

The relationship between local structure and photo-Fenton catalytic ability of glasses and glass-ceramics prepared from Japanese slag

ALI, Ahmed S <http://orcid.org/0000-0001-9943-5220>, NOMURA, Kiyoshi, HOMONNAY, Zoltan, KUZMANN, Erno, SCRIMSHIRE, Alex <http://orcid.org/0000-0002-6828-3620>, BINGHAM, Paul A <http://orcid.org/0000-0001-6017-0798>, KREHULA, Stjepko, RISTIĆ, Mira, MUSIĆ, Svetozar and KUBUKI, Shiro

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/25058/

This document is the Accepted Version [AM]

Citation:

ALI, Ahmed S, NOMURA, Kiyoshi, HOMONNAY, Zoltan, KUZMANN, Erno, SCRIMSHIRE, Alex, BINGHAM, Paul A, KREHULA, Stjepko, RISTIĆ, Mira, MUSIĆ, Svetozar and KUBUKI, Shiro (2019). The relationship between local structure and photo-Fenton catalytic ability of glasses and glass-ceramics prepared from Japanese slag. Journal of Radioanalytical and Nuclear Chemistry. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Table 1 Fe_2O_3 (batch) content and bandgap energy of heat-treated slag samples calculated from DRS

Sample	Total Fe ₂ O ₃ content (mass %)	E _g (eV)	
SF11 Original	11.45 ± 0.01	2.15 ± 0.02	
SF11 Melted	11.45 ± 0.01	2.09 ± 0.02	
RSF14 Melted	14.40 ± 0.01	2.22 ± 0.04	
SF30 Melted	30.00 ± 0.01	1.96 ± 0.01	
SF50 Melted	50.00 ± 0.01	1.96 ± 0.01	

	0 1	le assignment	A (%)	δ	Δ	Hint	Г
	Sample			(mm s^{-1})	$(\mathrm{mm \ s}^{-1})$	(T)	(mm s^{-1})
Before		mag + mgh	32.2	$0.30{\scriptstyle~\pm~0.01}$	$\textbf{-0.02}_{\pm 0.02}$	$48.10{\scriptstyle~\pm~0.01}$	$0.42 \scriptstyle \pm 0.03$
	SF50	mag.	34.4	$0.52 \scriptstyle \pm 0.02$	0.00	$44.80{\scriptstyle~\pm~0.02}$	0.88 ± 0.10
	Melted	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	23.6	$0.27 \scriptstyle \pm 0.02$	$1.21 \scriptstyle \pm 0.03$	-	$0.84_{~\pm~0.05}$
		hem.	9.8	$0.37 \scriptstyle \pm 0.03$	$\textbf{-0.20}_{\pm 0.01}$	$49.96 \scriptstyle \pm 0.02$	$0.43 \scriptstyle \pm 0.04$
	SF30 Melted	Fe ^{III} O _h	100.0	$0.40{\scriptstyle~\pm~0.01}$	$0.89 \scriptstyle \pm 0.02$	-	$0.99 \scriptstyle \pm 0.03$
	RSF14	Fe ^{III} T	100.0	$0.31_{~\pm~0.01}$	$1.25_{\ \pm 0.02}$	-	$0.69 \scriptstyle \pm 0.02$
	Melted	re r _d					
	SF11	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	100.0	$0.33_{~\pm~0.01}$	$1.25 \scriptstyle \pm 0.01$	-	$0.69 \scriptstyle \pm 0.02$
	Melted	u					
	SF11	$\mathrm{Fe}^{\mathrm{II}} T_{\mathrm{d}}$	85.5	$1.00{\scriptstyle~\pm~0.01}$	$1.89 \scriptstyle \pm 0.02$	-	$0.63 \scriptstyle \pm 0.02$
	Original	$\mathrm{Fe}^{\mathrm{III}} O_{\mathrm{h}}$	14.5	$0.50{\scriptstyle~\pm~0.02}$	$1.16 {\scriptstyle \pm 0.08}$	-	$0.51 \scriptstyle \pm 0.10$
After	SF50 Melted	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	25.5	$0.31 _{\pm \ 0.03}$	$1.14_{~\pm~0.01}$	-	$0.89 \scriptstyle \pm 0.01$
		hem.	38.1	$0.37 \scriptstyle \pm 0.01$	-0.18 $_\pm$ 0.04	$51.40{\scriptstyle~\pm~0.01}$	$0.34_{~\pm~0.03}$
		mgh.	36.4	$0.37 \scriptstyle \pm 0.01$	$\textbf{-0.02}_{\pm 0.01}$	$46.40{\scriptstyle~\pm~0.01}$	$1.23 \scriptstyle \pm 0.02$
	SF30	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	100.0	$0.32 \scriptstyle \pm 0.02$	0.84 ± 0.03	-	0.76 ± 0.01
	Melted						
	RSF14	Fe ^{III} T ₄	100.0	$0.18 \scriptstyle \pm 0.01$	$1.34{\scriptstyle~\pm~0.01}$	-	$0.78 \scriptstyle \pm 0.01$
	Melted	u					
	SF11	$Fe^{III} O_h$	100.0	$0.38 \scriptstyle \pm 0.04$	$0.92 \scriptstyle \pm 0.01$	_	0.63 + 0.01
	Melted						
	SF11	$\mathrm{Fe}^{\mathrm{II}} O_{\mathrm{h}}$	9.8	1.10 ± 0.02	2.25 ± 0.05	-	0.44 ± 0.06
	Original	$\mathrm{Fe}^{\mathrm{III}} O_{\mathrm{h}}$	90.2	$0.37_{\ \pm\ 0.01}$	$0.88_{~\pm~0.01}$	-	$0.75{\scriptstyle~\pm~0.01}$

