scheme has been carefully enhanced by degrees, there is, currently, no quantitative
consideration in the macroscopic dynamics of the segregation scheme which is common to all. Here, by analysis
of the kinetic-scale segregation rule (previously neglected when considering the continuum behavior) we derive,
bound, and test the emergent kinematics of the continuum fluids’ interface for this class of MCLB, concurrently
demonstrating the circular relationship with—and competition between—the models’ dynamics and kinematics.
The analytical and numerical results we present in Sec. V confirm that, at the kinetic scale, for a range of density
contrast, color is a material invariant. That is, within numerical error, the emergent interface structure is isotropic
(i.e., without orientation dependence) and Galilean-invariant (i.e., without dependence on direction of motion).
Numerical data further suggest that reported restrictions on the achievable density contrast in rapid flow, using
chromodynamic MCLB, originate in the effect on the model’s kinematics of the terms deriving from our term F1i

in the evolution equation, which correct its dynamics for large density differences. Taken with Ba’s applications
and validations, this result significantly enhances the theoretical foundation of this MCLB variant, bringing it
somewhat belatedly further into line with the schemes of Inamuro et al. [J. Comput. Phys. 198, 628 (2004)]
and the free-energy scheme [see, e.g., Phys. Rev. E. 76, 045702(R) (2007), and references therein] which, in
contradistinction to the present scheme and perhaps wisely, postulate appropriate kinematics a priori.

DOI: 10.1103/PhysRevE.100.043310

I. INTRODUCTION

Since 1991, when Gunstensen and Rothman [1] devised the
essential technique, several forms of multicomponent lattice
Boltzmann (MCLB) equation methods have been developed
to address issues of application regime (i.e., physical content),
algorithmic stability, and accuracy. The current method which
most closely resembles Gunstensen’s is the chromodynamic
variant. While chromodynamic MCLB is based upon minimal
physics (flow mechanics and continuum interfacial boundary
conditions), it overcomes the original limitations of Gun-
stensen’s method (a lack of Galilean invariance, drop faceting,
lattice pinning and a large interfacial microcurrent), which
nevertheless remains a benchmark of statistical physics, with
its roots in the highly novel immiscible lattice gas (ILG).
For a full discussion, see Ref. [2] or Rothman and Zaleski’s
remarkable 1997 book [3]. The present article is concerned
with chromodynamic MCLB isothermal, completely immis-
cible fluids with a density difference.

Other MCLB variants represent more substantial exten-
sions to the ILG, not least because they are adapted to
multiphase and multicomponent flow simulation. Like the

*Corresponding author: i.halliday@shu.ac.uk

chromodynamic variant, they contain flow mechanics (i.e.,
Navier-Stokes and continuity equations) and are conveniently
classified by additional physics embedded in their fluid-fluid
interface algorithm. Where the kinetics of phase separation are
important, free-energy methods [4,5] and their thermodynam-
ically consistent extensions, due to Wagner and coworkers
[6–8], based, as they are, on the Cahn-Hilliard theory, are
appropriate. For workers with a background in molecular sim-
ulation, the Shan-Chen method [9] is the natural and, possibly,
most popular choice for applications requiring an ability to
simulate large density contrasts up to 800, between compo-
nents or phases, albeit with an increased interfacial width,
and reduced viscosity contrast [10]. See also the method of
Innamuro et al. [11]. Meanwhile, the free-energy method is,
arguably, the most physically complete MCLB. In addition
to thermodynamic consistency, it is important to note that it
employs an order parameter to distinguish fluids, which has
convection-diffusion dynamics a priori. The present article
seeks to confirm equivalent behavior (which amounts to an
effective kinematic condition) in the chromodynamic MCLB
variant.

In continuum isothermal hydrodynamics, multicomponent
flow is defined by the Navier-Stokes and continuity equa-
tions together with the dynamic and kinematic conditions at
the interface [12]. In this regime, it is safe to employ the
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chromodynamic method, since here its lack of a thermody-
namic foundation is not an impediment. The enhanced foun-
dation for chromodynamic MCLB we set out will increase
researchers’ confidence with this minimal, computationally
straightforward method, applied to this regime, where the
free-energy method also works well [10].

For present purposes, the chromodynamic method is taken
to be a combination of the algorithms of Lishchuk et al.
[13] and d’Ortona et al. [14]. To induce interfacial tension,
chromodynamic MCLB uses an immersed boundary force
[15] with Galilean invariant performance (if velocity correc-
tions are applied [16]) and a computationally efficient, ana-
lytic component segregation [14]. Previously identified limita-
tions notwithstanding, the method transparently encapsulates
Laplacian interfacial tension and a no-traction condition [13],
has a low microcurrent and interface width, can address
large viscosity contrasts, and it allows direct parametrization
of interfacial tension [17]. We note, here, that Reiss and
Phillips [18] developed computationally efficient interfacial
perturbation operators in place of the Lishchuk force which,
arguably, offer the most physically consistent encapsulation of
interfacial tension in a distribution function-based technique,
such as MCLB.

A common factor in continuum MCLB applications to the
continuum scale is that an interface should be subject to a
kinematic condition, i.e., advect at the same speed as the
embedding fluid. It is important that MCLB variants may
be shown to contain such a condition—especially where its
absence might lead to computational instability. To answer
this need, one must either embed the condition explicitly (as
in the free-energy method; see also Innamuro et al. [11]) or
proceed as we do here—project the relevant physics from
the kinetic scale behavior (i.e., the computational algorithm)
and then assess numerical data from that model to quantify
and bound compliance. The first step is challenging because
MCLB formulation lies within discrete kinetic theory, but it is
the behavior of the continuum which must exhibit a kinematic
condition.

The principal motives here are to show, by analysis of
the segregation rule, the interplay between kinematics and
dynamics in a large density difference (LDD) chromody-
namic MCLB variant, derive its continuum scale kinemat-
ics, and, using computational data, quantify its applicability.
To achieve this we interrelate analyses of segregation and
collision schemes. Our results address the kinematics of the
method, since the dynamics of LDD two-component MCLB
methods of chromodynamic class, developed by Wen et al.
[19], Ba et al. [20], Liu et al. [21] have already been bench-
marked in the continuum regime applications [20]. These au-
thors extend the segregation method of d’Ortona et al. [14] to
LDD, but use a multirelaxation-time (MRT) collision scheme,
which obscures the interaction between model kinematics and
dynamics. To simplify, we develop a LDD lattice Boltzmann
Bhatnagar-Gross-Krook (LBGK) collision scheme and recast
these analyses to a “one-fluid” formulation, where a single set
of equations describes the entire flow field. We organize as
follows: In Sec. II we contextualise and present our one-fluid
formulation. In Sec. III we demonstrate emergence of physi-
cally correct kinematics by analytical methods, assuming the

LBGK model developed in Sec. IV. In Sec. V we verify our
predictions of model kinematics and consider its extension to
Ba’s MRT scheme, and we present our conclusions in Sec. VI.

II. ONE-FLUID FORMULATION FOR LARGE
DENSITY DIFFERENCE

To analyze the continuum-scale kinematics of a LDD in-
terface, we express the implementation of the chromodynamic
variant in a convenient, color-blind form. For two immiscible
components designated red and blue, described by distribution
functions Ri(r, t ) and Bi(r, t ), where

fi(r, t ) = Ri(r, t ) + Bi(r, t ), (1)

a two-component, scheme for LDD MCLB may be formulated
as follows:

fi(r + δt ci, t + δt ) = fi(r, t ) − δt

τ

[
fi(r, t ) − f (0)

i (ρ, u)
]

+ F1i + F2i, (2)

where the density-difference supporting equilibrium,
f (0)
i (ρ, u), redistributes mass away from the rest (i = 0)

link via term φi (to be discussed shortly):

f (0)
i (ρ, u) = ρφi + tiρ

(
uαciα

c2
s

+ uαuβciαciβ

2c4
s

− u2

2c2
s

)
. (3)

Evolution equation source terms which correct the dynamics
in the presence of large density contrasts (see, e.g., Ref. [20])
and apply an immersed boundary or body force, Fα (r), α ∈
[x, y, z] are respectively F1i and F2i. A suitable correction F1i

remains to be determined however:

F2i =
(

1 − 1

2τ

)(
Fα (ciα − uα )

c2
s

+ Fαuβciαciβ

2c4
s

)
. (4)

Note that we assume that force-adjusted macroscopic observ-
ables are used:

ρR(r, t ) =
∑

i

Ri(r, t ), ρB(r, t ) =
∑

i

Bi(r, t ),

u =
∑

i fi(r, t )ci

ρ
+ F

2ρ
,

where F is the surface tension inducing force, to be defined
shortly. The color-blind density ρ(r, t ) = ρR(r, t ) + ρR(r, t )
and τ ∈ [0.5, 2.0] is the collision parameter. Above, ρ, ρR,
ρB, i, δt , ciα , ti, u, and cs denote overall nodal density, red
fluid nodal density, blue fluid nodal density, link-index, time
step, the α component of the ith lattice basis vector, the
weight for link i, fluid velocity, and the color-blind speed
of sound. The latter is a lattice property which, in LBGK
models without density contrast, is a geometrical lattice tensor
isotropy constant [see Eq. (16)].

