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Abstract: Video transmission over wireless computer networks is increasingly popular as new 
applications emerge and wireless networks become more widespread and reliable. An ability to 
quantify the quality of a video transmitted using a wireless computer network is important for 
determining network performance and its improvement. The process requires analysing the 
images making up the video from the point of view of noise and associated distortion as well as 
traffic parameters represented by packet delay, jitter and loss. In this study a modular fuzzy logic 
based system was developed to quantify the quality of video transmission over a wireless 
computer network. Peak signal to noise ratio, structural similarity index and image difference were 
used to represent the user's quality of experience (QoE) while packet delay, jitter and percentage 
packet loss ratio were used to represent traffic related quality of service (QoS). An overall measure 
of the video quality was obtained by combining QoE and QoS values. Systematic sampling was 
used to reduce the number of images processed and a novel scheme was devised whereby the 
images were partitioned to more sensitively localize distortions. To further validate the developed 
system, a subjective test involving 25 participants graded the quality of the received video. The 
image partitioning significantly improved the video quality evaluation. The subjective test results 
correlated with the developed fuzzy logic approach. The video quality assessment developed in 
this study was compared against a method that uses spatial efficient entropic differencing and 
consistent results were observed. The study indicated that the developed fuzzy logic approaches 
could accurately determine the quality of a wirelessly transmitted video. 

Keywords: video quality measurement; fuzzy logic; quality of service; quality of experience; 
wireless networks; multimedia communication 

 

1. Introduction 

An ability to quantify the quality of a video transmitted over wireless computer networks is 
important in evaluating the networks' operation and performance. Two interrelated parameter 
groupings characterize wirelessly transmitted video quality. A grouping is related to the traffic and 
can be characterized by packet transmission delay, jitter and loss. These traffic measures can be 
accommodated as part of a quality of service (QoS) assessment [1,2]. The second grouping indicates 
the effects of noise and associated distortion on the images making up a video. These directly 
influence the user's perception of the video and can be accommodated as part of the quality of 
experience (QoE) assessment [3,4]. The overall quality of the received video can be quantified by 
combining the QoS and QoE measures [5–7].  

QoS parameters (delay, jitter and packet loss) can be measured using traffic monitoring tools. 
Subjective QoE measures are acquired by allocating scores provided by the users under controlled 
laboratory conditions. Users are provided with the test video and are asked to assess and score it by 
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considering a set of predefined indicators of quality [8,9]. The Video Quality Expert Group (VQEG) 
[7] has recommendations for conducting subjective video quality tests. These are categorized into a 
single video stimulus that the viewers are shown either a single video at a time or double stimuli 
that the viewers are shown two videos, i.e., the original and test videos, simultaneously on a 
split-screen environment. This approach however has some shortcomings as it needs specialized 
software for the video player and interpretation of the scores and careful selection of the reviewers 
to provide a representative evaluation. 

The limitations of subjective video evaluation tests could be mitigated by objective QoE tests. 
These tests can be either full-reference, no reference or reduced reference, depending on the 
approach [8,10]. In a full-reference test, a frame-by-frame comparison of the reference (original or 
transmitted) and test (received or distorted) videos is performed. In a no reference video quality 
evaluation, quality is assessed based on the extracted features that characterize the image quality. 
The selection of appropriate test features can greatly affect the reliability of the assessment. A 
reduced reference video quality evaluation is a hybrid between the full- and no reference methods 
whereby representative features from the reference video are extracted and compared to the 
corresponding features in the test video. These features can be spatial and motion information.  

Prior to reviewing the related studies in the next section, a brief description of the main QoS and 
QoE measures used in this study is provided to make the article more complete. QoS was determined 
by measuring packet delay, jitter and percentage packet loss ratio. Delay is the time a packet takes to 
reach its destination from its source. Jitter is the magnitude of the variations in the delay. Percentage 
packet loss ratio (%PLR) is the ratio of the number of packets lost during transmission (due to for 
example noise) over the total number of packets transmitted, multiplied by 100. 

In this study a full-reference QoE measurement was adapted. QoE measures were peak 
signal-to-noise (PSNR), structural similarity index measurement (SSIM) and image difference (ID). 
PSNR in dB is determined by [11,12]. 𝑃𝑆𝑁𝑅(𝑋, 𝑌) = 10 logଵ଴ ቀ ெ௉௉మெௌா(௑,௒)ቁ, (1) 

where MPP = 2n – 1 is the maximum possible pixel value of the image and n is the number of bits 
used to represent each sample, e.g., when n is 8 bits per sample, MPP = 255. Larger values of PSNR 
signify a smaller distortion and thus a higher video quality. MSE is the mean square error between 
images X and Y determined by: 𝑀𝑆𝐸 = ଵ௠௡ ∑ ∑ ሾ𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗)ሿଶ௡ିଵ௝ୀ଴௠ିଵ௜ୀ଴ , (2) 

