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Abstract 

 
Chromate (VI) is an oxidising pollutant that is harmful to humans and the 

environment. Reduction of chromate (VI) produces chromium (III), which is less 

toxic, less soluble and less bioavailable. Methylococcus capsulatus Bath is an 

example of a diverse group of methane oxidising bacteria that are widespread 

in the environment and have potential for bioremediation of a wide range 

organic and inorganic pollutants, including reduction of chromium (VI) to 

chromium (III).  

Cells of Mc. capsulatus were broken and centrifugally fractionated during the 

bioremediation reaction. HPLC-ICP-MS analysis showed that the concentration 

of chromium (VI) in the culture supernatant progressively declined and there 

was a corresponding increase in the concentration of chromium (III) in the 

cytoplasm + membranes fraction. Further fractionation showed that the 

distribution of chromium (III) was approximately two thirds in the cell membrane 

fraction and one third in the cytoplasm fraction. The cellular distribution and 

speciation of chromium were further investigated using transmission electron 

microscopy- energy dispersive X-ray (TEM-EDX), high-angle annular dark-field-

scanning transmission electron microscopy (HAADF-STEM), Electron energy 

loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) imaging 

of whole and sectioned cells.  

Mc. capsulatus Bath took up Cr (III) that has been added to the culture medium 

via a process that was promoted by the growth substrate methane and inhibited 

by the metabolic inhibitor sodium azide. Accumulation of chromium (III) within 
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the Mc. capsulatus cells may reduce its bioavailability and help to prevent its re-

oxidation to the toxic chromium (VI).  

The cell fractions of Mc. capsulatus Bath were studied for their chromium (VI) 

removal activity at various temperatures and the optimum temperature of the 

fractions was found at 30 °C. All cellular fractions reduced chromium (VI) to 

chromium (III); reduction activity was greatest in the cytoplasm fraction. The 

chromium (VI)-removing activity, which was enhanced by the presence of 

NADH, was purified from the cytoplasmic fraction by means of DEAE Anion 

exchange and Capto Blue Dye Affinity chromatography to yield fractions that 

contained a single 17-kDa protein. 

Three new methanotroph strains were isolated from the Leeds and Liverpool 

canal and a railway location near Doncaster. One of these (isolated from canal 

sediment via enrichment at 45 °C) is another strain of Mc. capsulatus that is 

capable of Cr (VI) removal.   
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1.1 Introduction 
 

Heavy metals (and metalloids) of environmental concern include chromium, 

cobalt, nickel, copper, zinc, arsenic, selenium, silver, cadmium, antimony, 

mercury, thallium and lead which can contaminate soils, ground water, 

sediments and surface waters. Heavy metal pollution is a very important global 

problem needing urgent attention (Faisal & Hasnain 2004).  

 

The presence of high concentration of these pollutants in the environment, 

along with their different chemical forms, mobility and their availability to other 

life forms can result in adverse effects on crop cultivation and ultimately human 

and animal health. About 15 elements present in rocks and the soil at low 

concentrations and are essential for plant and animal nutrition. Of these, boron, 

copper, iron, manganese, molybdenum, selenium and zinc are essential for 

animal health. Furthermore, some researchers have also highlighted the 

essential roles played by arsenic, fluorine, nickel, silicon, tin and vanadium in 

animal nutrition (Sharma & Agrawal 2005; Kampa & Castanas 2008). A majority 

of the trace metal elements can also be toxic to plants and animals when 

present at high concentrations. Elements such as arsenic, cadmium, chromium, 

lead, mercury, molybdenum, nickel, selenium and zinc, when present at high 

concentrations in the foodstuffs, can make these items unfit for human 

consumption. These trace elements enter the environment either naturally or 

through anthropogenic activities. Many anthropogenic activities are responsible 

for introducing high concentration of elements, which far exceeds that due to 

natural geological activities. The human activities that lead to metal 

contamination in the environment include mining and smelting activities, 

industrial emissions, discharge effluents, vehicle emissions, urban 
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development, contaminated dust and rainfall, sewage sludge, composted town 

refuse, dumped waste materials, fertilisers, pesticides, pig slurry (it was seen to 

be the major source of animal waste contamination and therefore transported in 

the form of nutrient particles into the soil/ water or as an organic effluent) and 

soil ameliorant (Lepp 1981). Typical frequencies of the distribution of these 

pollutants are given in Figure 1-1. 

 

Chromium (Cr) is toxic to the environment and biological systems. The removal 

of toxic metals (such as toxic forms of chromium) from the environment by 

means of microorganisms is a possible method of remediating heavy metals 

waste (Klaus-Joerger et al. 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 The frequencies of the most common contaminants at NPL sites (Based on 

data available for 976 National Priorities List (NPL) Sites with fiscal year 1982–2003. A 

site may contain one or more of these contaminants. Taken from (Dhal et al. 2013).  
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Bacterial cells are frequently exposed to stressful conditions and the ability to 

resist such pressures is fundamental for their survival. Many microorganisms 

have resistance mechanisms that allow them to grow at concentrations of metal 

ions that would otherwise be toxic. Such mechanisms include efflux systems, 

changes of chromium speciation. Such mechanisms can result in changes in 

the redox state of the metal ions, extracellular complexation and the 

precipitation of metals (Rouch et al. 1995; Beveridge et al. 1996). 

 

 

1.2 Chromium definition, properties and uses 
 

Chromium is a transition metal first discovered in Siberian red lead ore 

(crocoites) in 1798 by the French chemist, Louis-Nicolas Vaquelin (Fendorf 

1995). The word chromium originates from the Greek word Chroma, meaning 

colour. This is because many chromium compounds have characteristic colours 

that cover most areas of the visible spectrum. Chromium (Cr) is one of the most 

common elements on earth and is a highly abundant element in the crustal 

rocks. The amount of chromium present in the Earth’s crust can range between 

100 to 300 mg kg-1, and 5 to 3000 mg kg-1 in the soil (Cervantes et al. 2001). 

Chromium is a heavy metal that belongs to the d-block of the periodic table with 

an atomic number of 24. Chromium in pure form is a shiny metal that is steel 

grey, hard and malleable, with a density of 7.1 g cm-3, boiling point of 2642 °C, it 

is also tasteless, and odourless. The most stable and common forms of 

chromium are the trivalent Cr (III) and the hexavalent Cr (VI) species 

(Cervantes et al. 2001). Chromium is naturally found in diverse forms, however, 

the most important is chromate, e.g. Na2CrO4, FeCr2O4 and K2Cr2O4.    
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Chromium also exists in I, II, IV and V oxidation states (Zayed & Terry 2003). In 

soil trivalent Cr (III) is the most common and stable form. However, hexavalent 

Cr (VI) is associated with oxygen in the dichromate (Cr2O7
2-) and chromate 

(CrO4
2-) oxyanions and displays chemical properties that have different effects 

on organisms. Whilst Cr (VI) is more toxic than Cr (III), Cr (III) tends to be 

absorbed through the soil surface more readily than Cr (VI) or it can precipitate 

as chromium hydroxide in slightly acidic or alkaline environmental conditions. Cr 

(VI) is water soluble in the full pH range. Therefore, Cr (VI) has a higher 

environmental contamination potential than Cr (III) (Fendorf 1995).  

 

Chromium (III) is only slightly water soluble and as result it has low mobility 

within the environment and low toxicity to organisms in water (Barnhart 1997). 

Chromium (III) is a biological necessity to mammals because it is involved in the 

maintenance and efficiency of protein metabolism (Shrivastava et al. 2002). 

Low concentrations of Cr (III) can also increase plant growth. Surplus 

hexavalent chromium is strongly toxic to plants and animals and has been 

shown to be involved in the development of some cancers (Shanker et al. 2005). 

 

Sources of environmental hexavalent chromium can be found in various 

industries such as mining, wood preservation, cement, metal plating, textile 

manufacture, inks, leather tanning, automobile manufacturing, steel, fungicides, 

production of paints, and pigments (Zayed & Terry 2003; Dhal et al. 2013). 
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1.3 Chromium toxicity 
 
Since chromium may cause health problems at higher concentrations, its 

concentration in drinking water is regulated by the U.S. Environmental 

Protection Agency (EPA) (Cohen et al. 1993). The Environmental Protection 

Agency (EPA) has classified chromium as a group ‘A’ carcinogenic to humans, 

and therefore a major environmental pollutant (Figure 1-1). In both of its 

common forms, chromium (III) and chromium (VI), it may cause allergic contact 

dermatitis. The pollutants from soil, water and air can move and be transported 

by various biogeochemical cycles (Dhal et al. 2013). 

 

Chromium (III) is less bioavailable and has less mobility in the environment 

compared to Cr (VI) which is highly soluble and bioavailable thus making its 

toxicity a greater environmental hazard, this is because chromium (VI) exists 

generally bound to organic materials, together in aquatic and soil environments. 

However, Cr (III) could oxidised to Cr (VI) in the presence of surplus oxygen, so 

it becomes more toxic (Jackson et al. 1999). Cr (VI) toxicity may be traced to 

the ease with which it permeates  in the Eukarya, Bacteria and Archaea cell 

membranes with resultant respective reduction of Cr (VI) and formation of  free 

radicals that can damage DNA  and cause other adverse effects (Dhal et al. 

2013; Xia et al. 2014).  

Research has shown that chromium (III) is also harmful to cellular structures 

(Cieślak-Golonka 1996; Raspor et al. 2000; Cervantes et al. 2001). However, 

the chromium (VI) is more much toxic than chromium (III) in vivo. Since 

chromium (III) is generally less soluble it is less easily transported into cells 

(Srivastava et al. 1999). 
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1.4 Chromium uptake 
 
The most common mechanisms used for bioremediation are intracellular 

sequestration and detoxification, which involves the chemical modification of the 

toxic metal form to its non-toxic form. The toxic metal Cr (VI) ion may show 

similar chemical and structural characteristics as nutrient ions, and hence, can 

be erroneously assimilated by cells. This is true of chromium, where the 

chromate (VI) ion (CrO4
2-) has similar charge and structure to sulfate (SO4

2-). In 

one study, Pepi & Baldi (1992) isolated two Cr (VI)-resistant microorganisms 

( Candida spp. and Rhodosporidium sp.) from industrial waste. They observed 

that these strains exhibited chromium resistance, not by the mechanism of Cr 

(VI) reduction, but by the reduced uptake of the Cr (VI) ions. When sulfur-

containing amino acids (methionine and cysteine) were added to the culture 

media used for cultivating the microbes, the two yeast strains became less 

hypersensitive. Candida sp. could assimilate sulfur from sulfate more effectively 

from amino acids. Hence, these organisms showed a higher resistance. On the 

other hand, Rhodosporidium sp. possessed an ineffective sulfate transport 

process and could derive sulfur only from the amino acids. Thus, they required 

a very high concentration of methionine in order to tolerate Cr (VI) toxicity. In 

their study, de María Guillén-Jiménez et al. (2008) cultivated Candida sp. 

FGSFEP strain with varying sulfate salt concentration (from 0 to 23.92 mM), 

with and without Cr (VI) ions. In the absence of the Cr (VI) ions, the yeast did 

not display a significant difference in its specific growth rate, when it was grown 

on different sulfate concentrations. These results indicate that the presence of 

sulfate did not stimulate or inhibit the yeast growth. On the other hand, in the 

presence of the two different Cr (VI) ion concentrations (i.e., 1.7 and 3.3 mM), 

the specific growth rate of the yeast was significantly increased at higher sulfate 
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concentrations. Also, higher sulfate concentrations led to a significant reduction 

in Cr (VI) uptake by Candida sp. FGSFEP. The yeast was able to completely 

reduce 1.7 mM of Cr (VI). Thus, the changes in the cell permeability to Cr (VI) 

ions were seen to be a major factor which helped in determining the chromium 

resistance in the microbes. Shen & Wang (1993) investigated the chromate 

reductase enzyme in Escherichia coli ATCC 33456 and noted that this enzyme 

was soluble and exclusively localised within the cytoplasm. 

 

1.5 Resistance by impermeability 
 
As indicated in the preceding section, chromium (VI) resistance is linked to cell 

permeability and trans membrane nutrient uptake systems in bacterial and other 

cells.  

Many microorganisms develop chromium-resistance by adapting to various 

mechanisms such as exclusion with the help of permeability barriers, or removal 

of the intracellular chromium ions by the active transport process or intracellular 

biosorption, wherein the chromium ions get sequestered by intracellular proteins. 