We return to the matter of the mass activation parameter φi

which must clearly be related to the speed of sound in the red
and blue separated, ideal-gas components:

φi =
{

αRρR

ρ
+ αBρB

ρ
, i = 0

(1 − αR) siρR

ρ
+ (1 − αB) siρB

ρ
, i �= 0.

(5)

In Eq. (5), si is a second link weight discussed in Sec. III and
free parameters αR and αB are chosen to control the algorithm
stability as well as the contrast in density between the red and
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blue fluids:

� ≡ ρ0R

ρ0B
= c2

sB

c2
sR

= 1 − αB

1 − αR
. (6)

Here, ρ0C is the density deep within the color component C ∈
[R, B] and the third part of the above equality (6) follows from
the mechanical stability of the equilibrium red to blue ideal-
gas interface, which requires ρ0Rc2

sR = ρ0Bc2
sB. The physical

speed of sound in the red (blue) phase is therefore identified as
csR = κ

√
1 − αR (csB = κ

√
1 − αB) with κ being a constant

to be determined shortly. Now, it is important to note that
λR → λB implies � → 1; however, considering Eqs. (5) and
(3), it is apparent that the traditional LBGK equilibrium [22] is
recovered for αR = αB = 4

9 . In this model, the physical speed
of sound, in lattice units, is 1

3 (for D2Q9), so 1
3 = κ2(1 − 4

9 ),

which gives κ =
√

3
5 and hence

csC =
√

3(1 − αC )

5
, C ∈ [R, B]. (7)

We have chosen here to write the evolution in Eq. (2) in
terms of the overall density but one can formulate this part of
the algorithm in terms of colored densities individually [20].

The immiscible species in the simulation are identified by
a generalized chromodynamic, or (sometimes) phase field, ρN

[20] (to be further discussed),

ρN ≡
(

ρR

ρ0R
− ρB

ρ0B

)
(

ρR

ρ0R
+ ρB

ρ0B

) , (8)

in terms of which the macroscopic body force F, is used to
introduce interfacial tension effects, is be defined as

F = 1

2
K∇ρN , K = ∇sρ

N , (9)

where ∇s denotes a numerical surface gradient [13].
Kinetic-scale, postcollision color species segregation, or

color re-allocation, is an adaptation of the original method of
d’Ortona et al. [14] which may be written as

C++
i (r, t ) = ρC (r, t )

ρ(r, t )
fi(r, t )+

+β
φi(r, t )ρR(r, t )ρB(r, t )

ρ(r, t )
n̂ · δt ĉi, (10)

FIG. 1. A schematic representation of a flat interface between
a pair of two-dimensional fluids designated red and blue. The red
phase has larger density. n̂ is the interfacial normal, u is the uniform
fluid motion, and the solid black interfacial line indicates the ρN = 0
contour. Note n̂ and u are not parallel.

where C ∈ [R, B], superscript + (++) denotes a post-
collision (post-recolor) quantity and β is a chosen segregation
parameter [14]. We note that this segregation rule is rigorously
mass-conserving, simple to implement (it is algebraic), local
(given a director, n̂), and, perhaps most significant, is “bottom-
up,” i.e., a kinetic scale postulate, which remains to be justified
a posteriori.

III. MODEL KINEMATICS

Commencing from Eq. (10), we derive the continuum-scale
kinematics for the scheme outlined in Sec. II. A circular inter-
dependence between kinematics and dynamics is revealed as
we proceed. Consider the two- or three-dimensional diphasic
system represented schematically in Fig. 1. The interface is
assumed flat and embedded within a uniformly moving fluid.
Apply color conservation to a node at position r, in order to
relate red density at position r, time t + δt , to postcollision,
post-recolor red link populations on adjacent nodes at the
previous time step t :

ρR(r, t + δt ) =
∑
∀i

R++
i (r − δt ci, t ). (11)

Noting that, for a uniformly translating fluid in the interfacial
region fi = f (0)

i (ρ, u) + F1i (since, for an interface without
curvature, F2i = 0) we use the color re-allocation rule of
Eq. (10):

ρR(r, t + δt ) =
∑
∀ i

ρR(r − δt ci )

ρ(r − δt ci )

(
f (0)
i (ρ, u) + F1i

) +
∑
∀ i

β
φi(r − δt ci )ρR(r − δt ci )ρB(r − δt ci )n̂ · δt ci

ρ(r − δt ci )
. (12)

Substituting for f (0)
i (ρ, u) from Eq. (3) to obtain

ρR(r, t + δt ) =
∑
∀ i

[
ρRφi + ρR

ρ
F1i

]
r−δt ci

+
∑
∀ i

[
tiρR

(
uαciα

c2
s

+ uαuβciαciβ

2c4
s

− u2

2c2
s

)]
r−δt ci

+ δtβ
∑
∀ i

[
φi

(
ρRρB

ρ

)
nβciβ

]
r−δt ci

.

(13)

Note that δt effectively labels spatial and temporal reso-
lution here and that the term in F1i originates from a source
term in the dynamics, which, in the presence of a large density
contrast, may be significant.

Now it is necessary to assume a form for the LDD cor-
rection term F1i, to be derived in Sec. IV. Note that a need
for tractability here motivates our use of LBGK dynamics.
We choose the following projection onto the tensor Hermite
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polynomials:

F1i = tiFαβ

(
ρR, ρB, ρN , �, u

)(
ciαciβ − c2

s δαβ

)
. (14)

The advantages of this choice which will become apparent
shortly. Replace φi in Eq. (13) by using the definitions in

Eq. (5), Taylor expand all terms about r, t to second order
in δt , and, noting that there is no gradient in u by assumption,
we collect terms, so that Eq. (13) becomes

ρR + δt
∂ρR

∂t
+ 1

2
δ2

t

∂2ρR

∂t2
= (1 − αR)

∑
i �=0

si

[
ρ2

R

ρ
− δt ciα∂α

(
ρ2

R

ρ

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρ2

R

ρ

)]

+ (1 − αB)
∑
i �=0

si

[
ρRρB

ρ
− δt ciα∂α

(
ρRρB

ρ

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρRρB

ρ

)]

+ αRρ2
R

ρ
+ αBρBρR

ρ
+ uγ

c2
s

∑
∀ i

ti

[
ρR − δt ciα∂αρR + δ2

t

2
ciαciβ∂α∂βρR

]
ciγ

+ uαuβ

2c4
s

∑
∀ i

ti

[
ρR − δt ciγ ∂γ ρR + δ2

t

2
ciγ ciδ∂γ ∂δρR

]
ciαciβ

− u2

2c2
s

∑
∀ i

ti

[
ρR − δt ciα∂αρR + δ2

t

2
ciαciβ∂α∂βρR

]

+
∑
∀ i

ti

[
ρRFαβ

ρ
− δt ciγ ∂γ

(
ρRFαβ

ρ

)
+ δ2

t

2
ciγ ciδ∂γ ∂δ

(
ρRFαβ

ρ

)](
ciαciβ − c2

s δαβ

)

+ δtβ(1 − αR)
∑
i �=0

si

[
ρ2

RρB

ρ2
− δt ciα∂α

(
ρ2

RρB

ρ2

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρ2

RρB

ρ2

)]
nγ ciγ

+ δtβ(1 − αB)
∑
i �=0

si

[
ρRρ2

B

ρ2
− δt ciα∂α

(
ρRρ2

B

ρ2

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρRρ2

B

ρ2

)]
nγ ciγ . (15)

