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Abstract. We here derive field equations for static, spherically symmetric, dyonic

su(∞) Einstein-Yang-Mills theory with a negative cosmological constant Λ. We are

able to find new non-trivial black hole solutions to this system in two regimes: where

the gauge fields are small; and where |Λ| → ∞. We also show that some may be

uniquely characterised by a countably infinite set of asymptotically-defined charges.

This may have implications for Bizon’s modified ‘No Hair’ conjecture.
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Dyonic furry black holes with Λ < 0 2

1. Introduction

In the last three decades, ‘hairy’ black holes have been the subject of much interest

and many publications. Before this, the uniqueness theorems of Israel, Carter et al.

suggested that black holes were very simple objects, characterised entirely by their

mass m and their electric charge e (and possibly the angular momentum, for non-static

solutions) [1–3]. Then, Bizon [4] and Bartnik and McKinnon [5] discovered an infinite

family of static black holes and solitons in Einstein-Yang-Mills (EYM) theory, where

the symmetry group of the single gauge field is su(2). These solutions contrasted with

earlier purely gravitational black holes by requiring an extra gauge parameter to fully

classify them, as well as their mass and electric charge. This prompted Bizon to propose

the following modified “No Hair” conjecture:

“Within a given matter model, a stable black hole is uniquely characterised

by a finite number of global charges.”

These asymptotically flat su(2) solutions were found to be unstable [6–8], as were

solutions in the case of a general gauge group [9], thus preserving the spirit (if not

the letter) of the original uniqueness theorems. However, solutions for su(2) were later

found by introducing a negative cosmological constant Λ, and in addition, these are

stable under linear perturbations of the field variables in the limit of large |Λ| [10–12].

Since then, numerous results have been found for asymptotically Anti-de Sitter (AdS)

EYM theories and extensions thereof, including for example non-spherically symmetric

models [13, 14] and models with extra matter fields [15, 16]. Recent works include

[17–21]; see also [22] for a recent review. Furthering the range of available models

and testing the modified “No hair” theorem is of current interest and is part of the

motivation for this work.

One extension of the model that has been of interest recently is to allow the gauge field

to possess a non-trivial electric sector – such solutions include dyons and dyonic black

holes, the analogues of the soliton and black hole solutions we find to purely magnetic

field equations. Previous research proved the existence of dyonic solutions for su(N),

and then for all compact, semi-simple and simply connected gauge groups [19,20]; and

some solutions at least have been shown to be stable [23]. This is of great interest

since via the AdS/CFT correspondence [24], observables in the CFT are connected to

the presence of hair in the dual gravity theory. The correspondence has already been
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used in the case of certain non-spherically symmetric dyonic models to produce results

concerning holographic superconductors [25–27].

Thus, string theory is also a motivation for this work. It is known that string theories are

associated with infinite dimensional Lie algebras, since these correspond to the possible

string states. An early infinite dimensional algebra to be investigated was the Virasoro

algebra, later extended to the algebra w∞. It can be shown that w∞ is isomorphic

to the area-preserving diffeomorphisms of SDiff(Σ2) of a string 2D worldsheet Σ2; and

in the case where Σ2 = S2, the 2-sphere, it also can be shown that both of these

algebras are also isomorphic to su(∞), the limit of su(N) as N → ∞ [28–30]. Other

related motivations for considering the limit N → ∞ are that the AdS/CFT duality

becomes ‘exact’ in this limit in the sense that the string theory will approximate to

supergravity on the D-brane as N → ∞. Finally, the question of what such ‘furry’

black holes can teach us about the Black Hole Information Paradox is a subject of

current interest [31–34].

The existence of black hole solutions to the purely magnetic su(∞) system has been

proven [35], in the regimes of a small gauge field and a large (negative) value of Λ; and

so that analysis did not include the electric sector. In addition, at that time the broader

analytical and numerical behaviour of su(N) solutions had not been explored in much

detail as it has now [17, 19, 20], and hence the question of characterising charges for

those solutions (as mentioned in the modified ‘No Hair’ Theorem) was not considered

at the time. Inspired by all of the above, we here investigate dyonic black hole and

dyon solutions to su(∞) field equations, and in doing so revisit the purely magnetic

solutions in light of recent research.

2. Deriving the field equations for su(∞) Einstein-Yang-Mills theory

In this Section, we set the scene by outlining the derivation of dyonic su(∞) field

equations. This analysis roughly follows that for purely magnetic field equations as

described in [35], though the difference for us is that we do not take a trivial electric

sector, which complicates the equations substantially.
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We start with the following well-established su(N)-invariant‡ gauge potential [19]

W ≡Wµdx
µ ≡A(N)dt+B(N)dr +

1

2

(
C(N) − C(N)†) dθ

− i

2

[(
C(N) + C(N)†) sin θ +D(N) cos θ

]
dφ.

(1)

where A(N), B(N), C(N) and D(N) are matrices in su(N) – A(N) and B(N) are diagonal

and imaginary, D(N) is diagonal and real, C(N) is anti-Hermitian and upper-triangular,

and all matrices are functions of r alone.

In order to take the limit N → ∞ sensibly, one must construct specific set of N2 − 1

generators for su(N). The ground for this was laid in [36], where it was shown

that the structure constants for Poisson-type commutator brackets over a basis of

spherical harmonics are identical to those for the commutation relations of su(N) in

a certain basis of matrix polynomials, and hence that the group su(N) in the limit

N →∞ is isomorphic to the algebra of area-preserving diffeomorphisms on the sphere,

SDiff(S2). This was extended by [37], which derived the precise process and dictionary

of correspondences that allow one to sensibly consider su(N) in the limit N →∞, which

was in turn applied to the case of purely magnetic su(∞) black holes by Mavromatos

and Winstanley [35].

Since the explicit process of deriving the gauge field ansatz and rewriting the field

equations exists already [35], we merely quote the needed results here. As N →∞, the

matrices A(N)-D(N) become the following series:

A =
∞∑
l=1

al(r)Yl,0(ϑ, ϕ), B =
∞∑
l=1

bl(r)Yl,0(ϑ, ϕ),

C =
∞∑
l=1

cl(r)Yl,1(ϑ, ϕ), D = 2P 0
1 (cosϑ),

(2)

where Yl,0(ϑ, ϕ), Yl,±1(ϑ, ϕ) are spherical harmonics, given by

Yl,0(ϑ, ϕ) =

(
2l + 1

4π

) 1
2

P 0
l (cosϑ),

Yl,±1(ϑ, ϕ) = −
(

2l + 1

4π

(l − 1)!

(l + 1)!

) 1
2

e±iϕP 1
l (cosϑ),

(3)

‡ Throughout this work, when we refer to su(N), it is to be understood that we are referring to the

case where N is finite, as opposed to su(∞).
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and P 0
l (cosϑ) and P 1

l (cosϑ) are Legendre functions of orders 0 and 1 respectively:

P 0
l (cosϑ) =

1

2ll!

(
d

d(cosϑ)

)l (
cos2 ϑ− 1

)l
, (4)

and

P 1
l (cosϑ) =

(
1− cos2 ϑ

) 1
2

(
d

d(cosϑ)

)
P 0
l (cosϑ). (5)

It should also be accepted that we assume the sums in (2) converge, which for instance

implies that the functions al, bl and cl are uniformly bounded ∀ r, l, and that the

magnitudes of coefficient functions in (2) drop off sufficiently quickly for large l. This

is necessary for the physicality of solutions.

2.1. Dyonic field equations for AdS su(∞) EYM theory

We begin with the well-known asymptotically AdS EYM field equations for su(N) [38],

in the form

Gµν + Λgµν = κTµν , ∇λF
λ
µ + [Wλ, F

λ
µ] = 0, (6)

where in SI units κ = 8πG/c4. We are free to choose κ by specifying convenient units,

which we can do in order that the field equations agree with conventions taken in simpler

cases; but we postpone this discussion for the time being. Here, Gµν is the Einstein

tensor, Λ < 0 is the cosmological constant and the energy-momentum tensor is given

by

Tµν = Tr

[
2gρσFρµFσν −

1

2
gµνFρσF

ρσ

]
, (7)

where the antisymmetric field strength tensor is given by Fµν = ∂µWν − ∂νWµ +

[Wµ,Wν ]. We use the signature (− + + +), with standard spherically symmetric

‘Schwarzschild-type’ co-ordinates (t, r, θ, φ), so that the metric has the form:

ds2 = −µS2dt2 + µ−1dr2 + r2
(
dθ2 + sin2 θdφ2

)
(8)

where we are interested in static solutions, so that µ (the metric function) and S (the

lapse function) are both functions of r alone, and µ can be expressed in the form

µ(r) = 1− 2m(r)

r
− Λr2

3
, (9)

in which m(r) is known as the mass function. This reduces to the ordinary

Schwarzschild-anti-de Sitter metric function when m(r) is a constant. Note that in
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the case of black holes, µ(r) possesses one simple zero at the event horizon r = rh, and

we are interested only in exterior solutions, for which r ≥ rh. We can use knowledge of

the su(N) system to simplify the equations slightly. There, the non-zero entries of the

matrix C are given by

C
(N)
j,j+1(r) = ωj(r)e

iνj(r) (10)

for 2N − 2 real functions ωj(r) and νj(r). Also, one of the Yang-Mills equations gives

us 1
2

(
B

(N)
jj −B

(N)
j+1,j+1

)
+ ν ′j = 0 (where from now on, ′ represents d/dr), so we fix our

gauge such that B(N) ≡ 0, which implies that ν ′j = 0 ∀j and therefore νj is constant

∀j. It can finally be shown that we can set νj = 0 ∀j due to the internal symmetry

of the field equations C(N) 7→ C(N)eiχ for χ a real constant. We also emphasise that

unlike [35], we are considering dyonic solutions, and so we need A to be non-zero in

general.