The bacteria could alter their cell wall or cell membrane characteristic by 

increasing the expression of some specific components thereby decreasing the 

permeability. A high cell membrane polysaccharide expression decreased the 

permeability to the toxic chromium (VI) ions. Horitsu et al. (1983) noted that the 

breadth of the cell membrane in Pseudomonas ambigua G-1 was directly 

related to the chromium permeability and resistance. The fungus showed 

several physiological changes, such as an increase in the cell surface 

roughness, elasticity and cell wall rigidity. X-ray photoelectron spectroscopy and 

Fourier transform infrared analysis also showed that the Cr (VI) ions that were 
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bound to the microbial cell wall were reduced to Cr (III) by the various cell wall 

components (Das et al. 2008). The cell wall-Cr (III) ions were able to 

electrostatically attract a higher concentration of chromate ions, which led to the 

development of a layered cell wall structure.  

Cr (VI) ions easily diffuse through the bacterial cell membranes, unlike the Cr 

(III) ions, as shown in figure 1-2 (Nishioka 1975; Petrilli & De Flora 1977). A 

small proportion of the Cr (VI) ions that infiltrate into the cell are reduced to Cr 

(III), by reducing agents such as sulfite, ascorbate, reduced-glutathione, 

NAD(P)H  (Petrilli & De Flora 1978). Cr (III) ions were more mutagenic 

compared to the Cr (VI) ions when they were within the cell, as they had a 

tendency to form complexes with nucleic acids. Cheung & Gu (2007) stated that 

there was no evidence suggesting the binding of the Cr (III) to DNA. Reducing 

agents such as those stated above, are one electron reducers, reducing Cr (VI) 

to intracellular Cr (V) and then Cr (IV) ions, which can then undergo continuous 

free radical redox cycles to generate Cr (III) ions. The Cr (IV) ions could bind to 

the different cellular components and affect their function. Thus, the Cr (VI) ions 

are very toxic, as they can easily enter the human cells and get reduced to yield 

Cr (III) ions, which are very mutagenic (Arakawa et al. 2000). 

The presence of plasmid encoding genes was responsible for the chromium 

resistance in a majority of bacterial species, such as Streptococcus lactis 

(Efstathiou & McKay 1977), Pseudomonas sp. (Summers & Jacoby 1978), P. 

fluorescens (Ohtake et al. 1987) and Cupriavidus necator (Peitzsch et al. 1998). 

When Bopp et al. (1983) removed this plasmid in P. fluorescens, the  
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organism became more Cr (VI)-sensitive. Also, a bacterial strain which lacked 

the “chromium resistance” plasmid was seen to be chromium-sensitive. 

 

Figure 1-2 Modified from Cheung & Gu (2007) Schematic diagram of toxicity and 

mutagenicity of Cr (VI). The intracellular Cr (VI) reductants naturally available are 

frequently obligatory one-electron reducers, which generate Cr 5+ and a large amount 

of ROS that causes the deleterious effects of Cr (VI). 

 

1.6 Methanotrophs 
 
Methanotrophs are Gram-stain-negative Bacteria that were first detected by 

Sohnagen in 1906 and are distinguished from other organisms by the ability to 

utilise methane (CH4) as their sole source of carbon and energy. Sohnagen 

named this first methanotroph isolated Bacillus methanicus. This strain has 

been lost and there were several further attempts to isolate methane-oxidizing 

bacteria until Foster's Texas Laboratory successfully isolated methanotrophic 

bacteria from different sources. These included a methane oxidizing bacterium, 
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Methylococcus capsulatus. Other attempts to isolate pure colonies had not 

been successful because they were contaminated with heterotrophic bacteria 

that can grow on their excreted products. The contaminating bacteria were 

difficult to separate from the methanotrophs (Bissett et al. 2012; Rasigraf et al. 

2014); however, Whittenbury et al. (1970) isolated pure colonies of 

methanotrophic bacteria uncontaminated by heterotrophic bacteria (Foster & 

Davis 1966; Dalton 2005). 

Methanotrophs have been investigated for bioremediation of a variety of organic 

pollutants owing to the presence of broad-spectrum methane monooxygenase 

enzymes (MMO), which perform the oxidation of methane to methanol and is 

the main defining metabolic feature of methanotrophs. Methanotrophs are a 

highly specialized group of aerobic bacteria and have a versatile capacity for 

oxidation of certain types of organic pollutants such as alkanes, aromatics, 

halogenated alkenes (Jiang et al. 2010). Most methanotrophs discovered to 

date show optimal growth at moderate pH (5-6) and temperature ranges (20 - 

35 °C) and can grow at temperatures as low as 4 °C or as high as 72 °C. The 

versatility of growth temperatures allows methanotrophs to be isolated from 

multiple environments (Smith & Dalton 2004). Other methylotrophic bacteria can 

utilise different one-carbon compounds, including methylated amines, methanol, 

and halomethanes and methylated compounds containing sulfur for their source 

of carbon (Semrau et al. 2010; Jiang et al. 2010; Boden & Hutt 2018). 

 

The oxidation of methane by methanotrophs makes an important contribution in 

minimising the effects of global warming. In addition to their ability to oxidise 

methane as the growth substrate of methanotrophs, methane monooxygenase 

enzymes produced by methanotrophs also have the ability to co-oxidise 
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hydrocarbons and halogenated organic compounds, including aromatics and 

trichloroethylene. The application of methanotrophs in bioremediation of such 

compounds has been widely investigated (Smith & Dalton 2004).   

 

The most notable of methanotrophs that have been studied and which form the 

best of our general understanding of methanotrophs are Methylomonas 

methanica, Methylosinus trichosporium, and Methylococcus capsulatus Bath, 

representing the three classes (I, II and X) of   typical methanotrophs 

(Chistoserdova et al. 2009). Three types of the enzyme methane 

monooxygenase (MMO) exist within methanotrophic bacteria. These are soluble 

methane monooxygenase (sMMO), particulate methane monooxygenase 

(pMMO) and a divergent form of pMMO known as pXMO. In addition to 

oxidising methane these enzymes, most notable (sMMO) can oxidise a large 

number of compounds that include diphenyl, methane, naphthalene and 

trichloroethylene (TCE). Some of these substrates of (MMO) are highly toxic, 

and so the (MMO) enzymes are potentially useful for the bioremediation of 

environments contaminated with these pollutants in breaking them down. The 

wide substrate ranges of the (MMO) enzymes have led to numerous potential 

opportunities as industrial biocatalysts. One possibility is to use (MMO) to 

oxidise the potent greenhouse gas methane and thus minimise global warming 

(Dalton 2005 & Tavormina et al. 2011). 

1.7 Classification of methanotrophs 
 
The methanotrophs that (Whittenbury et al. 1970) isolated  as pure cultures and 

established the basis for the current classification of methanotrophs. The 

bacteria were divided into five genera (Figure 1-3), depending on the type of 

resting stages, carbon metabolism pathways, intercellular composition, and 
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morphological differences. These genera are: Methylomonas, Methylobacter, 

Methylococcus, Methylocystis, and Methylosinus, which are the same as the 

modern classification apart from addition of a number of new genera, including 

Methylomicrobium (Whittenbury et al. 1970; Bowman et al. 1995; Smith & 

Murrell 2009). (Hanson & Hanson 1996 & Dedysh et al. 2000) The 

methanotrophic bacteria have been grouped into three types, Types I, II, and X 

(Table 1.1) based on the same conditions as mentioned above.  

 

 

 

 

 

 

 

 

 

Figure 1-3 Two distinct arrangement of intercellular membrane showed by electron 

microscope (Dalton 2005) of types I, X, and II methanotrophs. 
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Table 1-1 Characteristics of Types I, II, and X methanotrophs. Adapted from (Hanson & 

Hanson 1996)  

Characteristic Type I Type II Type X 

Cell morphology Short rods, usually occur 

single; some cocci or 

ellipsoids 

Crescent- shaped rods, 

rods, pear shaped cells, 

sometimes occur in 

rosettes 

Cocci, often 

found in pairs 

Growth at 45 °C No No Yes 

G+C content  

(mol%) 

49-60 62-67 59-65 

Membrane 

arrangement 

Yes No Yes 

Bundles of 

vesicular disks 

paired 

membranes 

aligned to 

periphery of cells 

No  

Stacks 

Yes 

Peripheral 

No 

Stacks 

Nitrogen fixation No Yes Yes 

Resting stages 

formed 

No 

 

Some strains 

 

No 

 

 Exospores or 

cysts 

Some strains Some strains Some strains 

RuMP pathway 

present 

Yes No Yes 

Serine pathway 

present 

No Yes Sometimes 

Ribulose-1,5-

biphosphate 

carboxylase 

present 

No No Yes 

Major PLFAs C14.0,C16:1ω 7c,C16:1ω5t C18:1ω8c C16:0,C16:1ω7c 

Class Gamma proteobacteria Alpha proteobacteria Gamma 

proteobacteria 

Phylogenetic 

signature 

probe(S) 

1041(5'-

CTCCGCTATCTCTAACAG

ATT-3'), 1035(5'-

GATTCTCTGGATGTCAA

GGG-3'), MM650(5'-

CCTCTACTCAACTCTAGT

-3'),MM850(5'-

TACGTTAGCTCCACCACT

AA-3') 

1034(5'-

CCATACCGGACATGT

CCAAAGC-3') 

No specific 

probe has been 

tested. 
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Type I methanotrophs belong to the γ subdivision include the genera 

Methylococcus, Methylomonas, Methylomicrobium, Methylobacter, 

Methylocaldum and Methylosphaera, which can use the product from 

formaldehyde to form biomass through the ribulose monophosphate (RuMP) 

pathway. The Type I organisms contain mainly 16-carbon fatty acids and have 

bundles of intracytoplasmic membranes. 

Type II methanotrophs belong to Alphaproteobacteria and include the genera 

Methylosinus, Methylocystis and Methylocella. Methylocella have sMMO but not 

pMMO and are facultative methanotrophs. They use the serine pathway as their 

primary means for converting formaldehyde into biomass. They also have 18-

carbon fatty acids within their membrane (Hanson & Hanson, 1996; Whittenbury 

& Dalton, 1981).  

 

 

 

 

 

 

 

 

Figure 1-4 Pathway for oxidation of methane and assimilation of formaldehyde. 

Adapted from (Hanson & Hanson 1996)  
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Type X was added to include Methylococcus capsulatus; these are similar to 

Type I in that they utilise the RuMP cycle as the formaldehyde assimilation 

pathway, but they differ in that they possess low levels of enzymes of the serine 

pathway, an indication that Type X can use both pathways (Whittenbury & 

Dalton 1981; Smith & Murrell 2009). 

The pMMO and sMMO are produced by both Methylococcus capsulatus and 

Methylosinus trichosporium. However, methanotrophs such as Methylomonas 

methanica and Methylomicrobium album produce only pMMO. The more 

identified facultative methanotrophs e.g. Methylocella silvestris, produce only 

sMMO (Dedysh et al. 2005). Methyloferula is a genus of sMMO - only 

methanotrophs that are obligately methanotrophic (Knief et al. 2003; Vorobev et 

al. 2011).  

 

1.8 Metabolic flexibility 
 
The methanotrophs are seen to express metabolic flexibility. These organisms 

are able to thrive in conditions with a low oxygen tension and can oxidise 

chemolithotrophic hydrogen and sulfur (Ward et al. 2004; Kelly et al. 2005). 

Some methanotrophs are able to fix atmospheric nitrogen. Mc. capsulatus 

displays significant versatility in nitrogen conversion reactions, such as 

nitrification and denitrification. Ammonia gets oxidised to form nitrite by the 

pMMO and sMMO. This reaction occurs because of an absence of their 

substrate specificity. The MMO enzymes possess a related reductase enzyme. 

The organisms must possess a reducing activity for fixing atmospheric nitrogen. 

This reducing power is generally possessed by the flavodoxin or ferredoxin 



17 
 

molecules in the aerobic bacteria, which are usually reduced by the 

NADH/NADPH (Ward et al. 2004; Kelly et al. 2005). 

1.9 Methanobactin 
 
Methanobactin (Mb) is a chalkophore, a copper-binding, extracellular 

chromopeptide which is produced and secreted by several methanotrophs (Kim 

et al. 2004; Choi et al. 2005; Yoon et al. 2010; Yoon et al. 2011; Bandow et al. 

2011). This peptide is involved in copper acquisition by methanotrophs.  

The Cu complex in Mb has a pyramid-like structure, wherein a single Cu+ ion 

was coordinated by the N2S2 donor set, at the pyramid base. Mb has the 

following proposed structure: 1-(N-[mercapto-{5-oxo-2(3-methylbutanoyl) 

oxazol-4-ylidene} methyl]-Glyl-Ser2-Cys3-Tyr4) pyrrolidin-2-yl- (mercapto- [5-

oxo-oxazol-4-ylidene] methyl)-Ser5-Cys6-Met7 (Kim et al. 2004; Behling et al. 

2008; El Ghazouani et al. 2011) (Figure 1-5).  

 

 

 

 

 

Figure 1-5 Structure of the copper (I) complex of Mb from Methylosinus trichosporium. 