Note, in the above expression, the summations involving the
ti terms are on all values of link index i (e.g., i = 0, 1, . . . , 8
in the case of D2Q9); however, those involving the si exclude
the rest link, i = 0. The usual lattice isotropy properties are
assumed: ∑

∀ i

ti(ciα )2p+1 = 0,
∑
∀ i

ticiαciβ = c2
s δαβ,

∑
∀ i

ticiαciβciγ ciθ = c4
s �αβγ θ , (16)

where p is any non-negative integer, δαβ is the Kronecker
delta, and �αβγ θ = δαβδγ θ + δαγ δβθ + δαθ δβγ . For example,
in the case of D2Q9, trest = 4

9 , tshort = 1
9 , tlong = 1

36 , and c2
s =

1
3 . Following Ba et al. we set

si = kti (i �= 0). (17)

We can reserve similar properties for lattice tensors, weighted
by si: ∑

i �=0

si(ciα )(2p+1) = 0, (18)

∑
i �=0

siciαciβ = kc2
s δαβ, (19)

∑
i �=0

siciαciβciγ ciθ = kc4
s �αβγ θ , (20)

and we also follow Ba et al. and constrain the si in general as
follows: ∑

i �=0

si = 1. (21)

Now, note that the assumptions made in Eqs. (17) and (21) fix
the value of k. For example, in D2Q9,

k = 9

5
, (22)

and therefore k is not a parameter which may be tuned.
Using these assumptions, the resulting lattice properties

given in Eqs. (18)–(20), Eq. (15) can be simplified to

δt
∂ρR

∂t
+ 1

2
δ2

t

∂2ρR

∂t2
+ δt uγ ∂γ ρR

= k

2
c2

s (1 − αR)δ2
t ∇2

(
ρ2

R

ρ

)
+ k

2
c2

s (1 − αB)δ2
t ∇2

(
ρRρB

ρ

)

+ 1

2
δ2

t uαuβ∂α∂βρR − δ2
t β(1 − αR)kc2

s nγ ∂γ

(
ρ2

RρB

ρ2

)

− δ2
t β(1 − αB)kc2

s nγ ∂γ

(
ρRρ2

B

ρ2

)

+ 2δ2
t c4

s ∂α∂β

(
ρRFαβ

ρ

)
, (23)
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in which the last term on the right-hand side originates in the
density-difference correction term F1i. Upon neglecting this
term (see below), we have

δt
∂ρR

∂t
+ 1

2
δ2

t

∂2ρR

∂t2
+ δt uγ ∂γ ρR

= k

2
c2

s (1 − αR)δ2
t ∇2

(
ρ2

R

ρ

)
+ k

2
c2

s (1 − αB)δ2
t ∇2

(
ρRρB

ρ

)

+ 1

2
δ2

t uαuβ∂α∂βρR

− δ2
t β(1 − αR)kc2

s nγ ∂γ

(
ρ2

RρB

ρ2

)

− δ2
t β(1 − αB)kc2

s nγ ∂γ

(
ρRρ2

B

ρ2

)
. (24)

Equation (24) may be supplemented by a second, independent
equation formed by considering the blue species, which cor-
responds to applying the exchange symmetry R ↔ B, β →
(−β ) in Eq. (24). This and Eq. (24) furnish two equations in
two unknown quantities, the macroscopic densities ρR and ρB.

We note that, for very small δt (which projects the most
rapid color dynamics), Eq. (24) shows that ρR satisfies the
first-order wave equation. Expressing this observation in
terms appropriate for the Chapman-Enskog methodology to
be used in Sec. IV, we have

∂ρR

∂t1
+ uγ ∂γ ρR = 0,

∂ρB

∂t1
+ uγ ∂γ ρB = 0, (25)

with solution ρC (x, t ) = f (x − ut ), C ∈ [R, B]. The directing
or ordering influence of the interface (i.e., parameter n̂) ap-
pears on longer scales. However, at the very shortest scales,
color apparently advects with the fluid. Put another way, color
is a material invariant on the shortest timescales. This property
of the model significantly influences the derivation of its
dynamics, to which we now proceed.

IV. MODEL DYNAMICS

We require the simplicity of a LBGK scheme to exhibit the
connection between model kinematics and dynamics. To this
end, we avoid other complications, specifically, adjusting the
equilibrium f (0)

i (ρ, u), i.e., we incorporate all LDD dynamics
corrections in the evolution equation source term F1i. Using
assumptions based on the results in the previous section,
then, we derive, by Chapman-Enskog expansion, a single-
relaxation-time LBGK collision scheme for LDD MCLB.

A. Lattice Boltzmann Bhatnagar-Gross-Krook scheme
for large density difference

It is convenient to use the transparent methodology of Guo
et al. [16] and Hou et al. [23]. In the interest of a coherent
literature, the overall structure of the analysis and notation is
that of Guo et al. [16] and Hou et al. [23]. For definiteness we
work in D2Q9, with k = 9

5 and

si = kti → 9

5
ti. (26)

We indicate modifications for three spatial dimensions below.

We assume the following moments of our equilibrium,
after Ba et al.:

Q∑
i=0

f (0)
i (1, ciα, ciαciβ ) = (ρ, ρuα, (2φ1 + 4φ2)

× ρδαβ + ρuαuβ ). (27)

Functions φ1 and φ2 depend upon the chromodynamic
field [see Eq. (5)] and hence the spatial-temporal varia-
tion of the isotropic term of the second moment is modi-
fied as

∑Q
i=0 f (0)

i ciαciβ = { 3
5 [(1 − αR)ρR + (1 − αB)ρB]δαβ +

ρuαuβ}. Here, the variation of the speed of sound between red
and blue components is apparent, with c2

sR = 3
5 (1 − αR) and

c2
sB = 3

5 (1 − αB). The first order macroscopic equations (10 a)
and (10 b) of Guo et al. [16] are recovered straightforwardly:

∂ρ

∂t1
+ ∂α (ρuα ) = A1 = 0,

∂ρuα

∂t1
+ ∂α�

(0)
αβ =

(
n + m

τ

)
Fα = Fα, (28)

provided n + m
τ

= 1, A1 = 0. Here, τ is the LBGK relaxation
time. In the present context, the force F is the Navier-Stokes
level immersed boundary force used to create interfacial ten-
sion effects. All other parameters have their usual meanings
[16].

For LDD, the viscous flux �
(1)
αβ ≡ ∑Q

i=0 f (1)
i ciαciβ is trans-

formed and Eq. (12) of Guo et al. may be written as(
�

(1)
αβ

τδt

)
= −(2φ1 + 4φ2)

∂ρ

∂t1
δαβ − ρ

∂

∂t1
(2φ1 + 4φ2)δαβ

− ∂

∂t1
ρuαuβ

−3∂γ ρuδ

Q∑
i=0

ticiαciβciγ ciδ

+ 1
2 (Cαβ + Cβα ). (29)

Here, the tensor Cαβ is the correction introduced by Guo
et al. [16], which is assigned so as to correct the dynamics.
Previously, this correction did not account for the presence of
large density gradients associated with the transition across
the interface from a less to a more dense fluid. Therefore, for
the present case of a density difference at the interface, we
must carefully redefine this quantity Cαβ .