In order to take the limit N →∞, we make the necessary substitution [37]

W 7→ NW . (11)

Then the field equations can be derived as follows. The remaining Yang-Mills equations

are

0 = r2µA′′ + r2µ

(
2

r
− S ′

S

)
A′ −N2[C, [A,C†]],

0 = r2µC ′′ +

(
2m− κP

r
− 2Λr3

3
− κr3η

4S2

)
C ′ +

N2

µS2
[A, [A,C]] + C +

N2

2
[C, [C,C†]].

(12)

The Einstein equations are given by

m′ =
κ

2

(
r2η

4S2
+

ζ

4µS2
+ µG+

P

r2

)
,

S ′

S
=

2κ

3

(
G

r
+

ζ

4µ2S2r

)
, (13)

with

η = −4N2Tr(A′2), ζ = −4N2Tr(N2[A,C][A,C†]),

G = N2Tr(C ′C†′), P =
N2

4
Tr
(
D −N [C,C†]

)2
.

(14)

Now we rewrite the field equations using the appropriate correspondences [35,37]. Using

units in which the gauge coupling constant g = 1, we use the substitutions

Tr → 1

4πN2

∫
S2

dV,

N [Q,R]→i{Q(r, ϑ, ϕ), R(r, ϑ, ϕ)},
(15)
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where we define the Poisson bracket {Q,R} as

{Q,R} =
∂Q

∂(cosϑ)

∂R

∂ϕ
− ∂R

∂(cosϑ)

∂Q

∂ϕ
. (16)

Under these replacements, the Yang-Mills field equations become

0 = r2µA′′ + r2µ

(
2

r
− S ′

S

)
A′ + {C, {A,C†}},

0 = r2µC ′′ +

(
2m− κP

r
− 2Λr3

3
− κr3η

4S2

)
C ′ − 1

µS2
{A, {A,C}}

+ C − 1

2
{C, {C,C†}}.

(17)

In the N → ∞ limit, the matrices A and C become functions of the internal angular

co-ordinates (ϑ, ϕ). We may therefore write the ansatz of the previous subsection (2)

in the more explicit forms

A(r, ϑ, ϕ) =
i

2
α(r, ϑ), C(r, ϑ, ϕ) = ω(r, ϑ)eiϕ, D = −2 cosϑ (18)

for real functions α and ω.

Finally, we may express the field equations explicitly, using the variable ξ = cosϑ. The

Yang-Mills equations become

0 = r2µ
∂2α

∂r2
+ r2µ

(
2

r
− S ′

S

)
∂α

∂r
+

∂

∂ξ

(
ω2∂α

∂ξ

)
, (19a)

0 = r2µ
∂2ω

∂r2
+

(
2m− κP

r
− 2Λr3

3
− κr3η

4S2

)
∂ω

∂r
+

r2ω

4µS2

(
∂α

∂ξ

)2

(19b)

+
ω

2

∂2

∂ξ2

(
ω2 + ξ2

)
,

and the Einstein equations are the same as in (13), but we can write the quantities (14)
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more explicitly as

η =
1

2

∫ 1

−1

(
∂α

∂r

)2

dξ, (20a)

ζ =
1

2

∫ 1

−1

ω2

(
∂α

∂ξ

)2

dξ, (20b)

G =
1

2

∫ 1

−1

(
∂ω

∂r

)2

dξ, (20c)

P =
1

8

∫ 1

−1

(
∂

∂ξ

(
ω2 + ξ2

))2

dξ. (20d)

Finally, we note some constraints placed on the variables. The tracelessness of the

matrix A in su(N) becomes the constraint∫ 1

−1

α(r, ξ)dξ = 0. (21)

Also, examining the general forms of P 0
l (ξ) (4) and P 1

l (ξ) (5), we should be able to

express the electric field variable as a power series in ξ, and the magnetic field variable

ω(r, ξ) as a power series in ξ multiplied by a factor of sinϑ =
√

1− ξ2. Hence, the

gauge functions are restricted to be of the following forms:

α(r, ξ) =
∞∑
j=1

αj(r)ξ
j, (22a)

ω(r, ξ) =
√

1− ξ2

∞∑
j=0

ωj(r)ξ
j. (22b)

It may be observed that if we let α ≡ 0, we recover purely magnetic su(∞) field

equations [35]. We also note that the derivation above involved taking the su(N) field

equations in matrix form and then taking the limit N → ∞. It is wise to point out

that this process should commute, in that if we begin by taking the limit N → ∞
on the original field equations and gauge potential, we should obtain the same field

equations; and indeed noting that the commutator brackets and the trace are both

linear operations, it can be checked that this is the case.

We are considering exterior black hole solutions here, and therefore solutions to these

equations will be defined on the semi-infinite strip (r, ξ) ∈ [rh,∞)×I, where I = [−1, 1].

Therefore we will now briefly review the relevant field equation symmetries, and the

boundary conditions for solutions to the field equations.
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2.2. Symmetries of the field equations

We first note that the field equations respect the three independent symmetries

ξ 7→ −ξ, α(r, ξ) 7→ −α(r, ξ), ω(r, ξ) 7→ −ω(r, ξ). (23)

These symmetries are helpful in defining unique charges for solutions (Section 8). We

also have the simultaneous scaling symmetry

t 7→ τ−1t, S 7→ τS, α 7→ τα, τ ∈ R. (24)

We can rely on this latter symmetry to ensure that the asymptotic boundary condition

for S(r) (below) may be met, if necessary by performing an overall rescaling of S.

2.3. Boundary conditions for r = rh

For convenience, we use the notation fh ≡ f(rh) and f ′h ≡
∂f
∂r

∣∣∣
r=rh

. At r = rh, we

require a regular event horizon, meaning that µh = 0, so that (9) implies that

mh =
rh
2
− Λr3

h

6
. (25)

The “free parameters” for the gauge fields in this case, which will be functions of ξ

alone, can be found by using µh = 0 in the Yang-Mills equations (19). Doing this shows

that α(rh, ξ) = 0 ∀ξ ∈ I. Then, the analysis shows that our solutions are entirely

determined by the two functions ωh(ξ) and α′h(ξ). All higher order derivatives at the

event horizon are determined from these: For instance, we have

ω′h(ξ) = −
ωh(ξ)

(
1 + 1

2
d2

dξ2
(ω2

h(ξ))
)

r2
h

(
2mh − κPh

rh
− 2Λr3h

3
− κr3hηh

4S2
h

) , S ′h =
κSh
rh

∫ 1

−1

(ω′h(ξ))
2
dξ, (26)

where we note that Ph depends on ωh, and ηh is determined by α′h. Therefore at

this boundary we also have infinitely many parameters that need to be specified – the

expansion coefficients of the two functions ωh(ξ) and α′h(ξ).

We should also finally note a weak constraint on ω and α′ near the horizon, given by

the condition µ′h > 0 which ensures a non-extremal event horizon: setting µh = αh = 0

in the field equation for m′ in (13) gives us

2m′(rh) = κ

(
r2
hηh

4S2
h

+
Ph
r2
h

)
< 1− Λr2

h, (27)
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which gives us an upper bound on the (negative) value of Λ:

Λ <
1

r2
h

− κ
(
ηh

4S2
h

+
Ph
r4
h

)
. (28)

It is worth remarking that this implies that |Λ| may take arbitrarily small values if

the gauge fields are sufficiently small, which is a necessary condition if these models

are to be candidates for ‘regulator models’ for asymptotically flat solutions – see the

discussion at the end of Section 4.

2.4. Boundary conditions as r →∞

We change variables to z = r−1 and expand the field variables in power series about

z = 0, to investigate the asymptotic boundary of the AdS space. We find using the

field equations (13), (19) that

m(z) = M +m1z +O(z2),

S(z) = 1 + S4z
4 +O(z5),

α(z, ξ) = α∞(ξ) +A(ξ)z +O(z2),

ω(z, ξ) = ω∞(ξ) +W(ξ)z +O(z2),

(29)

where

m1 = −κ
2

1

8

1∫
−1

A2dξ +
1

8

1∫
−1

(
∂

∂ξ

(
ω2
∞ + ξ2

))2

dξ − 3

8Λ

1∫
−1

ω2
∞

(
∂α∞
∂ξ

)2

dξ − Λ

6

1∫
−1

W2dξ

 ,

S4 = −κ
2

(
3

8Λ2

∫ 1

−1

ω2
∞

(
∂α∞
∂ξ

)2

dξ +
1

6

∫ 1

−1

W2dξ

)
.