Taken from (Behling et al. 2008).  

Mb may be a multi-functional compound, which mediates the Cu uptake in the 

Mb-producing methanotrophs. When methanotrophic organisms such as Mc. 

capsulatus and Ms. trichosporium are cultivated in a low-Cu media Mb is 
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detected in the cell-free supernatant. The Mb level is significantly decreased 

after the addition of Cu to the medium (Zahn & DiSpirito 1996; DiSpirito et al. 

1998; Dassama et al. 2017). Additionally, Mb was found to be related to pMMO, 

and when it dissociates from Mb, pMMO became inactive. All these 

observations indicated that Mb plays a major role in pMMO activity, though its 

mechanism of action is still unknown (Choi et al. 2003; Choi et al. 2005). 

Furthermore, the Mb peptide, extracted from Mc. capsulatus, Ms. trichosporium 

and Methylomicrobium album displayed several other enzymes activities like 

oxidase, superoxide dismutase and hydrogen peroxide reductase (Choi et al. 

2008).  

In their review, Kenney & Rosenzweig (2011) summarised all the biological and 

chemical properties of Mb.  One study proposed that Mb was synthesised in the 

ribosomes of Ms. trichosporium (Krentz et al. 2010). Mb peptide could be 

synthesised by the Non-Ribosomal Peptide Synthase (NRPS) or the PolyKetide 

Synthase (PKS) enzymes, owing to its similarity to the siderophores (Ward et al. 

2004; Balasubramanian & Rosenzweig 2008). The siderophores are small Fe-

chelating compounds which mediate the uptake of Fe in low Fe conditions. The 

siderophores are usually synthesised by the NRPS enzyme, such as the 

pyochelin in P. aeruginosa (Cox et al. 1981) and enterobactin in E. coli 

(Ehmann et al. 2000) and or are synthesised by PKS, like yersiniabactin in 

Yersinia pestis (Miller et al. 2002).  

 

1.10 Effect of copper on methane monooxygenase 
 
The particulate methane monooxygenase (pMMO) has been shown to have an 

obligate requirement for copper. Stanley et al. (1983) observed that the 
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production of sMMO and pMMO in Mc. capsulatus Bath cells is dependent on 

the amount of copper: when the copper to biomass ratio is low, the sMMO is 

produced instead of the pMMO, which is expressed at a high ratio of copper to 

biomass. This change in MMO expression in response to copper is known as 

the copper switch. When copper to biomass ratio equals or exceeds 1 µmol g-1 

dry weight of cells, the switch from sMMO to pMMO transcription occurs 

(Theisen & Murrell 2005; Semrau et al. 2010; Fru 2011). In particulate fractions 

derived from Mc. capsulatus Bath cells, the MMO activity was observed to 

increase along with the increasing copper content of the membranes. When 

membranes obtained from cells that were grown at low copper levels are 

likewise observed, it was found out that its enzyme activity could undergo 

further stimulation by adding of Cu (II) ions to the assay medium (Nguyen et al. 

1994).  

In strains that express both pMMO and sMMO, copper in the growth medium 

inhibits sMMO gene expression. Under high copper-to-biomass conditions, 

pMMO is produced together with significant intracytoplasmic membrane 

formation (Balasubramanian & Rosenzweig 2008). The secretion of 

methanobactin, as well as the production of the polypeptide MmoD, has an 

important role in the copper switch by elevating copper bioavailability that 

regulates MMO expression; notably, both methanobactin and MmoD increase 

the importance of bacterial response to copper (Semrau et al. 2010; Semrau et 

al. 2013; DiSpirito et al. 2016 ). The copper deficiency of the medium triggers 

the production of methanobactin, which may result in different transition and 

near transition metals that have a possible effect on the metals found in soils 

and aquatic systems (Semrau et al. 2013).  
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It has been reported that the regulation of sMMO by copper takes place at the 

transcriptional gene level (Nielsen et al. 1996; Nielsen et al. 1997), and this 

transcription has been confirmed by later experiments (Choi et al. 2003). 

However, a discrepancy exists regarding the level at which pMMO is regulated. 

Some studies suggested that pMMO is regulated at the gene transcription level 

(Nielsen et al. 1996; Nielsen et al. 1997) while others proposed that pMMO is 

regulated at a different level of regulation; post-transcriptional level (Choi et al. 

2003).  

1.11 Methane monooxygenase (MMO) 
   

As mentioned earlier, methanotrophs oxidise methane to methanol with the 

enzyme methane monooxygenase (MMO). Three kinds of MMO have been 

established; a membrane associated or particulate methane monooxygenase 

(pMMO) exists in most well characterised methanotrophs and is situated in 

cytoplasmic membrane. The soluble form or soluble methane monooxygenase 

(sMMO) exists in some methanotrophs, and is situated in the cytoplasm. As 

detailed above, there also exist some sMMO-only methanotrophs. As stated 

above there is also a divergent form of pMMO known as pXMO.  

 

Although both of sMMO and pMMO can utilize methane and convert it to 

methanol, there are clear differences in the amino acids sequences for sMMO 

and pMMO, in their quaternary structure, and metals in the active site. sMMO is 

soluble in the cytoplasm while pMMO is cell associated exactly membrane 

associated (Dalton 2005). There are many other differences between pMMO 

and sMMO, which suggest that they are entirely different enzymes rather than 

pMMO being simply a derivative of sMMO with membrane adherence (Burrows 
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et al. 1984). To distinguish between pMMO and sMMO a colorimetric 

naphthalene oxidation test is used (Brusseau et al. 1990), Oxidation of 

naphthalene shows expression of sMMO by the bacteria, since this enzyme can 

oxidize naphthalene while pMMO cannot oxidise this substrate (Smith & Dalton 

2004).  

 

1.11.1 Particulate methane monooxygenase (pMMO) 
 

pMMO is a multiple copper containing enzyme for which some researchers 

have proposed that the absence of oxygen is necessary to purify pMMO without 

losing enzymatic activity (Choi et al. 2003) while others have found that aerobic 

conditions are acceptable (Nguyen et al. 1998) or helpful (Basu et al. 2003). 

Among many detergents examined it was found that the most effective for 

solubilising pMMO is dodecyl-β-D-maltoside and all reports of purified pMMO to 

this date relied on it (Smith & Dalton 2004). 

 

There is still debate about the number and roles of copper ions in pMMO, as 

well as the possibility of the involvement of iron in the metal centres of the 

enzyme (Lieberman & Rosenzweig 2005; Martinho et al. 2007). sMMO has 

proven easier to study than pMMO because the pMMO loses activity when 

solubilised (Nguyen et al. 1994; Semrau et al. 1995; Nguyen et al. 1996; 

Lieberman & Rosenzweig 2005; Myronova et al. 2006). The active pMMO 

complex consists of two components, firstly the hydroxylase (pMMOH). This 

consists of three polypeptides or three subunits (α, β, γ) with molecular masses 

of approximately 45,000, 26,000, 23,000 Da, encoded by the pmoBAC genes, 

secondly a putative reductase (pMMOR) consisting of 63,000 and 8,000 Da 
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proteins (Basu et al. 2003; Semrau et al. 2010). X-ray crystallographic study 

demonstrated that the pMMO has an (α β γ) 3 structure in the cell, pMMO may  

complex with MDH (Methanol Dehydrogenase) which acts as electron donor to 

pMMO (Figure 1-6) (Myronova et al. 2006; Smith & Murrell 2009). 

  

 
 

Figure 1-6 Structure of pMMO. The 49-, 27-, and 22-kDa subunits, are coloured lilac, 

yellow, and green, respectively. Metal atoms shown as spheres, copper red, and zinc 

orange. (a) (α, β, ɣ)3 enzyme; (b) view looking down on (a) from above; (c) one 

promoter showing the mononuclear and di-nuclear copper and zinc (Lieberman & 

Rosenzweig 2005 ; Smith & Murrell 2009). 

 

1.11.2 Soluble methane monooxygenase (sMMO) 
 

This enzyme has a wide range of substrates, which makes the bacteria that 

express it more useful in bioremediation and biotransformation processes 

(Murrell et al. 2000). The sMMO enzymes from two methanotrophs have been 

characterised in detail. Methylosinus trichosporium (Fox et al. 1989) has optimal 

activity at 30 °C, while Methylococcus capsulatus Bath (Colby & Dalton 1978) 

effectively works at 45 °C. In general, sMMO from Mc. capsulatus and Ms. 

trichosporium are similar in catalytic characteristics, structure, and substrates 

that they can oxidise (Smith & Dalton 2004). There is also evidence to suggest 
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that copper precludes sMMO activity. sMMO can incorporate molecular oxygen 

to methane as well as oxidising a range of other substrates (Woodland et al. 

1986). 

 

sMMO has three protein components, a hydroxylase (protein A) (MmoH), a 

regulatory (protein B) (MmoB), and a reductase, (protein C) (MmoR), all of 

which are needed for the activity of sMMO in the oxidation of methane to 

methanol (Colby & Dalton 1978; Colby & Dalton 1979; Semrau et al. 2010).  

 

As shown in (Figure 1-7), the hydroxylase (protein A) (MmoH) is the main part 

of the sMMO complex. It consists of three polypeptide subunits: α, β and γ (α2, 

β2, γ2 complex), with molecular masses of approximately 60,000 Da (α-

subunit), 40,000 Da (β-subunit) and 25,000 Da (γ-subunit) (Fox et al. 1989; 

Murrell et al. 2000). It is part of a family of enzymes consisting of active multiple 

hydrocarbon oxygenases with a binuclear iron centre, as well as hemerythrin, 

the R2 subunit of type I ribonucleotide reductases and purple acid phosphatase 

(Que Jr & True 1990; Rosenzweig et al. 1993). There are some differences in 

the active site in diverse cases of redox states as established by (Elango et al. 

1997). 

 

The coupling/regulator (protein B) (MmoB) is a single polypeptide of 16,000 Da 

that controls electron transfer from protein C to protein A and is encoded by 

mmoB in order to regulate the role of the enzyme in substrate oxidation (Colby 

& Dalton 1978; Green et al. 1985; Cardy et al. 1991; Buzy et al. 1998; Chang et 

al. 2001). In addition it alters the regioselectivity of the enzyme with certain 

substrates (Lee et al. 1993; Paulsen et al. 1994; Kazlauskaite et al. 1996).  
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The reductase (protein C), is composed of one polypeptide with a molecular 

mass of 39,000 Da which is encoded by mmoC and transfers electrons from 

NADH to the hydroxylase (protein A) MmoH (Colby & Dalton 1978; Green et al. 

1985; Fox et al. 1989; Cardy et al. 1991; Buzy et al. 1998; Smith & Dalton 

2004). It appears that the activity of the protein C in electron mobilisation is 

almost ten times the hydroxylase activity in hydroxylation (Fox et al. 1991). The 

sMMO reductases from Mc. capsulatus Bath and Ms. trichosporium OB3b are 

inactivated by Cu2+ ions in vitro (Green et al. 1985; Fitch et al. 1993). The 

protein C from Mc. capsulatus has flavin adenine dinucleotide (FAD) and Fe2S2 

prosthetic groups (Colby & Dalton 1979). Copper ions inactivate protein C by 

causing loss of the Fe2S2 centre, thus preventing the electron transfer from the 

MmoR to the MmoH (Green et al. 1985). 

 

  

 

Figure 1-7 The structure of the hydroxylase component of sMMO; Blue: α subunit, 

Green: β subunit, Yellow: γ subunit and Orange balls: diiron centre (Smith & Murrell 

2009). 
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1.12 Bioremediation of chromium 
 
 
Certain unique challenges confront the remediation of sites that are 

contaminated by chromium. At present, soils contaminated by heavy metals are 

being cleaned up through the use of numerous technologies, the most common 

of which include soil removal and land filling, physico-chemical extraction, 

stabilisation/solidification, flushing, soil washing, and phytoremediation. Among 

these techniques, none are completely accepted as the best treatment option. 

This is because they provide only a temporary solution, or simply immobilise the 

contaminant, or entail costly financial outlays when used in large areas 

(Laxmipriya et al. 2010). 

Bioremediation, is the process in which environmental pollution [e.g. Cr (VI)] are 

detoxified from polluted environments, by utilising microorganisms, green 

plants, fungi, or their enzymes (Thatoi et al. 2014). As indicated above, 

detoxification of Cr (VI) involves reducing it to Cr (III), which is less bioavailable, 

for example becoming immobilised in the soil matrix. In addition to the 

elimination of the toxicity of Cr (VI) by reducing it to Cr (III), the chromium may 

then form Cr(OH)3 that is particularly insoluble within the pH range of 6–9. This 

results in a severe limitation of Cr (III)’s ability to migrate to ground water. 

