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Abstract: A detailed transmission electron microscopy study of oxide and oxygen-

containing phase formation during the sliding wear of metals, composites and 

coatings is provided. A wide range of different materials types are reported in order 

to compare and contrast their oxidational wear behaviour: a low carbon stainless 

steel, a H21 tool steel containing 7% TiC particles, a 17% Cr white iron, an Al-Si / 

30%SiC composite, an Al-alloy (6092) – 15% Ni3Al composite and finally a 3rd 

generation TiAlN/CrN ‘superhard’ multilayer coating. For the ferrous alloys, 

nanoscale oxides and oxygen-containing phases were formed that exhibited 

excellent adhesion to the substrate. In all cases, an increase in oxide coverage of 

the surface was associated with a decrease in Lancaster wear coefficient. The oxide 

at the surface of the 316L and H21+7%TiC was found to deform with the substrate, 

forming a mechanically mixed layer that enhanced surface wear resistance. 

Evidence of oxidational wear is presented for the wear of the A-Si-

30%SiCcomposite, but this did not give a beneficial effect in wear, a result of the 

brittle nature of the oxide that resulted in detachment of fine (150nm) thick 

fragments. The worn surface of the Al-alloy (6092)-15%Ni3Al and TiAlN/CrN coating 

was characterized by reaction with the counterface and subsequent oxidation, the 

product of which enhanced wear resistance. The observations are related to the 

classical theory of oxidational wear. 

 

Keywords: Oxidational wear; Transmission electron microscopy; Nanostructures  
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1. Introduction 

Since the first observation of oxidational wear by Fink [1], there has been much 

development of the theory. Most notably, Quinn and co-workers [2–17] have published a 

comprehensive theory for oxidational wear that is now the widely accepted basis for 

interpretation of worn surface morphology in the mild wear regime. The theory is reported to be 

broadly in agreement with experimental observations of oxidational wear (e.g.[18–22]). 

The theories of Quinn are well developed and yield quantitative values for the most 

important variables(such as number of contacts (N), the real contact temperature at the 

asperities (Tc), activation energy (Q),Arrhenius constant for parabolic oxidation during wear (Ap), 

critical oxide thickness, , etc). However, the theories assume a relatively simple structure of the 

surface oxide, namely that the oxide grows in a comparatively uniform manner at the contacting 

asperities, until a critical thickness, , is reached, at which point spalling occurs (with 

detachment at the oxide/matrix interface)and the formation of wear debris. As a result, the 

asperity is no longer in contact, but it is replaced by a separate asperity, at which point the cycle 

is repeated. While this situation undoubtedly occurs (for example, as shown by SEM 

micrographs presented by Quinn [11]),there remains comparatively little detailed microstructural 

analysis to indicate how widely applicable this scenario is. 

The majority of the work on oxidational wear focuses on ferrous alloys. It is clear that oxides 

play a major role in determining the wear rate of these materials, shown for example, by the 

classical work of Welsh [23]. However, little work has been undertaken to determine the extent 

to which oxidation is important in other metallic systems, for example, aluminium alloys, which 

have received much attention as tribological materials. Despite the substantial driving force for 

oxidation in this system, there is little report of oxidational wear in aluminium and its alloys. 

In a comprehensive review of the subject [10,11], Quinn discussed the terminology used to 

classify wear and describe wear mechanisms, an area notorious for the plethora of descriptions 

and consequent lack of clear, widely accepted, definitions. In the current paper, the same 

approach will be taken as that of Quinn, namely the use of mild and severe wear; mild wear 

refers to the regime where the wear debris is dominated by reaction with the environment (and 

is therefore often an oxide)and is generally small (typically sub-micron), while severe wear is 

associated with extensive surface roughening and predominantly metallic wear debris, the 

dimensions of which are large in comparison to mild wear (typically two orders of magnitude 

greater than mild, i.e. 10–100 μm).However, the wear mechanism nomenclature used by Lim 

and Ashby [24] will also be used, since this allows the current test conditions and surface 

observations to be correlated with the wear maps proposed by these authors that cover a 

substantial proportion of the wear data. Moreover, Lim and Ashby fully referenced all the work of 

Quinn and others on mild and severe oxidational wear. 

The current paper considers the detailed microstructural evolution at the worn surfaces of a 

range of materials that have substantially different characteristics and have been reported, at 

least in part, elsewhere [25–36]: ferrous alloys, aluminium based metal matrix composites and 

an advanced wear resistant coating. For the ferrous materials, a wide range of alloy types are 

considered, ranging from single phase (316L stainless steel)through to complex multiphase  
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Table 1 Compositions (weight%) of the alloys used in this investigation 

 

structures containing high volume fractions of hard particles (tool steels with the addition of TiC, 

and white irons). Two aluminium alloy metal matrix composites are considered, one with a 

conventional SiC reinforcement, the other with a novel inter-metallic reinforcement (Ni3Al). 

Finally, a ‘superhard’ TiAlN/CrN multilayer wear resistant coating, with the potential to operate in 

high speed, unlubricated, cutting applications is also considered. Detailed transmission electron 

microscopy (TEM) has been used to understand the type and morphology of the oxide that 

forms and the manner in which it modifies surface structure. The similarities and differences 

between the behaviour of the oxides at the surface are discussed. 

 

2. Experimental procedure 

 

2.1. Materials 

The compositions of the alloys used in the present study are given in Table 1. The AlSl 

316L stainless steel(L denotes low carbon) was supplied as 15 mm round bar in the solution 

annealed and quenched condition from a local stockholder. The H21 tool steel with TiC 

additions up to 7vol% were obtained by vacuum melting commercial H21 feed stock and adding 

a FeWTiC master alloy (supplied by London and Scandinavian Metals Ltd, Rotherham, UK) to 

the melt, followed by casting10 kg batches into a cast iron mould of 75 mm internal diameter. 

The 17%Cr white cast irons were produced by laboratory casting. A master alloy of 17%Cr 

white iron was made in a 10 kg capacity induction vacuum furnace using high purity elements 

under an argon atmosphere and cast into a metal mould. From this master alloy, 750g samples 

of material were re-melted in a 1 kg capacity vacuum furnace under an argon atmosphere, and 

cast at1400°C into steel moulds to produce ingots of dimensions of 2.5×1.5×20 cm. Wear 

testing was undertaken in both the as-cast and heat treated conditions, with the latter process 

aimed at destabilising the austenitic matrix. Heat treatment consisted of heating the ingots to 

1100°C,holding for 45 min, air cooling to room temperature, then tempering at 250°C for 3 hours. 

Ingots tested in the ‘as-cast’ condition were given a stress relief treatment at250°C for 3 hours. 