(30)

There are no constraints on the first two parameters of each gauge field, with higher

order terms determined entirely by those parameters. Therefore the equations at z = 0

(i.e. as r →∞) are fixed by four functions of ξ – ω∞(ξ), α∞(ξ),W(ξ) = − limr→∞ r
2 ∂ω
∂r

,

A(ξ) = − limr→∞ r
2 ∂α
∂r

– and the constant ADM mass M .
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2.5. Boundary conditions for ξ = ±1

Firstly, we note that all spherical harmonics (except those for m = 0) vanish at θ = 0

or π, corresponding to ξ = ±1. This means we can define ω on the ξ-boundaries as

ω(r,±1) ≡ 0 ∀r, (31)

which is implied by the ansätze (22).

As for the electric field, we can see that A is based on them = 0 harmonics, so it does not

vanish on the ξ-boundaries, since Pl(±1) = (±1)l. Therefore, the ξ boundary conditions

for α in the general case are a little unclear. However, these boundary conditions do

not come up explicitly in our investigations, so we will simply assume that the electric

field is regular ∀ ξ ∈ I, which would be necessary anyway for physicality.

3. Embedded ‘trivial’ solutions

We may find the following trivial solutions to the field equations, for which existence

can be proven, with embeddings given as follows.

3.1. The embedded su(2) solution

We expect su(∞) field equations to be able to be embedded in su(2) since su(2) is a

subalgebra of su(∞). Hence, we let

α(r, ξ) = 2ξα∗(r), and ω(r, ξ) = ω∗(r)
√

1− ξ2. (32)

The Yang-Mills equations become

0 = −r2µα′′∗ + r2µ

(
S ′

S
− 2

r

)
α′∗ + 2ω2

∗α∗,

0 = r2µω′′∗ +

(
2m− κP

r
− 2Λr3

3
− κr3η

4S2

)
ω′∗ +

r2ω∗α
2
∗

µS2
+ ω∗(1− ω2

∗),

(33)



Dyonic furry black holes with Λ < 0 12

and the Einstein equations become

m′(r) =
κ

3

(
r2α′2∗
2S2

+
ω2
∗α

2
∗

µS2
+ µω′2∗ +

1

2r2
(1− ω2

∗)
2

)
,

S ′

S
=

2κ

3

(
ω′2∗
r

+
ω2
∗α

2
∗

µ2S2r

)
.

(34)

These are exactly the su(2) EYM field equations, for which solutions are known to exist

which are stable under linear perturbations [10] and can be characterised by one global

charge [39].

As in [35], we note a slightly odd thing – working with finite N , it is usual to take

units where c = 1 and 4πG = 1, so that κ = 2, which in turn means that the su(2)

solution appears as an embedding. However, in su(∞) we find that in order for the

su(2) solution to appear as an embedding, we need κ = 3, corresponding to the choice

c = 1, 4πG = 3/2, which we will do from here on unless otherwise stated. The reason

for this was not discussed in [35], but we offer a suggestion. In [37], we can see that

the limit N → ∞ rescales the gauge coupling constant gN for su(N) to another finite

value g, with limN→∞N
−1gN = g. The only place that κ appears in the field equations

are in the Einstein equations (13), and they are always attached to a trace operation,

which would carry factors of gN . Therefore, it is possible that κ also experiences some

kind of rescaling in the limit N → ∞. This is just a reasonable possibility; exploring

this issue in detail would go beyond the scope of this paper, but seems worthy of future

investigation.

3.2. The Schwarzschild-Anti-de Sitter solution (SAdS)

Here, we let α(r, ξ) ≡ 0 and ω(r, ξ) ≡
√

1− ξ2. We note that the electric and magnetic

charges are given by Q2
E = Q2

M = 0. Furthermore, we find m(r) ≡ M , the (constant)

ADM mass of the solution; and S ′ = 0, so we can let S ≡ 1 to comply with the

asymptotic boundary conditions. If in addition we let M = 0, we have pure AdS space

as a vacuum solution.
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3.3. The Reissner-Nördstrom-Anti-de Sitter solution (RNAdS)

Here, we let α(r, ξ) ≡ 0 and ω(r, ξ) ≡ 0. The Yang-Mills equations are identically

satisfied, and it is clear that η = G = ζ = 0, so that again S ′ = 0 and thus S ≡ 1. Also

we find that P = 1/3. Hence the mass of the solution m(r) is

m(r) = M − 1

2r
, (35)

and so

µ(r) = 1− 2M

r
− Λr2

3
+
Q2
M

r2
(36)

where Q2
M = 1, and Q2

E = 0.

3.4. Purely Abelian solutions

In the cases of su(2) [21], su(N) [19] and for a general semisimple gauge group [20], we

find that there are so-called purely Abelian solutions for which the magnetic gauge field

vanishes, and the electric gauge field does not. We find an analogue of those solutions

here. We shall let ω be identically zero and let α take the form of a Coulomb-type

potential:

α(r, ξ) ≡ ψ(ξ)

r
, ω(r, ξ) ≡ 0, (37)

for some arbitrary function ψ(ξ), constrained by (21) with∫ 1

−1

ψ(ξ)dξ = 0. (38)

Then both Yang-Mills equations are satisfied automatically for (37). The Einstein

equations give S(r) ≡ 1, and

m(r) = M − 1

2r

(
3

8

∫ 1

−1

ψ2(ξ)dξ + 1

)
. (39)

We can manipulate this to obtain

µ(r) = 1− 2M

r
− Λr2

3
+
Q2

r2
, (40)
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where we have defined the total squared charge Q2 = Q2
E+Q2

M , for the magnetic charge

Q2
M = 1, and the electric charge

Q2
E =

3

8

∫ 1

−1

ψ2(ξ)dξ. (41)

This looks like an odd value for the charge, but substituting in ψ(ξ) = 2ψ0ξ (which

obeys (38)) gives us Q2
E = ψ2

0 in agreement with the su(2) case [21].

From (41) it naively seems as if only one constant is needed to specify the solution: the

value of Q2
E. However, we can write ψ in the form (22),

ψ(ξ) =
∞∑
j=1

ψjξ
j, (42)

and then it is easy to see that (37) is specified by an infinitely many arbitrary

parameters. Hence this solution represents an infinite product of trivial u(1) embedded

solutions.

3.5. Re-obtaining the field equations for su(N): An analogy

Extracting the su(N) system back from the su(∞) equations is surprisingly elementary.

Essentially we ‘re-discretise’ our equations in the variable ξ, using the ‘method of lines’.

We imagine dividing the range ξ ∈ [−1, 1] into a finite number of discrete lines such

that

ξj = −1 +
2j

N
, j ∈ {1, 2, ..., N − 1}, (43)

and we use finite difference approximations on the field equations, which will result

in N − 1 ODEs. All functions are rewritten as f̂j(r) ≡ f(r, ξj). Derivatives of ω are

written as

∂ω

∂ξ
→ N

2
(ω̂j − ω̂j−1) ,

∂2ω

∂ξ2
→ N2

4
(ω̂j+1 − 2ω̂j + ω̂j−1) ,

(44)

and (for purely notational reasons) derivatives of α are defined as the forward difference

between the αj, i.e.

∂α

∂ξ
→ −N

2
(α̂j − α̂j+1) , 0 < j ≤ N − 1. (45)



Dyonic furry black holes with Λ < 0 15

We approximate all integrals with the rectangle rule as

1∫
−1

fdξ → 2

N

N∑
j=1

f̂j(r). (46)

Finally, we rescale variables as follows:

N̄ ≡ 2

N3/2
, ω̂j =

2

N
ω̄j, α̂j =

2

N
ᾱj,

r̄ = N̄r, m̄ = N̄m, Λ̄ = N̄−2Λ, S̄ = N̄S.

(47)

We first note that the form of µ is unchanged:

µ(r̄) = 1− 2m̄

r̄
+

Λ̄r̄2

3
. (48)

The Einstein equations become

dm̄

dr̄
=
κ

2

(
r̄2η̄

4S̄2
+

ζ̄

4µS̄2
+ µḠ+

P̄

r̄2

)
, (49a)

1

S̄

dS̄

dr̄
= κ

(
Ḡ

r̄
+

ζ̄

4µ2S̄2r̄

)
, (49b)

with

η̄ =
N∑
j=1

(
dᾱj
dr̄

)2

, ζ̄ =
N−1∑
j=1

ω̄2
j (ᾱj − ᾱj+1)2 , (50)

Ḡ =
N−1∑
j=1

(
dω̄j
dr̄

)2

, P̄ =
1

4

N∑
j=1

(
ω̄2
j − ω̄2

j−1 −N − 1 + 2j
)2

; (51)

and the Yang-Mills equations become

0 = r̄2µ
d2ᾱj
dr̄2

+ r̄2

(
2

r̄
− 1

S̄

dS̄

dr̄

)
dᾱj
dr̄

+ ω̄2
j (ᾱj − ᾱj+1)− ω̄2

j−1 (ᾱj−1 − ᾱj) .