where m and n represent the image dimensions and i, j represent a pixel's location on the image. 
The structural similarity index (SSIM) for measuring image quality for image windows (x and 

y) of the same dimension from an image is determined by [11,13]: 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = ൫ଶఓೣఓ೤శ೎భ൯൫ଶఙೣ೤ା௖మ൯ቀఓమೣାఓ೤శమ ௖భቁቀఙమೣାఙ೤శమ ௖మቁ, (3) 

where 𝜇௫ and 𝜇௬ are the means of the pixel values within the measurement windows x and y 
respectively, 𝜎௫ଶ and 𝜎௬ଶ are the pixels' variances, 𝜎௫௬ is the covariance of the pixels within the x 
and y windows. The variables c1 and c2 stabilize the division with weak a denominator. They are 
defined as 𝑐ଵ = (𝑘ଵ𝐿)ଶ and 𝑐ଶ = (𝑘ଶ𝐿)ଶ where the dynamic range 𝐿 = 2௡ − 1 and n is the number 
of bits per pixel. The factors k1 and k2 are by default 0.01 and 0.03. SSIM takes a value of 0 to 1 with 
values closer to 1 indicating a higher similarity. 

Image difference (ID) is a measure of overall pixel-to-pixel differences between two images. It 
can be determined in different ways, but in this study it was obtained from the histogram of pixel 
values of the images being compared and using Euclidean distance to determine the histograms' 
overall difference. As the processing in this study was on grey images, the pixel values ranged from 
0 to 255. The difference between the two histograms was determined by using Euclidian distance as: 
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𝐼𝐷(𝑋, 𝑌) = ට∑ (𝐹𝑋௜ − 𝐹𝑌௜ )ଶ௜ୀଶହହ௜ୀ଴ , (4) 

where FXi and FYi are the occurrence frequencies of a pixel with value i associated with images X 
and Y respectively. An ID value of zero indicates identical images. 

Video quality evaluation using MSE, PSNR or SSIM has been reported previously but 
combining them with the traffic measures (delay, jitter and percentage packet loss ratio (%PLR)) 
needed further development [14–17]. This study achieved this goal by devising a modular fuzzy 
logic system consisting of three fuzzy inference systems (FIS). These systems processed and 
combined the values of delay, jitter and %PPR with PSNR, SSIM and ID and indicated the overall 
received video quality. A FIS uses fuzzy logic concepts to map its numerical input values through a 
reasoning process to its output. FIS is an effective mean of analysing computer network data [18,19]. 
The structure of a FIS is shown in Figure 1. 

 
Figure 1. Schematic diagram of a fuzzy inference system (FIS). 

The numerical inputs to the FIS are fuzzified by a set of membership functions that indicate the 
degree (a value between 0 and 1) that an input belongs to a predefined fuzzy set. The 
knowledgebase contains the information about the process (in this study relationships between the 
inputs delay, jitter, %PLR, PSNR, SSIM and ID with the output that indicates the quality of the video. 
The inference engine performs reasoning by comparing the input values with the domain 
knowledge coded in the knowledgebase by a series of IF-THEN rules to indicate the output. 
De-fuzzification is a process whereby the outcomes of the rules are combined to produce an 
aggregated membership function from which the FIS output is determined [20]. 

2. Related Studies 

QoE has been previously measured using PSNR [21] and SSIM [22]. A study showed that the 
PSNR is more sensitive to additive Gaussian noise than the SSIM [23]. SSIM and PSNR mainly differ 
on their degree of sensitivity to image degradations. PSNR is one of the most commonly used 
objective measures but it often has been critiqued for providing results that are not fully consistent 
with subjective quality assessments [1]. However, its ease of implementation and interpretation 
make it valuable [24]. 

Objective video quality assessment methods can reduce the cost and time of video evaluation 
[25]. A video assessment method based on delay, jitter, PLR and bandwidth found QoS/QoE was 
closely related to video quality degradation [26]. A method that processed delay, jitter, packet loss 
rate and bandwidth to determine four types of video quality degradations was reported [1]. They 
analysed the impact of different levels of video degradation.  

A model based on a random neural network (RNN) was proposed to assess the impact of 
different media access control-level parameters on video QoE in IEEE 802.11n wireless networks 
[25]. In their study subjective tests were performed to correlate MAC-level parameters such as queue 
size, aggregation, traffic load and bit error rate with the user’s perception of video. The proposed 
RNN based approach estimated the impact of these parameters on the video QoE. RNN was trained 
with a subjective dataset to estimate QoE. Their results showed objective and subjective QoE were 
related. However, their study did not investigate the influence of traffic parameters such as delay, 
jitter and packet loss ratio. 
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A study proposed a QoE prediction mechanism for streaming videos [8]. It evaluated quality 
degradation due to perceptual video presentation impairment, playback stalling events and 
instantaneous interactions between them. Their experimental results were close to a subjective QoE 
test method. A video QoE evaluation method that synchronized the reference and distorted videos 
to avoid an erroneous match was reported and was validated with a subjective video database [24]. 
Video streaming services in radio-over-fibre (RoF) networks were studied [27]. The sensitivity of the 
QoE measure was investigated and their results indicated that packet delay affected video quality 
less than jitter. 