Bioremediation is an inexpensive process requiring less energy input compared 

to other physical and chemical processes. Thus, a bacterial system with the 

capability to reduce chromate is possibly a powerful tool in remediating 

contaminated effluents and environments (Xia et al. 2014). 

The more toxic Cr (VI) can be biologically reduced to the less toxic Cr (III). This 

can be done using microorganisms as a tool of biotechnology towards 

remediating chromate-polluted wastewater. As established by Barnhart (1997), 
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the process of bioremediating toxic chromium compounds is an area of special 

interest, not only because these metals cause serious environmental problems 

affecting living organisms but because it has found various uses in industrial 

applications. Consequently, a considerable number of bacterial strains have 

undergone evaluation related to the reduction of Cr (VI) to Cr (III) (Gadd & 

White 1993; Camargo et al. 2005; Pal et al. 2005).  

Numerous reports exist regarding microorganism being utilised to remediate 

waters and soils contaminated with Cr (VI) (Kratochvil et al. 1998). As stated 

above, bacteria can protect themselves from the toxic substances in the 

environment by converting toxic compounds via methylation, oxidation, and 

reduction. They create less toxic, more volatile, or readily precipitating forms. 

The utilisation of bioremediation, including phytoremediation, to detoxify areas 

that are contaminated with chromium continues to gain interest from 

researchers around the world, and numerous methods have been suggested 

and evaluated experimentally with varying levels of success (Zayed & Terry 

2003). Bioremediation of environments contaminated with Cr (VI) was facilitated 

by (Puzon et al. 2005). A bacterial enzyme system that utilised NADH as the 

reductant was used to allow the conversion of Cr (VI) into a soluble and 

generally safe NAD+ - Cr (III) complex. 

Generally, the operation of heavy metal bioremediation involves the metal ions’ 

conversion into insoluble forms through specific enzyme-mediated reactions, 

which move them away from the aqueous phase (Park et al. 2000). Some 

bacteria have chromate reductase activity, which leads to the conversion of Cr 

(VI) to Cr (III). The latter metal is a lot less toxic and less soluble; therefore, 
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reducing these enzymes offers a way to do chromate bioremediation (Gadd & 

White 1993). 

Previous studies of methanotrophs have suggested their application for 

bioremediation of a range of organic pollutants. The soluble form of Methane 

monooxygenase (sMMO) has the remarkable oxidisation ability to treat a wide 

range of substrates (George et al. 1996; Elango et al. 1997). As a 

consequence, attention has been called to this enzyme’s capability in 

bioremediation and synthetic chemistry. Chloroform and trichloroethylene (TCE) 

are indeed two of the groundwater’s most halogenated hydrocarbons pollutants; 

this makes them appear difficult to use as a unique carbon and energy source 

by bacteria (Hanson & Hanson 1996). 

Al Hasin et al. (2009) demonstrated that Mc. capsultatus Bath is capable of 

converting chromium (VI) at different concentrations (1.4-1,000 mg L-1) (0.0233-

16.667 mM) into chromium (III). The initial rate of chromium (VI) removal 

increased with increasing concentration. The metabolic inhibitor sodium azide 

caused a 57% decrease in chromate (VI) removal. Reduction of chromate (VI) 

by whole cells of Mc. capsulatus Bath was dependent on the presence of the 

growth substrate methane. Whole cells of pure Ms. trichosporium cultures did 

not detectably reduce chromium (VI). 

More recent studies of methane-driven chromium (VI) bioremediation, 

performed by other research groups, have focused on mixed communities of 

microorganisms containing methotrophs. Work using a consortium of 

microorganisms in a membrane biofilm reactor showed methane-driven removal 

of 3 mg L-1 (0.050 mM) of chromium (VI) (Lai et al. 2016). Further work in a 

similar reactor system showed competition between chromium (VI) and sulfate 
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for electrons ultimately derived from methane (Lv et al. 2018). Another 

polymicrobial biofilm reactor system showed simultaneous reduction of 

chromium (VI) (up to 2 mg L-1) (up to 0.033 mM) to and removal of dissolved 

nitrate from synthetic wastewater (Long et al. 2017) . Chromium isotope 

fractionation has also been used to infer reduction of chromium (VI) rather than 

solely biosorption in a polymicrobial system driven by methane(Lu  et al. 2018) 

 

1.13 Mechanism of reduction of chromium (VI) by bacteria 
 
In general, chromium reduction can be carried out by bacteria in two ways, 

enzymatic (direct chromium reduction) or non-enzymatic (indirect chromium 

reduction). 

 

1.13.1 Enzymatic reduction of chromium (VI) by bacteria 
 
Gram positive bacteria are shown to have significant tolerance to Cr (VI) toxicity 

at relatively high concentration, whereas Gram negative bacteria are more 

sensitive to Cr (VI) (Thatoi et al. 2014). The enzymatic reduction of chromium 

takes in two ways; aerobic process and anaerobic process. 

A number of bacterial species have been identified as being capable of 

reducing Cr (VI). For example, a Streptomyces griseus strain has been found to 

be capable of reducing a 50 mg L-1 (0.833 mM) Cr (VI) standard solution over a 

period of 72 h (Laxman & More 2002). Arthrobacter sp. and Bacillus sp., 

isolated from a long term contaminated tannery waste soil, have also been 

found to reduce Cr (VI) concentrations up to 50 mg L-1 (Megharaj et al. 2003), 
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Cr (VI) was also found to be reduced by Shewanella oneidensis (Daulton et al. 

2007). 

A membrane-associated, constitutive enzyme has also been found to induce 

the transfer of electrons from NADH to chromate (Bopp & Ehrlich 1988). The 

rate of Cr (VI) reduction by Bacillus sp., increased with initial cell concentrations 

ranging from 20 to 70 mg L-1 (0.333 to 1.166 mM) and then decreased when 

higher concentrations were used. Chromium (VI) is reduced by Escherichia coli 

ATCC 33456, under both aerobic and anaerobic conditions using various 

electron donors, such as glucose, acetate, propionate, glycerol and glycine. In 

addition to the type of electron-donor involved, the initial cell concentration, Cr 

(VI) concentration, pH, and temperature all had major effects on the rate of Cr 

(VI) reduction. The reduction of Cr (VI) by E. coli ATCC 33456 involved 

enzymes, and was not affected by the redox potential of the culture media as 

well as other possible electron acceptors, including sulfate and nitrate (Shen & 

Wang 1994). Strains of Acinetobacter sp. have been used for the removal of 

chromium being achieved after 15 days (Shrivastava & Thakur 2003). 

Pseudomonas putida is able to reduce chromate (VI) aerobically using the 

soluble chromate (VI) reductase (Ackerley et al. 2004). 

Chromate reduction in E. cloacae HO1 was observed at pH 6.0 to 8.5 (optimum 

pH, 7.0) and at 10 to 40 °C (optimum, 30 °C) (Wang et al. 1989). Washed cell 

suspensions of Desulfovibrio vulgaris were shown to rapidly reduce Cr (VI) to Cr 

(III) with H2 as electron donor. Individual cell microanalysis by transmission 

electron microscopy (TEM) using electron energy loss spectroscopy (EELS) 

and energy dispersive X-ray spectroscopy (EDXS) demonstrated that Cr (II) is 
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concentrated near the cytoplasmic membrane, thereby suggesting that the 

terminal reduction pathway is located within the cell (Daulton et al. 2007). 

Bacteria can reduce chromate to the insoluble and less toxic Cr (III), and thus 

chromate bioremediation is of interest, and genetic and protein engineering of 

suitable enzymes might lead to improvements in bacterial bioremediation. Many 

bacterial enzymes catalyse one electron reduction of chromate, generating Cr 

(V), which redox cycles, generating excessive reactive oxygen species (Fude et 

al. 1994). 

The previously reported studies on biological reduction of Cr (VI) have been 

conducted using laboratory scale apparatus, using sterilized conditions and 

pure cultures. The first report concerning Cr (VI) biological reduction in a pilot-

scale trickling filter, which used a mixed culture of microorganisms from an 

industrial sludge, was done by (Dermou et al. 2005). It is widely believed that 

reduction to Cr (III) is the final step in the microbial Cr (VI) reduction chain, 

essentially because during this process, bacterial cells become encrusted with 

Cr-rich precipitates (Wang et al. 1990; Fude et al. 1994). 

The assumed termination of the microbial reduction pathways at Cr (III) has 

important implications for the mechanisms of chromate reduction particularly for 

Cr (VI) reducing bacteria with membrane bound reductase. Cr (VI) reductase 

are reported to be localized to the cytoplasmic membranes of S. oneidensis 

(Myers et al. 2000), as well as being associated with membranes in 

Enterobacter cloacae (Wang et al. 1990), Pseudomonas fluorescens (Bopp & 

Ehrlich 1988), and Pseudomonas maltophilia (Blake et al. 1993). 
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1.13.1.1 Membrane-bound reduction system 

Two different types of chromate reduction mechanisms have been reported in 

the literature, i.e., soluble enzyme systems and a membrane-bound system. 

The role of the reductase enzyme in the transfer of electrons from NADH to 

chromate was (EC 1.6.5.2; www.brenda-enzyme.org) first described by (Bopp 

et al. 1983). The membrane-bound reduction system in Enterobacter cloacae 

H01 was investigated by (Wang et al. 1990), who noted that an insoluble form 

of reduced chromate ions was precipitated on the cell surfaces. They also 

carried out a Transmission Electron Microscopy (TEM) analysis and observed 

that a majority of the electron scattering particles were present on the outer 

membranes of the pelleted H01 cells. Furthermore, they also carried out 

Energy-dispersive X-ray analysis, which indicated that the particles on the cell 

surface were Cr precipitates. They determined the location of the chromium 

reductase enzyme by disrupting the cells and separating the cell organelles into 

different fractions. This experiment indicated that the enzyme activity was 

localised in the right-side outer membrane vesicles. 

In the case of the chromium-resistant E. aerogenes, the chromium reductase 

showed a similar expression as the nitrite reductase. Glycerol and fumarate 

were required for activating the chromate reductase activity. Furthermore, nitrite 

was seen to increase the enzyme activity, while nitrate decreased the activity. A 

similar mechanism was expressed by the formate-linked nitrite reductase 

enzyme system. Interestingly, the parent strain of the Cr-resistant E. aerogenes 

showed no significant difference in their Cr (VI) to Cr (III) reduction levels, 

indicating that the chromate reductase activity was not responsible for the Cr 

(VI) resistance, which was presumed earlier (Clark 1994). 

http://www.brenda-enzyme.org/
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1.13.1.2 Cytoplasmic reduction system 

The anaerobic, Cr (VI)-resistant Shewanella putrefaciens bacteria expressed 

chromate reductase activity (EC 1.6.5.2), which was localised in their cytoplasm 

(Myers et al. 2000). NADH and formate were seen to be the main electron 

donors for this enzyme. The chromate reductase activity was not detectable if 

NADPH was provided as the main electron donor. In another study, Myers et al. 

(2000) observed that an addition of flavin mononucleotide (10 µmol L-1) to the 

medium induced the formate-dependent Cr (VI) reductase activity. Also, this 

activity was completely inhibited when the sample was incubated in the 

presence of diphenyliodonium, a known flavoprotein inhibitor. The chromate 

reductase activity was also inhibited by azide, p-chloromercuriphenylsulfonate 

(pCMPS), antimycin A and 2-heptyl-4-hydroxyquinolone-N-oxide (HQNO), 

indicating that the enzyme gets reduced by the multi-component electron 

transport chain. The researchers stated that this process indicated the 

involvement of quinones and cytochromes. 

In another study, electron paramagnetic resonance (EPR) spectroscopy was 

used for detecting the presence of Cr (VI), indicating that the primary step in the 

Cr (VI) reduction mechanism includes a one-electron reduction step, which is 

followed by the 2-electron transfer. Unlike S. putrefaciens, NADPH was the 

electron donor for the chromate reductase activity in Pseudomonas putida (Park 

et al. 2000). Both the membrane and the cytoplasmic reductase enzymes were 

seen to be involved in the electron transfer system; however, different bacterial 

strains use different enzymes for reducing Cr (VI) to Cr (III), using different 

enzymatic mechanisms. For instance, the ChrR cytoplasmic chromate 

reductase enzyme from P. putida MK1 was seen to reduce Cr (VI) via a one-

electron shuttle, to form Cr (V), followed by a 2-electron transfer process to yield 
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Cr (III) (Ackerley et al. 2004). Furthermore, the Cr (V) intermediate could be 

spontaneously reoxidised to yield the reactive oxygen species (ROS), which 

causes significant oxidative stress (Ackerley et al. 2004). On the other hand, the 

cytoplasmic chromate reductase from E. coli, i.e., YieF, mediated a 4-electron 

shuttle for reducing Cr (VI) ions to Cr (III) in one step, while the remaining 

electrons were transferred to oxygen (Cheung & Gu 2007).  