0 = r2µ
d2ω̄j
dr̄2

+ r2

(
dµ

dr̄
+
µ

S̄

dS̄

dr̄

)
dω̄j
dr̄

+
r̄2

µS̄2
ω̄j (ᾱj − ᾱj+1)2

+ ω̄j

(
1− ω̄2

j +
1

2

(
ω̄2
j−1 + ω̄2

j+1

))
.

(52)

If we here use conventional units for su(N) in which we set c = 4πG = 1 and

hence κ = 2, then it is immediately seen that these are the field equations for the
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spherically symmetric su(N) EYM system, solutions to which have been proven in

several regimes [19].

The fact that it is so easy to reduce the su(∞) equations back down to the su(N)

equations with a näıve finite difference scheme is somewhat surprising. It should

be emphasised that using this method on such non-linear, non-globally-hyperbolic

equations would not in general converge as a numerical scheme; but all we wish to

show is that this method reproduces the field equations, and should be more viewed as

a ‘dictionary of correspondences’ in the same sense as was required to take the limit

N →∞ in Section 2.1 (particularly Equations (11) and (15)). In any case, we already

know that analytical solutions exist to Equations (49) and (52) for all finite values of

N [19], and many numerical solutions have been found (see e.g. [21, 40]) so this need

not concern us. That this correspondence works is largely due the fact that the Cartan

matrix for su(N), applied as a linear transform on a list of functions {f̂j}, results in

a vector of terms that resemble 2nd derivatives written in a central finite difference

scheme (44). It thus seems like a coincidence particular to this case.

It does hint though that expressions for important quantities to su(∞) black holes can

in principle be quickly converted into analogous expressions for su(N) black holes, which

means that su(∞) could be a good testing ground for obtaining or checking results in

su(N), one which uses 4 partial integro-differential equations instead of 2N ODEs, and

may be amenable to a different class of analytical methods.

4. Solutions with small gauge fields

The first kind of non-trivial solution we search for are solutions where both gauge fields

are small. This will linearise the equations to zeroeth order, making them easier to

solve, but it is also of interest for AdS/CFT, since it has previously been proven that

the correspondence requires the gauge fields involved be small [41]. Given that we

recover the extremal RNAdS solution if ω = α = 0, we are essentially considering

solutions in some neighbourhood of these.

We let ε > 0 be some sufficiently small parameter, and assume we have gauge fields
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such that |α(r, ξ)| ≤ ε, |ω(r, ξ)| ≤ ε ∀r. We use the expansions

m(r) = m̌0(r) + εm̌1(r) +O(ε2),

S(r) = Š0(r) + εŠ1(r) +O(ε2),

α(r, ξ) = εα̌0(r, ξ) +O(ε2),

ω(r, ξ) = εω̌0(r, ξ) +O(ε2).

(53)

Substituting these expansions into the field equations, we easily find that m̌1 = Š1 = 0.

At zeroeth order, we find that Š ′0(r) = 0, since G = O(ε2) and ζ = O(ε4), and so we

set Š0 ≡ 1 for the correct asymptotic limit (29). Also, η = O(ε2) and P = 1/3 +O(ε2),

so we obtain

m̌′0(r) =
1

r2
=⇒ m̌0(r) =M− 1

2r
(54)

for some arbitrary constant M. Using boundary conditions at the event horizon, we

obtain

m̌0(r) =
rh
2
− Λr3

h

6
+

1

2rh
− 1

2r
. (55)

This is identical to the situation in [35], and it was shown there that this is a good

approximation to the mass function for su(2) solutions.

The Yang-Mills equations become, to zeroeth order,

0 =
∂

∂r

(
r2∂α̌0

∂r

)
,

0 =

(
1− 2m̌0

r
− Λr2

3

)
∂2ω̌0

∂r2
+

(
2m̌0

r2
− 2Λr

3
− 1

r3

)
∂ω̌0

∂r
+
ω̌0

r2
.

(56)

Since these equations have only r derivatives, the ξ dependence is arbitrary. The

magnetic gauge field equation is exactly the purely magnetic su(2) Yang-Mills equation

with small ω, multiplied by some arbitrary ξ-dependence, to which solutions exist

[10,35]. Also, the electric equation can be directly solved, giving

α̌0(r, ξ) =

(
1

rh
− 1

r

)
Z(ξ) + Y(ξ). (57)

Using the boundary condition α(rh, ξ) = 0, we find we must take Y(ξ) ≡ 0; and using

the asymptotic boundary conditions, we can fix Z(ξ) = −A(ξ) (29). Hence we obtain

α̌0(r, ξ) = A(ξ)

(
1

r
− 1

rh

)
. (58)
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It is worth noting that the above expression looks remarkably similar to the expression

for A⊥ in the analysis of black holes in EYM theories for general semisimple gauge

groups, if we there let S ≡ 1 [20].

Finally we use the ansätze (22) to write the solutions out explicitly:

α(r, ξ) =

((
1

r
− 1

rh

) ∞∑
j=0

Ajξj
)
ε+O(ε2),

ω(r, ξ) =

(
ω∗(r)

√
1− ξ2

∞∑
j=0

Ujξj
)
ε+O(ε2).

(59)

for two infinite sets of constants {Aj,Uj}, where Aj are the expansion coefficients of

A(ξ) (29), Uj are the expansion coefficients of an arbitrary function of ξ, and ω∗(r) is

the magnetic field variable for a small purely magnetic su(2) solution. This manifestly

shows that the solution is determined by infinitely many gauge field parameters.

It should be noted that these solutions do not exist if Λ = 0. There, any solution which

begins small at the event horizon can in general grow arbitrarily large (though finite)

asymptotically. However here, we find that solutions with small gauge fields are valid

for all values of Λ < 0, even arbitrarily small, and remain small asymptotically, i.e. at

the boundary of the AdS space. Hence, these solutions expand on those in [35] which

when Λ→ 0−, were referred to as regulator models in the purely magnetic case, in the

sense that we may obtain good results for asymptotically flat space, which may in some

cases be motivated by relevant phenomenology.

5. Solutions as |Λ| → ∞

Whenever solutions to asymptotically AdS EYM theories are discussed, an investigation

into the regime where |Λ| is large cannot be far away, and the motivation for this has

been multifold, which we can illustrate by referring to the case of purely magnetic

su(N) solutions. In numerical simulations, we there find that the regions of the initial

parameter space admitting solutions shrinks as N grows, but in the limit of large |Λ|, we

find that the entire parameter space of initial values will produce regular solutions [38].

In analytical investigations, this limit has been fruitful in allowing us to prove the

existence of solutions, and is necessary for the stability of solutions and the definition

of uniquely characterising charges [17, 39, 40]. In addition, there are motivations from
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black hole thermodynamics: the regime corresponds to large black holes, possessing a

stable Hartle-Hawking state, which is of relevance to the question of information loss

during Hawking evaporation [42]. It is also this regime where string corrections become

negligible in the bulk and the field theory approximation may be used [24,43].

Our strategy will be to assume power series expansions for the field variables essentially

in the parameter Λ−1, and therefore these will be asymptotic expansions – for a large

enough value of |Λ|, truncating the series expansions will give an approximate solution to

the field equations which becomes more exact the more terms we take in the truncation.

Given our physicality assumption that the infinite sums in (2) converge, this implies

the convergence of the sums in (22), which further implies that the coefficient functions

in our large-|Λ| expansions will be uniformly bounded. Therefore, the full series will be

an exact solution.

We should note that this analysis will differ from a similar one in [35], because in

anticipation of Section 8, we want to use asymptotic boundary conditions to specify

the gauge fields, rather than the boundary at the event horizon r = rh. For m and S

we will see that we are free to use a combination of the conditions, and the regularity

of the event horizon, to fix those functions. The analysis would be simple enough to

repeat using boundary conditions at r = rh, and would just complicate the expressions

given at the end of Section 8.

First, we let

λ ≡ 1

Λ
, m̃(r) = λm(r), (60)

and consider the regime of λ very small. Writing the field equations (13) and (19) in

these new variables and letting λ = 0, we find the resulting equations:

m̃′ = 0, S ′ = 0,
∂α

∂r
= 0,

∂ω

∂r
= 0. (61)

We can easily solve the resulting equations by integrating, and then impose boundary

conditions, at r = rh for m and α and as r →∞ for S (see Sections 2.3 and 2.4), to fix

most of the constants and functions of integration. Hence we obtain the solution

m̃(r) = −r
3
h

6
, S(r) = 1, α(r, ξ) = 0, ω(r, ξ) = K(ξ), (62)

which manifestly is uniquely determined by rh and K(ξ), some arbitrary function

of ξ. Furthermore, we will impose asymptotic boundary conditions on ω, and let

K(ξ) = ω∞(ξ), in anticipation of Section 8.
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It must be emphasised that we cannot expect λ = 0 to give us a sensible solution to

the field equations, for several reasons: it would mean that the AdS radius of curvature

` =
√
−3
Λ

would be zero, so µ would become singular, and in addition the definitions

(60) break down. However, we can investigate the case where λ is arbitrarily close to

0, to find solutions in some λ-neighbourhood of (62). Hence, our aim here is to find

solutions by assuming asymptotic expansions on the field variables as power series in

λ, for a fixed value of λ, which are well-defined in a neighbourhood of λ = 0.

