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Abstract 

Purpose: Advancements in wireless sensor technology and building modelling 

techniques have enabled facilities managers to understand the environmental performance of 

the workplace in more depth than ever before.  However, it is unclear to what extent this data 

can be used to predict subjective environmental comfort.  Thus, the aim of this study was to 

pilot test a methodological framework for integrating real-time environmental data with 

subjective ratings of environmental comfort.  

Design/Methodology/Approach: An open-plan office was fitted with environmental 

sensors to measure key indoor environmental quality parameters (carbon dioxide, 

temperature, humidity, illumination, and sound pressure level).  Additionally, building 

modelling techniques were used to calculate two spatial metrics (‘workspace integration’ and 

workspace density) for each workspace within the study area.  15 employees were repeatedly 

sampled across an 11-day study period, providing 78 momentary assessments of 

environmental comfort.  Multilevel models were used to explore the extent to which the 

objective environmental data predicted subjective environmental comfort. 

Findings:  Higher carbon dioxide levels were associated with more negative ratings 

of air quality, higher ‘workspace integration’ was associated with higher levels of 

distractions, and higher workspace density was associated with lower levels of social 

interactions.  

Originality/Value: To our knowledge, this is the first field study to directly explore 

the relationship between physical environment data collected using wireless sensors and 

subjective ratings of environmental comfort.  The study provides proof-of-concept for a 

methodological framework for the integration of building analytics and human analytics. 
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One of the facilities manager’s core responsibilities is to ensure that the workplace 

environment remains comfortable for its occupants, so that they can work in a healthy and 

productive manner.  The traditional focus on cost reduction is increasingly seen as outdated, 

and practitioners are now expected to support their clients through value-added services 

instead (Haynes, 2007).  One such way to add value is to optimise indoor environmental 

quality (IEQ), as this plays a major role in either supporting or impeding the health and 

productivity of workplace users (Al Horr et al., 2016).  For example, practitioners might 

follow guidelines for IEQ maintenance found in best-practice certifications such as the 

WELL Building Standard (International WELL Building Institute, 2018).  

Evidently, to ensure optimal IEQ is being maintained it is necessary to perform 

physical measurements of key environmental parameters to determine whether these remain 

in pre-specified comfort boundaries.  Previously, such measurements would have necessitated 

the use of a mobile cart equipped with numerous on-board meters (e.g., Candido et al., 2016; 

Parkinson et al., 2015).  The inherent limitations of this approach, namely the high material 

and labour costs and the fact that it is only possible to monitor a certain location within the 

building for a limited period of time, meant that organisations traditionally performed IEQ 

measurements rarely or eschewed them entirely. 

 However, recent developments in the field of wireless sensor technology have 

introduced an encouraging alternative solution.  Sensors are comparatively cheap to install 

and operate, and are capable of providing continuous measurements of key environmental 

parameters, bound to specific locations at specific times.  The output from hundreds of 

sensors can be overlaid onto a three-dimensional model of the workplace and visualised in 

real time, allowing the immediately identification and remediation of sub-optimal 

environmental conditions.  Indeed, technology is being developed to integrated sensor 
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readings into ‘smart’ heating, ventilation, and air-conditioning (HVAC) systems to ensure 

that the process of remedying poor IEQ occurs automatically, whilst simultaneously 

improving the energy efficiency of the HVAC system by up to 39% (Foster et al., 2016; 

Salamone et al., 2017).  In this way, wireless sensors can help facilities managers to 

understand and manage the environmental performance of the workplace in more depth than 

ever before.  

Whilst such developments certainly appear promising, they have somewhat preceded 

a clear framework for how the building data can be effectively used in the overall workplace 

strategy.  In particular, the prediction that compliance with environmental comfort boundaries 

will optimise occupant comfort remains to be empirically validated in real workplace 

environments.  To our knowledge, only one previous field study has used sensors to monitor 

IEQ in offices (MacNaughton et al., 2017).  However, the environmental data in that study 

was provided for largely descriptive purposes to illustrate differences between ‘green’ and 

‘non-green’ buildings, and was not directly tested against occupants’ subjective responses.  

As such, there is still limited information regarding the extent to which the measured 

environmental parameters predict relevant subjective outcomes.  