The usual procedure, now, is to replace time derivatives
in Eq. (29) by invoking appropriate macroscopic dynamics.
In the case of non-LDD LBGK, one utilizes the macroscopic
dynamical Eq. (28). Here, transforming the isotropic terms in
Eq. (29) requires determinate kinematics, as derived in Sec. III
and expressed in Eq. (25). Using the value of k = 9

5 for the
D2Q9 lattice, Eq. (25) and the definition of ρN [Eq. (8)] it
follows, after some straightforward but lengthy algebra,

ρ
∂

∂t1
(2φ1 + 4φ2) = −6ρ

5
q(αR − αB)

∂ρN

∂t1
, (30)

where we have defined

q ≡ �

[(� − 1)ρN + � + 1]2
. (31)
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It is now necessary further to refer to the kinematic proper-
ties of the model, previously for which we have already shown
in Sec. III that color is a material invariant on the shortest
timescales, i.e., D

Dt1
ρR = D

Dt1
ρB = 0, hence D

Dt1
( ρR

ρ0R
± ρB

ρ0B
) = 0

and consequently D
Dt ( ρR/ρR0−ρB/ρB0

ρR/ρR0+ρB/ρB0
) = 0 and so it follows from

an application of the quotient rule that

D

Dt1
ρN = 0 ⇐⇒ ∂ρN

∂t1
= −uα∂αρN , (32)

whereupon the time derivative may be eliminated from
Eq. (30), yielding

ρ
∂

∂t1
(2φ1 + 4φ2)δαβ = 6

5
ρq(αR − αB)u · ∇ρNδαβ, (33)

and our expression for �
(1)
αβ , Eq. (29), becomes(

�
(1)
αβ

τδt

)
= −ρ

3
(∂αuβ + ∂βuα )

+�∂γ ρuγ δαβ + uβ∂α (�ρ) + uα∂β (�ρ)

− uαFβ − uβFα + 1

2
(Cαβ + Cβα )

− 6ρ

5
q(αR − αB)u · ∇ρNδαβ, (34)

where we have used the isotropy properties of the lattice and
defined

� ≡ 2φ1 + 4φ2 − 1

3
. (35)

Equation (34) replaces Eq. (12) of Guo et al. [16]. We remark
on the correct treatment of pressure terms in the second-order
dynamics. It is very important to note that the isotropic term
in the pressure tensor, Eq. (28), has not, as usual, entered
the above expression for �

(1)
αβ precisely to correct the viscous

stress term. Instead, to obtain the correct viscous stress in the
model’s dynamics, it is necessary to introduce the constant
term in the definition above [Eq. (35)], which perturbs the
steady interface profile.

It is now possible to write down an expression for the
viscous stress tensor σ ′

αβ . From Eq. (14) of Guo et al. we

have σ ′
αβ = −(1 − 1

2τ
)�(1)

αβ − δt
4 (Cβα + Cαβ ) and hence using

Eq. (34) we obtain

σ ′
αβ = ρ

3

(
1 − 1

2τ

)
(∂αuβ + ∂βuα )τδt

−
(

1 − 1

2τ

)
[�∂γ ρuγ δαβ + uβ∂α (�ρ)

+ uα∂β (�ρ)]τδt

+
(

1 − 1

2τ

)
(uαFβ + uβFα )τδt

−
(

1 − 1

2τ

)
1

2
(Cαβ + Cβα )τδt

− δt

4
(Cαβ + Cβα )

+
(

1 − 1

2τ

)
6

5
ρq(αR − αB)(u · ∇ρNδαβ )τδt . (36)

In Eq. (36) only the first term on the right-hand side is
consistent with the Navier-Stokes equations. It is therefore
possible to infer an error as follows:

Eαβ = −
(

τ − 1

2

)
δt [�∂γ ρuγ δαβ + uβ∂α (�ρ) + uα∂β (�ρ)]

+
(

τ − 1

2

)
δt (uαFβ + uβFα )

− τ

2
δt (Cαβ + Cβα )

+
(

τ − 1

2

)
δt

6

5
ρq(αR − αB)u · ∇ρNδαβ. (37)

The following choice of tensor Cαβ eliminates error Eαβ :

Cαβ =
(

1 − 1

2τ

)[
uα[Fβ − ∂β (�ρ)] + uβ[Fα − ∂α (�ρ)]

−�∂γ ρuγ δαβ + 6

5
ρq�αuγ ∂γ ρNδαβ

]
, (38)

where, of course, �α = (αR − αB). We note that, by set-
ting αR = αB, � → 1, ∂βρ → 0, Eq. (38) above reduces to
Eq. (16) of Guo et al.

Finally, now consider Eqs. (6) and (20) of Guo et al. for
the evolution equation source term. We have found that, in
the additional presence of large density gradients (which now
characterize the interfacial region), the LBGK source term
becomes

Fi ≡ ti

{(
1 − 1

2τ

)
Fαciα

c2
s

− 1

2

(
1 − 1

2τ

)
1

c4
s

[
�(∂γ ρuγ )δαβ

− 6

5
ρq�α∂γ ρN uγ δαβ + uβ[∂α (�ρ) − Fα]

+ uα[∂β (�ρ) − Fβ]

](
ciαciβ − c2

s δαβ

)}
, (39)

that is, in separated form, first for the density-difference
correction:

F1i = −1

2
ti

(
1 − 1

2τ

)
1

c4
s

×
[
�∂γ (ρuγ )δαβ − 6

5
ρq�α∂γ (ρN uγ )δαβ + uβ∂α (�ρ)

+ uα∂β (�ρ)

](
ciαciβ − c2

s δαβ

)
, (40)

and, second, for the immersed boundary force

F2i = ti

(
1 − 1

2τ

)

×
[

Fαciα

c2
s

+ (uβFα + uαFβ )
(
ciαciβ − c2

s δαβ

)
c4

s

]
.

The preceding Chapman-Enskog treatment of the correc-
tion of the emergent dynamics is based upon a relatively
simple single-relaxation-time LBGK model after Qian et al.
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[22] and Guo et al. [16]. Ba et al. derived an equivalent scheme
based upon a multiple-relaxation-time LB variant, after Lalle-
mand and Luo [24]. One could also derive schemes based
upon inverse multiple-relaxation-time LB variants [25,26].
However, all would contain equivalent evolution equation
source terms, i.e., those independent of Fβ in Eq. (39).

B. Extension to three spatial dimensions

Our analysis above generalizes straightforwardly to other
LBGK collision schemes on lattices of different dimensional-
ity. For example, in the case of D3Q19, the following simple
replacements in Eq. (40) are easily determined:

k → 3

2
, (2φ1 + 4φ2) → (2φ1 + 8φ2). (41)

V. RESULTS

In the two previous sections, we derived interdependent
dynamics and kinematics for a LDD chromodynamic MCLB
model—a process streamlined by our use of LBGK dynamics.
Henceforward, we focus on model kinematics, noting that our
discussions should be seen in the supporting context of the
work of Ba et al. and Liu et al., who successfully demonstrated
the utility of the segregation scheme analyzed here by using
more robust MRT variants, [20,21]. Specifically, we seek to
assess model kinematics and understand its reliance on under-
lying dynamics and by considering other, more sophisticated
MRT collision schemes. Clearly, it is appropriate to begin
by seeking solutions to Eq. (24), the form of which is of
central importance because the stability of the method rests
upon numerical derivatives of the profile shape and hence its
differentiability, i.e., smoothness.

A. Steady solution

We seek steady solutions to Eq. (24) by considering a
steady interface, separating two fluids at rest. An exact so-
lution is possible. We consider only lattices which conform
with the properties expressed in Eqs. (17)–(21). Let u = 0
and ∂ρR

∂t = ∂2ρR

∂t2 = 0. In this “steady” three-dimensional case,
Eq. (23) reduces to the following partial differential equation:

0 = kc2
s

[
1

2
∇2

(
ρ2

R

ρ

)
+ 1

2

(
1 − αB

1 − αR

)
∇2

(
ρRρB

ρ

)

− βnγ ∂γ

(
ρ2

RρB

ρ2

)
− β

(
1 − αB

1 − αR

)
nγ ∂γ

(
ρRρ2

B

ρ2

)]
. (42)

In Appendix A we further reduce to one dimension (1D) and
show by direct integration of the resulting ordinary differential
equation that the one-dimensional steady solution is ρR =
ρ0R

2 [1 + tanh(βx)] and ρB = ρ0B

2 [1 − tanh(βx)], which one
can generalize to three dimensions, to obtain a trial solution
of Eq. (42):

ρR = ρ0R

2
[1 + tanh(βn̂ · x)], ρB = ρ0B

2
[1 − tanh(βn̂ · x)].

(43)
The above solution may be verified by differentiation and
substitution. The lengthy algebra is facilitated by eliminat-
ing differentiation, using properties of Eq. (43) such as

∂αρR = ρ0Rβn̂α

2 sech2(βn̂ · x) = 2ρ0Rβn̂α

ρ0B
ρRρB. Note that this so-

lution is exact, isotropic (valid for any orientation n̂), and valid
for any value � of density contrast.