1.13.2 Non enzymatic reduction of chromium by bacteria  

 

Non enzymatic Cr (VI) reduction to Cr (III) can be attributed to different chemical 

compounds, produced during the bacterial metabolic process. The most 

potential non enzymatic chromate reductants could be ascorbic acid, 

glutathione, cysteine or hydrogen peroxide in microbial cells. Reduction of Cr 

(VI) may also occur via chemical reactions that are present in intra/extra cellular 

locations such as amino acids, nucleotides, sugars, vitamins, organic acids or 

glutathione associated compounds (Thatoi et al. 2014). 

1.14 Aims  
 
 
The aims of the work described in this thesis were: 

To identify and characterise the chromate (VI) reductase of Methylococcus 

capsulatus Bath. 

To characterise the chromium (VI) bioremediation reaction at the cellular and 

molecular level.  

To isolate novel methanotrophs from the environment which are both chromium 

(VI) resistant and can reduce chromium (VI), for possible future use in 

remediation of high concentrations of this pollutant. 
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Chapter 2 Materials and methods 
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2.1 Materials 
 
All chemicals were supplied by Sigma, Fisher and Beckman Coulter and all 

reagents used were of analytical grade. All solutions and media were prepared 

with high-purity deionized water. 

 

2.1.1 Media 
 
Two types of media were initially proposed to be used for bacteria cultivation 

and investigation. Their compositions are described and all solutions and 

growth media were prepared with de-ionized water and sterilised by autoclaving 

at 15 psi for 15 min at 121 °C. 

 

2.1.1.1 NMS medium 
 
Nitrate minimal salts (NMS) liquid medium and agar medium containing 15 g of 

bacteriological agar (Oxoid) per litre were used for cultivation of methanotrophs. 

10 mL sterilised phosphate buffer was added after the medium had cooled to 

about 60 °C, just before pouring the agar media in sterile plates. The recipe of 

NMS is as follows: 

The NMS media contained (per L of deionized water) KNO3, 1000 mg; 

MgSO4.7H2O, 1000 mg; CaCl2.2H2O, 200 mg; NaMoO4.2H2O, 0.5 mg; Fe-

EDTA, 3.8 mg; CuSO4.5H2O, 0.1 mg; FeSO4.7H2O, 0.5 mg; ZnSO4.7H2O, 0.4 

mg; H3BO3, 0.15 mg; CoCl3.6H2O, 0.05 mg; Na2EDTA, 0.25 mg; MnCl2.4H2O, 

0.02 mg; NiCl2.6H2O, 0.01 mg; Na2HPO4, 497 mg;  KH2PO4, 390 mg. 

The NMS phosphate buffer contained (per L of buffer): 49.7 g of Na2HPO4 and 

39 g of KH2PO4. The pH was 6.8 without adjustment. 
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2.1.1.2 Nutrient agar medium 

Nutrient agar is a general purpose medium for the cultivation of 

microorganisms. It was used to test for contamination of methanotroph cultures 

with non-methanotrophs that could grow on this medium. The composition of 

this medium (supplied by Sigma Aldrich UK) is 0.5% Peptone, 0.3% beef 

extract/yeast extract, 1.5% agar, 0.5% NaCl. A suspension 28 g of this medium 

in 1000 ml of distilled water (pH 7.4) was sterilised by autoclaving at 121 °C for 

15 min. 

The purity of Mc. capsulatus Bath was routinely checked by plating cultures 

onto nutrient agar plates, which were incubated at 37 °C for 24 h.   

 

2.1.3 Equipment 
 

 Orbital incubators:  Stuart Scientific S150 and Gallenkamp, UK. 

 Spectrophotometer: 6715 UV/Vis. spectrophotometer JENWAY single 

holder, supplied by Bibby Scientific Ltd., UK. 

 Autoclave: Classic Prestige Medical, UK. 

 Optima ultracentrifuge Beckman Coulter made in USA. 

 French press cell Disruptor Thermo Electron Corporation, UK. 

 Inductively coupled plasma-mass spectrometer (ICP-MS) PerkinElmer 

NexION 350X, USA. 

 3505 pH meter JENWAY designed and manufactured in UK, by Bibby 

Scientific Ltd. 

 Fermentor (Bioflo 110): New Brunswick Scientific, USA.  

 Modulyod 230 Freeze Dryer: Thermo Electron Corporation, UK. 

 Sorvall RT 6000D Centrifuge: Thermo Electron Corporation, UK. 
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 RC6 centrifuge Thermo Scientific Sorvall RC6 plus centrifuge Thermo 

Electron Corporation, UK. 

  

2.2 Methods 
 
 

2.2.1 Bacterial strains and growth conditions 
 
 
The methanotrophic bacteria Mc. capsulatus Bath were grown and propagated 

aerobically in sterile nitrate mineral salt (NMS) media, or NMS agar plates 

inside an airtight jar (Smith & Murrell 2011) using methane (1:4 ν/ν in air) as the 

carbon and energy source. The experiments were performed in 50 mL liquid 

cultures in 250 mL conical Quickfit flasks capped with Suba-Seals (Sigma-

Aldrich) to prevent methane loss while allowing the addition and removal of 

material using syringes. 50 cm3 of air was removed and then the air was 

replaced aseptically inside the hood to avoid contamination with 60 cm3 of 

methane. The Mc. capsulatus Bath cultures were incubated at the optimum 

growth temperature of 45 °C on a shaker at 180 rpm and allowed to grow to an 

OD600 of 0.6-0.9. Under the conditions used in these experiments, the Mc. 

capsulatus Bath strain reaching an OD600 of 0.8 typically at 40-48 h.  
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2.2.2 Large scale cultivation of methanotrophs 
 
 
Fermentation was carried out using a Bioflo 110 fermentor/ Bioreactor (New 

Brunswick). NMS media (5 L) was placed inside the fermentor and the whole 

apparatus including tubing was autoclaved. 50 ml sterile NMS phosphate buffer 

(section 2.1.1.1) was added to the media. According to the published method 

(Pilkington & Dalton 1990), the fermentor conditions used to grow Mc. 

capsulatus Bath were as follows; agitation at 200 rpm, incubation temperature 

at 45 °C, 1:4 methane: air at approximately flow rate of 1 litre/min. 250 ml 

culture of Mc. capsulatus Bath were prepared in NMS and incubated at 45°C for 

48 h. This culture was used to inoculate the fermentor. Culture were harvested 

via centrifugation (11,000 × g, 10 min, 4 °C) and fractionated into (cytoplasm, 

cell wall and cell membrane), then the fractions were immediately frozen at -80 

°C.  

 

2.2.3 Optical density (O.D) measurements  
 
 
Throughout the experimentation process, the optical density (for growth curve 

experiments) was measured at a wavelength of 600 nm using a 

spectrophotometer.  

 

2.2.4 Investigation into the role of sMMO/pMMO in Mc. capsulatus Bath 
culture 
 
 
In order to investigate the involvement of MMOs (sMMO and pMMO), the Mc. 

capsulatus Bath cultures expressing sMMO activity were identified using the 

naphthalene oxidation assay reported by (Brusseau et al. 1990). The 
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naphthalene oxidation assay is a well-known biochemical assay for identifying 

and quantifying sMMO activity. sMMO oxidises naphthalene to a mixture of 1-

naphthol and 2-naphthol. The naphthols are detected by reaction with 

tetrazotized -o-dianisidine to form purple diazo dyes with large molar extinction 

coefficients Naphthalene is not a substrate for pMMO and cells expressing 

pMMO do not oxidise naphthalene.  

 

2.2.5 Preparation of potassium chromate stock solution 
 
 
Chromate solution (10 mg L-1) (0.166 mM) was prepared by dissolving 37.3 mg 

of K2CrO4 and 10 ml of concentrated sulfuric acid was added slowly with mixing 

into 500 ml distilled water. Then, the solution was made up to 1000 ml with 

distilled water. 

 

2.2.6 Preparation of chromium (VI) standard 
 
 
Six flasks were labelled (blank, 1, 2, 3, 4 and 5). Various quantities of K2Cr O4 

and sulfuric acid (H2SO4) (0.18 M) were added to each tube as shown in Table 

2-1 below. 
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Table 2-1 Amounts of K2CrO4 and H2SO4 used for the standard curve  

 

 

The content of each test tube was then mixed by shaking.  0.5 ml of 

diphenylcarbazide solution (0.5 g in 200 ml of acetone) was added to each tube 

and incubated for 5 min at room temperature for colour development. The 

absorbance was then measured at 540 nm using a spectrophotometer 

(Herrmann 1994). A standard curve was then plotted with absorbance vs 

concentration. The standard curve showed a high degree of linearity. Figure 2-1 

shows a representative standard curve in water, which showed a correlation 

coefficient of 0.999.  
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Figure 2-1 Typical standard curve of chromium (VI) concentration at OD 540 nm using 

the DPC assay  

 

2.2.7 Determination of chromium in the samples 
 
 
Measurement of chromium (VI) concentrations was performed by means of the 

diphenylcarbazide assay, as follows. Cells and other particulate material were 

removed from liquid samples by centrifugation (5,000 × g; 5 min; room 

temperature) and the supernate was acidified to 0.18 M. with H2SO41.0 ml of 

the acidified supernatant was then mixed with 0.05 ml of diphenylcarbazide 

solution (2.5 g L-1 in acetone) and the chromate (VI) concentration was 

estimated spectrophotometrically at 540 nm by reference to a standard curve of 

known chromate concentrations prepared and detailed above.  
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2.2.8 Cell fractionation 
 
In order to determine the location of chromium (VI) reductase activity, 5 litres 

culture of Mc. capsulatus Bath were grown on methane, the cells were 

harvested (11,000 × g, 4 °C, 10 min) to obtain a pellet. The pellet was washed 

with ice-cold 25 mM MOPS (pH 7), and re-suspended in 40 ml of the same 

buffer. The suspension was passed twice through a French pressure cell (8.3 

MPa, 4 °C) in order to break the cell walls. The lysate was then fractionated by 

a modification of the method reported by (Smith & Foster 1995), as follows: the 

whole procedure was performed at 0 to 4 °C to minimize sample degradation. 

The lysate was centrifuged (3,000 × g, twice for 2 min each) to remove debris 

before being centrifuged (27,000 × g, 20 min) to sediment cell wall fragments. 

The cell walls were washed twice by resuspension in 25 mM MOPS (pH 7) and 

then resuspended in the same buffer, to give fraction F1 (cell wall-associated 

proteins). 

The supernatant fraction was centrifuged again (27,000 × g, 20 min) to remove 

remaining wall material, and then membrane fragments were sedimented by 

centrifugation (105,000 × g, 60 min). The pellet was washed in 25 mM MOPS 

(pH 7), centrifuged again under the same conditions, resuspended in the same 

buffer to give fraction F2 (cell membranes). 

The supernatant from the first ultracentrifugation was centrifuged again under 

the same conditions to remove remaining membranous material. This gave 

fraction F3 (cytoplasm). 

All fractions were kept on ice throughout the procedure and care was taken not 

to allow any of them to become warm, by never removing them from ice for 

more than a few seconds and holding the tubes well above part that contained 
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the liquid.  At the end of the procedure, all three fractions were divided into five 

equal aliquots and flash frozen in Eppendorf tubes in liquid nitrogen, before 

being stored at –80 °C. Care was taken not the heat above 100 °C, to prevent 

denaturing and inactivating the enzymes. A protease inhibitor benzamidine 

1mM was also added prior to breaking the cells in the French press.  

 

2.2.9 Gram stain procedure 
 
Gram staining (Bartholomew & Mittwer 1952) was used to distinguish between 

Gram-positive and Gram-negative bacteria, which have distinct and consistent 

differences in their cell walls. The Gram stain was prepared as follows: 

The slide was immersed with crystal violet solution for one minute, and washed 

for 5 s with tap water. Immersion with Gram's Iodine solution then followed for 

one minute to act as a mordant, and washed for 5 s with water. The slide was 

then blotted to remove excess water, and decolourised in 95% ethanol for 10 s. 

The slide was then counterstained by immersion in safrannin solution for 30 s. 

Excess stain was washed away with tap water, and bacterial slides were viewed 

using microscopy with 100x magnification with oil immersion lens.  

 

2.2.10 Template DNA extractions for polymerase chain reaction (PCR) 
 
Genomic DNA extractions were performed using Qiagen Genomic tips 20/g and 

buffers supplied by Qiagen. For DNA extraction a 1 ml suspension of an 

overnight culture of bacteria was placed into a 1.5 ml micro-centrifuge 

(Eppendorf) tube and centrifuged (3,000 ×g for 5 min). The supernatant was 

removed and 180 µl of a tissue lysis buffer (ATL) was added. 20 µl of 20mg/ml 
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proteinase K was added and the content were mixed by vortexing and 

incubated at 56 °C for 1 h. Tubes were mixed 2 to 3 times during incubation 

period to ensure efficient lysis. After, brief centrifugation followed. Then a 200 µl 

lysis buffer (AL) was added, the content was mixed by pulse-vortexing for 15 s 

and incubated at 70 °C for 10 min followed by brief centrifugation.  