Thus, the aim of this study was to pilot the use of environmental sensors in a real 

workplace environment and trial a methodology for testing the extent to which objective IEQ 

measurements predict momentary subjective environmental comfort.  Additionally, a 

secondary aim was to test whether certain responses could be predicted by other (non-sensor-

based) spatial metrics, recognising that the complexity of the workplace environment cannot 

be captured through sensors alone.  Specifically, it is proposed that the combined approach 

would more accurately capture aspects of both the ‘physical environment’ (i.e., IEQ) and the 

‘behavioural environment’ (occupants’ experiences of distraction and interaction).  
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IEQ Comfort Boundaries 

 Typical sensor-based measurements of IEQ include carbon dioxide (CO2; in parts per 

million [ppm]), temperature (in degrees Celsius [°C]), humidity (in relative humidity, 

expressed as a percentage [%RH]), sound pressure level (in A-weighted decibels [dBA]), and 

illuminance (in lux).  These metrics generate a detailed approximation of IEQ within the 

workplace, and can be benchmarked against pre-determined comfort boundaries.  In this 

paper, we will generally refer to the comfort boundaries recommended within the WELL 

Building Standard (International WELL Building Institute, 2018). 

 For indoor air quality, WELL recommends that CO2 levels are kept below 800ppm.  

This in accordance with research indicating that the risk of experiencing ‘sick building 

syndrome’ (SBS) symptoms (e.g., concentration difficulties, fatigue, headaches) increases 

progressively as CO2 rises above 800ppm (Seppänen et al., 1999).  It is also expected that 

productivity will be higher if this threshold is met, based upon a study indicating that 

cognitive performance was 101% higher when CO2 was reduced from 1400ppm to 600ppm 

(Allen et al., 2016).  It is worth noting that deficits are not necessarily directly caused by the 

presence of CO2 per se, but rather that CO2 is used as a surrogate measure of other airborne 

pollutants (e.g., particulate matter, volatile organic compounds).  Generally speaking, 

however, good indoor air quality can be assumed when CO2 is below 800ppm.   

 To optimise thermal comfort, WELL prescribes compliance with Standard 55-2013 

from the American Society for Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE, 2013), which itself prescribes that acceptable temperature ranges in 

mechanically-ventilated offices should be determined using the ‘predicted mean vote’ (PMV) 

method.  The PMV equation uses five input values (radiant temperature, air velocity, 
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humidity, clothing insulation, metabolic rate) to prescribe an ambient air temperature range 

which will purportedly satisfy 95% of occupants.   

For humidity, the comfort boundary is derived from the United States Environmental 

Protection Agency (US EPA, 2019), which recommends that optimal indoor humidity is 

achieved at 30-50%RH, although humidity up to 60%RH is acceptable.  If these conditions 

are not maintained, there is increased risk of the development of mould and respiratory 

irritation.  

 In terms of illumination, it is suggested that light intensity must simply support visual 

acuity of office tasks without causing eye strain or discomfort (e.g., through insufficient light 

exposure or glare).  To achieve this, WELL prescribes that ambient lighting should exceed 

215 lux and that, if ambient lighting is below 300 lux, task lighting should be made available 

to provide light of 300-500 lux at individual workstations.  This corresponds to 

recommendations issued by the Society for Light and Lighting (SLL, 2015), indicating that 

computerised office work is supported by an ambient illumination level of 300-500 lux. 

 Finally, for noise levels, WELL does not prescribe comfort boundaries for sound 

pressure level, suggesting instead a behavioural solution in which certain sections of the 

office are segmented as ‘quiet zones’.  This reflects growing consensus amongst workplace 

practitioners that the objective properties of sound only account for approximately 25% of its 

propensity for annoyance (Oseland and Hodsman, 2018), and that the same noise source can 

be viewed by different employees as a useful form of interaction or as an annoying 

distraction (Haynes, 2008).  Accordingly, an effective acoustic design solution focuses on 

providing functionally different workspaces and providing occupants the ability to choose 

between them, rather than on trying to control noise levels as such.  Having said that, it has 

previously been suggested that the optimal noise level within open-plan is 45-48 dBA 
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(Bradley and Gover, 2004), on the basis that measurements which exceed 48 dBA are 

indicative of excessive and potentially disruptive levels of human speech.  Possibly, this 

could be a useful comfort boundary for facilities managers to consider.  

 

Additional Spatial Metrics 

 Whilst the use of sensors can provide facilities managers with a useful approximation 

of IEQ, these parameters are limited to the physical environment and do not capture the 

complexity of the behavioural environment.  As such, we also considered whether two 

additional spatial metrics might also be used to predict occupants’ experiences of interactions 

and distractions in the workplace.  

 First, we considered workspace density, referring to the ratio between the size of the 

workplace and the number of occupants it houses.  In recent years, workspace density has 

generally increased as organisations pursue strategies aimed at maximising space efficiency.  

Whilst this offers a competitive advantage in terms of corporate real estate costs, higher-

density offices have been associated with lower overall environmental satisfaction and 

increased perception of crowding (Hua et al., 2011; May et al., 2005).   