B. Unsteady solutions

Let us consider the case of the kinematic conditions obeyed
by an interface separating two immiscible, uniformly trans-
lating components. We will consider the exact solution to a
small density contrast approximation, followed by the general
solution. In general, an exact solution to Eq. (24) cannot be
found.

1. Approximate solution

We proceed to an approximate solution of the interface
motion by excluding the terms in Eq. (24) which contain
(derivatives of) the dynamics correction terms Fαβ . This sim-
plification led to the following, recall:

δt
∂ρR

∂t
+ 1

2
δ2

t

∂2ρR

∂t2
+ δt uγ ∂γ ρR

= k

2
c2

s (1 − αR)δ2
t ∇2

(
ρ2

R

ρ

)

+ k

2
c2

s (1 − αB)δ2
t ∇2

(
ρRρB

ρ

)

+ 1

2
δ2

t uαuβ∂α∂βρR

− δ2
t β(1 − αR)kc2

s nγ ∂γ

(
ρ2

RρB

ρ2

)

− δ2
t β(1 − αB)kc2

s nγ ∂γ

(
ρRρ2

B

ρ2

)
, (44)

which is justified a priori by observing that these terms arise
from the source term F1i in Eq. (2), which for stability must
be relatively small. We revisit this assumption below.

The solution to the approximate unsteady, three-
dimensional problem of Eq. (44) is readily obtained from an
obvious generalization of Eq. (43):

ρR = ρ0R

2
{1 + tanh [βn̂ · (x − ut )]},

ρB = ρ0B

2
{1 − tanh [βn̂ · (x − ut )]},

ρ = ρR + ρB, (45)

which, after lengthy algebra, may be verified by differentia-
tion and substitution into Eq. (23). Significantly, a chromody-
namic field defined following Eq. (21) of Ba et al.,

ρN ≡
(

ρR

ρ0R
− ρB

ρ0B

)
(

ρR

ρ0R
+ ρB

ρ0B

) → tanh[βn̂ · (x − ut )], (46)

may now be seen to possess physically correct behavior in the
presence of a density difference (as long as our approxima-
tions remain valid) whereas the usual definition, ρN = ρR−ρB

ρR+ρB
,

will not. Note that there is a conserved quantity:

ρR

ρ0R
+ ρB

ρ0B
= 1 ⇐⇒ ρR + �ρB = ρ0R. (47)
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Henceforth, we shall refer to the approximate solution in
Eq. (45), obtained in this section, as the equilibrium interface
solution.

2. Advection error

Let us estimate the size and properties of previously ne-
glected error term in Eq. (23) by substituting from Eq. (40)
and the equilibrium interface solution in Eq. (45). After
lengthy but straightforward algebra, we obtain

� =
[

2δ2
t c4

s ∂α∂β

(
ρRFαβ

ρ

)]
eq

= −2δ2
t

(
1 − 1

2τ

)

×
[
∂α∂β

ρR

ρ

(
uα∂βρ + uβ∂αρ + uγ ∂γ ρδαβ

)]
eq

= − 4βδ2
t

(
1 − 1

2τ

)(
1

ρ0B
− 1

ρ0R

)

× [(n̂ · ∇)(u · ∇) + n̂ · u∇2)

[
ρ2

RρB

ρ

]
eq

, (48)

which vanishes for n̂ · u = 0 (because in this geometry
stream-wise variation is tangent to the interface). Hence,
the approximate “equilibrium” solution remains exact in this
geometry and the above advection error vanishes when flow
is tangent to the interface, as well as in the limit of no density
contrast, ρ0B = ρ0R. We return to this matter in Sec. V C 2.

Let us bound the size of the advection equation error, de-
fined above. Derivative ∂βρ will clearly take its largest value
mid-interface, hence max(∂βρ) ≈ (�ρ0B−ρ0B )

1/β
= β(� − 1)ρ0B,

also max(ρR/ρ) = 1, so omitting factors of order unity we
estimate, for � > 10, from the first of Eq. (48),

� <

(
1 − 1

2τ

)
βu(� − 1)ρ0B. (49)

3. Comparison with multi-relaxation time

Ba et al. devised the segregation for which we determine
the chromodynamic field dynamics above—but based upon
a MRT collision model. We now consider the kinematics of
this MRT model which, owing to its increased sophistication,
is much more difficult to treat than our LBGK model, which
was developed to facilitate analysis. With the MRT collision
scheme developed by Ba et al., the equivalent of Eqs. (23) and
(48) are significantly complicated [see Appendix B, Eq. (B9),
where, using the steps documented above, we derived the
continuum-scale MRT kinematics]. By neglecting the terms in
the two relevant MRT relaxation parameters, sv and se (which
replace LBGK relaxation parameter τ ), we obtain the previous
solution and model kinematics. The neglected terms define a
MRT scheme advection error:

� = kδ2
t

12
(1 − αR)

(
1 − se

2

)
uα∂α∇2

(
ρ2

R

ρ

)
(50)

+ kδ2
t

12
(1 − αB)

(
1 − se

2

)
uα∂α∇2

(
ρRρB

ρ

)

− δ2
t

12k

(
1 − se

2

)
uα∂α∇2ρ

+ 5kδ2
t

36
(1 − αR)

(
1 − sv

2

)
εzαβuα∂β

(
∂2

x − ∂2
y

)(ρ2
R

ρ

)

+ 5kδ2
t

36
(1 − αB)

(
1 − sv

2

)
εzαβuα∂β

(
∂2

x − ∂2
y

)(ρRρB

ρ

)

− δ2
t

4k

(
1 − sv

2

)
εzαβuα∂β

(
∂2

x − ∂2
y

)
ρ. (51)

We note that the velocity-dependent terms in the above do
not reduce to the form n̂ · u, close to equilibrium. Hence,
advection error will not, for an MRT scheme, vanish for
motion tangent to the interface.

We proceed to the bound, as Sec. V B 2, for the case
of motion perpendicular to the interface u = uêx, n̂ = êx,
taking δt = 1. The terms in (1 − se

2 ) above transform to
k

12 u d3

dx3 ( [(1−αR )ρR+(1−αB )ρB]ρR

ρ
) + 1

12k u d3

dx3 ρ, and using the ap-
proximate result [(1 − αR)ρR + (1 − αB)ρB] ≈ ρ0R (see next
section) to k

12 u(1 − αR)ρR0
d3

dx3
ρR

ρ
+ 1

12k u d3

dx3 ρ. Following the
estimates used in the last section, it is easily shown that
both these terms may be approximated by the expression
(1 − se

2 )uβ�ρB0. We estimate the terms in (1 − sv

2 ) similarly,
as (1 − sv

2 )uβ�ρB0. Accordingly, in place of Eq. (49) for the
LBGK collision, we find for an MRT scheme:

� < max
((

1 − se

2

)
,
(

1 − sv

2

))
βu�ρ0B, (52)

which is, as might be expected, equivalent to that obtained
with the LBGK scheme.

4. Stability

Clearly, the colored distribution functions, Ri and Bi must
be positive on physical grounds. Let us investigate the require-
ment of Ri > 0 constraint. From Eq. (10), with δt = 1, it is
immediate that for R++

i > 0 we must have

ρR(r, t )

ρ(r, t )
f +
i (r, t ) > β

φi(r, t )ρR(r, t )ρB(r, t )

ρ(r, t )
n̂ · ci, (53)

and substituting for a uniformly translating fluid f +
i (r, t ) ≈

ρφi + tiρ
u·ci
c2

s
, we find (1 + tiρ

u·ci
c2

s
) > β

ρB (r,t )
ρ(r,t ) n̂ · ciδt . Since

ρB (r,t )
ρ(r,t ) < 1, max(n̂ · ci ) = cos(π/4) (for D2Q9) and, neglect-

ing motion, we find the following stability condition on the
component segregation parameter:

β <
1√
2
, (54)

which is well supported over a range of simulation results.
Hence, stability is seen to bound interface width. This obser-
vation accords with Eq. (49) for the advection error.

C. Numerical results

The emphasis here is on LDD kinematics but we include
in this section some consideration of the dynamics of our
LBGK scheme of Sec. 4. Predictions of advection error �

in Eqs. (49) and (52) for LBGK and MRT, respectively,
are very similar. Therefore, while all data presented in this
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TABLE I. Maximum microcurrent velocity (in lattice units) for
a static droplet of initial radius R = 20 in a domain of 80 × 80, for
� ∈ [10−3, 103], β = 0.67 with curvature K fixed at 1

R . Simulation
corresponds to the LBGK collision model of Sec. IV.