Table 2 57 Fe-Mössbauer parameters at room temperature of slag glass samples before and after heat treatment at 800 ${}^{\circ}$ C for 100 min

hem.: Hematite, mag.: Magnetite, mgh.: Maghemite, T_d: Tetrahedra, O_h: Octahedra, A: Absorption area,

δ: Isomer shift, Δ: Quadrupole splitting, H_{int} : Internal magnetic field, Γ: Line width.

sample	assignment	A (%)	δ	Δ	$H_{\rm int}$ (T)	Г
sumpre	assignment	11 (70)	$(\mathrm{mm \ s}^{-1})$	$(\mathrm{mm \ s}^{-1})$	11 m (1)	$(\mathrm{mm \ s}^{-1})$
SF50 Melted	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	14.1	$0.40{\scriptstyle~\pm~0.02}$	$1.31 \scriptstyle \pm 0.03$	-	$0.92{\scriptstyle~\pm~0.05}$
	hem.	49.0	$0.48 \scriptstyle \pm 0.01$	$0.13 \scriptstyle \pm 0.01$	53.50 ± 0.01	$0.37 \scriptstyle \pm 0.01$
	mgh.	36.9	$0.43 \scriptstyle \pm 0.01$	$-0.11_{\pm 0.01}$	$50.40{\scriptstyle~\pm~0.08}$	$0.71{\scriptstyle~\pm~0.02}$
SF30 Melted	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	15.6	$0.41 \scriptstyle \pm 0.02$	1.50 ± 0.03	-	$1.05 \scriptstyle \pm 0.05$
	Mag + mgh	27.9	$0.40{\scriptstyle~\pm~0.03}$	$\textbf{-0.08}_{\pm 0.05}$	41.90 ± 0.40	$1.40{\scriptstyle~\pm~0.10}$
	hem.	28.1	$0.48 \scriptstyle \pm 0.01$	$0.01 \scriptstyle \pm 0.01$	$50.20{\scriptstyle~\pm~0.10}$	$0.65 \scriptstyle \pm 0.04$
	mag.	28.4	$0.42{\scriptstyle~\pm~0.01}$	$\textbf{-0.04}_{\pm 0.02}$	46.80 ± 0.10	$0.73{\scriptstyle~\pm~0.07}$
RSF14	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	58.5	$0.29 \scriptstyle \pm 0.01$	$0.96 \scriptstyle \pm 0.01$	-	$0.46{\scriptstyle~\pm~0.01}$
Melted	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	41.5	$0.24{\scriptstyle~\pm~0.01}$	$1.90{\scriptstyle~\pm~0.01}$	-	$0.40{\scriptstyle~\pm~0.02}$
SF11	$\mathrm{Fe}^{\mathrm{III}} O_{\mathrm{h}}$	50.0	$0.58 \scriptstyle \pm 0.01$	$1.09 \scriptstyle \pm 0.01$	-	$0.46{\scriptstyle~\pm~0.03}$
Melted	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	50.0	$0.32 \scriptstyle \pm 0.02$	$1.21 \scriptstyle \pm 0.02$	-	$0.50{\scriptstyle~\pm~0.03}$
SF11	$Fe^{III} T_d$	100.0	0.42 + 0.01	1.20 + 0.01	-	1.03 + 0.03
Original	ŭ		<u> </u>	<u> </u>		<u> </u>

Table 3 ⁵⁷Fe-Mössbauer parameters at 77 K of slag samples heat-treated at 800 °C for 100 min

hem.: Hematite, mag.: Magnetite, mgh.: Maghemite, T_d : Tetrahedra, O_h : Octahedra, A: Absorption area,

δ: Isomer shift, Δ: Quadrupole splitting, H_{int} : Internal magnetic field, Γ: Line width.