Additionally, although it might be logical to assume that more dense workplaces will 

engender higher levels of interaction between colleagues, research actually indicates that 

higher workspace density is associated with lower perceived support for collaboration (Hua et 

al., 2011).  Possibly, this occurs because occupants in more dense environments need to 

concentrate harder to block out distractions, thus reducing collaboration (Hua et al., 2011) 

and/or because they lose the ability to regulate their face-to-face interactions, and so revert to 

digital forms of communication to preserve their privacy (Bernstein and Turban, 2018).  
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 Second, we also considered the ‘visibility graph analysis’ (VGA) technique, which 

can be used to calculate objective measurements of workspace integration by assigning a 

numerical score to each individual workspace based upon the extent to which it can be seen 

from other workspaces.  For example, a workspace with low architectural privacy (e.g., 

located away from dividing walls, no partitioning between desks) will be highly visible from 

other locations and so receive a high score for integration, whereas workspaces with high 

architectural privacy are less visible and so receive a low score for integration.  This 

overcomes limitations of previous approaches which differentiated between overall office 

layouts rather than between desks (Bodin Danielsson and Bodin, 2008), meaning that the 

variation between different workspaces within an office (e.g., due to architectural 

characteristics of the desk) could not be captured.  

VGAs have been most commonly used in urban design, but researchers have recently 

considered their potential utility in the context of the workplace.  In previous studies the 

technique has been used to distinguish between ‘sociopetal’ and ‘sociofugal’ workspaces 

(designed to encourage or prohibit interaction, respectively) (Sailer and Psathiti, 2017), and 

there is evidence to suggest that employees working from more integrated workspaces tend to 

engage in a higher number of knowledge-sharing activities (Appel-Meulenbroek, 2014).  

Thus, in the present study we considered whether workspace integration could be used to 

effectively predict experienced interaction and distraction levels. 

 

The Present Study 

 To summarise, the aim of the present study was to investigate the extent to which 

objective real-time measurements of IEQ and spatial workplace metrics could predict 
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subjective ratings of environmental satisfaction.  Based on the research and guidelines 

discussed earlier, it was hypothesised that: 

H1: CO2 concentration will be negatively associated with ratings of air quality. 

H2: Compliance with thermal comfort policy will be positively associated with ratings of 

thermal comfort.  

H3: Compliance with humidity comfort policy will be positively associated with ratings of 

satisfaction with humidity.  

H4: Illumination will be positively associated with ratings of satisfaction with light levels. 

H5: Sound pressure level, workspace density, and workspace integration will be positively 

associated with distraction levels. 

H6: Sound pressure level and workspace integration will be positively associated with 

interaction levels, whereas workspace density will be negatively associated with interaction 

levels.  

 

Method 

Participants 

 The participants for this study were real office workers from one office used by a 

large private-sector organisation in the United Kingdom.  The office had an open-plan design 

which was divided into different ‘neighbourhoods’ for each business unit.  The organisation 

employed an activity-based working concept, meaning employees did not have assigned 

desks and generally worked from different workstations within their neighbourhood.  One 
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neighbourhood within the office, containing 58 non-assigned workstations, was designated as 

the study area (see Figure 1 for floorplan).  

An e-mail containing information about the study was sent to 47 employees, using the 

distribution list for the business unit.  Additionally, given that employees from other business 

units also used the study area semi-regularly, flyers with an invitation to participate in the 

study were placed on each desk, and the primary investigator verbally communicated 

information about the study whilst in the office.  No incentives were offered for participation.  

In total, 15 employees (9 male, 6 female) volunteered to participate.  

 

INSERT FIGURE 1 HERE 

 

Building Analytics 

Prior to the first day of the study period, the study area was equipped with wireless 

environmental data loggers.  The position of the data loggers is shown on Figure 1.  On each 

of the 11 banks of desks within the study area (each containing between four and six 

individual workstations), a HOBO U12 Data Logger (Onset, 2019a) was placed in the centre 

of the desks to continuously measure temperature, humidity, and light intensity.  

Additionally, separate data loggers were also placed on two desks (F1 and I5): Telaire 7001 

CO2 sensors (Onset, 2019b) were used to continuously measure CO2 (ppm) and PCE-322A 

Sound Level Meters (PCE Instruments, 2019) were used to continuously measure sound 

pressure level (dBA).  The two desks were specifically chosen as they were approximately in 

the middle of the two zones within the study area. 
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For the purposes of data analysis, we averaged the environmental data across the half 

hour preceding the completion of each survey.  For CO2, light intensity, and sound pressure 

level, raw measurements were used given that it was predicted that occupant comfort would 

get progressively worse (in the case of CO2 and sound pressure level) or better (in the case of 

light intensity) as the measurement increased.  For temperature and humidity, it was 

necessary to calculate the degree to which the readings were within or outside of the 

‘optimal’ comfort zone (i.e., the degree of compliance with the comfort policy), given that 

both ‘too low’ and ‘too high’ readings were predicted to result in lower occupant comfort. 