Regarding the electric field variable α, we have found in previous treatments that

establishing existence as |Λ| → ∞ for dyonic solutions was difficult unless we took the

electric gauge field as being small. Hence here, noting (62), and recalling that we are

searching for solutions in some neighbourhood of λ = 0, we let the electric field be

O(λ), so as λ becomes very small, so will α.

Therefore, motivated by (62) and the earlier discussion, we define the following

expansions for λ small:

S(r) = 1 +
∞∑
j=1

S̃j(r)λ
j, m̃(r) =

−r3h
6

+
∞∑
j=1

m̃j(r)λ
j,

α(r, ξ) =
∞∑
j=1

α̃j(r, ξ)λ
j, ω(r, ξ) = ω∞(ξ) +

∞∑
j=1

ω̃j(r, ξ)λ
j.

(63)

The zeroeth order terms in λ confirm (62). To first order, we find that

S̃ ′1 = 0,

m̃′1 =
K1

2r2
,

0 = r2∂
2α̃1

∂r2
+ 2r

∂α̃1

∂r
,

F(ξ) = r2

(
r2 − r3

h

r

)
∂2ω̃1

∂r2
+ (2r3 + r3

h)
∂ω̃1

∂r
,

(64)

where

K1 =
3

8

∫ 1

−1

(
∂

∂ξ

(
ω2
∞ + ξ2

))2

dξ, F(ξ) =
3ω∞

2

∂2

∂ξ2

(
ω2
∞ + ξ2

)
. (65)

In order to solve Equations (64), and indeed, to solve the field equations to all

higher orders in λ, we will need some boundary conditions consistent with our choices

of arbitrary constants and functions at zeroeth order (62) and with the boundary
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conditions given in Sections 2.3 and 2.4. We therefore choose the following conditions:

m̃1(rh) =
rh
2
, m̃j(rh) = 0 for j > 1;

lim
r→∞

S̃j = 0 for j ≥ 1;

α̃j(rh, ξ) = 0 for j ≥ 1,

lim
r→∞

r2∂α̃1

∂r
= −A(ξ), lim

r→∞
r2∂α̃j
∂r

= 0 for j > 1;

lim
r→∞

ω̃j = 0 for j ≥ 1;

(66)

where A is one of the electric asymptotic boundary functions (see Section (2.4)).

Noting these, we find from (64) that S̃1 = 0. Also, m̃1 is given by

m̃1(r) = K2 −
K1

2r
, (67)

for an arbitrary constant K2, which may be fixed in terms of K1 by using (66), to give

m̃1(r) =
rh
2

+
K1

2

(
1

rh
− 1

r

)
. (68)

It can thus be seen that up to first order, the geometry resembles RNAdS (35), as

expected since at this order the gauge fields are both small – compare Equation (55).

In fact it will later be seen that K1 can be interpreted as the total magnetic charge.

We find that α̃1 is given by

α̃1(r, ξ) = J (ξ)− H(ξ)

r
, (69)

for two arbitrary functions H(ξ) and J (ξ). Given that α(rh, ξ) = 0 (66), we must have

H = rhJ and so

α̃1(r, ξ) =

(
1

rh
− 1

r

)
H(ξ). (70)

In addition, using limr→∞ r
2 ∂α̃1

∂r
= −A(ξ), we can fix the function of integration as

H(ξ) = −A(ξ), and hence

α̃1(r, ξ) =

(
1

r
− 1

rh

)
A(ξ). (71)

This is exactly the result we obtained for a small electric field in Section 4 (58), and

again this is exactly as expected, give that here α ∼ O(λ).
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Turning to the magnetic field, we can integrate the equation for ω̃1 once, to give

∂ω̃1

∂r
=
L(ξ)r −F(ξ)

r3 − r3
h

(72)

for an arbitrary function L(ξ), and for this to be regular at r = rh we must take

L(ξ) ≡ F(ξ)
rh

, so that

∂ω̃1

∂r
=

F(ξ)

rh(r2 + rrh + r2
h)
. (73)

Integrating once more, we find

ω̃1(r, ξ) = G(ξ) +
2F(ξ)

r2
h

√
3

tan−1

(
2r + rh

rh
√

3

)
, (74)

for an arbitrary function G which we can again specify by using (66), obtaining

ω̃1(r, ξ) =
F(ξ)

r2
h

√
3

(
2 tan−1

(
2r + rh

rh
√

3

)
− π

)
. (75)

In summary so far, we have found that to first order in λ, with fixed |Λ| and rh, the

gauge fields are uniquely specified by the two arbitrary functions ω∞(ξ) and A(ξ).

However we must note that in order for those functions to correspond to genuine gauge

field hair, they must agree with the form of the ansätze (22), meaning that they will

have the forms

A(ξ) =
∞∑
j=1

Ajξj, ω∞(ξ) =
√

1− ξ2

∞∑
j=0

ω∞,jξ
j, (76)

where {Aj, ω∞,j} are two infinite sets of constants. Thus, Equations (71) and (75)

represent the appearance of genuine electric and magnetic gauge field hair in the Yang-

Mills sector.

Now we consider the Einstein sector, which will show us what effect the hair has on the

geometry, i.e. on the metric functions m̃ and S. We must examine terms of O(λ2) to

see the influence of the magnetic field on the metric. We note that one would need to

consider terms of O(λ3) and O(λ4) in the expansions for m̃ and S (resp.) for the electric

gauge field to manifest in the geometry itself. This is simply because we here require

the gauge field to be small; continuing with this process of calculating the expansion

terms yields expressions for m̃3 and S̃4 which depend partially on A(ξ).
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The upshot is that the equations for the metric expansion functions at second order are

similar to those in the purely magnetic case [35]:

dŜ2

dr
=

3C1H
2

2rr2
h

,

dm̂2

dr
=
C1H

4rh

(
1

r
− 1

rh

)
+
C2

√
3

r2r2
h

(
2 tan−1

(
2r + rh

rh
√

3

)
− π

)
,

(77)

where we have defined

H(r) =
1

r2 + rrh + r2
h

,

C1 =

∫ 1

−1

F2dξ,

C2 =

∫ 1

−1

(
∂

∂ξ

(
ω2
∞ + ξ2

)) ∂

∂ξ
(ω∞F) dξ.

(78)

The solutions to these equations are

S̃2(r) =
C1

4r6
h

(
3 ln(r2H) + 2rh(rh − r)H −

10√
3

tan−1

(
2r + rh

rh
√

3

))
+K1,

m̃2(r) =
1

8r3
h

(C1 + 12C2) ln(r2H) +

√
3πC2

rr2
h

−
√

3

4r3
h

(
C1 + 4C2 +

8C2rh
r

)
tan−1

(
2r + rh

rh
√

3

)
+K2,

(79)

with arbitrary constants K1 and K2 which can be fixed using (66). These solutions are

globally regular.

In principle, there is no reason why this process could not be continued to arbitrary order

in λ, where at the infinite limit we would obtain an exact solution to the field equations

(13) and (19). We wish to show that the above process of calculating the expansion

functions can be continued indefinitely and that at each new order, the expansion

functions will be determined entirely by Λ, rh, and the two arbitrary functions ω∞(ξ),

A(ξ) which appeared for the lowest order terms.

Hence, we now substitute (63) into the field equations directly. Much algebraic

manipulation yields the following recursive differential equations in the field variable
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expansion functions:

dm̃j

dr
= X1,j,

∂

∂r

((
r3 − r3

h

r

)
∂ω̃j
∂r

)
= X3,j,

dS̃j
dr

= X2,j,
∂

∂r

(
r2∂α̃j
∂r

)
= X4,j,

(80)

where j ≥ 1, and where the four functions X1,j to X4,j are extremely complicated

expressions which for each integer j, depend only on the functions {m̃k, S̃k, ω̃k, α̃k} for

k ≤ j − 1.

Therefore, given that we know the solution at zeroeth order, we can in principle directly

(recursively) solve (80) to obtain the field variable expansions to any order, fixing

arbitrary constants by requiring regularity at the event horizon, and also the boundary

conditions (66). This will ensure that the arbitrary functions or constants we get are at

every order expressed in terms of the two arbitrary functions ω∞(ξ) and A(ξ). Hence,

the existence of exact solutions of the form (63), which are completely defined by the two

functions ω∞(ξ) and A(ξ), can be proven by straightforward mathematical induction.

