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Abstract 

Er-doped (Bi0.4Na0.4Sr0.2)TiO3 powders were prepared by solid state reactions according to  

A-site donor (Bi0.4-x/3Na0.4-x/3Sr0.2-x/3Erx)TiO3 (x=0. 0.015 and 0.02) and B-site acceptor 

(Bi0.4Na0.4Sr0.2)Ti1-yEryO3 (y=0, 0.015 and 0.02) substitutional doping mechanisms. In both 

cases, room-temperature X-ray diffraction analyses revealed a decrease of the unit cell 

volume with increasing Er contents, suggesting A-site occupancy to be thermodynamically 

more favourable. Over the 25-175 C temperature range, A-site doped ceramics, in 

particular x=0.015, showed enhanced thermal stability of the maximum achievable electric-

field induced strain. Importantly, this minor doping level also reduced dielectric losses at 

high temperature and lead to a transition from non-ergodic to ergodic relaxor behaviour. 

These results may further motivate the study of the impact of other minor dopants in this 

family of Pb-free piezoceramics. 
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1-Introduction 

Piezoceramics convert electric fields into mechanical strains, but also mechanical stresses 

into electric polarization. This reciprocal behaviour enables their deployment in a vast range 

of sensing and actuating technologies. Currently, piezoelectric technologies rely mainly on 

ferroelectric PbZrxTi1-xO3-based (PZT) ceramics, particularly on compositions near the so-

called morphotropic phase boundary (MPB) at x =0.52. Nevertheless, European Union 

directives limiting the use of toxic heavy metals (such as Pb) in electronics have been driving 

the search for alternatives to PZT piezoceramics.[1]  Many investigators  focused their 

search in Bi0.5Na0.5TiO3–based piezoceramics[2-9], but other compounds such as Bi0.5K0.5TiO3 

[10], K0.5Na0.5NbO3 [11-13], KNbO3[14-16] and BiFeO3. 

Bi0.5Na0.5TiO3 (BNT) is a well-known relaxor ferroelectric with a remnant polarisation of Pr 

=38 C/cm2. Unfortunately, BNT also shows a large coercive field of 70 kV/cm, which 

makes poling a problematic process. In order to circumvent this drawback and optimize the 

electromechanical properties of BNT, researchers have been exploring solid solutions of BNT 

with other Pb-free ferroelectrics. Among those, Bi0.5Na0.5TiO3–BaTiO3 (BNT-BT) and 

Bi0.5Na0.5TiO3–SrTiO3 (BNT-ST) solid solutions have received considerable attention.[17-19]  

The (1−x)BNT–xST system is particularly interesting, because ST appears to effectively 

reduce the coercive field of BNT. Moreover, Hiruma et al[20] showed that for x = 0.26 the 

maximum field-induced strain can reach 0.30 % at 60 kV/cm. Later, Krauss et al[21] carried 

out a comprehensive characterisation of the electromechanical behaviour of (1−x)BNT–xST 

ceramics and they confirmed a maximum electric-field induced strain of 0.39% (at 60 

kV/cm) to occur at x=0.25. In addition, they also showed the strain for x=0.20 to increase 

from 0.22% at room temperature reaching a maximum of 0.25% at 100C, and then to 
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decrease dramatically to 0.15% at 150C. More recently, Acosta et al[22] carried a very 

detailed study on the temperature- and frequency-dependency of the properties of x=0.25 

ceramics and also observed the unipolar strain to decrease with increasing temperatures, 

however more dramatically when compared with data for x=0.20.  The crystal structure of 

BNT-STx ceramics was re-analysed by Kim et al[23] using X-ray diffraction and neutron 

scattering data. Their Rietveld structural refinements suggest the crystal structure to 

successively change with increasing x from rhombohedral (x = 0.00) to rhombohedral and 

tetragonal (x = 0.10–0.30), tetragonal and cubic (x = 0.40–0.60), and finally cubic (x = 0.80–