For temperature, the PMV method was used to calculate an optimal value, using an 

online thermal comfort tool compliant with ASHRAE Standard 55 (Center for the Built 

Environment, 2019).   Inputted values included the average measured humidity during the 

study period (52.18%RH), a typical office air speed value (0.1 metres per second), a typical 

metabolic rate for office work (1.1 met), and the clothing insulation value for typical winter 

indoor clothing (1.0 clo).  Based on these values, the online tool indicated that 22.4°C was 

the optimal temperature.  For the purposes of the analysis, 22.4 was subtracted from the raw 

values and the resultant scores were squared to yield a value to represent the extent of non-

compliance, in absolute terms, with the thermal comfort boundary.  

For humidity, 30-50%RH was the optimal range indicated by the US EPA (2019).  

Therefore, for the purposes of analysis, any raw value that was within this range was scored 

as ‘0’.  As it happened, during the study period the humidity never dropped below 30%RH, 

and the only measurements which were outside of the comfort policy were those which 

exceeded 50%RH.  As such, to reflect the extent to which these measurements were outside 

of the comfort boundary, 50 was subtracted from these raw values, and the resultant scores 

were used in the analyses. 



PREDICTIVE ANALYTICS  12

  

 

Finally, building modelling techniques were used to calculate the additional building 

metrics, using the DepthmapX software (DepthmapX development team, 2017).  The VGA 

technique was used to attain an objective value of workspace integration at each of the 

workspace, where scores range between 1 (highly segregated) to 10 (highly integrated).  

Workspace density was calculated as the number of additional workspaces within 15 feet of 

the target workspace. 

 

Human Analytics 

 Each day during the study period, participants were sent an e-mail with a link to a 

workplace evaluation survey.  On each occasion, the survey was sent at one of four times 

(10:00 a.m., 11:30 a.m., 1:30 p.m, or 3:00 p.m.), using a random number generator to 

randomly assign participants to different time-slots each day.   

The survey contained items that corresponded approximately to the items found on 

typical workplace occupant questionnaires, with slight adaptations so that ratings were 

confined to the preceding half hour, in order to capture momentary rather than general 

perceptions.  The full list of items used, including summary statistics, is shown in Table 1.  

Specifically, the different sections of the survey included:  

 Identification code.  Participants provided a unique identification code using the first 

letter of their surname, their birth month, and the first two letters from their birthplace, each 

time they completed the survey.  This enabled their responses to be linked from one time to 

the next without compromising their right to anonymity.  

 Work location.  Participants viewed the floorplan in Figure 1 and selected their 

current workspace (or chose ‘Other’ if they working at a different location).  This enabled 



PREDICTIVE ANALYTICS  13

  

 

their responses to be linked with the corresponding set of environmental data from the nearest 

sensors.  

 Physical Environment.  Four items were included to measure satisfaction with 

different components of IEQ.  Specifically, respondents rated their satisfaction with air 

quality, temperature, humidity, and light intensity in the past half hour.  As shown in Table 1, 

ratings for each tended to be slightly higher than the midpoint on the 7-point scale (4.5 ≤ M ≤ 

4.94), indicating moderate satisfaction with the physical environment. 

 Behavioural Environment.   Originally, satisfaction with the behavioural 

environment was conceptualised as the extent to which distractions and interactions had been 

experienced in the preceding half hour, using a 7-point scale.  To measure distractions, four 

items were taken from Lee and Brand’s (2005) measure (auditory distractions, too much 

noise, visual distractions, adequate privacy) and one item was taken from Haynes’ (2008) 

measure (crowding).  However, the Cronbach’s alpha associated with this scale was poor (α = 

0.58), but would be significantly improved by dropping the item relating to privacy.  As such, 

the remaining four items were retained as the measure of distractions (α = 0.84), and the 

single item measuring privacy was also included in the analyses.  It was predicted that sound 

pressure level, workspace density, and workspace integration would be negatively associated 

with perceived privacy. 

 To measure interactions, the same 7-point scale was used to rate two items from 

Haynes’ (2008) measure, reflecting interactions for work and for social purposes. However, 

the correlation between these items was weak (r = 0.18), so work-related interactions and 

social interactions were analysed separately.  It was predicted that sound pressure level and 

workspace integration would be positively associated with both forms of interaction, whilst 

workspace density would be negatively associated with both forms of interaction.  
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 The descriptive statistics shown in Table 1 indicate that participants generally had 

positive perceptions of the behavioural environment, indicating relatively high levels of 

work-related (M = 5.46) and social interactions (M = 5.55), and low levels of distractions (M 

= 3.67).  However, perceived privacy was low (M = 3.36). 