When frames are lost during transmission, the order of frames sent with those received no 
longer matches. The resulting mismatch in the frame sequence numbers results in inaccuracies when 
comparing the original and received frames to establish video quality [24,28]. Another limitation of 
current objective QoE methods is that they typically rely on peak signal to noise ratio (PSNR), 
structural similarity index (SSIM) or video quality metric (VQM), which do not always provide 
consistent assessment [1,9,26,29]. Therefore, in our study, a further video quality measurement 
parameter called image distance (ID) was included. 

When dealing with wireless computer networks where interference and other contextual 
factors affect network services, QoS assessment on its own may be insufficient [27]. Thus, the 
performance evaluation of lossy wireless networks needs to take into account not only the physical 
network characteristics (QoS) but also how these affect the end-user application (QoE). Thus 
integrating QoS and QoE as is achieved in our study is valuable. A number of image and video 
quality assessment methods were reported in [30]. In our study we have compared the developed 
method against [31] as it was closest to the approach we followed. 

The features of this study are (details of each part are explained in the following sections): 

• Frame losses meant that frame arrival and transmission would not match correctly. Labelling 
each frame dealt with the issue of correct pairing of transmitted (original) and received 
(distorted) frames and thus improved the QoS/QoE evaluations.  

• Computational demand on processing was reduced through inclusion of systematic sampling of 
the images. This resulted in a subset of received that represented the overall video to be processed. 

• The sensitivity of measuring image distortion was improved through a new method called 
image partitioning. This enabled localized distortions to be more precisely represented. 

• Traffic parameters (delay, jitter and %PLR) that quantified QoS and were successfully combined 
with image distortion measures (PSNR, SSIM and ID) that quantified QoE to produce a signal 
measure of received video quality.  

• These evaluations were performed using a modularized structure that consisted of three 
separate fuzzy inference systems. This modularization improved transparency in operation and 
made future modifications easier. 

• Subjective video quality evaluations tests to determine mean opinion score (MOS) were performed 
by enrolling 25 participants. The results were compared with the fuzzy logic approach. 

• The devised methods were compared video quality assessment reported in [31] that uses an 
approach referred to as the spatial efficient entropic differencing for quality assessment 
(SpEED-QA) model. It computes perceptually relevant image/video quality features by relying 
on the local spatial operations on image frames and frame differences. 

3. Methodology 

3.1. Wireless Network Set Up  

The wireless network set up used in the study is shown in Figure 2. 
It incorporated two wireless Cisco© Access Points (APs) AIR-AP1852 (Cisco, place of origin: 

China) that have four external dual-band antennae. Cisco© Catalyst 3560 (Cisco, place of origin: 
China) switch connected via 1 Gigabit Ethernet (GE) the APs and the network emulator (NetEm), 
installed on a laptop computer acting as a server. The arrangement established point-to-point 
protocol (PPP) link between the PC-1 and PC-2. NetEm was situated in between the PPP connections 
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to allow the traffic parameters, i.e., delay, jitter and %PLR to be controlled and thus drive the 
network toward different transmission quality. The control provided a mean of creating 
transmission environments for good, medium and poor video qualities. The video was sent over a 
PPP link such that the traffic from PC-1 transmitted to PC-2 through NetEm server [32]. The selected 
video was a Big Buck Bunny [33] clip, duration 90 seconds and consisting of 1350 frames. The video 
format was MPEG-2, all encoded using H.264. The frame pixel resolution was 1280 pixels × 720 pixels. 

 
Figure 2. Network setup used in the study. 

The video was streamed from PC-1 to PC-2 using VideoLAN Client (VLC) media player with 
the UDP/RTP (user datagram protocol/real-time transport protocol). This allowed time-stamp and 
sequence number features in RTP for actual end-to-end delay and %PLR measurements to be used. 
Through the NetEm software, traffic delay, jitter and %PLR were increased in three stages during 
the transmission. In the first stage, these parameters had a lower range of values, increasing to larger 
values in the third stage. The QoS, QoE and overall quality of video were measured during each 
stage. Wireshark was used to capture video streaming traffic packets between PC-1 and PC-2 that 
allowed delay, jitter and %PLR to be determined. 

To develop the FIS knowledgebase that determined QoS, the transmission bounds needed to be 
defined. For the video streaming application, Good QoS (i.e., QoS > 67%) corresponds to delays less 
than 150 ms, jitters less than 10 ms and packet loss ratios less than 1%. Medium QoS (i.e., 33% < QoS 
67%) corresponds to 150 < delay < 400 ms, 10 < jitter < 20 ms and 1% < packet loss ratio < 2%. Low 
QoS (i.e., QoS < 33%) corresponds to delay >400 ms, jitter >20 ms and packet loss ratio >2% [18]. 