We may summarise the results of this Section in the following

Theorem 1 We regard the negative cosmological constant Λ as very large and fixed

and we regard the event horizon radius rh as constant. Then, to all orders of Λ−1 in

(63), the functions S, m, ω and α are entirely specified by the two functions ω∞(ξ)

and A(ξ), using the boundary conditions (66), and the regularity of the event horizon.

Thus, in principle, an exact solution may be obtained which is unique with respect to

the asymptotic gauge degrees of freedom.

6. Regular exterior black hole solutions

Now that we have found some solutions to the field equations (13, 19), it is important

to prove that they all represent exterior fields of regular black holes, by calculating the

associated curvature invariants. Relevant for the metric sector are the Riemann, Ricci

and Kretschmann scalars, i.e. R, RabR
ab, and RabcdR

abcd respectively. In terms of our
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original metric (8), these are given by

R = − µ′′ − 2µ
S ′′

S
− 3µ′

S ′

S
− 4µ′

r
− 4µ

r

S ′

S
+

2(1− µ)

r2
,

RabR
ab = 2

(
µ′′

2
+ µ

S ′′

S
+

3µ′S ′

2S
+
µ′

r

)2

+
4µ

r

S ′

S

(
µ′′

2
+ µ

S ′′

S
+

3µ′S ′

2S
+
µ′

r

)
+

4µ2

r2

(
S ′

S

)2

+
2

r4

(
rµ′ + rµ

S ′

S
− 1 + µ

)2

,

RabcdR
abcd =

4(1− µ)2

r4
+

2µ′2

r2
+ 4

(
µ′′

2
+ µ

S ′′

S
+

3µ′S ′

2S

)2

+
8

r2

(
µ′

2
+ µ

S ′

S

)2

.

(81)

In addition, we must calculate the Yang-Mills scalar curvature invariants TrFabF
ab,

TrFabF̃
ab ∈ R, where F̃ ab = 1

2
εabcdFcd for εabcd the Levi-Civita totally anti-symmetric

symbol with ε0123 = 1. This is to ensure the solution is of the black hole (i.e. non-

extremal) type. We note that we are calculating the trace of the scalars FabF
ab,

FabF̃
ab ∈ su(∞), instead of just the scalars themselves – the reason for this is that,

noting the process in Section 2.1 in which we take the limit N →∞, the field strength

tensor components acquire a factor of N which is cancelled by inverse factors introduced

by the trace (See (15)), and therefore it is the trace that we expect to be well defined

in this limit rather than the su(∞)-valued scalars themselves. In terms of the variables

we defined in Section 2.1, these are given by:

TrFabF
ab =

η

2S2
+

ζ

2µS2r2
− 2µG

r2
− 2P

r4
,

TrFabF̃
ab =

sin θ

2

1∫
−1

(
∂α

∂ξ

∂

∂r

(
ω2
)
− ∂α

∂r

∂

∂ξ

(
ω2 + ξ2

))
dξ.

(82)

Finally, we recall that we also wish solutions to possess a non-extremal event horizon,

with µ′h > 0, meaning that they should satisfy the criterion (27).

We point out that upon investigating the solutions with small gauge fields in Section 4,

we found that we must rely on results for purely magnetic su(2) solutions, and therefore

we would need to take the limit |Λ| → ∞ since it is in that limit that characterising

charges for purely magnetic su(2) solutions exist [39]. However, these are already

covered by the solutions in Section 5 for gauge fields of general magnitude, so we ignore

these solutions from here on in. Hence, we will take each of our solutions in turn:

The non-trivial solutions with |Λ| → ∞ from Section 5; and the trivial purely Abelian

dyonic solutions from Section 3.4.
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6.1. Solutions for large |Λ|

First, let’s consider the region where r ≥ rh is a finite fixed value. We may examine

m and S for the solution we derived in Section 5, and see that these functions and

their first derivatives are regular throughout [rh,∞), since we assume regularity of the

ξ-dependent functions ω∞ and H. Hence, we may calculate m′′, S ′′, µ, µ′ and µ′′, and

see that these are also all regular for any finite r ≥ rh. In addition, S is the only

function in the denominators in (81), and for |Λ| large enough, S will be similar to 1

and hence non-zero everywhere. Therefore, it is clear that the quantities in (81) are all

finite if r ≥ rh is finite – the only singularity is at r = 0. Then we can consider the

asymptotic regime. Using the fact that as r → ∞, S ∼ 1 and µ ∼ −Λr2

3
, we can show

that as r →∞,

R = 4Λ, RabR
ab = 4Λ2, RabcdR

abcd =
8Λ2

3
, (83)

as expected for adS asymptotics. Therefore, noting that |Λ| is large but still finite, the

gravitational curvature scalars are also all regular as r → ∞. Hence they are regular

throughout the range [rh,∞).

Now we consider the Yang-Mills curvature invariants (82). These depend on α, ω, and

their first derivatives w.r.t. r and ξ. Referring to Section 5, for any finite r ≥ rh, these

are all regular either by construction, or by assumption in the case of ω∞ and H. In

addition, using asymptotic boundary conditions, we can conclude that TrFabF
ab → 0

and TrFabF̃
ab → 0 asymptotically. Therefore, the quantities in (82) are all globally

regular. Since all relevant curvature scalars are globally regular, we can deduce that

this solution represents a regular black hole exterior over the range [rh,∞).

Lastly, we consider the regularity of the event horizon, given by the constraint (27). By

applying boundary conditions at r = rh (Section 2.3) to Equations (71) and (75), we

can express the event horizon boundary data as

ωh(ξ) = ω∞(ξ)− πF(ξ)

3
√

3Λr2
h

+O(Λ−2), α′h(ξ) = −A(ξ)

Λr2
h

+O(Λ−2); (84)

where again all the higher order terms are specified by ω∞(ξ) and A(ξ). Then,

substituting those into (27) gives the following constraint on solutions with regular

event horizons:

3

8

1∫
−1

(
∂

∂ξ

(
ω2
∞ + ξ2

))2

dξ +O(Λ−1) < r2
h(1− Λr2

h). (85)
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The salient fact here is that (holding rh constant) if the magnitude of Λ < 0 is large

enough, the right hand side of (85) will be large and positive, and the terms of O(Λ−1)

on the left-hand side should be negligible. Therefore, it is possible to find some set of

functions which could stand for ω∞(ξ) and which will satisfy the condition (85). We

will demonstrate this point in Section 7. Incidentally, the electric field only appears in

the bound (85) at O(Λ−2), and so has very little influence in the regularity of the event

horizon.

6.2. Purely Abelian solutions

The process here is similar and simpler. We recall that this solution is given in Section

3.4 by

S = 1, ω = 0, α =
ψ(ξ)

r
, µ = 1− 2M

r
− Λr2

3
+
Q2
E + 1

r2
(86)

where Q2
E is the electric charge, a constant defined in (41), and ψ(ξ) is an arbitrary

function of ξ which we assume to be regular in [−1, 1]. We begin with the curvature

invariants. We may substitute (86) into (81) to obtain lengthy expressions, and it can

be easily observed that the curvature invariants are all regular for all r ≥ rh finite. If

we take the limit as r →∞, we obtain the same results as we did for the previous case

(83), again as expected.

The Yang-Mills curvature invariants (82) become

TrFabF
ab =

2(Q2
E − 1)

3r4
, TrFabF̃

ab =
sin θ

r2

1∫
−1

ξψdξ, (87)

which are clearly regular for r ≥ rh finite, and vanish as r →∞.

As for the requirement of a regular event horizon, (27) simplifies down to

Q2
E + 1 < r2

h(1− Λr2
h). (88)

So again, for fixed rh, if |Λ| is large enough and the charge Q2
E is small enough, trivial

purely Abelian solutions with a regular event horizon will exist. Hence, these solutions

are also seen to be of the regular black hole type.
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7. An example solution family with |Λ|-large

We present a simple concrete example of the solutions derived in Section 5. We assume

for a moment that the influence of the electric field is in fact negligible here, and for

the magnetic gauge field, we let

ω∞(ξ) =
W√

2

√
1− ξ2

√
1 +

cos
(
πξ
2

)
1− ξ2

(89)

where W > 0 is a constant which controls the ‘magnitude’ of ω∞, in that W = ω∞(0) is

its maximum value. It can be seen that (89) matches the form of the ansatz (76), and

if it were expanded as such a power series, it would have an infinite series of expansion

coefficients, which is necessary for the solution to be a genuine su(∞) solution. A plot of

the function (89) (with W = 2) is given in Figure 1, and Figure 2 is a plot of the global

solution ω(r, ξ) which it generates, up to O(Λ−1), and letting rh = 1 and Λ = −20. The

mass function for the solution is plotted in Figure 3 – we can see that it is monotonic

and has a finite limit at infinity, as we require. Finally, if we substitute (89) into (85),

and again include terms up to O(Λ−1), we may obtain a plot of |Λ| against W showing

the region where solutions with non-extremal event horizons may be found (Figure 4) –

this region is the area above the curve. The curve crosses the W -axis at W =
√

2, and

the marked point is the location of the solution plotted in Figure 2. We notice that the

set of values of W which satisfy non-extremality (85) appears to grow without bound

as |Λ| grows, something we also saw in the case of su(N) [40].