 

INSERT TABLE 1 HERE 

 

Results 

 Given that the same participants were repeatedly sampled at different occasions 

during the study, multilevel linear modelling was used to accommodate the nested structure 

of the data (repeated measurement occasions within participants).  All data analysis was 

performed using the RStudio software (R Studio Team, 2016), following the procedure 

outlined by Field, Miles and Field (2012). The nlme package (Pinheiro et al., 2017) was used 

for fitting and comparing multilevel models, and the MuMIn package (Barton, 2018) was 

used for calculating pseudo-R2 estimates for the final models.  All regression models were 

fitted using the restricted maximum likelihood estimation method. 

 

Descriptive Statistics for Sensor Readings and Spatial Metrics 

 Table 2 shows average sensor measurements for each component of IEQ.  The full 

dataset contains tens of thousands of individual measurements from different locations 

around the study area, providing a high degree of spatio-temporal specificity.  For the 

purposes of simplicity, in this table we have combined the measurements from the different 
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sensors on the different days into single hourly averages and overall averages for each 

environmental parameter.   

As shown, the average CO2 level (M = 1424.9ppm) and average sound pressure level 

(M = 53.99dBA) were above the recommended range.  Humidity (M = 52.18%RH) also 

tended to be slightly outside the optimal comfort boundary, but was within the wider 

boundary judged to be acceptable by the US EPA (2019), which extends to 60%RH.  

Temperature (M = 23.59°C) was slightly higher than the ‘optimal’ temperature of 22.4°C, but 

was still within the wider comfort boundary determined using ASHRAE 55-2013.  The 

average illumination (M = 448.91 lux) was within the comfort boundary.  

 

INSERT TABLE 2 HERE 

 

 Descriptive statistics were also calculated for the spatial metrics.  The scores for 

workspace integration (M = 4.98, SD = 0.58, Min = 4.55, Max = 6.58) indicate that all of the 

workspaces were in moderately integrated locations, with relatively low variation.  

Workspace density showed more response variance, and indicated that on average there were 

12 employees within 15 feet of the workspace (M = 12.3, SD = 12.4, Min = 4, Max = 22).  

 

Main Analyses 

 Physical environment.  To assess the need for a multilevel structure in the regression 

analyses, intercept-only and random-intercept regression models were compared for 

satisfaction with air quality, temperature, humidity, and light intensity.  The reduction in log-
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likelihood ratio was significant in the cases of air quality (p < 0.0001) and light intensity (p = 

0.05), so multilevel regression techniques were used for these variables.  However, there was 

no improvement in model fit for the models predicting temperature (p = 0.49) or humidity (p 

= 0.14), so ordinary regression techniques were used in these cases.  

 For each environmental comfort variable, regression models were conducted to 

predict the subjective response using the appropriate objective environmental variable(s).  

There was no evidence to support the predictions that compliance with thermal comfort 

policy would predict satisfaction with temperature (p = 0.27), that compliance with humidity 

comfort policy would predict satisfaction with humidity (p = 0.07), or that light intensity 

would predict satisfaction with light levels (p = 0.9). 

The only significant effect in the physical environment analyses was for air quality.  

There was evidence to suggest that higher measured levels of CO2 were associated with more 

negative ratings of air quality (p < 0.0001).  The pseudo-R2 estimate for this model indicated 

that approximately 14.8% of the variance in ratings of air quality could be attributed to the 

CO2 level (marginal_GLMM2 = 0.148). 

 Behavioural Environment.  Again, intercept-only and random-intercept regression 

models for each of the behavioural environment variables were compared to assess the need 

for a multilevel structure.  In this case, there was a significant improvement in model fit for 

perceived privacy (p < 0.0001), social interactions (p < 0.0001), and work-related interactions 

(p = 0.04), indicating that multilevel modelling was appropriate.  However there was no 

significant improvement in model fit for distractions (p = 0.42), so an ordinary regression 

was appropriate here. 

 For each behavioural environment outcome, the effects of three explanatory variables 

(sound pressure level, workspace integration, and workspace density) were tested.  In each 
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case, simple regression models were constructed to assess the bivariate relationship between 

each predictor and outcome.  If more than one predictor was significant at the bivariate 

levels, multiple regression models were constructed and compared with the earlier model, 

using the Bayesian Information Criterion to determine the model which best fit the data. 

 The results showed that none of the explanatory variables were significantly 

associated with perceived privacy (p ≥ 0.23) or work-related interactions (p ≥ 0.2).  The 

model predicting social interactions showed that neither sound pressure level nor workspace 

integration were significant predictors (p ≥ 0.14), but that there was a significant negative 

relationship between social interactions and workspace density (p = 0.05). 