3.2. Mechanism Determining Video Quality 

The stages in determining the received video quality are shown in Figure 3.  
Three similarly structured fuzzy inference systems (FIS) performed the required evaluation 

processes as described in this section. Although the complete video quality evaluation could have 
been achieved using a single FIS, three separate FIS models were adapted to allow for a modular 
structure, thus making the design and implementation easier and its operation more transparent.  

The first FIS (FIS1) processed the traffic parameters (delay, jitter and %PLR) to indicate QoS. 
The second FIS (FIS2) processed PSNR, SSIM and ID to indicate QoE. The third FIS (FIS3) combined 
the outputs from FIS1 and 2 to provide the overall received video quality. The details of the tasks to 
develop these FIS structures are explained next. 

(a) Each transmitted image was labelled by software with an image serial number, starting with 
1 and sequentially increasing to the last image. Two very small identical labels were used. The labels 
were inserted on the top left and right corners of each transmitted image. Its repetition on two 
corners was to provide an alternative label in case one label became unreadable due to distortion by 
noise. The labelling was required to allow the received images to be compared with the 
corresponding transmitted images. 

Systematic sampling (a process whereby an image is chosen from the video at a predefined 
interval) was applied to the received images to reduce their number and thus the processing 
requirement. The time interval between the selected images was 1 second, i.e., an image was selected 
every second. This resulted in the reduction of images from 1350 (original number) to 90 (i.e., 1 
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image from every 15 images was selected). The selected images were compared with the 
corresponding transmitted images by using the inserted labels. 

(b-i) Traffic parameters (packet delay, jitter and %PLR) were measured for the received packets 
and were processed by FIS1 to determine the network QoS (the development of FIS is explained in a 
later part). 

(b-ii) PSNR, SSIM and ID were determined for the selected received images and their 
corresponding transmitted (original) images. These were processed by FIS2 the operation of which is 
explained later. This operation was repeated for the full and petitioned images (the partitioning 
process is described in section 3.4). In order to set up the knowledgebase for the FIS2 that 
determined QoE, QoE bound needed to be defined. For the video streaming application, good QoE 
(i.e., QoE > 67%) corresponded to PSNR more than 35, SSIM more than 0.95 and ID less than 0.33. 
medium QoE (i.e., 33% < QoE ≤ 67%) corresponded to medium QoE parameters (i.e., 25 < PSNR < 35, 
0.88 < SSIM ≤ 0.95 and 0.33 ≤ ID < 0.66). Low QoE (i.e., QoE 33%) corresponded to PSNR < 25, SSIM ≤ 
0.88 and ID ≥ 0.66. These boundaries conform to the values for PSNR and SSIM in previous studies 
[12,13,17,18,34]. 

(c) The QoS and QoE values determined from steps (b-i) and (b-ii) were combined in FIS3 to 
obtain the overall video quality. 

 
Figure 3. Stages to determine the received video quality. 

3.3. Implementation of FIS1 

QoS was determined using FIS1 that received delay, jitter and %PLR. Three membership 
functions were used to represent each of the three traffic inputs and three membership functions 
represented the FIS1 output. Nine rules were coded into the FIS1 knowledgebase using a series of 
If-Then rules. The rules are outlined in Table 1. 

The type of membership function for the input and output for FIS1 was Gaussian as it provided 
flexibility to represent the measurements. The membership functions' ranges were chosen based on 
the International Telecommunication Union (ITU) recommendations for video transmission 
parameters delay, jitter and %PLR as shown in Figure 4 [18]. The membership functions shown in 

Frame labelling  

Wireless network 

Delay, jitter and 
%PLR 

PSNR, SSIM and ID 
(full/partitioned image) 

QoS metric FIS1 QoE metric FIS2 

Integrated overall metric FIS3 

Network QoS Objective QoE 

Overall received video quality 

Big Buck Bunny video 

Frame sampling (systematic) 
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blue, red and green colours represent fuzzy sets of low, medium and high QoS respectively for the 
parameters considered. Each fuzzy rule was applied to the associated membership functions and the 
rules' consequences were mapped to the associated output membership functions. The output 
membership functions were aggregated and the centroid approach was used to perform 
de-fuzzification that in turn provided the output of FIS1.  

Table 1. The rules for the FIS1 knowledgebase. 

Rule Delay Operator Jitter Operator %PLR FIS (output) 
1 Low AND Low AND Low High 
2 Low AND Low AND Medium High 
3 Low AND Medium AND Low High 
4 Medium AND Low AND Low High 
5 Medium AND Medium AND Low Medium 
6 Medium AND Low AND Medium Medium 
7 Low AND Medium AND Medium Medium 
8 Medium AND Medium AND Medium Medium 
9 High OR High OR High Low 

 
Figure 4. Membership functions (MMF) for FIS1: Inputs (top three figures) and output 
(bottom figure). 