Ethanol( 200 µl)  (95 - 100%) was added and the contents of the tube were 

mixed by pulse-vortexing for 15 s followed by centrifugation. The mixture was 

carefully applied (including the precipitate) to the QIAamp spin column and 

centrifuged at 3,600 ×g for 1 min. The QIAamp spin column was placed in a 

clean 2 ml collection tube. The QIAamp spin column was carefully opened and 

500 µl washing buffer 1 (AW1) was added and then centrifuged at 3,600 ×g for 

1min. The QIAamp spin column was placed in a clean 2 ml collection tube. The 

column was carefully opened and 500 µl washing buffer 2 (AW2) was added 

and the tube was centrifuged at 105.000 ×g for 3 min. The QIAamp spin column 

was placed in a clean 1.5 ml Epindorf tube.  The column was carefully opened 

and 200 µl elution buffer (AE) was added and the tube was incubated at room 

temperature for 1 min, and then centrifuged at 3,600 ×g for 1 min. The previous 

step was repeated with incubation for 5 min at room temperature before 

centrifugation, 3,600 ×g for 1 min. To assess the quality of the DNA yield, a 

portion of 10 µl was run on a 0.8% agarose gel with ethidium bromide. 

 

2.2.11 Amplification of 16S rRNA gene 
 
In order to identify prokaryotic cells by using extracted genomic DNA as a 

template, the 16S rRNA gene (1550 bp) was amplified using the primers f27 

and rl492 (Bodrossy et al. 1997) (Table 2-2). PCR was performed in a total 
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volume of 50 µl by using Maxima Hot Start PCR Master Mix (2X) (400 µM 

dATP, 400 µM dGTP, 400 µM dCTP, 400 µM dTTP and 4 mM MgCl2.) The PCR 

was carried out under the following amplification conditions: 95 °C for 10 min, 

30 cycles of 95 °C for 30 s, 50 °C for 30 s and 72 °C for 1 min, followed by a 

final elongation step at 72 °C for 9 min. 

Table 2-2 16S rRNA gene primers  

  

 

 

 

 

2.2.12 Purification of PCR products 
 
A PCR clean-up kit was used to purify DNA for sequencing, and The QIaquick 

PCR purification kit and associated protocol were used as follows: 

To start 5 volumes of Binding buffer (PB) were added to 1 volume of PCR 

reaction mixture and pH adjusted accordingly. The mixture was then placed into 

a QIAquick column and the DNA allowed to bind to the filter by centrifuging for 

60 s. The flow through was then discarded, and 750 µl of Wash buffer (PE) 

were added to each tube, and each tube centrifuged for 1 min. The flow through 

was then discarded and the filters were placed into a fresh 1.5 ml micro-

centrifuge tube. Finally, to elute the DNA 50 µl of Elution Buffer (EB) (10 mM 

Tris Cl, pH 8.5) was added to the filter, and centrifuged for 1 min. The purified 

DNA was then analysed on an agarose gel, with 1 volume of loading dye to 5 

volumes of purified DNA solution. 

 

f27 

 

AGAGTTTGATCMTGGCTCAG 

 

rl492 

 

TACGGYTACCTTGTTACGACTT 
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2.2.13 Sequencing of 16S rRNA genes 
 
After the PCR amplification of 16S rRNA gene from the purified bacterial DNA 

from the isolated organisms from the Leeds and Liverpool Canal sediments, the 

amplified DNA was visualised by gel electrophoresis and the samples were 

cleaned up with the Qiagen PCR kit. The PCR product was sent for dye 

termination Sanger sequencing using the same primers that were used for the 

PCR. 

 

2.2.14 Bioinformatics to analyse sequences 
 
BLAST is the Basic Local Alignment Search Tool is an algorithm for comparing 

biological sequences such as amino acid sequences and nucleotide sequences 

of different proteins or NAD. A BLAST search compares the query sequence 

above certain threshold limit. The result that was obtained from the sequencing 

was compared with database of sequences and identified the organism with 

nearest similarity in terms of the sequence of its 16S rRNA gene.  

 

2.2.15 Reduction of hexavalent chromium by Mc. capsulatus Bath 
 
Potassium chromate or potassium dichromate (Sigma-Aldrich, Dorset, UK) was 

added from filter-sterilised stock solutions to Mc. capsulatus Bath cultures to 

give the desired chromium (VI) concentration towards the end of the logarithmic 

growth phase. The initial chromium (VI) concentrations used were 3, 5, 10, 20, 

30, 40 and 50 mg L-1
 (0.050, 0.083, 0.166, 0.333, 0.50, 0.666 and 0.833 mM). 

Three controls were set up for each experiment, from which bacterial inoculum, 

methane and the chromium (VI) species, respectively, were omitted. In order to 

determine the cellular location of the chromium (VI)-reducing activity, cultures 
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were grown to an OD600 of 0.8-0.9. Fractionation was performed as previously 

described by (Smith & Foster 1995). Where the membranes and cytoplasm 

were not separated from one another, the ultracentrifugation steps were 

omitted. 

 

2.2.16 Measurement of the growth of the cells of Mc. capsulatus Bath 

exposed to chromium (VI) by Protein assay (BCA) 

 
Optical density was not used to follow growth of cultures in these experiments 

because the chromium (VI) would contribute to the OD600 measurements, which 

would therefore not be an accurate measure of growth. Therefore, the total 

protein content was measured at different time intervals, and used as a 

measure of the growth of the microorganisms. Protein concentration in bacterial 

cell extracts was determined using the bicinchoninic acid (BCA) assay method 

(Pierce TM BCA Protein Assay Kit, Thermo Scientific, 23227). A 1.5 mL aliquot of 

bacterial culture was collected at different time intervals of bacterial growth and 

was centrifuged at 11,000 × g for 10 min. The pellet was washed and 

resuspended in 200 µl of extraction buffer (140 mM NaCl; 2.7 mM KCl; 10 mM 

Na2HPO4; 1.8 mM KH2PO4; pH 7) containing protease inhibitor (1% v/v). The 

resulting suspension was sonicated on ice for 4 x 10 s (Sonics VCX-750 Vibra 

Cell Ultra Sonic Processor) and centrifuged at 12,000 × g for 15 min at 4 °C. 

The supernatant was collected and measured for protein content using the BCA 

assay kit according to the manufacturer's instructions. Flasks with inoculum 

without the addition of chromium served as controls. 
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2.2.17 Acid digestion for heavy metal analysis 
 
A known amount of each sample (0.1 g) was taken into a digestion tube and 2 

ml of 50% (wt/wt) HNO3 was added to the tube in fume hood and was left for 15 

minutes for pre-digestion. The tubes were then sealed and digested in a 

microwave digestion apparatus for 10 min. After the samples had cooled a 

further 2 ml of 50% HNO3 was added and the mixture was filtered through 

Whatman filter paper. The filtered supernatant was stored in capped bottles in 

the cold room until further analysis on ICP-MS. The tubes were washed in soap 

solution after filtration and then soaked in 10% HNO3 overnight and washed 

with distilled water. The tubes were air dried and re-used. 

  

2.2.18 Aqueous phase quantitation and characterization of chromium 
 
The chromium (VI) concentrations were determined by using the 

diphenylcarbazide (DPC) assay or a high performance liquid chromatography 

(HPLC) - inductively coupled plasma mass spectrometry (ICP-MS) system. 

Measurement of chromium (VI) concentrations was performed by means of the 

diphenylcarbazide assay, as follows. Cells and other particulate material were 

removed from liquid samples by centrifugation (11,000 × g; 10 min; room 

temperature), and the supernatant was acidified by addition of 3M of H2SO4 to 

give a final concentration of 0.18 M. 1.0 mL of the acidified supernatant was 

then mixed with 0.05 mL of diphenylcarbazide solution (2.5 g L-1 in acetone) 

and the chromate (VI) concentration was estimated spectrophotometrically at 

540 nm by reference to a standard curve of known chromate concentrations.  

Inductively coupled plasma mass spectrometry (ICP-MS), illustrated in Figure 2-

2, is an alternative technique where the sample is ionized by ICP and the 
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elements of interest are detected via mass spectrometry. ICP-MS is a highly 

sensitive technique and capable of the determination of a range of metals and 

several non-metals at concentrations below one part in 1012 (part per trillion). It 

is based on coupling together inductively coupled plasma as a method of 

producing ions (ionization) with a mass spectrometer as a method of separating 

and detecting the ions. ICP-MS is also capable of monitoring speciation for the 

element of choice by coupling it to HPLC.  

 

 

 

 

 

 

 

 

 

Figure 2-2 Schematic diagram of ICP-MS  

 

Aliquots (5 mL) of the methanotroph cultures were collected at intervals and 

centrifuged (11,000 ×g; 10 min; room temperature), to remove the cells and 

other debris. An aliquot of the supernate (20 μL) was injected via a PerkinElmer 

LC Flexar autosampler into a PerkinElmer Flexar HPLC pump attached to a 

Hamilton PRP-X100 column, 4.6 × 250 mm, and coupled to a PerkinElmer ICP-

MS NexION 350X. This column, which is an ion exchange HPLC column 

separated the chromium (VI) and chromium (III). The column was run a flow 
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rate of 1.2 mL min−1 using a mobile phase made up of 0.5 mmol L−1 

ethylenediamine tetraacetic acid disodium salt dihydrate (Na-EDTA) buffer 

containing nitric acid (HNO3) (0.875 mL) and  adjusted to pH 7 with ammonia 

solution. 

Standard solutions of trivalent chromium (Cr(NO3)3.9H2O) and hexavalent 

chromium (K2CrO4) (Figure 2-3) were prepared at different chromium 

concentrations of 3, 5, 10, 20, 30, 40 and 50 mg L-1 (0.050, 0.083, 0.166, 0.333, 

0.50, 0.666 and 0.833 mM) (Derbyshire et al. 1999).   

 

 

Figure 2-3 Representative separation of trivalent chromium and hexavalent chromium 
(each at 10 mg L-1) (0.166 mM) via HPLC and ICP-MS as performed as detailed in the 
text. 
 
 
 
 

2.2.19 Calibration of ICP-MS 
 
Typical HPLC-ICP-MS calibration curves of standard chromium (III) and 

chromium (VI) are shown in Figures 2-4 and 2-5. 

 

Time (min) 
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Figure 2-4 Typical calibration curve of standard chromium (III) concentration using 

HPLC-ICP-MS  

 

 

Figure 2-5 Typical calibration curve of standard chromium (VI) concentration using 

HPLC-ICP-MS 

 

 

mg L-1 

mg L-1 
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2.2.20 Transmission electron microscopy (TEM) and energy dispersive X-

ray (EDX) spectrometry/high-angle annular dark-field (HAADF) scanning 

TEM (STEM) analysis 

 
Samples of chromium culture (1.5 mL) were pelleted by centrifugation (11,000 × 

g; 10 min; room temperature), and washed with 0.1 M sodium phosphate buffer 

(pH 7.4). The specimens were then fixed in 3% glutaraldehyde in the same 

buffer overnight at room temperature and washed again in the same buffer by 

centrifugation and resuspension under the same conditions. The cell 

suspension was centrifuged again and secondary fixation was carried out by 

resuspending the pellet in 1% w/v aqueous osmium tetroxide and incubating for 

1 hour at room temperature followed by the same wash step. The pellet of fixed 

cells was dehydrated through a graded series of ethanol dehydration steps 

(75%, 95% and 100% v/v), and then placed in a 50/50 (v/v) mixture of 100% 

ethanol and 100% hexamethyldisilazane for 30 min followed by 30 min in 100% 

hexamethyldisilazane. The specimens were then allowed to air dry overnight. A 

small sample of the fixed sample was crushed and dispersed in methanol, with 

a drop placed on a holey carbon coated copper grid (Agar Scientific). The 

samples were examined in an FEI Tecnai F20 field emission gun (FEG)-TEM 

operating at 200 kV and fitted with a Gatan Orius SC600A CCD camera, an 

Oxford instruments X-Max SDD EDX detector and a high angle annual dark 

field (HAADF) scanning TEM (STEM) detector. For thin section analysis, after 

the ethanol dehydration steps, the cells were embedded in EM bed 812 epoxy 

resin and cut into thin sections (90 nm, using a diamond knife on a Reichert 

Ultracut S ultramicrotome). The sections were supported on copper grids and 

coated with carbon. TEM specimen holders were cleaned by plasma prior to 

TEM analysis to minimize contamination. Samples were examined with a high-
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resolution Philips CM 200 transmission electron microscope at an acceleration 

voltage of 200 kV under standard operating conditions with the liquid nitrogen 

anticontaminator in place. The thin sectioned samples were prepared at 

Sheffield University by Dr. Chris Hill, and the TEM analysis was done at Leeds 

University by Dr. Nicole Hondow. 