 Alcan International, Banbury Laboratories, 

UK. This material had a matrix composition based on the casting grade A357, with 30vol% SiC 

added by the melt route. The production of the novel Al–6092 alloy–Ni3Al composites was by a 

powder metallurgy route and is described in detail elsewhere [37]. 6092 aluminium alloy powder, 

with mean particle size, d50, of 26 μm was produced by inert gas (argon) atomisation and 

supplied by Alpoco, Sutton Coldfield, UK. Intermetallic Ni3Al powder, supplied by INASMET, 

San Sebastian, Spain, was obtained by self propagating high temperature synthesis(SHS, for 

details see [35]). The resulting compact contained97%Ni3Al, which was subsequently 
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mechanically milled to obtain the powder with a maximum particle size of 50 μm. This powder 

was blended with the Al powder to give 15vol% Ni3Al reinforcement and then extruded into 12 

mm diameter rods at an extrusion ratio of 30:1 at 515°C by Creuzet, Marmande, France. The 

TiAlN/CrN coating, consisting of alternating TiAlN and CrN layers of thickness 1–1.5 nm, was 

deposited onto a M2 high speed steel substrate (Vickers hardness 7.99±0.08 GPa) by PVD in a 

four target HauzerHTC1000-ABS coating machine, using the combined cathodic arc etching 

and unbalanced magnetron sputtering process, full details of which are presented elsewhere[32]. 

A variety of counterface materials were used. The316L stainless steel was worn against a 

commercial magnesia partially stabilized zirconia (Mg–PSZ) disc, supplied by Coors (UK). An 

M2 tool steel counterface (supplied in bar form by Argent Steel stock holders, Sheffield, UK) 

was used for testing the TiAlN/CrN coatings, the 17Cr iron, the H21/TiC composites and the Al–

alloy/Ni3Al composites. A grey cast iron counterface (supplied by Argent Steel stock holders, 

Sheffield, UK) was used for the Duralcan tests. 

 

2.2. Wear testing 

The 316L and Duralcan tests were undertaken on a tri-pin-on-disc machine, the full details 

of which are given elsewhere [26]. The rig employs three 10 mm diameter pins with a truncated 

cone machined at one end, providing a 3 mm diameter contact face. The pins, (316L or 

Duralcan), were held in a top plate that was prevented from rotating by two half-bridge strain 

gauges (which provided a measure of the friction coefficient), while the annular disc (Mg–PSZ or 

grey cast iron) was rotated. The design was such that only 4 mm of the pin projected from the 

top plate surface in order to ensure maximum system stiffness. The head was placed on top of 

the disc, located by a central spindle. Loads, in the range 2–60 N/pin (hereafter, all loads quoted 

are loads/pin), were applied by a dead weight that was secured directly to the top plate 

containing the pins. All tests were conducted at a constant speed of either 0.24m/s (316L) or 1 

m/s (Duralcan). Prior to testing, the surfaces of the pins and the counterface disc were lapped 

flat and polished to achieve a surface roughness, RA, of less than 0.1 μm. The wear rate was 

measured by weight loss to an accuracy of ±0.01 mg. Wear tests were run for 10,000 m in most 

cases (with the exception of the tests where excessive wear was experienced, which were 

terminated prematurely), and this provided appreciable removal of the pin. 

Testing of the H21/TiC, Al–alloy–Ni3Al, 17Cr iron and TiAlN/CrN coatings were undertaken 

using a Cameron–Plint multipurpose friction and wear testing machine configured for block or 

pin on disc contact testing. Test blocks of 10mm×10mm×10mm or pins of 7mm diameter were 

run against an M2 tool steel counterface disc of 60 mm diameter and 10 mm thickness, 

hardened in the range 800–850 Hv, with a sliding speed of 1 m/s and loads in the range 54–254 

N. The coefficient of friction for the couple was recorded throughout each test by means of a 

load transducer positioned to measure the lateral force on the top shaft. The block and pin 

sample surfaces were lapped prior to testing in the same manner as the tri-pin-on-disc 

specimens. 

 

2.3. Transmission electron microscopy of the worn surface 



WM Rainforth, AJ Leonard, C Perrin, et al, Tribology International 35, 2002, 731-748. 
 

5 

 

Worn surface samples for transmission electron microscopy (TEM) were produced by both 

back-thinning and as longitudinal cross-sections. There are a number of different techniques 

that can be used for the preparation of longitudinal cross-section TEM specimens, well 

documented in the literature. In the current work, one principal technique was used, first 

described by Manning and Rowlands [38], later developed by Newcomb and Stobbs [39] and 

subsequently by the authors[25,26]. A blank piece of the same material as the worn surface was 

glued to the worn surface using a high strength epoxy resin and allowed to cure for 24 h. 2 mm 

diameter sections perpendicular to the worn surface were then removed using core drilling 

(preferably by spark erosion, although mechanical drilling is acceptable for hard materials such 

as tool steels). This composite rod was then glued into a brass tube of 2 mm internal diameter 

and 3 mm external diameter. 1 mm sections were then removed perpendicular to the long axis 

of the composite rod using a slow-speed diamond saw. The discs were then carefully ground to 

100 μm thickness, dimpled to 50 μm at the centre of the disc (thinner for hard materials such as 

tool steels) with a 1 μm diamond paste finish. Samples were then argon ion beam milled to 

perforation in the conventional manner. Samples were examined in a Philips 420, operating at 

120 kV, a Jeol 200CX, operating at 200 kV or a Philips 430 operating at 300 kV. The electron 

spectroscopic imaging was performed on a Jeol 2010F, operating at 200 kV, equipped with a 

Gatan imaging filter (GIF), using the procedures optimised by Hofer and co-workers (e.g.[40–

42]). The largest possible condenser aperture (200 μm) was used for spectroscopic imaging 

coupled with high gun emissions(yielding an energy resolution of 1.1 eV), to ensure maximum 

signal from the small features reported here. The size of the objective aperture (4.8 mrad) was 

chosen to optimise image resolution. Prior to acquiring spectroscopic images or EEL spectra, a 

t/l map(t=sample thickness, l=electron mean free path) was taken to ensure that plural 

scattering could be ignored. Spectroscopic images were obtained using the Fe–M23and Nb–

M45 edges. The 3-window method was used to generate elemental maps from which jump ratio 

images were then computed by dividing the ionisation edge image by a pre-edge image [40]. 

This removed diffraction contrast and improved signal to noise ratio. 

 

3. Results 

 

3.1. Oxidational wear in ferrous materials 

Table 2 summarises the wear data 

from the tests discussed below. Full details of 

the wear behaviour are presented elsewhere 

[25–36]. This section will consider the wear of 

ferrous alloys, starting with single phase, 

softer metals, progressing towards the high 

hardness tool steels and alloy cast irons. It is 

well known that the load determines the rate 

of formation and type of surface oxide layers,  

Table 2 Lancaster wear coefficients as a 

function of load for H21 and TiAlN/CrN materials 
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Fig. 1. Plot of mass loss (values×10) () and total 

depth of deformation (■) as a function of load for 

the 316L sliding on Mg–PSZ. The reduction of 

wear and depth of deformation at loads above 24 

N is associated with the formation of oxide on the 

worn surface. 

 

and the consequent effect the oxide has on wear rate (see for example, the classical work of 

Welsh [23]). Figure 1 gives an example of the beneficial effect of the incorporation of oxygen 

into the worn surface on the rate of material loss, taken from tests of 316L stainless steel 

against Mg–PSZ worn in pure sliding in a tri-pin-on disc configuration. The wear, as measured 

by mass loss, increased with load up to a peak at 24 N, and then decreased with further load. 