For distractions, the bivariate models revealed significant positive associations with 

both sound pressure level (p = 0.02) and workspace integration (p < 0.001), but not 

workspace density (p = 0.69).  The two significant variables were retained in a multiple 

regression model which accounted for approximately 19.6% of the variance in levels of 

distractions (R2 = 0.196), and in which workspace integration remained significant (p = 0.02) 

but sound pressure level rose marginally above significance (p = 0.056). 

 

Discussion 

 The aim of this pilot study was to test the extent to which the data collected via 

wireless environmental sensors and additional spatial metrics could predict employees’ 

momentary ratings of environmental comfort.  The results of the study provided mixed 

support for the hypotheses, and are discussed with respect to their theoretical and practical 

implications.   
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Physical Environment 

 It had been predicted that measured CO2 levels would be negatively associated with 

momentary air quality satisfaction ratings (H1).  Our results supported this hypothesis, 

indicating that more negative ratings of air quality were more likely at higher concentrations 

of CO2.  This is in accordance with previous laboratory studies demonstrating an association 

between CO2 and subjective ratings of air quality (Park and Yoon, 2011; Zhang et al., 2017).  

Associations between higher levels of CO2 and the prevalence of SBS symptoms has also 

been previously demonstrated (Allen et al., 2016; Seppänen et al., 1999), indicating that the 

indoor air quality may have contributed to issues such as concentration difficulties and 

respiratory problems amongst the employees within our office. 

 The predictions that compliance with thermal comfort policy would be associated 

with higher ratings of thermal comfort (H2), that compliance with humidity comfort policy 

would be associated with higher satisfaction with humidity (H3), and that higher illuminance 

would be associated with higher satisfaction with light intensity (H4) were not supported by 

the data.  We suggest that two factors may have contributed to these non-significant findings, 

both of which will be discussed in more detail in later sections.   

First, it should be noted that temperature, humidity, and illumination were almost 

entirely within the prescribed comfort boundaries, meaning that we were not able to test the 

effects of sub-optimal environmental conditions for these parameters.  Second, it has also 

been previously demonstrated that individual difference characteristics can moderate the 

individual response to a particular component of the physical environment (e.g., the response 

to temperature is moderated by gender and age; Wang et al., 2018), so it is also possible that 

the extent to which occupant comfort can be predicted using a single environmental variable 

will always be significantly restricted. 
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Behavioural Environment 

 It had been hypothesised that higher perceived distractions would be predicted by 

higher sound pressure level, workspace density, and workspace integration (H5).  The data 

provided partial support for this hypothesis, demonstrating that higher levels of distractions 

tended to occur at more integrated workspaces.  This effect was observed despite the fact that 

there was relatively low variance in workspace integration, and may have been even more 

pronounced had the study included a wider range of workspaces.  Thus, the suggestion that 

using VGA to calculate workspace integration can helpfully distinguish sociofugal and 

sociopetal workspaces (Sailer and Psathiti, 2017) was supported.  There was also a trend to 

suggest that higher levels of distractions were associated with higher average sound pressure 

level, although this effect rose marginally above the criteria for statistical significance in the 

multiple regression analysis. 

 It was also predicted that sound pressure level, workspace density, and workspace 

integration would be associated with levels of work-related and social interactions (H6).  Only 

one significant effect was observed for these outcomes, indicating that respondents working 

from areas with higher workspace density tended to report lower levels of social interaction.  

This is in accordance with research suggesting that interpersonal communication actually 

worsens in more dense and open workplaces (Bernstein and Turban, 2018; Hua et al., 2011; 

Kim and de Dear, 2013), and suggests that workplace alterations designed to increase space 

efficiency (e.g., transition to open-plan office, increasing desks within existing space) should 

not be justified in terms of supposed interpersonal benefits.  

 Finally, we also tested whether sound pressure level, workspace integration, and 

workspace density were associated with perceived privacy.  Privacy had originally been 
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conceptualised as an aspect of distraction, but transpired to be relatively independent of the 

other items used to measure distractions.  It had been anticipated that employees would report 

lower perceived privacy at more dense and more integrated workspaces, and when the 

average sound pressure level was higher.  However, there was no support for this hypothesis.  

Again, this might also reflect the fact that there was relative low variation in workspace type 

and/or that individual difference factors, particularly noise sensitivity, can significantly 

moderate the individual’s experience of the acoustic environment (authors, manuscript 

accepted for publication; Haapakangas et al., 2014), which in turn could affect their 

perception of privacy.  