 

2.2.21 X-ray photoelectron spectroscopy (XPS) analysis 
 
 
Harvested samples were deposited on silicon wafer, left to dehydrate in the load 

lock of the XPS instrument overnight. The analyses were carried out using a 

Kratos Axis Ultra DLD instrument with the monochromated aluminium source. 

The XPS spectra were collected at Swansea University. Survey scans were 

collected between 1200 to 0 eV binding energy. High - resolution C 1s, N 1s 

and O 1s spectra were collected over an appropriate energy range at 20 eV 

pass energy and 0.1 eV intervals. The analysis area was 700 µm by 300 µm. 

Two areas were analysed for each sample, collecting the data in duplicate. 

Charge neutralisation was used with intention of preventing excessive charging 

of the samples during analysis. The data collected were calibrated in intensity 

using a transmission function characteristic of the instrument (determined using 

software from NPL) to make the values instrument independent. The data was 

calibrated for binding energy by making the main carbon peak C1s at 285.00, 

and correcting all data for each sample analysis accordingly. 
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Chapter 3 Speciation and distribution of chromium species 
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3.1 Introduction 
 
Recent increases in the availability of methane from biogas and fracking 

sources has renewed interest in biotechnological applications of methanotrophs. 

Work in recent years has highlighted the key environmental role played in the 

environment by aerobic methane-oxidising bacteria, with a much greater 

diversity of these organisms being present than was previously realised.  These 

extremely diverse microorganisms, some of which can operate under effectively 

anaerobic conditions, are becoming increasingly recognised as significant 

players in transformation of heavy metals in the environment. Since the first 

report of chromium (VI) bioremediation by cultures of Mc. capsulatus Bath it has 

been shown that a mixed culture containing methanotrophs is able to reduce 

chromium (VI). We were interested to determine the response of the cells to a 

range of chromium concentrations and to locate the chromium on the 

microscopic level within the cells in order to assess how methanotrophs might 

be developed for practical bioremediation of heavy metals.  

 

3.2 Growth curve of Mc. capsulatus Bath 
 

The growth of Mc. capsulatus Bath in NMS media in the presence of methane 

as sole source of carbon and energy and the culture density was determined by 

measuring the absorbance at 600 nm and the graph was plotted of optical 

density vs time and the readings are shown in Figure 3-1. The growth curve 

exhibited a lag phase of less than 48 hours, followed by faster growth (putative 

logarithmic growth phase), after 96 hours of growth, the culture entered the 
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stationary phase. The time taken to reach the maximum OD was about 96 

hours. 
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Figure 3-1 Typical growth curve of Mc. capsulatus Bath level at 600 nm. Data shown is 

from three independent cultures. Results plotted as mean ± 1 standard deviation (n=3). 

 

3.3 Bacterial growth under chromium (VI) stress 
 

In order to determine the toxicity of Cr (VI) to the methanotrophs, the growth of 

the bacteria was studied by addition of different concentrations of Cr (VI) (0, 5, 

10, 20, 30, 40, 50 and 100 mg L-1) (0.00, 0.083, 0.166, 0.333, 0.50, 0.666, 

0.833 and 1.66 mM) to the cultures. The growth of Mc. capsulatus Bath in NMS 

media in the presence of different concentrations of Cr (VI) are shown in Figure 

3-2.  
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Optical density was not used to follow growth of the cultures in these 

experiments because the Cr (VI) would contribute to the OD600 consequently 

the results would not an accurate measure of growth. Therefore, the total 

protein content was measured at different time intervals and used as a measure 

of the growth of bacterium.  

At the concentration of Cr (VI) was increased, the amount of growth 

progressively decreased. At 40 mg L-1 (0.666 mM) of Cr (VI), negligible growth 

was observed. At higher chromium (VI) concentrations, the optical density 

concentration of protein actually decreased with time, suggesting cell death, 

lysis and proteolysis. Some toxic agents show a stimulatory effect at low 

concentrations, known as hormesis (Calabrese et al. 2007). Within the range of 

chromium (VI) concentrations tested there was no evidence of hormesis in the 

response of Mc. capsulatus Bath to Cr (VI).  
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Figure 3-2 Bacterial growth of Mc. capsulatus Bath under different Cr (VI) 

concentrations. Bacterial growth was measured via the quantification of total cell 

protein using BCA kit, and expressed as total protein per mL culture. Data shown is 

from three independent cultures at each Cr (VI) concentration. Error bars show 

standard deviation (n=3). 
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Chromium (VI) reduction was not observed in the absence of methane, but in 

the presence of methane the Cr (VI) reduction was observed. This indicates that 

Mc. capsulatus Bath needs methane to complete the reduction of Cr (VI) 

(Figure 3-3). 
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Figure 3-3 Pattern of live culture incubated with chromate in the presence and 

absence of methane. Initial chromate concentration is 20 mg L-1 (0.333 mM) of Cr (VI). 

Data shown is from three independent cultures. Error bars show standard deviation 

(n=3). 

  

In order to determine whether the removal of chromium from the supernatant 

was an active process, chromium (VI) removed by live cells was compared with 

a control of cells killed by autoclaving. The Cr (VI) concentration in the culture 

supernatant with live cells decreased with time, but with the dead cells the 

removal of Cr (VI) was completely abolished. No Cr (VI) appeared in the cell 

pellets of either the live or dead cells (Figure 3-4). 
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Figure 3-4 Pattern of chromium (VI) reduction in the presence of live and dead 

(supernatant - pellets) Mc. capsulatus Bath. Initial chromate concentration is (20 mg L-

1) (0.333 mM). Data shown is from three independent cultures. Results plotted as mean 

± 1 standard deviation (n=3).   

 

3.4 Bioremediation using methanotrophic bacteria Mc. capsulatus Bath 
 
Chromate reduction trials were performed by adding Cr (VI) at various 

concentrations to cultures of Mc. capsulatus Bath (OD600 of 0.7- 0.9) and 

incubating the cultures at 45 °C in the presence of methane and air. Chromium 

species in the supernatant were quantified by using HPLC-ICP-MS (Figure 3-5).  

Mc. capsulatus Bath was able to remove chromate (VI) over a wide range of 

concentration no other detectable chromium species were observed in the 

culture supernatant. With starting concentrations of hexavalent chromium of 3 

mg L-1 (0.05 mM) and 5 mg L-1 (0.083 mM), complete removal of chromate was 

achieved within 48 and 120 h, respectively. As the with concentration of 

hexavalent chromium was increased, a progressively smaller proportion of the 

chromium was removed, so that from a starting concentration of 40 mg L-1 (0.66 

mM), only 15% of the chromium (VI) was removed during 144 h. With 50 mg L-1 
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(0.833 mM), no detectable change in the concentration of hexavalent chromium 

was observed during the same period.                            
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Figure 3-5 Effect of Mc. capsulatus Bath cultures on Cr (VI) at various concentrations. 

Experiments were biological triplicates.  Results are shown as mean ± SD. 

 

3.5 Reduction and accumulation of chromium species within cellular 

fractions of Mc. capsulatus Bath. 

 
In order to determine the fate of the chromium (VI) that was removed from the 

medium by Mc. capsulatus Bath, samples of culture treated with an initial 

concentration of chromate (VI) of 20 mg L-1 (0.33 mM) were taken over a time 
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course of 144 h of incubation in the presence of methane and air.  Cells were 

harvested from the samples and then broken and separated into two fractions 

(cell walls and a combined fraction of membranes and cytoplasm) as detailed in 

the Materials and Methods. Concentrations of chromium species in the culture 

supernatant and each cellular fraction were quantified via HPLC-ICP-MS 

connected with Ion exchange column HPLC (Figure 3-6).  

Over the period of the experiment, the concentration of chromium (VI) in the 

culture supernatant declined and there was a corresponding increase in the 

concentration of chromium (III) in the cytoplasm+membranes fraction. No other 

chromium species were detected in significant concentrations in any of the 

samples. The constant total chromium (the sum of the chromium detected in all 

fractions) shown in Figure 3-6 indicates that the appearance of chromium (III) in 

the cytoplasm+membranes fraction accounted exactly for the decrease in 

chromium (VI) in the culture supernatant. These results showed that the cells of 

Mc. capsulatus Bath were able not only to reduce chromium (VI) to chromium 

(III) but also to accumulate all the chromium (III) within the biomass. 
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Figure 3-6 Reduction and accumulation of chromium species by Mc. capsulatus Bath 

after addition of Cr (VI) to 20 mg L-1 (0.33 mM).  Values are the means from biological 

triplicates and are shown as mean ± SD.  Concentrations in each of the fractions were 

normalised to the volume of the original culture. 
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3.6 Uptake of Cr (III) by Mc. capsulatus Bath 

  

The fact that all of the cell-associated chromium was in the +3 oxidation state, 

even though the cells had been exposed to chromium in hexavalent form, 

raised the question of whether reduction and uptake of chromium had to be 

linked, or whether they could take up trivalent chromium directly. When exposed 

in exactly the same way to 20 mg L-1 (0.33 mM) of chromium (III) in the 

presence of methane and air, the Mc. capsulatus cells took up the chromium 

(III) completely into the cytoplasm+membranes fraction within 1 h (Figure 3-7A), 

much more quickly than >144 h taken for reduction and accumulation of the 

same amount of chromium (IV).  Previous work has shown that the reduction of 

chromium (VI) to chromium (III) by Mc. capsulatus Bath is an active process 

requiring the presence of the carbon and energy source methane (Al Hasin et al. 

2009).   In order to investigate whether the uptake of chromium (III) was also an 

active process, cultures were exposed to 20 mg L-1 (0.33 mM) of chromium (III) 

aerobically though in the absence of methane. If the cells were grown to OD600 

0.7 in the presence of methane and then methane was removed and chromium 

(III) added immediately, all the chromium (III) was taken up by the cells within 1 

h (Figure 3-7B).  If, however, the cells were starved of methane overnight (16 h) 

before addition of the chromium (III), only 23.6% of the chromium (III) was taken 

up into the cells (Figure 3-7C).  Addition of the metabolic inhibitor sodium azide 

(to 0.05% w/v) in the presence of methane (Figure 3-7D) abolished 

approximately half of the uptake of chromium (III) within a 1 h period.  When the 

cells were both starved of methane overnight and sodium azide was added at 

the same time as the chromium (III), uptake of chromium (III) was completely 

abolished (Figure 3-7E). These results indicate that uptake of chromium (III) is 

an active process, but that when methane is removed from the culture, it has 
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sufficient reserves of energy to take up a substantial amount of chromium (III). 

Consistent with this, autoclaved cells were unable to take up chromium (III) 

(Figure 3-7F). 

 

  

 

 

 

  

Figure 3-7 Effect of adding 20 mgL-1 (0.33 mM) of Cr (III) to Mc. capsulatus Bath 

cultures with and without methane. Error bars show the standard deviation of three 

biological replicates. 

 
One possible explanation for the ability of the cells actively to take up some Cr 

(III) after starvation in the absence of methane is that the cells may still contain 

an energy storage compound such as volutin, which can supply energy in the 

form of ATP. If this is the case, such stored energy is clearly not available when 

the starved cells are also inhibited with NaN3 (Pallerala et al., 2005).  

 

A B C 

E F 



64 
 

3.7 Locating chromium species within the cells of Mc. capsulatus Bath 
 
In order to find more precisely the location of chromium species within the cells, 

cultures were exposed to chromium (VI) at 20 mg L-1 (0.33 mM) and the cells in 

the cells were fractionated as previously, except that the fractionation protocol 

was extended to produce separate membrane and cytoplasm fractions.  The 

results confirmed the reduction of chromium (VI) and accumulation of chromium 

(III) into the cytoplasm and membranes, and showed that the distribution of 

chromium between the two fractions was approximately two thirds in the cell 

membrane fraction and one third in the cytoplasm fraction (Figure 3-8). 

 

Figure 3-8 Speciation and distribution of chromium species analysed after fractionation 

of cells into separate cell wall, cytoplasm and membrane fractions. Initial Cr (VI) 

concentration was 20 mg L-1 (0.33 mM).  Error bars show the standard deviation of 

three biological replicates.  