The total depth of deformation(measured using the bending of microstructural markers [25,43]), 

followed the same trend. Backscattered imaging of the worn surface revealed darker regions, 

Fig. 2, the proportion of which increased with load. EDS of the darker regions in Fig. 2 indicated 

that they contained a significant proportion of oxygen, but otherwise retained the same ratio of 

Fe:Cr:Ni as in the surrounding areas. Such features have been described as ‘oxide’ by other 

researchers (e.g. [44]), although as shown below, the situation is more complex in the current 

case. 

 
Fig. 2. Back scattered electron micrographs of the worn surface of an AISI 316L stainless steel, tested 

against an Mg–PSZ counterface at 0.24 m/s. (a) 2.2 N; (b) 24 N; (c) 55 N. Note the increased 

coverage of oxide (dark areas) as the load increases. 

Figure 3(a) shows a detail from Fig. 2, from the worn surface from the 316L test at 6.8 N, 

showing a prow that had apparently been pushed through the surface, leaving a groove in its 

wake. EDS of the regions of the prow giving dark contrast in the backscattered electron image 

indicated that they contained oxygen. XRD of the worn surface failed to reveal any additional 

peaks other than austenite. These prows were frequently found to be a source of wear debris, 

as shown in Fig. 3(b). At the highest test load, the number of prows substantially decreased, 
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replaced by a continuous film of the oxygen containing phase, which was frequently cracked, 

Fig.3(c). 

 
Fig. 3. SEM micrographs of the worn surface of a 316L after dry sliding against a partially stabilized 

zirconia counterface (Mg–PSZ) at loads in the range 2.2–55 N and 0.24 m/s. (a) Back-scattered 

electron image of a prow formed at 2.2 N, apparently a mixture of metal (light) and oxide (dark); (b) 

secondary electron image of wear debris formed at a prow containing appreciable oxide after 

testing at 24 N; (c) backscattered electron image of region of continuous oxide formed at 55 N, 

showing widespread cracking. 

 

Fig. 4. Images of the wear debris from the dry sliding of 316L against a partially stabilized zirconia 

counterface (Mg–PSZ) at a load of 55 N and speed of 0.24 m/s. (a) SEM micrograph showing the 

morphology of the wear debris; (b) TEM bright field micrograph of a particle that contains both an 

amorphous phase and the non-equilibrium bcc phase, both of which contained oxygen; (c) TEM 

bright field micrograph of Fe3O4 particles; (d) TEM bright field micrograph of a heavily deformed g-

Fe particle. 

The wear debris consisted mainly of fine, roughly equiaxed, particles, Fig. 4(a). XRD of the 

wear debris indicated that it contained several phases, including g-Fe (i.e. metallic wear from 

the 316L), a small amount of ’-Fe (only at the lowest load of 6.8 N), occasional Fe3O4 peaks 

(loads of 24 N and above), a significant amorphous component and also a body centred 

cubic(bcc) phase that could not be identified in the JPDS files(with distinctly different lattice 
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spacings to a                                               -Fe).Wavelength dispersive X-ray analysis of the 

wear debris, using an electron probe micro analyser (EPMA), indicated that the debris generally 

contained substantial quantities of oxygen,  

Table 3 WDS analysis of the wear debris from the 316L tests on Mg–PSZ 

 

and that the composition did not vary appreciably with load, Table 3. Interestingly, a small 

quantity of Zr was found in the analysis, the proportion of which increased with load. 

TEM of the wear debris (Fig. 4(b)–(d)) confirmed the presence of the phases found by XRD. 

An example of the amorphous and non-equilibrium bcc debris is shown in Fig. 4(b), a Fe3O4 

particle in Fig. 4(c) and a metallic particle of g-Fe is shown in Fig. 4(d). Interestingly, some of 

the amorphous and non-equilibrium bcc debris recrystallised under a focused electron beam, 

transforming directly to Fe3O4. No evidence of ZrO2 particles could be found, although 

interestingly, EDS suggested that the amorphous and non-equilibrium bcc debris contained Zr in 

solid solution. Regrettably, the relative proportions of each phase could not be determined 

because a proportion of the wear debris was not electron transparent, while proportions could 

not be measured by XRD because of the high background levels, the extensive peak 

broadening and the absence of standards. XRD showed that heating the wear debris at 350°C 

for 1 h in air initiated some transformation of both amorphous and bcc phases toFe3O4, while 

heating at 450°C for 1 h produced complete transformation to Fe3O4. While some oxidation 

could clearly have occurred during heating of the wear debris, this does suggest that surface 

temperatures during wear testing were below 350°C. 
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Fig. 5. TEM bright field micrographs of longitudinal 

cross-sections taken through similar oxide prows to 

those shown in Fig. 1, after testing 316L stainless steel 

at 55 N. (a) Entrapped oxide, extending several 

microns below the worn surface with inset electron 

diffraction pattern from the oxide particles; (b) detail 

showing the composite nature of oxide and metal, 

demonstrating that the two had deformed together. 

 

Figure 5(a) gives a TEM image through a prow, similar to that shown in Fig. 3(a). The 

microstructure consisted of the same oxygen-containing particles (labeled ‘O’ in Fig. 5(a)) as 

found in the wear debris, distributed through a heavily deformed matrix. Electron diffraction and 

EDS indicated that the phases present in these samples were similar to those in the wear debris, 

although no Fe3O4 was found embedded in the surface layers. The non-equilibrium bcc phase 

constituted the majority oxygen-containing phase present, with only relatively small amounts of 

the amorphous phase present. The grain size of the non-equilibrium phase was of the order of 5 

nm, but was generally too small to measure quantitatively with any confidence. The metallic 

matrix was entirely austenitic, with no evidence of strain-induced martensite (’-Fe) being found, 

either in the diffraction pattern or from the characteristic appearance of a strain-induced 

martensite. The subgrain size in the matrix was extremely fine, being as small as 12±8 nm at 

the surface (the detailed aspects of the matrix deformation are discussed elsewhere [25]). 

The bright field TEM image in Fig. 5(a) shows clear evidence of the strain discontinuity 

between oxygen-containing phase and matrix, with the matrix undergoing locally much greater 

strain where it flowed around the harder oxygen-containing particles. The non-metallic 

fragments appeared to have originated from break-up of the surface oxygen-containing film 

such as that in Fig.3(c), which became incorporated into the structure well below the contact 

surface as a result of severe plastic deformation and associated microstructural rotation. 

Close examination of the microstructure nearer to the surface indicated that deformation of the 

oxygen-containing phase had also occurred, for example, fragments of this phase had become 

elongated in the sliding direction, Fig. 5(a). In places, the deformation of the oxygen-containing 

phase was substantial, Fig. 5(b), with the plastic deformation in both oxygen-containing phase 
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and matrix resulting in a nanoscale composite structure, with intimate mixing with the g-Fe. 

There was no evidence of cracking at the interface between the various phases, either in the 

heavily deformed regions of Fig. 5(b) or the entrapped oxygen-containing particles in Fig. 5(a).  

While SEM indicated microscopic cracking (Fig. 3(c)),such regions would have probably been 

lost during TEM preparation and therefore the origins of such cracks could not be studied in 

detail. An H21 tool steel, containing a range of TiC particle contents up to 7wt%, was tested in 

pure sliding against an M2 tool steel. In general, the wear coefficient decreased with an 

increase in load, associated with an increase in the oxide content of the surface. However, this 

effect was less as the volume fraction of TiC was increased. Table 2 gives the wear data for the 

unreinforced H21 and the H21+7%TiC.  