8. Characterising solutions with a countable infinitude of global charges

In Sections 4 and 5, we discovered new classes of dyonic hairy black hole solutions which

are specified by an infinite number of parameters. We now investigate these solutions to

see whether we may also define characterising global charges for these solutions, an issue

which is raised by Bizon’s modified “No Hair” Theorem. We will show here that one

of the class of non-trivial solutions that we have derived, those in the regime where |Λ|
is large (Section 5), can be entirely characterised by a set of charges, and furthermore,

by no less than an infinite set of global charges.

By “charges”, we are referring to a set of quantities defined asymptotically in terms

of the gauge functions, which (together with rh, Λ and the ADM mass M) entirely
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characterise solutions of the field equations. In other words, once the charges are

chosen, a unique solution to the field equations is entirely specified. In purely magnetic

su(2) models, there are a couple of different possible definitions for the (single) Yang-

Mills (YM) charge of the solution (e.g. [44–46]), and the existence of characterising YM

charges for purely magnetic su(N) models for large |Λ| and rh was established in [39].

We shall now derive expressions for the charges in the case of su(∞), and relate our

expressions to the trivial and the non-trivial solutions we have described in this work,

as well as charges found for su(N) solutions [39]. It should be pointed out that the

following method is not the only possible way to define charges, see for instance [44],

but it is one that gives us results in agreement with embedded solutions.

Here we follow [39, 47]. We let X be an element of the Cartan subalgebra h. Then,

corresponding to each X ∈ h we may define scalar charges as follows:

Q(X) =
1

4π
sup
g(r)∈h

K

(
X,

∫
S∞

g−1Fg

)
, (90)

where the integral is taken over a sphere at infinity, and K(· , ·) is the usual Killing

form on the Lie algebra. The quantity F is related to the appropriate component of

the gauge field strength tensor Fµν for each gauge field sector: for the magnetic charge,

we define FM ≡ Fθφ; and for the electric charge, we define FE ≡ Ftr sin θ ∝ ?Fθφ, the

Hodge dual of Fθφ [44]. Using the correspondence given in Section 2, these become

FE = −iN
2

∂α

∂r
sin θ, FM = −iN

2

∂

∂ξ

(
ω2 + ξ2

)
sin θ, (91)

(where we note that the factors of N end up being cancelled out by the trace (15)).

The supremum in (90) is taken over all elements g(r) ∈ h such that g(r) = exp[f(r)σ],

where f(r) is a scalar function of r and σ is a constant Lie algebra element. It can be

shown in general [47] that the integrand g−1Fg in (90) takes its maximum value when

g−1Fg ∈ h. However, it may be noticed by writing them out that Ftr and Fθφ are both

diagonal matrices in su(N), and hence are both elements of h, meaning that we are free

to choose g(r) = e for e the identity element in su(N). Hence, in the su(N) case, we

may use (90) to define

QE(X) ≡ lim
r→∞

K (X,Ftr) , X ∈ h (92)

(with an analogous definition for QM(X)), and we choose QE(XE) to be the electric

charge of the solution, and QM(XM) to be the magnetic charge. If we were working with

a finite gauge group we should now wish to find an appropriate basis for XE and XM
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in the Cartan subalgebra. However, for the case of su(∞), we expect for each charge

to be defined by a single continuous function. Therefore, we just need to translate (92)

into an expression for su(∞) black holes, and find two functions of ξ to serve as the

elements XE and XM .

For su(N), the Killing form K(X, Y ) = Tr(adX, adY ) is defined in terms of the adjoint

map on Lie algebra elements adX ≡ [X, · ] – i.e. in the adjoint representation, it is

just the matrix trace of the product, Tr(X̃Ỹ ) for X̃, Ỹ the matrix representations of

the X, Y ∈ su(N). Noting then the process of taking the limit N → ∞ from Section

2.1, we define

Q2
E ≡QE(XE) ≡ 1

2N
lim
r→∞

1∫
−1

− i
2
XE

∂α

∂r
dξ,

Q2
M ≡QM(XM) ≡ 1

2N
lim
r→∞

1∫
−1

− i
2
XM

(
∂

∂ξ

(
ω2 + ξ2

))
dξ.

(93)

We define the square of the charge, rather than the charge itself as in [39,47], since the

notation will then conveniently accord with notation used for simpler cases where the

total charge is always expressed as a square (e.g. the Reissner-Nördstrom case, and see

also [20, 39]).

The choice of our elements XE, XM ∈ h will be restricted by requiring that the squared

charges reduce correctly to those of the trivial solutions in the correct regimes when

we use units in which κ = 3 (Section 3), and that we also obtain the correct total

squared charge for purely magnetic su(N) solutions [39] if we use the method of lines

gives in Section 3.5 and use units in which κ = 2. We remind the reader that the

value of κ depends simply upon a convenient choice of units. Furthermore, we wish our

charges to coincide with a total effective charge Q2
eff , defined as the charge that plays

the same role in the geometry as the usual Abelian charge (Section 3). This means that

asymptotically, we require the mass function to be given by

m(r) = M −
Q2
eff

2r
+O(r−2). (94)

We will return to this point later.

To meet these requirements, we choose XE = −κr4Ftr and XM = −κFθφ(sin θ)−1 so
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that it is clear that XE, XM ∈ h, and obtain

Q2
E =

1

2

1∫
−1

q2
Edξ, Q2

M =
1

2

1∫
−1

q2
Mdξ, (95)

where

qE(ξ) ≡
√
κ

2
A(ξ), qM(ξ) ≡

√
κ

2

d

dξ

(
ω2
∞(ξ) + ξ2

)
, (96)

and we recall that ω∞(ξ) and A(ξ) are defined in Section 2.4. We also note that we

are able to ignore a trivial sign ambiguity in ω∞ due to the symmetry of the field

equations ω 7→ −ω (see Section 2.2). Thus, only the asymptotic data functions ω∞(ξ)

and A(ξ) are required to specify the charge functions qE(ξ) and qM(ξ), and hence the

total charges.

We point out that we have made a distinction here between the charge functions qE(ξ)

and qM(ξ), and the total charges, the constants Q2
E and Q2

M , which are the integrals

of their squares. This in perfect analogy with the total magnetic charge for the su(N)

solution Q2 being expressed as a sum over N−1 squared charges Q2
j , one for each gauge

degree of freedom [39]. It is therefore the charge functions qE(ξ) and qM(ξ) which we

expect to characterise the solutions. Also, it is clear from (91) and (96) that qE, qM ∈ h,

so we also have the constraints∫ 1

−1

qEdξ =

∫ 1

−1

qMdξ = 0. (97)

We may invert the expression for qM in (96) by integrating, rearranging, and using the

boundary condition ω(r, 1) = 0 to give

ω2
∞(ξ) = 1− ξ2 − 2√

κ

1∫
ξ

qM(z)dz. (98)

Note that as in the su(2) case [45] we are allowing for a trivial sign ambiguity in ω

(See Equation (23)). Also, it can be noticed that we could have chosen to use the other

boundary condition ω(r,−1) = 0 and obtained

ω2
∞(ξ) = 1− ξ2 +

2√
κ

ξ∫
−1

qM(z)dz, (99)
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but with (97) we can see that
∫ ξ
−1
qM(z)dz = −

∫ 1

ξ
qM(z)dz, and so (98) and (99) give

the same result for ω2
∞. Therefore, Equations (96) clearly define bijections between

the charge functions {qE, qM} and the asymptotic data {A, ω∞}. It can also be noted

that the charge functions themselves are specified by a countably infinite number of

parameters, which we could take as coming from the expansions (76) of the gauge

fields; alternatively, noting the forms of the polynomials we will get by substituting

(76) into (96), we can write qE(ξ) and qM(ξ) for ξ ∈ I as

qE(ξ) =
∞∑
j=0

qE,jξ
j, qM(ξ) =

∞∑
j=0

qM,jξ
j. (100)

Then, the individual charges would be the infinite set of expansion coefficients

{qE,j, qM,j}. Finally, it can be seen that if qE(ξ) = qM(ξ) ≡ 0, i.e. the solution has zero

charge, then (98) recovers the asymptotic data of the SAdS solution (Section 3.2).

The expressions in (95) and (96) reduce correctly to expressions for the charges of trivial

solutions in Section 3, and the squared magnetic charge Q2
M (95) matches that in the

case of purely magnetic su(N) solutions [39], using the method of lines in Section 3.5.

Note that κ is included in the definitions (96) to allow for the different cases, but note

that we could also just keep using the units where κ = 3, in which case the defined

charges would be at most proportional to those in the su(N) purely magnetic case, and

this is still acceptable from a uniqueness perspective.