 

Limitations 

 The main aim of this study was to provide proof-of-concept for a methodological 

framework for integrating human analytics and building analytics, and so a relatively small-

scale study within one zone of a single workplace was conducted.  Whilst this enabled us to 

develop the framework, it also led to various limitations which might explain the lack of 

support for some of the hypotheses.   

Firstly, it should be acknowledged that three IEQ factors (temperature, humidity, and 

illumination) were almost entirely within the prescribed comfort boundaries during the study 

period.  From the research perspective, this is a limitation because there was insufficient data 

to test whether poor environmental conditions (i.e., non-compliance with comfort boundaries) 

results in lower levels of environmental comfort.  In future research, it could be useful to 

adopt a quasi-experimental approach in which the investigators are able to manipulate 

environmental conditions, or to conduct field studies at a more diverse range of workplaces, 

including those with poorer IEQ. 
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 Similarly, the types of workspace within the study area were all relatively similar, in 

that they were all located within a medium-to-large open-plan area.  Whilst there was some 

variance in workspace density, generally reflecting the position of the workspace relative to 

exterior walls, the scores for workspace integration tended to be quite similar.  Whilst some 

significant effects were observed even at this low level of variation, it would be more 

beneficial in future research to test a greater diversity of workspaces (particularly enclosed 

and segregated working areas), to more rigorously test the hypotheses.   

 The fact that this was a pilot study also means that there were a relatively low number 

of observations used in the analysis, which raises the possibility that there may have been 

insufficient statistical power for detecting significant effects.  Thus, the present findings 

should be viewed tentatively until further research has been conducted.  As the 

methodological framework for integrating building analytics and human analytics continues 

to develop, it will be necessary to conduct similar investigations but with significantly larger 

samples and across a large and diverse group of different workplaces, to test the hypotheses 

more definitively.  With the core infrastructure in place (i.e., sensors installed within 

workplaces, technological solution to repeatedly sample employee experiences), very large 

datasets can be compiled relatively easily and analysed for valuable insights. 

 Finally, there is a small risk that a Hawthorne effect may have occurred (i.e., that 

changes in the employees’ responses were a result of being observed rather than fluctuations 

in environmental conditions).  To mitigate this risk, we took several steps to ensure that 

participants’ working environment and practices during the study period closely replicated 

normal conditions.  The sensors used were small and unobtrusive, and the daily 

questionnaires were designed to be completed relatively quickly.  All communications about 

the study clearly outlined the purpose of the study, and encouraged participants to answer 
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completely honestly so that their responses could be used to help researchers to learn more 

about the environmental conditions which best support occupant comfort and productivity.  

As such, we believe there is only low probability that a Hawthorne effect occurred, and it can 

be reasonably concluded that the findings truly reflect individuals’ responses to different 

environmental conditions.  

 

Practical Implications 

 Overall, the results of the study provide moderate support for the utility of using 

wireless sensors to effectively support occupant comfort.  When viewed together with the fact 

that sensors are comparatively cheaper than traditional solutions for measuring IEQ, 

particularly in the long term and with a high degree of spatio-temporal specificity, the results 

here suggest that the installation of sensors will be useful for helping facilities managers to 

monitor and improve IEQ in workplaces.  

For example, our results indicated that lower ratings of air quality were more likely 

when CO2 concentrations were higher.  A sensor-based approach could be used to 

continuously monitor CO2 that it stays below the 800ppm threshold, where remedial action is 

prompted whenever the measurements rise above this threshold.  As smart building 

technology continues to develop, this could be done completely automatically as part of a 

demand-controlled ventilation system which automatically triggers increased ventilation 

when the sensors detect CO2 levels have risen above 800ppm.  In this way, adherence to best-

practice certifications can be balanced with a sustainable energy strategy using a sensor-based 

climate control system (Foster et al., 2016). 
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 We previously noted that for certain environmental parameters, particularly 

temperature and noise, the employee’s response can be moderated by various individual 

difference factors, limiting the extent to which comfort policy adherence can adequately 

predict subjective comfort.  However, sensors may also form part of the solution here.  

Researchers are working on the development of office desks with integrated systems for 

personal control over the local environment, where machine-learning algorithms use both 

environmental sensor data and occupants’ behaviours to generate individual ‘comfort 

profiles’ that can be automatically loaded for individual users (Aryal et al., 2018).  Similarly, 

a recent trial of office desk chairs which allowed the user to customise local temperatures 

found that thermal satisfaction votes increased to 96% across a range of ambient air 

temperatures (Kim et al., 2019).  Whilst such technology is still in early stages of 

development, it is certainly feasible that the offices of the future will combine wireless 

sensors and controllable comfort systems in this manner, to ensure high occupant comfort 

even when individual users have markedly different preferences.  