Figure 6 gives a TEM micrograph taken from the extreme worn surface of an H21+7%TiC tool 

steel tested against an M2 tool steel counterface in unlubricated sliding at 1 m/s and 254 N. The 

martensitic matrix had transformed to -ferrite, which had become extensively deformed. Unlike 

the case of the 316L stainless steel in Figs 4 and 5, the oxide could be identified, and was found 

to be predominantly Fe3O4. However, the oxide exhibited many similarities to that observed in 

the 316L, for example, it exhibited intimate mixing with the metallic matrix, with no evidence of 

cracking at the interface between the two phases. In common with the oxide in the stainless 

steel, there was evidence that the oxide itself had also been deformed in places, forming a 

nanoscale  

 

Fig. 6. TEM bright field micrograph from back 

thinned samples of the worn surface of a H21+7% 

(WTiC) tool steel, worn against M2 tool steel in 

pure sliding at 254 N, 1 m/s, showing apparent co-

deformation of a a-Fe (subgrains-size 33±25 nm) 

and the oxide structure (predominantly Fe3O4 of 

size 15±13 nm). 
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Fig. 7. Wear coefficient as a function of load 

for a 17% Cr white cast iron worn against an 

M2 tool steel. 

Fig. 8. SEM micrograph of the worn surface of a 17% 

white cast iron worn against M2 tool steel at 28 N and 

0.94 m/s, showing a thick oxide surface layer. Note the 

fragmentation of the M7C3 just below, and the 

incorporation of this carbide into the bottom of the oxide 

layer. 

composite (compare Figs 5(b) and 6), although the extent of this was much less than observed 

for the 316L stainless steel. Moreover, the oxide crystallite size was very fine (15±13nm) as was 

the sub-grain size of the -ferrite (33±25 nm),but there was no preferred crystallographic 

orientation detected within the oxide. 

A 17%Cr white cast iron was tested in the same test rig, with the same counterface and 

sliding speed as the H21 tool steel described above, but with a slightly different load range. 

Figure 7 shows the wear coefficient as a function of load. The highest wear coefficient was 

recorded at the lowest load (42 N), but for loads of 91N and above, the wear coefficient was 

approximately constant. The reduction in wear coefficient was associated with a change in wear 

mechanism. At the lowest load, an intermittent, thin, oxide film was present, and a significant 

fraction of the wear debris was metallic. For loads of 91 N and above, the surface was covered 

in a uniform oxide film, the thickness of which increased with load. Figure 8 shows an SEM 

micrograph of the oxide film at the highest load of 238 N, where it was typically 10 μm thick. In 

addition, the phase constitution  

  

 

Fig. 9. TEM bright field micrographs from back 

thinned samples of the worn surface in Fig. 5, 

showing (a) fragmented M7C3 carbides just 

below the oxide layer; (b) the oxide/heavily 

deformed matrix interface; and (c) carbide 

particles within the thick Fe3O4, Fe2O3 oxide 

layer. 
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of the oxide changed with load, being only Fe2O3 for loads up to 91 N, but Fe2O3 and Fe3O4 

for the higher loads. 

Figure 9 gives TEM micrographs from various positions below the worn surface shown in 

Fig. 8. Figure9 (a) shows fragmentation of the carbide below the worn surface, within a heavily 

deformed matrix. Interestingly, there was minimal cracking between carbide fragments and the 

matrix, although, as noted above, regions that are cracked tend to be lost from TEM samples 

during specimen preparation. Figure 9(b) shows the interface between the oxide and matrix, 

which was found to be abrupt, but again free from cracking. In contrast to the oxide observed on 

the surface of the stainless steel and the H21 tool steel, the grain size of the Fe3O4 seen in this 

micrograph was comparatively coarse(approximately 100–300 nm). Figure 9 (c) shows the 

microstructure within the thick oxide film. It contained fine carbide fragments, 5–20 nm in size, 

located principally along the oxide grain boundaries (Fe3O4 in this example). These particles 

were found throughout the oxide film, even though they had not been resolved in the SEM 

micrograph in Fig. 8. 

 

3.2. Formation of oxides in the wear of aluminium alloys 

In contrast to the ferrous materials, the wear coefficient of alumium alloys often shows an 

increase with an increase in load. Figure 10 shows the wear coefficient of a Duralcan Al–Si–SiC 

alloy as a function of load. The increase in wear coefficient was related to fragmentation of the 

SiC at the worn surface and subsequent classical delamination resulting from easy growth of 

cracks through the matrix from particle to particle, with cracks initiated at the 

reinforcement/matrix  

 

Fig. 10. Wear coefficient as a function of load for 

Duralcan (Al–Si–SiC) worn against a grey cast 

iron at 1 m/s in pure, unlubricated, sliding. 



WM Rainforth, AJ Leonard, C Perrin, et al, Tribology International 35, 2002, 731-748. 
 

13 

 

 

Fig. 11. SEM micrograph of a longitudinal cross-

section of a Duralcan (Al–7.6wt% Si–0.5wt% Mg–

30vol% SiC) composite worn against grey cast 

iron at 40 N and 1 m/s, showing fragmentation of 

the SiC, transfer from the disc, but no apparent 

oxidation of the aluminium. 

interface [28]. Figure11 gives an SEM micrograph of a longitudinal cross-section of the Duralcan 

worn against a grey cast iron counterface at 40 N and 1 m/s, which shows the fragmentation of 

the hard second phase particles (Si and SiC) that is the precursor to surface delamination. SEM 

examination of the worn surface in plan view revealed extensive surface grooving and transfer 

of Fe from the grey cast iron counterface. Interestingly, SEM suggested that the Fe had become 

oxidized while there was no evidence of oxidation of the Al. 

Figure 12 gives bright field TEM micrographs of the worn surface shown in Fig. 11. The 

structure was complex, comprising several different phases as well as a heavily deformed a-Al 

matrix. There was widespread cracking within the structure, particularly at the interface between 

particles and matrix. Of particular interest was the dominance of -Al2O3 in addition to the 

fragmented Si and SiC particles. The -Al2O3 exhibited an ultra-fine structure, Fig. 12(b). While 

in some places the grains were randomly oriented, Fig. 12(a), in other regions the -Al2O3 

crystallites were slightly elongated with the long dimension following the profile of the particle 

edge, Fig. 12(b), although their crystallographic orientation remained random. 

The wear of Al alloy–SiC composites is dominated by the high hardness of the SiC and the 

delamination wear that is common at high loads, induced by particle fracture and ductility 

exhaustion at the interface between particle and heavily deformed matrix [25], and by the 

abrasive action of the SiC on the counterface. In an attempt to reduce these effects, an Al-

based composite reinforced with a Ni3Al particulate, that is substantially softer than SiC, was 

developed, the full  
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Fig. 12. TEM bright field micrographs from a back thinned sample of the worn surface shown in 

Fig. 10. (a) Fragmented particles, comprising predominantly -Al2O3, but also SiC, within a 

heavily deformed a-Al matrix; (b) detail of an a-Al2O3 particle, showing ultra-fine substructure. 