3.4. Implementation of FIS2 

FIS2 processed the values for PSNR, SSIM and ID obtained from the transmitted and received 
images and provided a value between 0 and 1 for QoE. QoE measurements were performed in two 
approaches. In the first approach, PSNR, SSIM and ID were determined from the whole image. In 
the second approach, each image was partitioned into four equal parts (top-left, top-right, 
bottom-left and bottom right) and the values PSNR, SSIM and ID for each part were separately 
determined and for PSNR and SSIM the smallest and for ID the largest value amongst the four 
partitions were selected. Four partitions were chosen as a compromise between a higher sensitivity 
in localizing distortions (that requires a larger number of partitions) and a reduction in overall image 
distortion estimation (that requires a smaller number of partitions). The approach was aimed at 
providing greater sensitivity as compared to processing the image intact. The effectiveness of these 
two approaches in determining QoE was compared. The justification for partitioning the images was 
to explore whether localized distortions could be better identified and represented. 
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The inputs to the FIS2, i.e., the PSNR, SSIM and ID were fuzzified using three Gaussian 
membership functions referred to as low, medium and high. There are shown in blue, red and green 
in Figure 5. The output was defuzzified by three membership functions that represented low, 
medium and high QoE. These membership functions are shown in Figure 5. The ID results were 
normalized between 0 and 1 by identifying the highest and lowest values. 

 
Figure 5. FIS2 membership functions (MMF), inputs (top figures) and output (bottom 
figure). 

The knowledgebase for FIS2 had eleven rules as shown in Table 2. They mapped the inputs to 
FIS2 to its output and indicated QoE in form of degrees of memberships belonging to high, medium 
and low. The rules conformed to the previous related studies [13,17,21,34,35]. 

Table 2. The rules for the FIS2 knowledgebase. 

Rule PSNR Operator SSIM Operator ID FIS output 
1 High AND High AND Low High 
2 High AND High AND Medium High 
3 High AND Medium AND Low High 
4 Medium AND High AND Low High 
5 Medium AND Medium AND Low Medium 
6 Medium AND High AND Medium Medium 
7 High AND Medium AND Medium Medium 
8 Medium AND Medium AND Medium Medium 
9 Low AND Low AND Medium Low 

10 Medium AND Low AND High Low 
11 Low AND Medium AND High Low 

3.5. Implementation of FIS3 

FIS3 combined the QoS and QoE values determined from FIS1 and FIS2 to indicate the overall 
quality of the received video. The output was in the range of 0 (lowest quality) to 5 (highest quality). 
The QoS and QoE values were fuzzified using three Gaussian membership functions referred to as 
low, medium and high. These are shown in blue, red and green plots in Figure 6. 

Five rules were coded in the FIS3 knowledge base. These are shown in Table 3. These mapped 
the two inputs to the overall video quality in the form of high, medium and low. 
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Figure 6. FIS3 membership functions (MMF): Inputs (top) and output (bottom). 

Table 3. The rules for the FIS3 knowledgebase. 

Rule QoS Operator QoE FIS output 
1 High AND High High 
2 High AND Medium High 
3 Medium AND High High 
4 Medium AND Medium Medium 
5 Low OR Low Low 

4. Results and Discussion 

Figure 7 shows a typical transmitted image with its serial number shown as labels on its top left 
and right corners. 

 
Figure 7. A typical transmitted image with its sequence number indicated on top corners. 

The PSNR, SSIM and ID were measured for the transmitted and received video images 
identified through systematic sampling. In some images the distortion only was localized to a 
specific part of the image. As PSNR, SSIM and ID consider the overall effect of the distortion, 
localized distortions can become less precisely represented. Figures 8a and b show the transmitted 
and received (distorted) images at time 65 seconds. The distortion is visible at the bottom edge of the 
received image. The PSNR and SSIM from the complete (intact) image were 36.08 dB and 0.999 
respectively and ID was 0.48. 
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(a) (b) 

Figure 8. (a) Transmitted image and (b) received image (distorted), label = 1170 at time 65 
second. 

Figure 9 shows the four partitions for the image shown in Figure 8b. 

  

 

Figure 9. A typical partitioned received image at time 65 seconds. 

The PSNR, SSIM and ID values for each partition were calculated and the minimum values for 
PSNR and SSIM and the maximum value for ID amongst the four partitions were selected. These 
represented the worse possible scenarios. The values of PSNR, SSIM and ID for a full image and its 
partitioned versions are provided in Table 4. Partitions 1 to 4 represent top left, top right, bottom left 
and bottom right parts of the image respectively. For Figure 9, the selected PSNR, SSIM and ID were 
28.13 dB, 0.977 and 0.60 respectively. 