The results also supported the utility of the spatial metric analyses, particularly the use 

of VGAs to distinguish between sociopetal and sociofugal working areas (Sailer and Psathiti, 

2017), on the basis that less integrated spaces appear to be more suitable for shielding 

occupants from distractions.  It is becoming increasingly common for workplaces to employ 

activity-based working concepts, in which employees do not have assigned desks but are 

encouraged to use different functional workspaces on an ad-hoc basis to support different 

types of task (Wohlers and Hertel, 2017).  In particular, ‘spaces for concentration’ and 

‘spaces for collaboration’ are two functional zones which are frequently highlighted as 

important aspects of the modern workplace.  Possibly, the use of VGAs could assist 

workplace practitioners to ensure that these spaces are appropriately designed.  Additionally, 

it might be useful for different functional zones to have different acoustic comfort policies 
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(e.g., strict in spaces for concentration, relaxed in spaces for collaboration), and 

environmental sensors could be used to ensure that the spaces are being used in the intended 

manner. 

 

Conclusion 

 In conclusion, we have provided proof-of-concept for a methodological framework to 

integrate building analytics and human analytics, towards the goal of optimising 

environmental comfort in the workplace.  The findings of our study provide a tentative 

indication that the data from sensors can help to ensure occupant satisfaction with air quality, 

and that the visibility graph analysis technique can help to support the provision of different 

types of functional workspace.  In future research, significantly larger sample sizes and 

greater diversity in the types of workplaces under investigation will be necessary so that 

hypotheses regarding the effects of different elements of the workplace environment can be 

more rigorously tested.    
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Table 1: List of questionnaire items used in the analyses, including the means and standard deviations for all items and scales, and the 

Cronbach’s alpha values for the Distraction scale.  

 

* Item was reverse-scored prior to analysis 

 

 

 

Scale and item(s) used M SD 

PHYSICAL ENVIRONMENT 

“Over the past half hour, how satisfied are you with the following elements of the indoor environment?” [1=Very dissatisfied, 7=Very 

satisfied] 

 
[SATISFACTION WITH AIR QUALITY] “Air quality (i.e. stuffy/stale air, cleanliness, odours)” 

[SATISFACTION WITH TEMPERATURE] “Temperature” 

[SATISFACTION WITH HUMIDITY] “Humidity”  

[SATISFACTION WITH LIGHT INTENSITY] “Amount of light”  

[SATISFACTION WITH DAYLIGHT] “Amount of natural daylight” 

 

 

 

 

4.69 

4.5 

4.72 

4.94 

4.88 

 

 

 

 

1.21 

1.47 

1.17 

1.27 

1.55 

 

BEHAVIOURAL ENVIRONMENT 

“Over the past half hour, how accurately do the following statements describe your experience?” [1=No, never, 7=Yes, all the time] 

 
[DISTRACTIONS,  α = 0.84] 

“I have experienced auditory distractions in my work area” 

“I have experienced visual distractions in my work area” 

“My work environment is too noisy” 

“My working area feels crowded” 

 

[PRIVACY] “I have adequate privacy in my primary, individual work area” 

[WORK-RELATED INTERACTIONS] “I am able to easily contact all of the colleagues I need to interact with” 

[SOCIAL INTERACTIONS] “My work environment is socially isolating”* 

 

 

 

 

3.67 

4.08 

3.36 

3.74 

3.51 

 

3.36 

5.46 

5.55 

 

 

 

1.26 

1.6 

1.49 

1.49 

1.53 

 

1.63 

1.04 

1.34 
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Table 2: Average sensor readings for each of the physical environment parameters throughout 

the working day. 

Time of Day CO2 (PPM) Temperature 

(°C) 

Humidity 

(%RH) 

Illumination 

(lux) 

Sound 

pressure 

level 

(dBA) 

08:30 to 

09:00 

816.8 22.9 51.04 372.57 53.19 

09:00 to 

10:00 

1048.31 23.2 51.69 386.77 54.63 

10:00 to 

11:00 

1286.94 23.43 51.96 406.33 54.5 

11:00 to 

12:00 

1438.51 23.58 52.14 436.82 54.55 

12:00 to 

13:00 

1506.97 23.65 52.13 455.01 54.66 

13:00 to 

14:00 

1515.88 23.64 52.37 462.09 53.12 

14:00 to 

15:00 

1594.72 23.76 52.61 513.12 53.6 

15:00 to 

16:00 

1650.45 23.89 52.56 538.04 54.1 

16:00 to 

17:00 

1623.43 23.85 52.47 492.87 53.11 

17:00 to 

18:00 

1464.74 23.68 52.24 389.84 n/a 

Overall 1424.9 23.59 52.18 448.91 53.99 

 

 

 