 

Fig. 13. SEM micrograph of a 

longitudinal cross-section of a novel 

Al–6092–30vol%Ni3Al composite worn 

against an M2 tool steel at 91 N and 

0.94 m/s, showing fragmentation and 

deformation of the Ni3Al. 

details of which are reported elsewhere [35,37]. Figure 13 gives a longitudinal cross-section 

from the test at 91 N, 0.94 m/s against an M2 tool steel counterface. This load is above a critical 

maximum at which the reinforcement becomes plastically deformed and fragmented. However, 

as shown in Table 2, this did not result in an increase in wear coefficient. The reason for this 

was believed to be because a mechanically mixed layer (MML) was built-up at the surface, 

comprising components of both counterfaces, which was considerably harder than the Al 

composite substrate. Figure 14 gives TEM micrographs of a longitudinal cross-section through 

the worn surface shown in Fig. 13, but from a region where the MML was more extensive. The 

structure of the MML was found to be complex and was made up of a number of phases. In 

addition to heavily deformed a-Al (Fig. 14(a)) and fragmented Ni3Al (Fig. 14(b)), an amorphous 

phase was present that contained both Fe and Al, but with appreciable quantities of oxygen (Fig. 

14(a)). This phase contained fine, nanoscale, cracks and was present in several different 

morphologies, ranging from elongated to equiaxed. 

It is extremely difficult to evaluate the phase distribution from bright field TEM micrographs 

such as those in Fig. 14. Dark field imaging has only limited use since the diffraction rings of the 

different phases were frequently too close to allow an image of an individual phase to be 

obtained.  
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Fig. 14. TEM bright field micrographs of longitudinal cross-sections taken through the worn surface 

shown in Fig. 9. (a) Showing the complex structure of the MML. The selected area diffraction pattern 

shows an amorphous component (labelled A), fine a-Al crystallites and an Fe,Al,O containing phase 

(labelled B) that contained fine (~10 nm) crystallites within; (b) a similar region to (a), but containing 

deformed Ni3Al particles. 

 

Fig. 15. Energy filtered TEM images (jump ratio) from the sample shown in Fig. 10. (a) Zero loss filtered 

bright field TEM; (b) Al map; (c) Ni map; (d) O map; (e) Fe map. Note the intimate scale of mixing. 

In order to gain a better understanding of the phase distribution, electron spectroscopic imaging 

was used. This technique has been widely used to study chemical distribution in metallic and 

ceramic systems (e.g. [40–42]), but has not been used to evaluate worn surface structures. Fig. 

15 gives elemental distribution maps (jump ratio images) taken from one region close to that in 



WM Rainforth, AJ Leonard, C Perrin, et al, Tribology International 35, 2002, 731-748. 
 

16 

 

Fig. 14(a). Figure 15(a) gives a brightfield TEM image after removal of the inelastically scattered 

electrons (in other words, this is a ‘pure’ diffraction contrast image). The lower region comprised 

the amorphous Fe–Al–O phase observed in Fig. 14(a). The middle feature was positively 

identified as Ni3Al. The feature in the upper left region could not be positively identified. Figure 

15(b, c) give Al and Ni maps, respectively, and are consistent with the identification of 

Ni3Al.Figure 15(d, e) are consistent with the earlier analysis that shows the amorphous phase 

contains Fe and O. Note also that the contrast shown is relative, and by adjusting the contrast 

scale, it was clear that the lower region also contained Al, albeit in small quantities. Interestingly, 

the Ni3Al also contained Fe, intimately mixed within, as shown in Fig. 15(e). The phase in the 

upper left hand corner also contained Fe and O, with some Al, and appeared to be a 

nanocrystalline form of the amorphous phase. 

 

Fig. 16. (a) Bright field TEM micrograph from a longitudinal cross-section of TiAlN/CrN worn against an 

M2 tool steel counterface at 0.42 m/s and 91 N showing deformation and a surface transfer film. The 

arrow indicates the direction of movement of the counterface (the coated sample was static). The Fresnel 

contrast reveals the position of the multilayer structure and the microcracks; (b) detail from (a) showing 

the transfer film, predominantly made up of Fe3O4. The thin feature at the top of the micrograph is a gold 

coating used to label and protect the original surface. 

 

3.3. Formation of oxides in the wear of TiAlN/CrN coatings 

Coatings have been used for some time to enhance the wear resistance of tooling, in 

particular, cutting and milling tools. The latest 3rd generation coatings are based on a nanoscale 

multilayer structure (hence their name ‘superlattice’ coatings), and offer the exceptionally high 

hardness (consequently, they are often called ‘superhard’ [32]). The combination of high 

hardness, excellent thermal stability and good oxidation resistance offers the potential for these 

coatings to be used in unlubricated high speed cutting applications. As such, the oxidational 

wear mechanisms are of particular importance. 

Figure 16 gives bright field TEM micrographs from a longitudinal cross-section from a 

TiAlN/CrN coating. The surface was covered in a thin polycrystalline layer, typically 100–300 nm 

thick. Electron diffraction and EDS indicated that the film was predominantly Fe3O4but with 

some Al2TiO5 and trace quantities of the components of the TiAlN/CrN. In common with the 
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iron based oxides observed on the 316L and H21 worn surfaces, the structure of the oxide layer 

was in the nanostructure regime, with an average crystallites size 11±5nm. The interface 

between this surface layer and the deformed substrate was always found to be sharp, with no 

transition region detected. 

Below the surface oxide layer, the superlattice coating had been plastically deformed to a 

depth of 55 nm (seen clearly by the bending of Fresnel contrast from the individual layers). The 

plastic deformation resulted in the formation of fine cracks, which appeared to be the precursor 

to delamination, which presumably resulted in the pitting seen elsewhere on the surface. 

 

4. Discussion 

 

4.1. Comparison of test conditions 

It is important that microstructural observations be putin perspective with respect to the 

operative wear mechanisms. Since the wear mechanism descriptions used in the literature are 

generally subjective, the most convenient method to compare test conditions is to use the 

normalised pressure and normalised velocity as defined by Lim and Ashby [24], which also 

allows the current conditions to be compared to the wear mechanism maps[24], (although Lim 

and Ashby cite data for a range of steels, from carbon to tool steels, but do not include stainless 

steels). For the wear tests on the 316L the normalized pressure, F˜ , was in the range 3–24×10-5, 

while the normalised velocity, v˜, was 132. The corresponding values for the H21+7%TiC and 

17%Cr Fe are F3×10-4 and v˜524 (figures are approximate, since thermal diffusivities of these 

materials are not known exactly, however, small errors make no difference to the regimes 

shown in the wear maps). A comparison of the these figures with the Lim and Ashby maps 

(bearing in mind the compositional differences, particularly for stainless steels) and the 

published literature on the wear of steels suggests that the stainless steel should be operating 

within the Archard adhesive wear regime, while the H21+7%TiC and 17%Cr iron were operating 

firmly within the mild oxidational wear regime(or ‘mild wear’) defined by Quinn. 