1.00). Koruza et al[24] also investigated effect of processing temperatures and times on the 

formation and disappearance grains featuring a core-shell microstructure in ceramics with 

x=0.25.  The impact Fe-and Nb-doping on (1−x)BNT–xST ceramics within the x=0.23 to 0.25 

compositional range was recently investigated. Cho et al[25] studied the crystal structure, 

domain patterns and electromechanical behaviour of Fe-modified BNT-ST 

[0.77(Bi0.5Na0.5)TiO3-0.23Sr(Ti1-xFex)O3] ceramics. In the undoped ceramics, they observed 

the formation of a core-shell microstructure, where the crystal structures of the core and 

shell regions are rhombohedral and tetragonal, respectively. Nevertheless, the relative 

volume of the core region appears to decrease with the substitution of Ti4+ by Fe3+, which is 

also accompanied by a transformation from a ferroelectric to ergodic relaxor behaviour. This 

B-site doping mechanism improved the effective piezoelectric coefficient, d33*, from 290 

pm/V for the base BNT-23ST composition to over 500 pm/V at 2 kV/mm for the x=0.02 

composition. 

Also recently, Zaid and Feteira[26] showed Er-minor doping to be an effective method to 

enhance the temperature stability of the electroresponse of BNT-BKT-BT ceramics. The 

present work evaluates the impact of minor Er substitutions in ceramics prepared according 
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to A-site donor (Bi0.4-x/3Na0.4-x/3Sr0.2-x/3Erx)TiO3  (x=0. 0.015 and 0.02) and B-site acceptor 

Bi0.4Na0.4Sr0.2(Ti1-yEry)O3 (y=0. 0.015 and 0.02) substitution mechanisms. The choice of 

(Bi0.4Na0.4Sr0.2)TiO3 as the parent composition was motivated from a previous work by Krauss 

et al[21], who studied in detail the BNT-ST system. In their work, this composition is shown 

to exhibit a combination of electrostrictive and ferroelectric components, the latter typified 

by a negative bipolar strain, which is associated with domain switching. Here, it is 

anticipated that chemical substitution, is likely to increase the chemical disorder in this 

composition and consequently to enhance the electrostrictive response. X-ray diffraction 

data reveals that under the chosen processing conditions, A-site incorporation of Er is 

favoured in relation to B-site. Subsequently, studies of the electrical field response of A-site 

doped ceramics in the 25-175 C temperature range showed an enhancement of both the 

maximum achievable electric-field induced strain and its temperature stability, in particular 

for 1.5 mol% Er-doped ceramics. Doping is also responsible for a transition from a non-

ergodic to an ergodic relaxor response. Finally, Er doping also favourably reduces the high 

temperature dielectric losses. 

 

2-Experimental procedure 

(Bi0.4Na0.4Sr0.2)TiO3 (BNT-20ST) and Er-doped ceramics were prepared by the solid state 

reaction route according the A-site donor (Bi0.4-x/3Na0.4-x/3Sr0.2-x/3Erx)TiO3 (x=0, 0.015 and 

0.02) and B-site acceptor Bi0.4Na0.4Sr0.2(Ti1-yEry)O3 (y=0, 0.015 and 0.02) formulas. Starting 

reagents Bi2O3, Na2CO3, SrCO3, TiO2 and Er2O3 (Sigma Aldrich, UK, ACS reagent, >99%) were 

mixed in polypropylene (PP) bottles with yttria-stabilised zirconia milling media and propan-

2-ol as solvent and milled overnight. The obtained slurries were dried, sieved through a 250 
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mesh stainless steel sieve and calcined at 850 ºC for 2 hours using a cooling/heating rate of 

5C/min. Purity and crystal structures were studied using an X-ray diffractometer (model: 

Empyrean, Panalytical™, Almelo, The Netherlands, Kα1-Cu line at λ = 1.54060 Å) operated at 

a voltage of 40 kV and a current of 40 mA, and using a step size 0.01º 2θ in the 20 to 80 2θ 

range. Lattice parameters were refined using a least squares method. Depolarized Raman 

spectra were obtained in back-scattering geometry using a micro-Raman spectrometer 

(model: DXR™ 2, Thermo Fisher Scientific, Paisley, UK), equipped with a Rayleigh line-

rejection edge filter that was set for the 532 nm excitation of an Ar+ ion laser, which allowed 

ripple-free measurements down to 50 cm−1 from the laser line. Spectra were acquired using 

a 10× microscope objective and a laser power of 0.1 to 1 mW. 

Pellets were uniaxially-pressed under an applied pressure of  200 MPa and sintered at 

1250 ºC for 2 hours, using a heating/cooling rate of 5C/min. The microstructures were 

examined using a scanning electron microscope (model: Nova, FEI, The Netherlands, field 

emission gun) operated at 20 kV. Samples were gold sputtered to avoid charging under the 

electron beam. 