Table 4. Peak signal-to-noise (PSNR), structural similarity index measurement (SSIM) and 
image difference (ID) for full and partitioned images (these were obtained from the image 
shown in Figure 8a and its partitions in Figure 9). 

Parameter Complete 
Image 

Partitions Selected 
Value 1 2 3 4 

PSNR (dB) 36.08 33.22 33.56 29.32 28.13 28.13 
SSIM 0.999 0.998 0.999 0.998 0.997 0.997 

ID 0.48 0.41 0.42 0.47 0.60 0.60 

Figures 10a–c show the traffic measurement plots for delay, jitter and %PLR respectively. 
Figure 10d shows the QoS determined by FIS1 for the video UDP/RTP traffic. The increase in delay, 
jitter and %PLR was facilitated by the NetEm software, which facilitated degradation in QoS. At the 
beginning of the transmission, QoS was high at 90% until time 7 seconds where QoS decreased to 
62% due to an increase in %PLR (Figure 10c). Curve fitting (4th degree polynomial) was used to 
indicate the trends for the measures. QoS changed based on the changes in the delay, jitter and 
%PLR and as defined by the membership functions in Figure 4. The values correspond to 0%–34% 
for low QoS, 35%–65% for medium QoS and 66%–100% for high QoS. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. (a) Traffic delay, (b) jitter (c) percentage packet loss ratio (%PLR) and (d) quality 
of service (QoS) obtained from FIS1. 

Figures 11–13 show PSNR, SSIM and ID comparing received images (following systematic 
sampling) with their counter-parts transmitted images. For each figure, (a) is for the full image and 
(b) for the partitioned image methods.  

  
(a) (b) 

Figure 11. PSNR (in dB): (a) Full image and (b) partitioned image. 
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(a) (b) 

Figure 12. SSIM: (a) Full image and (b) partitioned image. 

  
(a) (b) 

Figure 13. ID: (a) Full image and (b) partitioned image. 

The PSNR and SSIM were at their peaks at the start of the transmission and they reduced as the 
magnitudes of the traffic parameters (delay, jitter and %PLR) were increased by using the NetEm 
software. The ID was close to zero at the beginning of the transmission as received images were very 
similar to those transmitted but by increasing network parameters delay, jitter and %PLR, the ID 
increased correspondingly. For evaluations that used complete (not partitioned) images, the results 
for PSNR, and SSIM were partially related to QoS but at time 80 seconds PSNR and SSIM were high 
and QoS at the time was low. However, for the evaluations that used partitioned images, PSNR and 
SSIM values were related to the determined QoS. Even toward the end of transmission between time 
80–90 seconds, for the partitioned image approach, PSNR and SSIM had similar behaviour to QoS 
values. The ID in both cases (i.e., the full image and partitioned image evaluation approaches) was 
close. In addition, the behaviour of ID was also related to determine QoS. According to the results, 
the partitioned image approach was more effective in representing the quality of images than the 
approach that used whole images. 

Figures 14a,b shows plots for QoE determined by FIS2 for the full and partitioned images 
respectively. The partitioned image method represented the video quality more precisely as Figure 
14b relates to the QoS plots in Figure 10 more closely. 

  
(a) (b) 

Figure 14. Video quality determined by FIS2: (a) Full image and (b) partitioned image. 

In order to demonstrate the manner the QoS and QoE values related to typical images with 
various levels of distortions, a number of images and their measurements are provided in Figure 15. 
The values were provided for the evaluations that were based on full and partitioned images. The 
range of both QoS and QoE from 0 (lowest quality) to 1 (highest quality). The partitioning of images 
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into four parts had improved quantification of image distortion and thus more precisely represented 
the QoE. To illustrate this point, Figure 15a has a small distortion. The QoE obtained from the full 
and partitioned images were 0.78 and 0.77 respectively. In Figure 15d, the image was severely 
distorted. The QoE obtained from the full image was 0.70 while the QoE obtained for the partitioned 
image was 0.17 signifying a higher sensitivity for the partitioned method. 

  

QoS = 75.50, delay = 51.51 ms, jitter = 0.07 

ms, %PLR = 0.5 
Image partitioning approach: 
• Full image: QoE = 0.78, PSNR = 45.09 

dB, SSIM = 1, ID = 0.004. 

• Partitioned: QoE = 0.77, PSNR = 45.09 

dB, SSIM = 1, ID = 0.01. 

(a) 

QoS = 48.01, delay = 104.10 ms, jitter = 0.56 

ms, %PLR = 2.1. 

Image partitioning approach: 
• Full image: QoE = 0.76, PSNR = 45.39 

dB, SSIM = 0.999, ID = 0.48. 

• Partitioned: QoE = 0.49, PSNR = 27.30 

dB, SSIM = 0.998, ID = 0.62. 