The corresponding figures for the Duralcan are F˜2.5×104 and v˜69, while the Al–alloy–

Ni3Al composite yielded F˜ 5.7×10-4 and v˜69 (again, no account is taken for the small 

difference in thermal diffusivity between an Al–Si matrix for the Duralcan and the 6092matrix for 

the Al–alloy–Ni3Al composite). These values can be compared to the Al wear mechanism map 

proposed by Antoniou and Subramanian [45], and suggest that the Al–alloy/steel couples are 

operating in the mild wear regimes. The differences in F˜ and v˜ between the steel and 

aluminium tests are comparatively small (2×for the 316L, 7.6× for the H21+7%TiC and 17%Cr 

iron),certainly small compared to the 6 orders of magnitude range in test conditions reported in 

the literature on, for example, carbon steels [24]. 

 

4.2. The role of oxygen in the wear of 316L 

The literature on oxidational wear has largely assumed that only equilibrium oxide phases 

are formed by the wear process. For example, Smith [46–48] observed a-Fe2O3 for the 

reciprocating and sliding wear of self-mated 316 stainless steel in the temperature range 20–
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500°C. Similar tests in CO2 [49] introduced Fe3O4 in preference to a-Fe2O3 at room 

temperature, but both phases at 300–500°C. Tests of the same material in pure sliding yielded a 

hydrated form of hematite (d-FeOOH),although the experimental XRD data did not exactly 

match the corresponding JPDS file [46]. Saito et al. [44]observed an ‘oxide’ (based on Electron 

Probe Microanalysis(EPMA)) in the sliding of 316L under severe sliding conditions of 50 ms1, 

1.88×103–1.18×104 N, for temperatures up to 260°C. The current results have found non-

equilibrium phases that retain the same ratio of Fe:Cr:Ni as in the 316L, but contain appreciable 

quantities of oxygen (25 weight %). The dominant constituent was a non-equilibrium, oxygen-

containing bcc phase, with a crystallite size average in the range 5–10 nm, but this was 

interspersed with an amorphous phase of the same composition. Observations of amorphous 

and nonequilibrium phases have been made in high energy mechanical milling (e.g. [50]), but 

there has only been a few reports of non-equilibrium oxide phases formed during wear (e.g. de 

Wit et al. [51] reported amorphous tin oxides during the sliding wear of tin against corundum, Li 

and Tandon [52] observed an amorphous aluminium phase containing appreciable quantities of 

oxygen after sliding an Al–Si/SiCp composite sliding against a bearing steel and finally Wang et 

al. [53] observed anamorphous phase at the surface of a bearing steel). It is not clear why the 

current observations differ from those in the literature on stainless steels, except that in the 

current work a ceramic counterface was used, rather than metal on metal couples 

predominantly used elsewhere. However, the difference may be that the current observations 

were based on detailed TEM analysis, and the resulting identification could not have been 

obtained from XRD alone, because of the substantial peak broadening that arose from the ultra-

fine grain sizes. It is interesting to note that the identification of d-FeOOH made by Smith [46] 

was not precise (because of similar difficulties of X-ray line broadening), and that the lattice 

spacings of d-FeOOH are similar to the non-equilibrium bcc phase observed in the current study. 

Moreover, it is far from clear why a hydrated phase should form in a system where the driving 

force to produce equilibrium oxides is high, and the frictional heating at the worn surface would 

probably be significant. 

The nanocrystalline non-equilibrium bcc and amorphous oxygen-containing phases partially 

transformed to equilibrium phases on heating at 350°C for 1 h, while heating at 450°C for 1 h 

produced complete transformation to Fe3O4. While there will have been a difference between 

oxygen partial pressure on heating in air, and adjacent to the contacting asperities, this 

observation suggests that the oxide was formed at a temperature well below 350°C, consistent 

with the predictions of flash temperature that suggested a probable temperature rise of 200–

250°C [25]. 

No strain-induced martensite (’-Fe) was found in TEM studies of the worn surface, while 

X-ray diffraction of the wear debris suggested a small fraction of this phase was formed at 6.8 N, 

but not at higher loads. Observations of ’-Fe are common in the sliding wear studies of 

stainless steels (e.g. [54,55]), although many of the observations have been made on 310 and 

304stainless steels, which have a significantly higher martensite-start temperature than 316 

stainless steel and therefore transform much more easily than 316 stainless steel during wear 

tests. While the number of studies on316 stainless steel is relatively small, ’-Fe formation has 
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also been observed in reciprocating wear of 316 on316 by Smith [49]. In the current studies, 

type 316 stainless steel was chosen specifically because it is a more stable alloy than types 304 

and 310. Moreover, the use of a low thermal conductivity zirconia counterface will have resulted 

in higher flash temperatures than would have occurred in the tests of Smith. The martensite 

start temperature (Ms) for strain-induced transformation in316 has been reported as 68°C by 

Cook [56], which is below the expected surface temperatures in the current test 200–250°C [25], 

but clearly above the surface temperatures in the air tests of Smith [46–48]. Thus, the absence 

of a                                               -Fe in TEM cross-sections is consistent with the predicted Ms 

for this material and the predicted flash temperatures. 

Figure 3(a) shows a prow, which forms the contacting asperity, on the surface of the worn 

316L stainless steel. The backscattered electron imaging in Fig. 3(a) and TEM examination in 

Fig. 5(a) show that the prow was a complex mixture of the oxygen-containing phases and the 

parent metal, that had become intimately mixed as a result of severe plastic deformation and 

associated lattice rotation and particle fragmentation. Figure 3(b) shows the liberation of a wear 

particle from such a prow. The sequence of events shown in these images is in broad 

agreement with the sequence described by Quinn [10].However, there are important differences 

between the mechanism observed in Fig. 3 and the classical oxidational wear mechanism. The 

first is shown in the TEM images in Fig. 5. In this case, the oxide was intimately mixed with the 

matrix. In addition, the oxide had been deformed; in places the co-deformation of the oxide and 

metal created a complex composite structure. This contrasts strongly with the classical model 

that is based on a uniform oxide layer. However, this comparison may not strictly be fair. In 

Sullivan et al.’s [8] tests using anEN8 steel, for example, the worn surface was reported to be 

comparatively smooth, and the wear system exhibited all the characteristics of mild wear. In 

contrast, the316L tests reported here exhibited some aspects of severe wear, namely, extensive 

ploughing of the surface, presumably because the 316L is comparatively soft in comparison to 

EN8. Based on normalised pressure, the316L was operating in the ‘oxidational wear + 

ploughing’ regime identified by Rapoport [20], whose wording suggests a slightly more severe 

condition than the mild wear regime of Quinn. 

Despite the differences in type and morphology of oxide (or oxygen-containing phase) 

formed, there was one important similarity between the present tests on316L and the EN8, 

namely that, provided the type of oxide did not change, the Lancaster wear coefficient 

[57](mm3/Nm) decreased with an increase in load. The extent of this change was far greater in 

the current tests on 316L, and was clearly associated with an increase in the fraction of the 

surface covered in oxide. Thus, the oxide improved the wear resistance of the material. Within 

the context of the classical oxidational theory of wear, the perceived reasons for a reduction in 

wear coefficient with an increase in the oxide presence is because of a reduction in adhesive 

forces, rather than an improvement in surface mechanical properties. Indeed, Quinn[10] 

suggests that the true contact area is determined by the mechanical properties of the metal 

substrate rather than the mechanical properties of the oxide. The present results demonstrate 

that this is not the case for the ‘oxidational wear + ploughing’ reported here. In contrast, it is 

proposed that the improvement in wear coefficient arises because the oxide is essentially 
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mechanically mixed with the surface (a mechanically mixed layer or MML [58,59]), forming a 

hard metal matrix composite that has superior wear resistance to the comparatively soft -Fe 

matrix. This point will be developed further when thewear behaviour of the tool steel and white 

iron is considered. 