The sintered ceramics were ground using 2500 grade SiC paper. Silver electrodes were 

applied onto both surface. The temperature-dependence of the relative permittivity and 

dielectric loss was measured for poled and unpoled ceramics. Poling was conducted under 

an applied electric field of 40 kV/cm for 20 minutes. Small signal piezoelectric properties 

were measured by the Berlincourt method. 

Electric field-induced polarisation and strain were measured using a commercial 

ferroelectric/piezoelectric measuring system (model TF analyser 200, AixACCT Systems 

GmbH, Aachen, Germany). For all polarisation and strain measurements, triangular waves at 
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1 Hz frequency were employed as the high voltage input. Sample’s current response was 

measured by applying an electrical voltage excitation signal using the precise virtual ground 

method. Electric-field induced displacement was simultaneously measured using a laser 

interferometer system (SIOS MeβTechnik, GmbH, Type SP-S 120). Subsequently, strain was 

calculated from the electric-field displacement. The large signal piezoelectric coefficient was 

calculated using the maximum achievable strain (Smax) normalized by the maximum electric 

field (Smax/Emax), where E is unipolar. In-situ temperature dependent measurements of both 

polarisation and strain were carried out in the 25 to 175C by the aforementioned 

procedure using a sample stage incorporating a heating element in close contact with the 

terminal electrodes. A heating rate of 1 C/min and a holding time of 10 min was employed. 

The temperature accuracy of the measurements is ± 1 C. 

3-Results and Discussion 

Fig. 1.a shows the room-temperature X-ray data for A-site donor Erbium doped (Bi0.4-x/3Na0.4-

x/3Sr0.2-x/3Erx)TiO3 (x=0, 0.015 and 0.02) ceramics. Within the detection limits of the technique 

the ceramics are single-phase. All reflections can be assigned to a pseudocubic single-phase 

perovskite. Basically, all the reflections are sharp and narrow and no obvious peak 

asymmetry due to distortions away from cubic symmetry can be detected. It is worth 

noting, that all reflections shifted towards higher 2 with increasing Er content, this also 

becomes clear in the expanded view of Fig. 1.a, where the vertical dotted line is a guideline 

to the eye. This is also observed for the B-site acceptor Erbium doped Bi0.4Na0.4Sr0.2(Ti1-

yEry)O3 (y=0, 0.015 and 0.02) ceramics, as shown in Fig. 1.b. First, this compositional 

dependence of the peak positions indicates a reduction of lattice parameters and unit cell 

volumes in both doping mechanisms, as listed in Table I. Second, it also suggests 
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preferential A-site occupancy for Er. Indeed, based purely in ionic radii arguments, if Ti4+ was 

substituted by Er3+, one would expect an increase of the unit cell volume, because Er3+ in six-

fold coordination has an ionic radius of 0.89 Å[27], which is considerably larger than Ti4+ 

with an ionic radius of 0.605 Å.[27] The A-site preferential occupancy in Bi0.4Na0.4Sr0.2(Ti1-

yEry)O3 also suggests the occurrence of A-site vacancies due to volatilization of Bi3+ and/or 

Na+, which then can accommodate Er3+, but as it shown later a secondary phase is present in 

y=0.02 ceramics, which may also support a limited solubility of Er in the B-site. 

At this stage, the formation of a core-shell microstructure as previously observed by Cho et 

al[25] in Fe-modified BNT-ST [0.77(Bi0.5Na0.5)TiO3-0.23Sr(Ti1-xFex)O3] cannot be ruled out and 

transmission electron microscopy will be required to ascertain the sub-grain microstructure.  

Raman spectra in Fig. 2 clearly show the crystal symmetry of all ceramics to deviate from 

perfect cubic crystal symmetry. This is also supported by a remarkable electroresponse, as 

discussed below. Indeed, the appearance of strong broad Raman modes offers clear 

evidence that their local crystal symmetry cannot be described by the cubic 𝑃𝑚3̅𝑚 space 

group, as previously discussed.[14, 28]. The Raman spectrum for BNT-20ST can be divide 

into three regions, corresponding to different types of lattice vibrations. These regions were 

assigned according to the work of Schütz et al[5]. Hence, modes in the  150 cm-1 region can 

be associated with A-site vibrations, thus involving Bi, Na and Sr cations, whereas modes in 

150-450 cm-1 region can be associated with Ti–O vibrations, in particular with the bond 

strength. Finally, high-frequency modes above 450 cm-1 have all been associated with TiO6 

vibrations, namely  breathing and stretching of the oxygen octahedra. From Fig. 2, it 

becomes apparent that Er doping affects dramatically modes associated with Ti–O 

vibrations. Moreover, spectra for ceramics prepared according to (Bi0.4-x/3Na0.4-x/3Sr0.2-
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x/3Erx)TiO3 and Bi0.4Na0.4Sr0.2(Ti1-xErx)O3 formulas are remarkably identical, as shown in Fig. 