(b) 

  

QoS=52.02, delay=157.5 ms, jitter=1.43 ms, 

%PLR=1.9. 

Image partitioning approach: 
• Full image: QoE=0.59, PSNR=30.06 dB, 

SSIM=0.99, ID =0.48. 

• Partitioned: QoE=0.49, PSNR=28.13 dB, 

SSIM= 0.997, ID =0.61. 

 (c) 

QoS=19, delay=178.5 ms, jitter=19.8 ms, 

%PLR=3.1. 

Image partitioning approach: 
• Full image: QoE=0.70, PSNR=45.52 dB, 

SSIM=0.999, ID =0.88. 

• Partitioned: QoE=0.17, PSNR=8.66 dB, 

SSIM= 0.87, ID =0.85. 

(d) 

Figure 15. Typical images illustrating the values for QoS, quality of experience (QoE) and 
the effect of image partitioning on determining quality of received images: (a) Time 5 
seconds, (b) time 43 seconds, (c) time 65 seconds and (d) 90 seconds. 

Figure 16 shows a plot for the overall video quality assessed by FIS3 using the image 
partitioning method. Scores 1 to 5 represent lowest to highest quality for the received video 
respectively. 

The quality of the received video was highest during the first 5 seconds and reduced to its 
lowest toward the end of transmission. This trend correlated well with QoS, QoE and their 
associated parameters thus indicating the approach had correctly performed the evaluation.  

In order to further demonstrate the effectiveness of the devised FIS based video quality 
evaluation system, a subjective test involving 25 participants was organized whereby they, after 
watching the transmitted (original) video, scored each received image from 1 (lowest quality) to 5 
(highest quality). The duration of the video was 90 seconds, corresponding to 90 images. The 
distorted video was initially shown to each participant. As scoring of the individual images while 
the video was being played was not practical, its individual images were shown sequentially using 
windows photo viewers tool, and once the scoring of an image was achieved, the next image was 
displayed. The scores where averaged and the resulting mean opinion score (MOS) is shown in 
Figure 17. The scoring was based on ITU-T Recommendation P.800 [25]. This opinion score allocates 
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values from bad to excellent by mapping the quantitative MOS as excellent (5), good (4), fair (3), 
poor (2) and bad (1). A comparison of Figures 16 (from FIS3, objective test) and 17 (MOS, subjective 
test) show that they had a similar quality trend over time. There were however few differences, for 
example from 80 to 90 seconds, the subjective test indicated video quality from 1.4 to 2.2, which was 
higher than the objective test that indicated video quality close to 1. These differences were related to 
variations in the participants' perceptions of the quality of the individual images.  

 
Figure 16. Evaluation of video quality transmission by FIS3. 

 

Figure 17. Averaged mean opinion score (MOS) for the subjective test. 

In order to have an independent comparison of the results from this study, a recently reported 
image and video quality assessment reported in [31] was chosen. The authors in that study used a 
video quality assessment that was termed as the spatial efficient entropic differencing quality 
assessment (SpEED-QA). This assessment method is an efficient natural scene statistics-based model 
that applies local entropic differencing between the tests and reference data in the spatial domain 
[31]. They reported that SpEED-QA had a highly competitive performance against other objective 
image video quality assessment methods. SpEED-QA was calculated by first determining the 
conditional block entropies of the reference and distorted images. The differences between the 
entropies of the corresponding blocks were then obtained and averaged for all blocks [31]. A single 
scale (SPDss) and multiscale version of SpEED were reported in [31]. Figure 18 shows the plot SPDss 
measure for the video used in our study. The multiscale plot looked similar to the single scale and 
thus is not shown. 

The red graph through the plot shows its trend obtained by a 4th order polynomial. A 
relationship can be observed when comparing the trends in Figure 18 and those in Figure 14b (i.e., 
FIS2 output that was generated from PSNR, SSIM and ID) and the overall video quality obtained by 
FIS3 (that integrated PSNR, SSIM and ID with delay, jitter and %PLR) shown in Figure 16. In Figures 
14b and 16, larger values represent higher quality but in Figure 18 lowest values represent higher 
quality, thus, the trends are inverted. In Figures 14b and 16, the images corresponding to times at 30 
and 59 seconds had very low quality as indicated by a drop in the plot. The corresponding images in 
Figure 18 had also low quality as indicated by a large increase in the plot. The images corresponding 



Technologies 2019, 7, 67 15 of 19 

 

to the time between 85 and 90 seconds had the lowest quality in Figure 16. These images provided 
the lowest QoS as indicated in Figure 10d. However, the corresponding images when assessed using 
SPSss did not have the lowest quality. This signifies an advantage of the FIS method reported in this 
paper that integrates QoE and QoS to provide an overall measure.  

 
Figure 18. Single scale version of spatial efficient entropic differencing (SPDss) plot for the 
video used in the study. 