Static drop microcurrent: curvature K fixed

� αB αR 105|u|max

0.001 0.9995 0.5 9.414
0.01 0.995 0.5 1.076
0.1 0.95 0.5 4.955 × 10−4

10 0.5 0.95 3.389 × 10−4

100 0.5 0.995 1.709
1000 0.5 0.9995 6.620

section relate to our LBGK scheme, it should apply with-
out significant modification to a MRT-based chromodynamic
MCLB variant. Throughout, we avoid compressibility error
by ensuring the simulations’ Mach number, Ma, based on the
dense component speed of sound (with the smallest value) is
bounded as

Ma = u

min (csR, csB)
< 0.06. (55)

1. Microcurrent

The microcurrent is an unphysical flow induced by the
surface-tension immersed boundary force in chromodynamic
MCLB and by equivalent mechanisms in other MCLB
variants.

Let us consider a static drop, initial radius R. (No confusion
should arise with Ri, the red density associated with link i.)
Let u = 0: all flow is then due to the microcurrent. While
Eq. (49) predicts that one can achieve large � when u is small,
one must expect large density gradients in interface region
to increase numerical errors associated with gradient calcula-
tions which generate effect. For chromodynamic MCLB with
� = 1, microcurrent flow is greatly reduced when numerical
computation of local curvature K is obviated by replacing
K → 1

R [see Eq. (9)] and also when β is reduced [27]. Tables I
and II record the maximum microcurrent velocity (in lattice
units) for a static droplet of radius R = 20 in a domain of
80 × 80, for � ∈ [10−3, 103], β = 0.67 with K fixed and
measured, respectively. For these these data, the red fluid

TABLE II. Maximum microcurrent velocity (in lattice units) for
a static droplet of initial radius R = 20 in a domain of 80 × 80, for
� ∈ [10−3, 103], β = 0.67 with calculated curvature K . Simulation
corresponds to the LBGK collision model of Sec. IV.

Static drop microcurrent: curvature K calculated

� αB αR 105|u|max

0.001 0.9995 0.5 9.402
0.01 0.995 0.5 2.913
0.1 0.95 0.5 1.153 × 10−1

10 0.5 0.95 1.824 × 10−2

100 0.5 0.995 1.736
1000 0.5 0.9995 6.208

FIG. 2. Normalized microcurrent flow for � = 10 in the vicinity
of a drop of radius R = 20 for (a) fixed K = 1

R and (b) numerically
calculated curvature. See Tables I and II for the corresponding
absolute velocities. The circulation in the case of fixed curvature is
more localized.

comprises the droplet. For � ∈ [10−1, 10] we see the expected
benefits of setting K = 1

R evaporate as, presumably, numerical
error associated with the computation of increasingly large
interfacial density gradients overwhelms other errors. These
data compare well with that of Ba et al., who report microcur-
rent activity using their MRT based model.

Figure 2 below compares the microcurrent flow at � =
10 for calculated and fixed curvatures. Flow field vectors
are normalized in each plot. The flow in the case of fixed
curvature is actually much weaker (refer to Tables I and II)
and more restricted to the interfacial region.

2. Kinematics

The analysis in Sec. V B 2 explains the ability of the phase-
field method to achieve very large density differences for
small u. Inequality (49) implies that, to bound advection error,
as the fluids’ density contrast increases the velocity and width
of the interface must decrease. For the data presented in this
section we choose to consider a narrow interface characterized
by β = 0.68 (which is representative of a practical, narrow
interface) and we consider a flat interfaces, without interfacial
tension with n̂ = êx. From Eq. (45) we have for such a system

ρ0B = ρB(x) + ρR(x)

�
. (56)

We test our model of the kinematics of chromodynamic
MCLB by considering two cases-motion parallel and per-
pendicular to a flat interface. For the former case, n̂ · u = 0
and Eq. (49) predicts zero advection error. Here, tests on
a flat interface embedded in a uniformly translating fluid
show negligible error for a very wide range of � and u.
Consider the more interesting case of n̂ · u = u now. For
the data presented in Figs. 3 and 4, for both fluids, τ =
1, ν = 1

6 (2τ − 1), β = 0.65, σ = 0.01 (though the interface
is flat, note), αB = 0.1 and αR ∈ [0.1, 0.9991] (giving � ∈
[1, 1000]). Other parameters are as discussed. In Fig. 3 we
show simulation data and theory for the case of a static density
contrast of � = ρ0R = 10. For this system, the equilibrated
flat interface was found centered upon x = 19.53. ρC , where
C ∈ [R, B], denotes the colored density, which is measured
in lattice units. Figure 3(a) shows the red (denser fluid) and
blue density profiles in the region of the interface, with the
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FIG. 3. Static interface data for a density contrast of � = ρ0R =
10. Solid red (blue) line correspond to a model based on Eq. (45).
Red (blue) open circles correspond to data for the red (blue) fluid.
The equilibrated flat interface was centered upon x = 19.53. ρC

denotes the colored density, which is measured in lattice units.
(a) Red (denser fluid) and blue density profiles in the region of the
interface. Continuous lines correspond to the variation predicted by
Eq. (45). (b) Normalized density profiles. (c) A test of Eq. (56).

continuous lines corresponding to the variation predicted by
Eq. (45). Figure 3(b) shows normalized density profiles ρC

ρ0C

and Fig. 3(c) shows the result of a test of Eq. (56). Static
interface profiles for density contrast parameters � � 500
also show good agreement with the predictions of Sec. III.

We consider next an advecting interface and seek to con-
firm that its profile advects without shape-transformation.
Shape invariance for a range of � is addressed in Fig. 4.
These data were obtained as follows: At t = 0, apply uniform
flow u0 to a previously equilibrated profile. Figure 4 shows
instantaneous interface profiles at time t = 20

u0
, i.e., at a time

taken to move 20 nodes in the direction of the interfacial
normal. A range of u0 and � is considered. The value of u0 is
expressed as a multiple of model color-blind speed of sound,

FIG. 5. Onset of numerical instability. See Fig. 3 caption for key.
For these data, advection speed u0 = 0.15cs, � = ρ0R = 10. The red
fluid moves right, displacing the lighter fluid. Interfacial structure
departs from that predicted significantly. Note, however, that this
profile remains stable and advects at the correct speed. For this reason
it is taken to define the case of marginal stability (see Fig. 6).

cs. Recall that, for LB, the maximum value of flow velocity
umax < 0.15cs. For physically accurate behavior, consistent
with the kinematic condition of mutual impenetrability, the
interface should advect without dispersion, at the same speed
as the fluid. Hence the colored density profile evolution should
be described by

ρR(x)

�
= 1

2
[1 + tanh (x − u0t )],

ρB(x) = 1

2
[1 − tanh (x − u0t )]. (57)

Results in Fig. 4 show excellent agreement between simula-
tion data and predicted profiles in Eq. (57) above. In these data
the denser, red component is situated on the left and moves
toward the right.

As one might expect, instability begins with profile distor-
tion. As discussed above, this distortion arises in the interac-

FIG. 4. Advection tests. See Fig. 3 caption for key. The initial, equilibrated, flat interface was centered close to x = 20. ρC denotes the
colored density. The figure shows the result of applying flow u0êx and allowing the interface to advect 20 lattice units. Panels (a)–(c) correspond
to � ∈ [1, 10, 20], advection speed u0 = 1.5 × 10−2cs, panels (d)–(f) correspond to � ∈ [1, 10, 20], advection speed u0 = 1.5 × 10−3cs, panels
(g)–(i) correspond to � ∈ [1, 10, 20], advection speed u0 = 1.5 × 10−4cs. It is clear that, for a range of u0 and �, the interface structure
conforms with that predicted.
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FIG. 6. Stability of scheme indicated by value of �(t )2 × 103

in Eq. (58). Gray-shaded cells correspond to cases considered in
Fig. 4. Stable cases had values of �(t )2 × 103 < 1.38. Cases of
large, unphysical profile distortion are indicated by orange shading.
Note that very large density differences may be achieved at small
advection speed. Refer to Fig. 5 with respect to the marginal case
� = 10, u0 = 0.15cs.

tion of segregation and source term in the evolution equation.
Apparently, instability is first manifested when a denser (red)
component displaces a lighter (blue) component. Figure 5
shows what we designate a marginal profile which departs
significantly from the predicted profile (but still advects at the
correct speed, note). In these data, the denser, red component
is situated on the left and moves towards the right. By adjust-
ing parameters in accord with criterion (49), e.g., by reducing
β, this effect may be removed. Note, however, that increasing
β introduces an unphysical scale into simulations [28].