2.a and 2.b, respectively. XRD analyses, Fig. 1, strongly suggested preferable A-site 

occupancy for Er, therefore the similarly between the two sets of Raman spectra, Fig. 2, may 

further corroborate this premise. Recently, Zannen et al[29] observed a similar impact on 

the Raman spectra of Er doping Na0.5Bi0.5TiO3 ceramics. They discussed in detail the effects 

of Er incorporation on spectral features, in particular (i) increased broadness and shift 

towards lower frequencies of A-site related modes, (ii) shift and splitting of the mode 

centered at 270 cm-1 to higher frequencies and (iii) appearance of a new mode around 700 

cm-1, which in Fig. 2 is indicated by an asterisk. They suggested fluorescent effects caused by 

Er can give rise to some of the spectral changes, which therefore deserves further studies 

using lasers of different wavelengths. 

All ceramics exhibited similar microstructures, encompassing grains with grain sizes varying 

from 4 to 8 m, as illustrated in Fig. 3(a-e). For undoped Bi0.4Na0.4Sr0.2TiO3 ceramics the 

microstructure consists uniquely of cuboid-shaped grains, however upon doping a bimodal 

type microstructure encompassing rounded-shaped grains and larger (up to 8 m) cuboid-

shaped grains is observed, as illustrated in Fig. 3(b,d,e), for x=0.015, y=0.015 and y=0.02, 

respectively. Interestingly, Bi0.4Na0.4Sr0.2(Ti1-yEry)O3 (y=0.02) ceramics contain a secondary 

phase with a plate-like morphology, as indicated by the arrows in Fig. 3.e. This secondary 

phase was not detected in the XRD analysis, mainly because its relative amount is below the 

detection limits of the technique, however its presence is consistent with Er3+ A-site 

preferential occupancy in this solid solution. Actually, Er3+ is noticeably known for its 

amphoteric doping behaviour in BaTiO3 and other ferroelectric compounds[30]. Finally, at 
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this stage the chemical nature of this secondary phase remains unknown because its 

morphology makes EDX analysis challenging.  

Hereafter, this work is focused on the single-phase A-site doped (Bi0.4-x/3Na0.4-x/3Sr0.2-

x/3Erx)TiO3 (x=0, 0.015 and 0.02) ceramics.  

Temperature dependencies of the relative permittivity, r, and dielectric loss, tan , for 

undoped BNT-20ST and 1.5 mol% Er-doped BNT-20ST ceramics (both unpoled and poled) 

are illustrated in Fig. 4. Both compositions exhibit twor maxima around 150C and 235C 

(at 1 kHz). The lower temperature maximum is frequency dependent and shifts to higher 

temperatures with increasing temperatures (typical for a relaxor), whereas the high 

temperature maximum is relatively frequency independent. This dielectric response is like 

that reported by Weyland et al[31] for undoped BNT-25ST ceramics. A dramatic increase in 

tan  is observed above 200C in both unpoled and poled BNT-20ST ceramics, as shown in 

Fig. 4a and b, respectively. Er-doping enhances temperature stability of r, which is 

accompanied with a reduction of the maximum permittivity from 3600 for undoped to 2800 

for doped ceramics, as shown in Fig. 4.a and 4.c, respectively.  Importantly, Er doping also 

reduces tan  at high temperatures, corroborating an higher electrical resistivity, which is 

advantageous for high field and high temperature applications.  The temperature 

dependence ofr and tan  for poled ceramics was measured to gather some further insight 

into relaxor behaviour. The r response remained relatively unchanged between unpoled 

and poled as shown in Fig. 4(a-d). In contrast, tan  shows two distinctive responses. In 

undoped BNT-20ST, poling leads to the appearance of an extra low temperature loss peak, 