In order to further compare SPDss and FIS methods, the values of PSNR, SSIM, ID, SPDss, FIS2 
output and FIS3 output are tabulated in Table 5 for images corresponding to 1 second and then 
every 10 seconds. 

Table 5. Values for PSNR, SSIM, ID, SPDss, FIS2 output and FIS3 output for images at 1 
second and then every 10 seconds. 

Time 
(seconds) 

PSNR 
(dB) SSIM ID SPDss QoE FIS2 

Output 
QoE FIS3 
Output 

1 45.49 1.000 0.00 0.00 0.76 4.41 
10 45.74 1.000 0.62 0.99 0.58 3.52 
20 38.58 0.999 0.30 5.70 0.67 3.60 
30 7.95 0.777 0.64 35.58 0.19 1.19 
40 26.54 0.994 0.36 48.93 0.49 2.81 
50 30.06 0.999 0.61 7.42 0.49 3.17 
60 34.15 0.999 0.64 10.58 0.51 2.92 
70 22.11 0.994 0.61 15.63 0.32 2.36 
80 7.14 0.647 0.99 52.08 0.16 1.01 
90 8.66 0.871 0.91 27.49 0.16 1.04 

Figures 19a,b shows plots of FIS3 output (overall video quality) and SPDss against PSNR 
respectively. PSNR was used as it was a more sensitive measure for qualifying video quality as 
compared with SSIM and ID. FIS3 shows a closer correlation to PSNR than SPDss. The correlation is 
indicated in the figures by the coefficient of determination (R2) obtained from the best fit through the 
data points. The values of R2 were 0.945 and 0.623 for Figures 19a,b respectively. R2 indicates the 
proportionate amount of variation in FIS3 output and SPDss in response to PSNR. Larger values of 
R2 explain a greater variability in the linear regression model. Figure 19c shows a plot of FIS3 output 
against SPDss. The two were closely related at high quality images. For very low quality images, 
FIST3 graded them as 1 but SPDss had different measures for them (i.e., SPDss values = 30, 40 and 
50) therefore the relationship between the two methods for these images was not as obvious as for 
the higher quality images.  

The described results were for a typical video chosen carefully to be a good representative from 
the points of richness of its contents and variability of information in successive frames. This video 
had also been used in a number of other related studies due to its suitability. The evaluations 
however could be further extended to considering multiple videos. 
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(a) (b) (c) 

Figure 19. Plots for (a) FIS3 output against PSNR, (b) SPDss against PSNR and (c) FIS3 
output against SPDss. 

In this study systematic sampling was used, however a more traffic and video content aware 
sampling method might make the process more optimal thus further reducing the computational 
load and might improve the evaluation accuracy. In this study a video was wirelessly transmitted, 
however different multimedia applications have their own specific QoS and QoE requirements. 
These requirements need to be adapted into the knowledgebase of the FIS for quality of their 
transmission to be determined. 

This study devised and evaluated a modular fuzzy logic system to assess the quality of video 
transmitted over a wireless network. Developments in this area can help both the network users and 
network service providers and assist in improving multimedia communication. The merits of the 
proposed approach were: 

• Modular design in determining QoS, QoE and combining the two measures to a single video 
quality value. This modular approach made the evaluations more transparent in operation and 
possible future updates easier to realize. 

• The use of FIS enabled mapping of the traffic parameters (delay, jitter and packet loss ratio) to 
QoS and similarly mapping of user's perception (based on peak signal to noise ratio, structural 
similarity index and image difference) to QoE to be carried in an effective and flexible manner.  

• Adaptation of image partitioning proved valuable in determining QoE and made its calculation 
more accurate.  

• Inclusion of a subjective test to obtain MOS provided a further demonstration of the method's 
efficacy. 

5. Conclusions 

A modular fuzzy logic system to objectively evaluate the quality of video transmitted over a 
wireless computer networks was devised and its performance was evaluated. The system consisted 
of three fuzzy inference systems that quantified the quality of service (QoS) from the packet delay, 
jitter and percentage packet loss ratio, qualified quality of experience (QoE) from the peak 
signal-to-noise ratio, structural similarity index measurement (SSIM) and image difference (ID), and 
combined these values into a single video quality measure. The modularity of the system ensured 
ease of implementation and transparency in its operation. 

It was demonstrated that by partitioning the images a more precise mean of assessing their 
quality could be achieved. The determined QoS, QoE and overall received video quality related well 
together for the approach that used partitioned images. They also related well to the traffic 
measures, delay, jitter and packet loss ratio. The efficacy of the developed video quality evaluation 
was further demonstrated by carrying out a subjective test based on 25 participants scoring the 
video and observation of the correlation between the subjective and objective methods. 

An independent comparison of the video quality assessment method developed in this study 
was carried out against a method that used spatial efficient entropic differencing and comparable 
results were obtained.  
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The developed video quality evaluation is valuable in evaluating the quality of videos in 
multimedia computer networks. 
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