 

4.3. Oxidational wear in the tool steel and white iron 

The worn surface of the H21+7%TiC tool steel conformed closely to the definition of mild 

wear, exhibiting a comparatively smooth worn surface with wear debris that was generally sub-

micron and predominantly oxide. Moreover, as noted above, the Lim and Ashby wear map 

predicted mild oxidational wear for these test conditions .As with the 316L, a decrease in 

Lancaster wear coefficient with increase in load was associated with an increase in oxide 

coverage of the surface. Nevertheless, the surface had undergone major structural change, in 

particular, the martensitic matrix had transformed to a-Fe and had been plastically deformed to 

high strain. As shown in Fig. 6, the oxide was predominantly Fe3O4with a nanocrystalline 

structure that led to substantial line-broadening in X-ray traces (this is another interesting 

example of where phase identification was substantially easier by TEM than by X-ray diffraction). 

The behaviour of the oxide showed two important similarities with that observed for the 

316L. Firstly, the oxide had become intimately mixed with the metal matrix, locally forming a 

composite structure. While this was by no means as extensive as in the 316L, it was 

nevertheless a distinctive feature. Moreover, for theH21+7%TiC, the composite structure also 

included carbides and fragments of the TiC particles. Secondly, the oxide formed had an ultra-

fine structure, well within the nanocrystalline range. Such structures are known to have unique 

properties when compared to their microcrystalline counterparts, for example, showing 

enhanced strength and ductility [60]. This ultra-fine structure and the intimate mixing of the 

oxide and metal matrix makes an estimate of the mechanical properties of the surface layer 

difficult, although nano hardness testing should further extend our understanding in the future. 

Interestingly, the wear coefficient data suggests that this structure provided superior wear 

resistance compared to the quenched and tempered martensite starting structure. 

In common with the 316L and the H21+TiC tool steel, the 17%Cr white iron exhibited a 

decrease in wear coefficient with load, associated with the formation of an oxide. At the lowest 

load of 42 N, the wear was predominantly metallic, while at 91 N and above the worn surface 

was covered in a continuous oxide film. Despite the identical test conditions used for the 

H21+7%TiC and white iron tests, the oxide morphology found on the two surfaces was quite 

different. The oxide film on the white iron was continuous and therefore was not located 

predominantly at the contacting asperities, Fig. 8. The film, up to 10 μm thick, could be 

described as a ‘glaze’ as observed, for example, on the worn surface of Ni-based superalloys 

(e.g. [61–64], although such glazes often comprise compacted oxide wear debris and are often 

only observed in tests where the bulk temperature of the sample is artificially raised). There was 

no evidence of mechanical mixing of the white iron substrate and oxide film. Given the similarity 

in test conditions betweenH21+TiC tool steel and 17Cr white iron (geometry, counterface, load 
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range and speed), the difference in oxide morphology must arise from the differences in 

material properties. 

For loads up to 91 N, the oxide on the white iron was only Fe2O3, but Fe2O3 and Fe3O4 

were present at the higher loads. This suggests that the asperity contact temperature was not 

the reason for the difference in oxide film morphology, since only Fe3O4 was observed on the 

surface of H21+7%TiC, i.e. the results indicate that surface contact temperature was higher for 

the H21+7%TiCthan for the 17%Cr white iron. Thus, there must be an alternative mechanism to 

explain the difference in oxide morphology. 

As discussed above, the surface of the H21+7%TiChad transformed from martensite to a-

Fe, which had been severely plastically deformed. An equivalent tensile strain of 8 was 

measured at the surface (using lines of segregation present in the cast structure that were 

initially perpendicular to the worn surface), with a total depth of deformation of 13 μm. The 

corresponding figures for the 17%Cr iron was an equivalent tensile strain of 3.5 and a total 

depth of deformation of 15μm [36]. Thus, the total depths of deformation were similar, but the 

H21 had undergone about twice the strain at the surface compared to the 17%Cr iron, not 

surprising given that tool steels generally have sufficient ductility to be hot worked, while white 

irons do not. However, failure of the oxide film is often believed to be at the substrate/oxide 

interface [10]. A stable glaze layer can only be established where the strain discontinuity 

between oxide and substrate is small, i.e. substantial ductility of the substrate will result in 

mechanical mixing of the oxide (as shown by the 316L) rather thana thick glaze layer. It would 

appear therefore, that the surface strains for the 17%Cr white iron were sufficiently small to 

allow a glaze layer to be formed, while for the H21+7%TiC, the strains were too high, and a 

degree of surface mechanical mixing occurred. Interestingly, a glaze layer is observed on the 

surface of 17%Crwhite iron hot mill work rolls, which periodically detaches, resulting in poor 

workpiece surface quality where the oxide has become incorporated into the workpiece surface 

[22]. 

 

4.4. Oxides of the surface of the aluminium alloys 

Oxidation has not been regarded as an important mechanism in the wear of aluminium 

alloys, although Li and Tandon [65,66] found alumina as a minor constituent in a mechanically 

mixed layer formed from the sliding of Al–Si alloys on steel. The absence of oxides on the worn 

surface of aluminium is surprising given the greater driving force for oxidation in aluminium 

alloys compared with ferrous alloys. While the driving force for oxidation is greater for aluminium 

than for steels, aluminium alloys exhibit substantially lower oxide growth rates compared with 

steels, a result of the fundamental difference in oxygen transport through the scale. Thus, in low 

temperature static oxidation of aluminium, a thin, stable oxide film is formed. However, in sliding 

contact, the oxide scale is continuously disrupted by the wear process greatly changing 

oxidation kinetics, shown for example by the observation that tribological values of the Arrhenius 

constant, Ap, are several orders of magnitude greater than the equivalents for static 

oxidation[17]. Therefore, it cannot be assumed that the generation of a stable ultra-thin oxide 
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layer that is found in low temperature static oxidation of Al will be found during the wear of 

aluminium. 

The current results show that oxides do form at the worn surface of aluminium alloys, but 

they are often only observed when detailed surface examination is undertaken by TEM. For 

example, Fig. 12 shows a-Al2O3 at the surface of Duralcan. The oxide shows important 

differences with those formed on the ferrous materials. Firstly, there was always substantial 

cracking associated with the interface between a-Al2O3 and a-Al, in contrast to the ferrous 

alloys, where the interface was always free from cracking. While such cracking could have 

originated during TEM sample preparation, it is notable that no such cracking has ever been 

observed in mechanically alloyed Al alloys containing a-Al2O3,prepared in an identical fashion 

on an identical machine. Secondly, the a-Al2O3 was present as discrete, random shaped 

particles, which had not plastically deformed. In contrast, there was evidence that the ferrous 

oxides underwent plastic deformation for all materials studied here. Thus, as expected, there is 

clear evidence that thea-Al2O3 was substantially more brittle than the nonequilibrium oxide on 

the 316L or the Fe2O3/Fe3O4 formed on the tool steel and white irons. 