Fig. 4.b, in contrast with doped ceramics, Fig. 4.d. This can be rationalised as follows, 

undoped BNT-20ST is a non-ergodic relaxor at room temperature, meaning it transforms 
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irreversibly into a ferroelectric state under the application of a large electric field, for this 

reason the tan  behaviour is different between the poled and unpoled. Indeed, as 

previously discussed by Weyland et al[31] this tan  peak arises from a broad ferroelectric-

to-relaxor transition.  The A-substitution of 1.5 mol % Er in BNT-20ST is sufficient to induce a 

transition from a non-ergodic to an ergodic state, which is manifested by the absence of the 

low temperature loss peak in the tan  behaviour of both unpoled and poled ceramics, as 

shown in Fig. 4c and d, respectively. Basically, the application of a sufficiently large electric 

field at room temperature can induce long-range ferroelectric order in an ergodic relaxor, 

however this is only stable under an electric field. Schutz et al[5] proposed that the loss of 

non-ergodicity in BNT-based materials is related to breaking of Bi–O hybridization. The non-

ergodic to ergodic transition is also corroborated by the polarisation measurements 

presented below. 

The piezoelectric coefficient, d33, for undoped BNT-20ST and A-site Er-doped BNT-20ST was 

measured as 46 and 11 pC/N, respectively. 

Room-temperature electric field-induced polarisation and strain in A-site Er-doped BNT-

20ST ceramics measured at 1 Hz under an applied field of 60 kV/cm are illustrated in Fig. 5.  

These bipolar measurements show the slightly pinched ferroelectric hysteresis for undoped 

BNT-20ST ceramics to become increasingly slanted with increasing Er content, as shown in 

Fig. 5.a. This is also accompanied by the continuous evolution of the electric-field induced 

strain from a mostly butterfly-shaped into a sprout-shaped response for doped ceramics, as 

illustrated in Fig. 5.b. Basically, doping leads to a transition from a non-ergodic to an ergodic 

relaxor response, which is consistent with the permittivity measurements in Fig. 4. A similar 

behaviour was recently reported by Obilor et al[32] for Nb-doped BNT-BKT-BT ceramics. 
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Maximum achievable polarisations decrease continuously from 38.8 µC/cm2 for undoped 

BNT-20ST ceramics to 35.4 µC/cm2 and 31.4 µC/cm2 for 1.5 mol% and 2 mol% Er-doped 

ceramics, respectively. On the other hand, maximum achievable electric-field induced 

positive strains increase from 0.16% for BNT-20ST ceramics to 0.19% for 1.5 mol% Er-doped 

ceramics. With increasing Er-content this value decreases. It is also worth to mention that 

the negative strain observed in BNT-20ST ceramics is considerably smaller in Er-doped 

ceramics, as shown in Fig. 5.b. A recent work by Khatua et al[33] devoted to A-site doped 

BNT-6BT ceramics shows a similar drop in the maximum polarisation and modification to the 

electrostrain response. Negative strains arise from macrodomain switching in ferroelectric 

materials, therefore a reduction of the negative strain corroborates an evolution from non-

ergodic to ergodic relaxor response. In contrast, the remnant strain slightly increases with 

increasing Er doping. The polarisation for undoped BNT-20ST ceramics is similar to that 

reported by Krauss et al[21], however the strain appears to be lower, whereas the coercive 

field appears greater. In comparison, the present strain results are similar to those reported 

by Jo et al[34], but the polarisation is larger and the coercive field smaller. This indicates 

that some level of softening may exist in  samples prepared by Krauss et al[21]. Actually, the 

larger strain observed by Krauss et al[21] maybe associated to the presence of some minor 

doping impurity brought with the raw materials or from the milling process. For example, 

other researchers[35] have elegantly demonstrated that attrition milling BaTiO3 with Y-

stabilised zirconia media for 2-4 h is sufficient to create core-shell grain substructures, due 

to Y and Zr contamination. This non-intentional chemical modification impacts both 

electrical and dielectric properties. Based on the above, it can be suggested that for 

example 1.5 mol% of Er is sufficient to increase the strain from 0.16% to 0.19%. 
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Since only positive strains are usable in actuator devices, unipolar response of the 

aforementioned ceramics was measured, and the results are illustrated in Fig. 6.  At room 

temperature, the maximum induced polarisation under an electric field of 60 kV/cm was 

measured for the 1.5% Er A-site doped sample, as illustrated on Fig. 6.a. Similarly, the 