The advecting profile distortion is quantified as follows:

�(t )2 ≡
∑

i

{
ρR(xi, t ) − ρ0R

2
[1 + tanh(xi − u0t )]

}2
, (58)

where summation occurs over a range of 40 locations xi

which span the interface. The t origin was positioned to fit
the equilibrated profile. All results in Fig. 4 have �(t )2 <

1.38 × 10−3 and are considered stable. The result in Fig. 5
has �(t )2 = 0.976. This profile still advects at speed u0 but
it departs recognizably from a tanh profile. We choose this
profile’s value of �(t )2 = 0.976 to represent a marginal case,
since its shape is stable and its advection speed is correct but
further increase in � rapidly leads to unphysical profile shape
and instability (see Fig. 6).

Equation (49) suggests that the onset of instability arising
from the kinematics of the model, in contradistinction to that
due, e.g., to compressibility error, should occur for small Ma
and with profile advection speed and density contrast in the

FIG. 7. A plot of density contrast � and the speed u at which a
flat interface develops an error of 5%, according to Eq. (58). These
data support the prediction of Eq. (49). The optimum straight line fit
(solid line) was contained to intersect the origin.

approximate relationship u ∼ 1
�−1 . The data in Fig. 7 verify

the predicted linear relationship between � and speed u at
which a flat interface develops an error of 5%, according to
Eq. (58) above. For these data, n̂ · u = u.

VI. CONCLUSIONS

Continuum scale flows containing rapidly adjusting inter-
faces between completely immiscible fluid components, or
phases, at significant density and viscosity contrast represent
an important class of problems. Multicomponent lattice Boltz-
mann (MCLB) equation simulation is one of the small number
of techniques able efficiently to address this regime. Of the
several MCLB variants in current use (see Refs. [1,4,8,9,13]
and the references therein), the chromodynamic variant, con-
sidered here, ignores questions of thermodynamic consis-
tency. So, when a flow lies within the isothermal regime (i.e.,
is defined by mechanical considerations alone), it represents
a useful, minimal tool [10]. In this regime, the utility of a
chromodynamic MCLB has been demonstrated by Wen et al.
[19] and Ba et al. [20], who advanced earlier work by Liu
et al. [21]. This article adds theoretical support to the chro-
modynamic methodology of these authors by demonstrating
that its kinematics is largely consistent with continuum scale
requirements—here, we have demonstrated that color is a
material invariant (which some may regard as an unsurprising
relief). This outcome is achieved by analysis of the kinetic
scale segregation rule [Eq. (10) above], which is usually
neglected in the system dynamics. In terms of its mechanical
properties (only), the result brings large density difference
chromodynamic MCLB into line with other schemes, i.e.,
that of Inamuro et al. [11] and the free-energy variant [8].
The latter schemes, in contradistinction to the chromodynamic
variant and perhaps wisely, postulate appropriate kinematics a
priori and, in the case of the free-energy variant, reference a
wider range of physics in their construction. That said, the
analytical results in Sec. V confirm that, at the kinetic scale,
for a range of density contrast, the emergent interface structure
for a chromodynamic variant is isotropic, Galilean-invariant
and it cannot diffuse. Accordingly, diffusion may not be added
to the model in an attempt to enhance the limits of stability
we see here. Here again, MCLB variants which contain an
order parameter [8,11] (the analog of our color), with con-
vection diffusion specified a priori have a possible advantage.
Elsewhere, it seems unlikely that the practical density contrast
achievable with the chromodynamic will reach that obtained
using a Shan-Chen MCLB variant [9].

In more specific detail, our numerical data suggest that re-
ported restrictions on the achievable density contrast in rapid
flow, using chromodynamic MCLB, originate in the effect on
the model’s kinematics, of the terms deriving from the term F1i

we introduce below [Eq. (19)] in the evolution equation (24),
which correct its dynamics, for large density differences. To
remove the restrictions, one must better control the coupling
between the dynamics and kinematics. Our analysis suggests
that it would be difficult to devise an alternate segregation
from Eq. (10) which retains those analytic properties shown
here to be the key to appropriate continuum-scale kinematics.
One approach may be to apply correction F1i [see Eq. (39)]
with a set of link weights, such that the essential correction to
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the dynamics is preserved but the terms in se and sv in Eq. (15)
vanish.

APPENDIX A: ONE-DIMENSIONAL STATIC
INTERFACE PROFILE

In this Appendix, we systematically derive the red and
blue fluids’ distribution close to the interface for a sim-
plified one-dimensional static case when there is a density
contrast between the fluids. We will be able to generalize
our solution to find the general, unsteady, three-dimensional
solution for the idealized case of correction terms F1i

negligible.
From Eqs. (22) and (42) and using c2

s = 1
3 for D2Q9, we

obtain

0 = 3

10
(1 − αR)δ2

t

d2

dx2

(
ρ2

R(x)

ρ(x)

)

+ 3

10
(1 − αB)δ2

t

d2

dx2

(
ρR(x)ρB(x)

ρ(x)

)

− 3

5
β(1 − αR)δ2

t

d

dx

(
ρ2

R(x)ρB(x)

ρ2(x)

)

− 3

5
β(1 − αB)δ2

t

d

dx

(
ρR(x)ρ2

B(x)

ρ2(x)

)
. (A1)

Taking a first integral to both sides of the above equation
gives:

D1 = 3

10
(1 − αR)δ2

t

d

dx

(
ρ2

R(x)

ρ(x)

)

+ 3

10
(1 − αB)δ2

t

d

dx

(
ρR(x)ρB(x)

ρ(x)

)

− 3

5
β(1 − αR)δ2

t

ρ2
R(x)ρB(x)

ρ2(x)

− 3

5
β(1 − αB)δ2

t

ρR(x)ρ2
B(x)

ρ2(x)
, (A2)

where D1 is an unknown constant. When applying the bound-
ary conditions, the integration constant D1 can be determined
to be zero from the following requirements:

lim
x→∞ (ρR(x)) = ρ0R, lim

x→∞ (ρB(x)) = 0, (A3)

lim
x→−∞ (ρR(x)) = 0, lim

x→−∞ (ρB(x)) = ρ0B. (A4)

Next we consider the symmetry of this one-dimensional
problem. Exchanging the red fluid and blue fluids and replac-
ing β → −β, we obtain

D2 = 3

10
(1 − αB)δ2

t

d

dx

(
ρ2

B(x)

ρ(x)

)

+ 3

10
(1 − αR)δ2

t

d

dx

(
ρR(x)ρB(x)

ρ(x)

)

+ 3

5
β(1 − αB)δ2

t

ρR(x)ρ2
B(x)

ρ2(x)

+ 3

5
β(1 − αR)δ2

t

ρ2
R(x)ρB(x)

ρ2(x)
, (A5)

where D2 is another constant which can also be determined
to be zero from boundary conditions in Eqs. (A3) and (A4).
Summing Eqs. (A2) and (A5) and multiplying both sides of
the new equation by 10

3 leads to

0 = (1 − αR)δ2
t

d

dx

(
ρ2

R(x) + ρR(x)ρB(x)

ρ(x)

)

+ (1 − αB)δ2
t

d

dx

(
ρ2

B(x) + ρR(x)ρB(x)

ρ(x)

)
. (A6)

Because ρR(x) + ρB(x) = ρ(x), Eq. (A6) can be simplified to

(1 − αR)
dρR(x)

dx
+ (1 − αB)

dρB(x)

dx
= 0. (A7)

Integrating Eq. (A7) and performing simple algebraic manip-
ulation leads to

ρR(x) + �ρB(x) = D3, (A8)

where � = 1−αB
1−αR

. Applying boundary conditions (A3) and
(A4) again to determine that integration constant D3 = ρ0R,
then we have, in summary:

ρB(x) = ρ0R − ρR(x)

�
, (A9)

and

ρ(x) = ρR(x) + ρB(x) = ρ0R + (� − 1)ρR(x)

�
. (A10)

Now it is possible to return to Eq. (A2), using Eqs. (A9)
and (A10) to reduce Eq. (A2) into a single unknown function;
namely, ρR(x), whereupon we obtain

0 = d

dx

(
ρR(x)

(� − 1)ρR(x) + ρ0R

)

− 2β
ρR(x)[ρ0R − ρR(x)]

[(� − 1)ρR(x) + ρ0R]2
. (A11)

Applying the product rule and the chain rule to Eq. (A11), we
have

0 =
(−ρ0R(� − 1) + (� − 1)ρR(x) + ρ0R

[(� − 1)ρR(x) + ρ0R]2

)
dρR(x)

dx

− 2β
ρR(x)[ρ0R − ρR(x)]

[(� − 1)ρR(x) + ρ0R]2
, (A12)

which can be further simplified to

d

dx
ρR(x) = 2βρR(x)[ρ0R − ρR(x)]

ρ0R
, (A13)

in which the variables may be separated:∫
1

ρR[ρ0R − ρR]
dρR =

∫
2β

ρ0R
dx. (A14)

The solution of Eq. (A14) is obtained by using partial fractions
as

ρR(x) = ρ0R

1 + D4 exp (−2βx)
, (A15)

where D4 is a constant to be determined. If the center of
symmetry is placed at x = 0, D4 can be determined to be 1.
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Therefore, the solutions of red and blue fluids densities ρR(x)
and ρB(x) are

ρR(x) = ρ0R

2
[1 + tanh (βx)],

ρB(x) = ρ0B

2
[1 − tanh (βx)]. (A16)

APPENDIX B: KINEMATIC EQUATION FOR A
MULTIRELAXATION-TIME SCHEME

The interplay between model kinematics and dynamics is
more difficult to analyze for a chromodynamic method which
is based upon a multiple relaxation time scheme (MRT). How-
ever, MRT schemes are known to be much more stable and
accurate than their LBGK counterparts. The color gradient
MCLB and segregation scheme analyzed here was originally
devised by Ba. et al. who deployed it with a more stable MRT
collision scheme [20]. The equilibrium of the MRT scheme of
Ba. et al. is

f (0)
i (ρ, u) = ρφi + tiρ

(
uαciα

c2
s

(1 + hi ) + uαuβciαciβ

2c4
s

− u2

2c2
s

)
,

hi = �(r)(3ciβciβ − 4),

�(r) = 4ρ − 9(αRρR + αBρB)

10ρ
, (B1)

which, note, is more complex that our LBGK equivalent. This
necessitates greater care in the derivation of its kinematics.

The LDD correction and immersed boundary sources for Ba’s
MRT scheme are

F1i = 1

12

[(
1 − se

2

)(
4 − 3c2

i

)
CB1

+ 3
(
c2

ix − c2
iy

)(
1 − sv

2

)
CB7

]
,

F2i =
(

1 − sv

2

)(
(Fα − uα )ciα

c2
s

+ Fαuβciαciβ

2c4
s

)
, (B2)

with the latter identical to our simpler LBGK scheme, note.
Note also that two MRT relaxation scheme parameters now
appear (see Ba et al. [20]) and

φi =
{

αRρR

ρ
+ αBρB

ρ
, i = 0

(1 − αR) siρR

ρ
+ (1 − αB) siρB

ρ
, i �= 0,

(B3)

CB1 = 9

5
∂α

{[
(1 − αR)ρR + (1 − αB)ρB − 5ρ

9

]
uα

}
, (B4)

CB7 = 9

5
∂α

{[
(1 − αR)ρR + (1 − αB)ρB − 5ρ

9

]
uα

}
. (B5)

Following the analysis of Sec. III with the above modifica-
tions, we obtain, in place of Eq. (13),

ρR(r, t + δt ) =
∑
∀ i

ρR

[
φi + ti

(
uαciα

c2
s

(1 + hi ) + uαuβciαciβ

2c4
s

− u2

2c2
s

)]
r−δt ci

+ 1

12

∑
∀ i

ρR

ρ

[(
1 − se

2

)(
4 − 3c2

i

)
CB1

]
r−δt ci

+ 1

4

∑
∀ i

ρR

ρ

[(
1 − sv

2

)(
c2

ix − c2
iy

)
CB7

]
r−δt ci

+ δtβ
∑
∀ i

[
φi

(
ρRρB

ρ

)
nβciβ

]
r−δt ci

. (B6)

Performing the Taylor expansions, we obtain the following in place of Eq. (15):

ρR + δt
∂ρR

∂t
+ 1

2
δ2

t

∂2ρR

∂t2
= (1 − αR)

∑
i �=0

si

[
ρ2

R

ρ
− δt ciα∂α

(
ρ2

R

ρ

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρ2

R

ρ

)]

+ (1 − αB)
∑
i �=0

si

[
ρRρB

ρ
− δt ciα∂α

(
ρRρB

ρ

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρRρB

ρ

)]

+ αRρ2
R

ρ
+ αBρBρR

ρ
+ uγ

c2
s

∑
∀ i

ti

[
ρR − δt ciα∂αρR + δ2

t

2
ciαciβ∂α∂βρR

]
ciγ

+ uγ

c2
s

∑
∀ i

ti

[
ρR�

ρ
− δt ciα∂α

(
ρR�

ρ

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρR�

ρ

)](
3c2

i − 4
)
ciγ

+ uαuβ

2c4
s

∑
∀ i

ti

[
ρR − δt ciγ ∂γ ρR + δ2

t

2
ciγ ciδ∂γ ∂δρR

]
ciαciβ

− u2

2c2
s

∑
∀ i

ti

[
ρR − δt ciα∂αρR + δ2

t

2
ciαciβ∂α∂βρR

]
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+ 1

12

(
1 − se

2

) ∑
∀ i

[
ρRCB1

ρ
− δt ciα∂α

(
ρRCB1

ρ

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρRCB1

ρ

)](
4 − 3c2

i
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+ 1

4

(
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) ∑
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ρRCB7

ρ
− δt ciα∂α

(
ρRCB7

ρ

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρRCB7

ρ

)](
c2

ix − c2
iy

)

+ δtβ(1 − αR)
∑
i �=0

si

[
ρ2

RρB

ρ2
− δt ciα∂α

(
ρ2

RρB

ρ2

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρ2

RρB

ρ2

)]
nγ ciγ

+ δtβ(1 − αB)
∑
i �=0

si

[
ρRρ2

B

ρ2
− δt ciα∂α

(
ρRρ2

B

ρ2

)
+ δ2

t

2
ciαciβ∂α∂β

(
ρRρ2

B

ρ2

)]
nγ ciγ , (B7)

in which, note, the influence of the collision model appears in several terms. Again assuming lattice isotropy properties, using
our previous definition of the si and k we can simplify to

δt
∂ρR

∂t
+ 1

2
δ2

t

∂2ρR

∂t2
+ δt uγ ∂γ ρR = k

2
c2

s (1 − αR)δ2
t ∇2

(
ρ2

R

ρ

)
+ k

2
c2

s (1 − αB)δ2
t ∇2

(
ρRρB

ρ

)

+ 1

2
δ2

t uαuβ∂α∂βρR − δ2
t β(1 − αR)kc2

s nγ ∂γ

(
ρ2

RρB

ρ2

)

− δ2
t β(1 − αB)kc2

s nγ ∂γ
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ρRρ2

B

ρ2
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+ 1

12
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(
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ρRCB1

ρ
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δ2

t

(
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)(
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y

)(ρRCB7

ρ

)
. (B8)

Note that all terms containing the quantity � have vanished between Eqs. (B7) and (B8). However, relaxation-parameter-
dependent terms originating in the dynamics’ density correction term F1i remain. These terms may be transformed by using
the identities in Eqs. (B4) and (B5):

δt
∂ρR

∂t
+ 1

2
δ2

t

∂2ρR

∂t2
+ δt uγ ∂γ ρR = k

2
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R
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36
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Here, εzαβ is the unit antisymmetric tensor.
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