The analysis of Quinn [10] showed that for ferrous alloys, the critical thickness at which the 

oxide spalled, , was essentially constant as a function of load, although some small speed 

dependency was observed. Interestingly, x was also remarkably similar for Fe2O3,Fe3O4 and 

FeO, despite major differences in the asperity contact temperature, To. Unfortunately, values 

are not available for aluminium oxides, although the present work suggests that values of x 

appropriate to -Al2O3are 50–150 nm (e.g. from Fig. 12) compared to the 1–3 μm reported by 

Quinn for ferrous oxides [10]. Thus, the oxide on the surface of the aluminium is removed before 

it is thick enough to be visible by SEM. 

The reasons why oxides do not appear to be beneficial for Al alloys, but are for ferrous 

alloys, can be summarised as follows. Firstly, and most importantly, the critical thickness at 

which the oxide is detached as wear debris is approximately an order of magnitude smaller for 

aluminium compared to ferrous alloys. Secondly, and intimately related to the first reason, the 

ferrous oxides appear to be relatively ductile while the -Al2O3 shows no evidence of ductility. 

Thirdly, the interface between the ferrous oxide and metal substrate appears to be strong, 

irrespective of the alloy composition, even where the oxide had become detached and then 

mechanically mixed into the surface. In contrast, under repeated asperity contact conditions, 

there was no evidence that the -Al2O3 exhibited good adhesion with the substrate (TEM 

images always showed cracking at the interface between a-Al and a-Al2O3). Thus, the TEM 

evidence was that the ferrous oxides and oxygen-containing phases improved the mechanical 

properties of the surface. In contrast, there was no evidence that oxide at the surface of the a-Al 

improved mechanical properties, rather that the oxide/matrix interface acted as a potential site 

for crack nucleation. 

No -Al2O3 was found at the surface of the Al-based composite reinforced with Ni3Al 

particulate. Unlike the Duralcan material, there was extensive transfer of Fe from the 

counterface to the Al composite. In combination with the deformation and fragmentation of the 
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Ni3Al, a complex mechanically mixed layer was formed at the surface. In a similar manner to 

the ferrous tests, this MML exhibited good mechanical integrity and enhanced wear resistance. 

The structure of the MML was extremely complex, and showed many similarities to the 

MML reported by Li and Tandon [65,66] for the sliding of Al–Si against an M2 tool steel. As with 

the current results, Li and Tandon could totally resolve the structure of the MML by conventional 

TEM. While electron spectroscopic imaging (ESI) has been available as a technique for a 

number of years, it has not been widely applied to the study of worn surfaces. The present 

results in Fig. 15show that mixing of the constituents occurs on a truly nm scale. It also 

demonstrates that oxidation is an important component of the MML, with the formation of a non-

equilibrium amorphous Fe–Al–O phase. Moreover ,it is interesting that the Ni3Al exhibited signs 

of incorporating Fe into its structure, but showed no evidence of oxidation. 

There are interesting parallels between the success of the oxide in enhancing wear 

resistance for the 316L and the MML in enhancing wear resistance for the Al–alloy/Ni3Al 

composite. In both cases, the various phases present (hard and soft) were plastically deformed 

to high strain and consequently became intimately mixed on a nm scale. In both cases, the 

deformation of a variety of different phases did not result in cracking, rather in the formation of 

ultra-fine scale composite. It is clear, therefore, that whether or not a reaction with the 

environment has a beneficial or detrimental effect on the wear rate depends strongly on the 

mechanical interaction of there action product with the substrate, particularly under conditions of 

surface plasticity. 

 

4.5. Oxides of the surface of the hard coatings 

Analysis of the wear regime under which the superhard TiAlN/CrN layer operated was 

difficult, since the wear rates were so low that no wear debris from the coating could be 

collected. The surface was smooth and exhibited the features frequently described as mild wear. 

However, SEM failed to reveal any oxide on the surface. In contrast, cross-sectional TEM 

demonstrated that the coating was covered in a uniform oxide film, containing an appreciable 

quantity of iron oxide (Fe3O4), but also a fraction of Al2TiO5, a product of oxidation of the 

coating itself. Thus, the wear could reasonably be described as mild oxidational. However, the 

surface film exhibited similarities, at least in some respects, to the surface of the Al–alloy/Ni3Al 

composite since it contained constituents from both surfaces. Thus, while the film was relatively 

uniform at contacting asperities, it did not comply with the sequence of events described by 

Quinn where the oxide film was formed by oxidation of one constituent. 

Despite the differences described above, the surface oxide film exhibited the positive 

attributes of the oxide films found, for example, on the surface of the steels, namely, an ultra-

fine structure with evidence of good adhesion with the substrate. Unfortunately, no comment 

can be made as to whether the film was beneficial or not, since the change in film thickness with 

load could not be measured and therefore a correlation of oxide surface coverage with wear 

rate could not be made. 

 

5. Summary 
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(a) The oxide formed at the worn surface of the type 316L stainless steel comprised a non-

equilibrium, oxygen-containing bcc nanocrystalline phase and anamorphous phase, both of 

which retained the same ratio of Fe:Cr as in the starting structure. The oxide had been 

deformed with the substrate, forming a nanoscale composite. The wear resistance of this 

composite structure exceeded that of the starting substrate. 

(b) The oxide formed at the worn surface of the H21+7%TiC was predominantly Fe3O4, 

with a nanocrystalline structure, which became mechanically mixed with the substrate in a 

similar manner to the316L, although to a lesser extent. An increase in oxide coverage resulted 

in a reduction in wear coefficient. 

(c) The oxide formed at the surface of the 17%Cr Fe was a thick (10 μm) uniform layer, 

consisting ofFe2O3 and Fe3O4. The grain size of the oxide was at least an order of magnitude 

larger than found for the H21+7%TiC or 316L, and there was little evidence of mechanical 

mixing with the substrate. 

(d) The common observation with all ferrous oxides was the excellent adhesion between 

oxide and substrate, the absence of cracking within the oxide or at the substrate/oxide interface, 

and the apparently good ductility of the oxides. 

(e) a-Al2O3 was observed at the surface of the Al–Si/30%SiC Dural can material. However, 

the oxide could only be detected in the TEM because of its fine dimensions (150 nm). Extensive 

cracking was present, particularly at the oxide/substrate interface. The absence of a beneficial 

effect was believed to be associated with the brittle nature of the oxide, its poor adhesion to the 

substrate under wear conditions, and the inability to generate a thick, stable oxide film. 

(f) The Al–alloy Ni3Al composite exhibited a mechanically mixed layer at the surface, 

comprising constituents resulting from transfer of Fe from the counterface. An increase in the 

extent of the mechanically mixed layer resulted in a decrease in wear coefficient. The phases 

present had been extensively plastically deformed and selectively oxidised, resulting in a 

nanoscale composite, largely free from cracking, therefore exhibiting several similarities to the 

surface structure of the worn 316L. 

(g) The worn surface of the TiAlN/CrN contained a thin(30 nm) film of oxide, comprising 

nanocrystallineFe3O4 (the Fe coming from the counterface) and Al2TiO5, not resolvable in the 

SEM. Thus, the wear of this coating could be described as mild oxidational. 
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