maximum achievable strain under the same applied electric field is measured for the same 

composition, as illustrated in Fig. 6.b. Basically, the unipolar polarisation increases initially 

upon doping from 19 C/cm2 for undoped BNT-20ST to 25 C/cm2 for the 1.5 mol% Er-

doped composition, but subsequently decreasing to 20 C/cm2 for 2 mol% Er-doped 

counterpart. In terms of strain a similar trend is observed for the field induced strain, which 

increases from 0.16 % for the undoped to 0.19 % for the 1.5 mol% Er-doped composition, 

and returns back to 0.16 % for the 2 mol% Er-doped composition.  

Two points are worth noting. First, the maximum bipolar polarisation is greater for the 

undoped BNT-20ST ceramics, however for unipolar measurements the greatest polarisation 

is observed for 1.5 mol% Er doped ceramics. This is a consequence of the larger bipolar 

remanent polarisation exhibit by undoped BNT-20ST ceramics, as shown in Fig. 5.a. A similar 

situation was observed by Humburg et al[36] in (Ba1-xCax)(ZryTi1-y)O3  ceramics. Second, the 

degree of strain hysteresis calculared by the ΔS/Smax ratio, as the difference in the strain at 

Emax/2 normalized by Smax for undoped BNT-20STwas estimated as 0.146. This value 

increases slightly to 0.154 and 0.183 for 1.5 and 2 mol% Er-doped compositions, 

respectively. In the past, it was observed that the maximum achievable strain is inversely 

proportional to stability of the induced ferroelectric order. Basically, a larger ΔS/Smax 

suggests a larger degree of instability in the field-induced ferroelectric order, and 

simultaneously larger electric field-induced strains. Here, ΔS/Smax the ratio value is the 
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largest for the 2 mol% Er-doped ceramics, however this higher degree of disorder does not 

result in the largest field-induced strain because those ceramics have the lowest maximum 

polarisation as shown in Fig. 6.a. 

Finally, In-situ temperature dependent measurements between 25 and 175 C measured at 

1 Hz under an applied electric field of 40 kV/cm are illustrated in Fig. 7.  The field-induced 

strain for undoped BNT-20ST ceramics evolves from a butterfly shaped-hysteresis at room-

temperature into a parabolic shaped response, as shown in Fig. 7.a. This evolution is 

accompanied by gradual disappearance of negative strain at high temperatures, but also by 

a large variation of the maximum achievable strain. The largest induced strain is measured 

at 100C, when the negative strain completely disappears and the butterfly-shaped 

response is replaced by a sprout-shaped response. In contrast, 1.5 mol% Er-doped 

composition showed a rather parabolic response across the entire temperature range, as 

illustrated in Fig. 7.b. Moreover, in the 25 to 150C temperature range, the maximum 

achievable strain remains within the 0.15 to 0.17% range, only dropping to 0.12% at 175C. 

A similar response (not shown) was observed for 2 mol% Er-doped composition. In the 

temperature range that undoped BNT-20ST behaves as a non-ergodic relaxor, the 

application an electric field leads to induced long-range ordered ferroelectricity, which 

remains stable in the timescale of the measurements. With increasing temperature, thermal 

fluctuations will prevent the existence of long-range ordering at zero field, as shown in Fig. 

7.a.  

The impact of A-site Er-doping on the temperature stability of the field induced strain of 

BNT-20ST is summarised in Fig. 8. An enhancement of both the maximum achievable 

electric-field induced strain and its temperature stability becomes clearly evident for 1.5 



14 
 

mol% Er-doped ceramics. In undoped BNT-20ST ceramics, field-induced strain under an 

electric field of 40 kV/cm increases from 0.09% at room-temperature to nearly 0.18% at 100 

C and subsequently decreases to 0.08% at 175C. In contrast, 1.5 mol% Er-doped ceramics 

exhibit a room-temperature strain as large as 0.15% which increases to slightly over 0.17% 

at 100C. Above, this temperature it also decreases, but again less dramatically than the 

undoped ceramic counterparts. The 2 mol% Er-doped ceramics also show enhanced thermal 

stability, however at the expense of the maximum achievable strain, which at room-

temperature is around 0.11%. Nevertheless, within the 25-155C temperature range the 

maximum achievable strain for 1.5 mol% Er-doped ceramics does not vary more than 20%. 