The main point here is that if the solutions that we have found can be shown to

be entirely specified by their asymptotic boundary functions {A, ω∞}, then given

that the maps (95) from the asymptotic functions {A, ω∞} to the charge functions

are bijections, the solutions we found would be entirely characterised by their charge

functions qE and qM , as required by Bizon’s modified “No Hair” theorem. However, due

to the ansätze (22), each non-trivial gauge field function must be expressed in terms

of a countably infinite number of coefficients in general. As we shall explain in the

conclusion, this could be a rather significant result for the status of Bizon’s modified

“No Hair” conjecture.

We may therefore prove the following, omitting the solutions with small gauge fields

(Section 4), since we discovered that solutions for these only exist in the regime

|Λ| → ∞:

Theorem 2 We fix the values of rh and Λ. Then, global charge functions qM(ξ) and

qE(ξ) may be found which entirely and uniquely characterise the solutions to the field
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equations (13), (19) explicitly in terms of the asymptotic boundary functions ω∞(ξ) and

A(ξ), in the following cases: the trivial purely Abelian case (Section 3.4); and in the

regime where Λ < 0, |Λ| → ∞ (Section 5), including at least some solutions which

respect the criterion for a regular event horizon (85). In turn, the charge functions are

each uniquely determined by a countably infinite set of parameters.

Proof We have defined maps (96) in which the charge functions uniquely specify the

asymptotic functions {A(ξ), ω∞(ξ)}. What we show now is that knowledge of the

functions {A(ξ), ω∞(ξ)} entirely specifies the solution to which that asymptotic data

belongs. It should be noted that since S → 1 in the limit r → ∞ (29), we can

concentrate on the other three functions m, ω and α. Also, below we take κ = 3, so

that the charges reduce correctly to the charge for purely magnetic su(2) solutions. We

point out that analogous results for su(2) dyonic field equations do not currently exist,

though the existence of defining charges in that case is heavily implied by the following

results, due to the existence of the su(2) embedding (Section 3.1).

Trivial purely Abelian solutions (Section 3.4): Here, we fix ω ≡ 0, which implies

ω∞ = W ≡ 0; and comparing (29) with (37), we let α∞ ≡ 0, A(ξ) = ψ(ξ). The

gauge sector of the solution is entirely determined by ψ(ξ). The charge functions are

given by qE(ξ) =
√

3
2
ψ(ξ), which makes perfect sense if we recall that (37) defines a

Coloumb-like potential; and qM(ξ) =
√

3ξ, meaning that Q2
M = 1. The ADM mass

M can be determined using (39) and boundary conditions at the event horizon as

M = mh + (Q2
E + 1)/(2rh), with Q2

E defined in Equation (41). Therefore, the charges

uniquely determine the asymptotic data which then determine the solution. Finally, it

can be seen from the form of m(r) (39) that our total charge Q2 coincides with our

defined effective charge Q2
eff (94).

Solutions for |Λ| large (Section 5): First of all, we can see that our charge definitions

coincide in this regime with the total effective charge defined by (94), where we let

Q2
eff = Q2

E,eff + Q2
M,eff in which Q2

E,eff and Q2
M,eff are the effective electric and

magnetic charges respectively. Examining (29) and (30), we see that Q2
eff = −2m1;

and it can be seen (below) with (102) that W2 ∼ O(Λ−2). Therefore, considering m1

(30) in this limit i.e. considering all terms of O(Λ−1) and smaller to be negligible, we

can consistently define

Q2
E,eff =

3

8

∫ 1

−1

A2dξ, Q2
M,eff =

3

8

∫ 1

−1

(
d

dξ

(
ω2
∞ + ξ2

))2

dξ. (101)

Thus, in the limit of large-|Λ|, the expression for the effective charge coincides with our
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charge definitions given in Equations (95) and (96).

Using Theorem 1, the solutions we constructed in Section 5 entirely determined upon the

choice of the arbitrary functions ω∞ and A; that is, if we specify functions {A, ω∞}, this

entirely specifies a solution. Thence, given that the charge functions uniquely specify

the asymptotic data, the charge functions {qE, qM} specify the unique solution to which

they belong.

We can make this absolutely clear by showing that the asymptotic boundary functions

{A, ω∞} (along with Λ and rh) entirely define all the rest of the boundary data, both

as r → ∞ and at r = rh, and hence {A, ω∞} unquestionably fixes the entire solution.

We already have expressions for the event horizon boundary data (84), and the other

parameters which determine the gauge sector asymptotically, i.e. the ADM mass M

and the functions {W , α∞} (See Sections 2.4 and 5), can be written as follows:

α∞(ξ) = −A(ξ)

Λrh
+O(Λ−2),

W(ξ) = −F(ξ)

Λrh
+O(Λ−2),

M = −Λr3
h

6
+
rh
2

+
K1

2rh
+O(Λ−1).

(102)

In Equations (84) and (102), F(ξ) and K1 are given in (65) and are fixed by ω∞(ξ) –

in fact, it can be seen that

K1 = Q2
M , F =

√
3ω∞

dqM
dξ

. (103)

The order O(Λ−1) term in M (102) can be calculated by taking the asymptotic limit

of (79), and is expressed in terms of F(ξ) and hence ω∞(ξ). In addition, by Theorem

1, all terms of O(Λ−2) and lower in the Equations (80), and hence in Equations (84)

and (102), can also in principle be calculated from the field variable expansion terms of

O(Λ−1) and O(1), and the constants and functions of integration may be fixed by the

boundary conditions at r = rh from Section 2.3. Hence, all higher order terms above

depend solely on the functions {A, ω∞}. Therefore, noting (96) and (98), this solution

is entirely fixed by the values of rh, Λ, and the functions qE(ξ) and qM(ξ).

Finally, given (76), we can see for both of the above cases that the functions A(ξ)

and ω∞(ξ) are uniquely determined by a countably infinite set of parameters, i.e.

the constant coefficients {Aj, ω∞,j} which appear when the functions A and ω∞ are

expressed in the form (76). Hence, so are the charge functions qE and qM (96). 2
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9. Conclusions

In this work, we have derived field equations for asymptotically AdS, dyonic su(∞)

EYM models, and presented two classes of analytical black hole solutions to these

equations: i) Solutions where the gauge fields are small, but for a general value of

Λ < 0; and ii) solutions for a large value of |Λ|, where the gauge fields are of general

magnitude. In addition, we defined expressions for the charges of su(∞) EYM solutions.

We also found the pleasing result that the solutions from class ii), where |Λ| → ∞,

can be characterised uniquely by asymptotically measured charge functions. Due to

Theorem 2, the charge functions are each uniquely characterised by an infinite number

of parameters. Bizon’s modified “No hair” conjecture states that a black hole in a given

matter model is defined by a finite number of global charges. This means we may have

found solutions that fall outside of its scope. Noting closely the language, the Theorem

speaks of “stable black holes”, so a linear stability analysis of time-dependent su(∞)

EYM field equations system is a crucial next step, and the work for this is already in

progress [48]. To update the language of such an important conjecture would indeed

be exciting.

The models presented here are classical field configurations. In order to investigate

the issue of quantum decoherence during Hawking evaporation and hence shed light

on black hole information loss, it would be necessary to quantise the system, taking

spacetime fluctuations into account. A method was devised in [49] for quantifying the

entropy production (i.e. loss of information) of an evaporating su(2) EYM black hole

minimally-coupled to a scalar field, but there are reasons to believe that the holographic

properties of the system may not survive such a process if the scalar field is minimally

coupled. Indeed, the holographic properties pertain to the solutions with small gauge

fields, i.e. those nearby RNAdS solutions, and it is known that entropy production

for RNAdS black holes is non-trivial [50]. However, it is perfectly possible that if we

include a scalar field which is non-minimally coupled to the (holographic) gauge degrees

of freedom, the situation may be completely different. This is a problem to which we

may return.

A further interesting area of potential research would be to extend this work to so-called

‘topological solutions’ – 4D solutions in surface-symmetric spacetimes, i.e. which are

foliated by 2D surfaces of constant Gaussian curvature. This is already a subject of

ongoing interest [14,27]. A knowledge of topological su(∞) dyons would potentially be

very useful to holographic superconductors, since in the limit N → ∞ the dual CFT
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which corresponds to it will be ‘exact’ in the sense described in Section 1. However,

these models are tricky to construct, in that most stages of the construction given in

Section 2 will not apply to non-spherically symmetric models, so this is likely to be

quite challenging.

Figure 1. The example boundary data defined by (89) with W = 2.

Figure 2. A plot of ω(r, ξ) for the example non-trivial su(∞) solution defined by (63)

and (89), with W = 2, rh = 1 and Λ = −20, including terms up to O(Λ−1).
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Figure 3. A plot of m(r) for the example solution, including terms up to O(Λ−2).

Figure 4. A parameter space plot of |Λ| vs. W for the solutions defined by (89), with

rh = 1. The area above the shaded portion is the region satisfying (85), where black

holes with non-extremal event horizons may be found. The curve crosses the W -axis

at W =
√

2. The marked point at (2, 20) is the location of the solution plotted in

Figures 2 and 3.
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