4-Conclusions 

XRD analyses show Er to occupy preferentially the A-site in 0.80Bi0.5Na0.5TiO3-0.20SrTiO3 

(BNT-20ST) perovskite-structured ceramics, as indicated by the reduction of the unit cell 

volume.  Doping lead to a transition from a non-ergodic to ergodic relaxor behaviour. 

Moreover, the A-site Er doped ceramics exhibited a moderate enhancement of the electric-

field induced strain and reduced dielectric losses at high temperature. The maximum 

achievable unipolar electric-field induced strain under an applied field of 60 kV/cm increases 

from 0.17 % for undoped BNT-20ST to 0.19% for the 1.5 mol% Er-doped ceramic, but 

decreases to 0.16 % for 2 mol% Er, suggesting an optimum minor doping level lower than 2 

mol% Er. On the other hand, In-situ temperature dependent strain measurements between 

20 and 175 C, revealed a dramatic improvement of the temperature stability properties for 

1.5 mol% Er-doped ceramics, to less than 20% variation. 
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Fig. 1 Room-temperature X-ray diffraction data for (a) (Bi0.4-x/3Na0.4-x/3Sr0.2-x/3Erx)TiO3 (x=0, 

0.015 and 0.02) and (b) Bi0.4Na0.4Sr0.2(Ti1-yEry)O3 (x=0, 0.015 and 0.02) ceramics fired at 

1250C. The vertical dotted lines in the expanded views are provided as guidelines to the 

eye.  

Fig. 2 Room-temperature Raman spectra for (a) (Bi0.4-x/3Na0.4-x/3Sr0.2-x/3Erx)TiO3 (x=0, 0.015 

and 0.02) and (b) Bi0.4Na0.4Sr0.2(Ti1-yEry)O3 (x=0, 0.015 and 0.02) ceramics fired at 1250C.  

Fig. 3 Ceramic microstructures of (Bi0.4-x/3Na0.4-x/3Sr0.2-x/3Erx)TiO3 (a) x=0, (b) x=0.015 and (c) 

x=0.02 and Bi0.4Na0.4Sr0.2(Ti1-yEry)O3 (d) y=0.015 and (e) y=0.02 ceramics fired at 1250C. 
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Fig. 4 Temperature dependence of the relative permittivity, r, and dielectric loss, tan , for 

(a) unpoled(Bi0.4Na0.4Sr0.2)TiO3, (b) poled (Bi0.4Na0.4Sr0.2)TiO3, (c) unpoled 

(Bi0.395Na0.395Sr0.195Er0.015)TiO3 and (d) poled (Bi0.395Na0.395Sr0.195Er0.015)TiO3 

Fig. 5 Room-temperature bipolar measurements of electric field-induced (a) polarisation 

and (b) strain for (Bi0.4-x/3Na0.4-x/3Sr0.2-x/3Erx)TiO3 (x=0, 0.015 and 0.02) ceramics. 

Fig. 6 Room-temperature unipolar measurements of electric field-induced (a) polarisation 

and (b) strain for (Bi0.4-x/3Na0.4-x/3Sr0.2-x/3Erx)TiO3 (x=0, 0.015 and 0.02) ceramics. 

Fig. 7 In-situ temperature dependent strain vs electric field measurements for (Bi0.4-x/3Na0.4-

x/3Sr0.2-x/3Erx)TiO3 (a) x=0 and (b) x=0.015 ceramics. 

Fig. 8 Temperature dependence of the electric field induced strain for (Bi0.4-x/3Na0.4-x/3Sr0.2-

x/3Erx)TiO3 (x=0, 0.015 and 0.02) ceramics under an applied field of 40 kV/cm. 
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List of Tables 

Table I. Refined lattice parameters for (Bi0.4-x/3Na0.4-x/3Sr0.2-x/3Erx)TiO3 (x=0, 0.015 and 0.02) 

and Bi0.4Na0.4Sr0.2(Ti1-yEry)O3 (x=0, 0.015 and 0.02) ceramics fired at 1250C.  

Table I 

 A-site B-site 

mol% Er A (Å) Vol (Å3) A (Å) Vol (Å3) 

0 3.8963(4) 59.149(9) 3.8963(4) 59.149(9) 

1.5 3.8919(5) 58.949(5) 3.89017(15) 58.872(6) 

2 3.8894(5) 58.839(12) 3.8895(6) 58.840(17) 
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