 

Electron microscopy and associated techniques were then used to gain 

additional information about the speciation and distribution of the chromium at 

the microscopic level.  Electron energy loss spectroscopy (EELS) coupled with 

transmission electron microscopy (TEM) of whole Mc. capsulatus Bath cells 

exposed to 20 mg L-1 (0.33 mM) of chromium (VI) for 96 h or 144 h confirmed, 
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via comparison with spectra of chromium standards, that the cell-associated 

chromium was in the +3 oxidation state (Figure 3-9). 

   

Figure 3-9 EELS spectra of Mc. capsulatus Bath cells compared with chromium 

standards. Inserts show the areas of the samples (circled) that were analysed by EELS. 

Initial Cr (VI) concentration was 20 mg L-1 (0.33 mM).  

 
 

Chromium (VI)-exposed cells were also prepared as thin sections to see how 

chromium and other metals were distributed within the cells.  HAADF-TEM-EDX 

of sections of cells exposed to 20 mg L-1 (0.33 mM) of chromium (VI) for 144 h 

showed the presence of chromium in the chromium-treated cells (Figure 3-10A 

and B) and its absence from control (chromium-untreated cells; Figure 3-10C 

and D).  The spatial distribution of chromium (Figure 3-10E) indicated that the 

chromium was largely cell-associated with possibly greater amounts of 
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chromium toward the edges of the cell than in the interior. This is consistent 

with the approximate 40:60 distribution of the chromium between the cytoplasm 

and membrane fractions, when it is born in mind that Mc. capsulatus Bath under 

the relatively high-copper pMMO expressing conditions of these experiments is 

expected to have intracellular as well as peripheral membranes.   

        

       

  

 

Figure 3-10 EDX of sectioned cells showing the distribution of chromium.  (A) No-

chromium control; (C) cells exposed to 20 mg L-1 (0.33 mM) after 144h; (E) spatial 

distribution of chromium using HAADF-STEM imaging in the sample shown in C.  

Green and yellow boxes on the micrographs in parts A and C show the areas of the 

sample analysed in the EDX spectra shown on the right (B and D).   

 
 

A B 

C D 

E 
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The distribution of a number of other elements (carbon, phosphorous and 

oxygen) was also determined within whole Mc. capsulatus cells via EDX (Figure 

3-11 and Figure 3-12) and EELS imaging (Figure 3-13 and Figure 3-14) coupled 

to TEM.   

   

 

 

Figure 3-11 Electron micrographs with corresponding EDX spectra of whole Mc. 

capsulatus Bath cells, showing the distribution of carbon, oxygen and phosphorous 

after incubation of the culture in the presence of methane for 144 h at 45 °C without 

added chromium. The EDX spectrum was generated from data collected from the area 

indicated by the box in the insert. 
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The formation of cell associated structure composed of precipitate metal ions 

has been observed previously, for example in the production of extracellular 

fibers and stalks of Fe (III) oxides by Gallionella (Hallberg & Ferris 2004).  

   

 

 

                                                

Figure 3-12 Electron micrographs with corresponding EDX spectra of whole Mc. 

capsulatus Bath cells, showing the distribution of carbon, oxygen and phosphorous 

after incubation of the culture in the presence of methane for 144 h at 45 °C after 

addition of chromium (VI) to 20 mg L-1 (0.33 mM). The EDX spectrum was generated 

from data collected from the area indicated by the box in the insert.   

 



69 
 

   

 

  

Figure 3-13 Electron micrographs showing the distribution of elements via EELS 

imaging of whole Mc. capsulatus Bath cells, after incubation of the culture in the 

presence of methane for 144 h at 45 °C without added chromium. The EELS spectrum 

was generated from data collected from the area indicated by the box in the insert. 
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Figure 3-14 Electron micrographs showing the distribution of elements via EELS 

imaging of whole Mc. capsulatus Bath cells, after incubation of the culture in the 

presence of methane for 144 h at 45 °C after addition of chromium (VI) to 20 mg L-1 

(0.33 mM). The EELS spectrum was generated from data collected from the area 

indicated by the box in the insert.  

  

These results indicated that there was inhomogeneity in the distribution of all 

five elements, which appeared to correlate with features on the surface of the 

cells visible in the electron micrographs. These feature showed elevated 

concentrations of chromium, phosphorous and oxygen and decreased 

concentrations of carbon. The co-localization of chromium, phosphorous and 

oxygen may be due to precipitation of insoluble Cr (III) phosphate upon or within 

the cells. The reduced amount of carbon within these areas may simply be due 

to absence of carbon within this precipitated inorganic material. 
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3.8 X-ray photoelectron spectroscopy analysis 
 

X-ray photoelectron spectroscopy analysis (XPS) is an analysis technique used 

to obtain chemical information about the surfaces of a wide range of materials. 

Both composition and the chemical state of surface elements can be measured 

by XPS. The XPS measurements were performed to further investigate the 

composition and functional groups on the surface of the chromium exposed 

cells. Regarding to the sample of chromium added to the Mc. capsulatus Bath, 

the wide scan XPS spectra are shown in Figure 3-15A while high resolution 

spectra for C 1S and O 1S are shown in Figure 3-15B band C respectively. 

However, low resolution spectra shown for N 1s and Cr 2p as in Figure 3-15D 

and E. The data processing and deconvolution of photoelectron peaks were 

obtained using a commercial software package (Casa XPS v2.3.16PR1, Casa 

Software Ltd., UK). Elemental chromium is generally observed between 574 

and 578 eV. In our case, the deconvolution of low-resolution Cr 2p spectra, 

which exist at binding energy of 577.8 eV. The peak corresponds to elemental 

chromium. 

Figure 3-15B shows strong emission due to C 1s. Several species of C 1s from 

different functional groups constitute this strong emission. The XPS peak at 

binding energy of 284.99 eV is attributed to C-H in amino acid chain. The XPS 

peak for C 1s at binding energy of 286.55 eV can be assigned to C-OH in 

alcohol group or possibly C-OR in ether group. The XPS peak at binding energy 

of 288.03 eV is assigned to C=O in carbonyl group. While the peak at 288.86 

eV assigned to COOR on found in lipids.The O 1s spectra were deconvoluted 

into two component peaks. The O 1s peak at 532.90 eV is attributed to C-OH, 

C-O-C in alcohol groups, ester group and P-OH found in phosphate moieties 
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which are widely found in biomolecules including proteins, nucleic acids and 

carbohydrates. The second O 1s peak at 531.60 eV is attributed to C=O, P=O 

in carbonyl and phosphate moieties, respectively. 

The N 1s spectra produce a peak at 400.1 eV which is commonly found in 

amino acids and amino sugars (Kaur et al. 2009). 

This peak assigned to elemental chromium is only marginally above the 

surrounding noise in the spectrum. In the absence of a corresponding expanded 

view of the same region of the spectrum of the sample not exposed to 

chromium (Figure 3-16), it is not possible unambiguously to conclude that this 

peak is due to the chromium added to the sample.  

 

 



73 
 

        

 

  

Figure 3-15 Wide scan X-ray photoelectron spectra of chromium sample exposed to 

Mc. capsulatus Bath (A) and high resolution spectra for C 1s and O 1s are shown in B 

and C. The low resolution spectra for N 1s and Cr 2p are shown in D and E, 

respectively.                                                                                
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On the other hand, the control sample that was not exposed to the chromium, 

the wide scan XPS spectra are shown in Figure 3-16A while high resolution 

spectra for C 1S and O 1S are shown in Figure 3-16B and C respectively. 

However, low resolution spectra shown for N 1S as in Figure 3-16D.   

Figure 3-16B shows strong emission due to C 1s. The XPS peak for C 1s at 

binding energy of 284.87 eV can be assigned to C-H in amino acid group. The 

XPS peak at binding energy of 286.38 eV is attributed to C-OR or C-OH in ether 

group or alcohol group. The XPS peak at binding energy of 287.85 eV is 

assigned to C=O in carbonyl group. While the peak at 288.79 eV assigned to 

COOR on found in lipids. 

The O 1s spectra were deconvoluted into two component peaks. The O 1s peak 

at 532.77 eV is attributed to C-OH, C-O-C, P-OH in alcohol group, ester group 

and phosphate moieties. The second O 1s peak at 531.50 eV is attributed to 

C=O, P=O in carbonyl and phosphate moieties.  

The N 1s spectra produce a peak at 399.8 eV which is commonly found in 

amino acids and amino sugars (Kaur et al. 2009).  

The XPS for Cu was not observed in the wide scan spectra of chromium sample 

that added to Mc. capsulatus Bath. While the control sample did not show any 

signal of Ca 2p, Cr 2p and Cu.  
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Figure 3-16 Wide scan X-ray photoelectron spectra of control sample to Mc. 

capsulatus Bath that not exposed to chromium (A) and high resolution spectra for C 1s 

and O 1s are shown in B and C. The low resolution spectra for N 1s is shown in D. 
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Table 3-1 Results of curve-appropriate C 1s spectra of Mc. capsulatus Bath of (control 

sample compared with chromium sample). 

Control sample Chromium sample 

Name of group B. E. 

(eV) 

% Area Name of group B. E. (eV) % Area 

C - H 284.87 61.68 C - H 284.99 57.04 

C- OR or C - OH 286.38 23.69 C- OR or C - OH 286.55 26.33 

C = O 287.85 8.22 C = O 288.03 7.04 

COOR 288.79 6.42 COOR 288.86 9.60 

 

Table 3-2 Results of curve-appropriate O 1s spectra of Mc. capsulatus Bath of (control 

sample compared with chromium sample). 

Control sample Chromium sample 

Name of group B. E. 

(eV) 

% Area Name of group B. E. (eV) % Area 

C - H, C - O - C, 

P - OH 

532.77 65.02 C - H, C - O - C, 

P - OH  

532.90 63.37 

 C = O, P = O 531.50 34.98 C = O, P = O  531.60 36.63 
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3.9 Conclusion 
 

It has been confirmed that the pure strain of the methanotrophic bacterium Mc. 

capsulatus Bath is able to detoxify chromate (VI) over a wide range of 

concentrations and the product is chromium in the relatively nontoxic +3 

oxidation state. Cr (VI) was also found to be reduced by Shewanella oneidensis. 

In the case of S. oneidensis, some Cr (II) as well as Cr (III) was found in 

association with the cells (Daulton et al. 2007), although it is more widely found 

that (as is the case with Mc. capsulatus) reduction to Cr (III) is the final step in 

the microbial Cr (VI) reduction chain (Cervantes et al. 2001; Wang et al. 1990; 

Fude et al. 1994).  

In the work described in this chapter, the speciation and distribution of the 

chromium species in the methanotroph Mc. capsulatus Bath were identified by 

HPLC-ICP-MS, TEM-EDX, HAADF-STEM, EELS and XPS. Increase the 

appearance of chromium (III) in the cytoplasm+membranes fraction was 

accompanied by a deficiency of chromium (VI) in the culture supernatant. No 

chromium (III) was detected in culture supernatant; in contrast, there is no 

chromium (VI) in the cytoplasm+membranes fraction. A number of previous 

studies have used similar techniques, though with different kinds of 

microorganisms.  Chardin et al. (2006) used HPLC coupled to ICP-MS to 

examine the kinetics of Cr (VI) reduction by sulfate reducing bacteria, which 

showed an increase of Cr (III) concentration during 6 hours of incubation with 

the bacteria. Sandar et al. (2011) used SEM-EDX to show that chromium 

associated with cells of Bacillus strain during Cr (VI) removal. Neal et al. (2002) 

used EELS and XPS to show the chromium associated with S. oneidensis of Cr 

(III) oxidation state. 
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To more precisely locate the chromium species within the cells, cells of Mc. 

capsulaus Bath were fractionated into separate cell wall, cytoplasm and 

membrane fractions. The results showed that the distribution of chromium (III) 

was considerably more in the cell membrane fraction than in the cytoplasm 

fraction, and this result also confirmed by HAADF-TEM-EDX of thin sections of 

cells. Similar individual cell microanalysis in S. oneidensis by transmission 

electron microscopy (TEM) using electron energy loss spectroscopy (EELS) 

and energy dispersive X-ray spectroscopy (EDXS) demonstrated that Cr (III) is 

concentrated near the cytoplasmic membrane in this organism (Daulton et al. 

2007), in constrast to the more widespread distribution of chromium within the 

cells observed in Mc. capsulatus Bath.  

The results presented in this chapter strongly suggest that the Mc. capsulatus 

Bath cells accumulate the chromium concomitant with reducing it. Reduction of 

Cr (VI) and the uptake of the Cr (III) are active processes. All of the chromium 

becomes associated with the cells, which may be a useful property for 

bioremediation applications. 
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Chapter 4 Purification of Cr (VI) reductase of Mc. capsulatus Bath 
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4.1 Introduction 
 
In the previous chapter it was shown that when the cells of Mc. capsulatus Bath 

were exposed to chromium (VI), the cell-associated chromium was found 

exclusively in the Cr (III) oxidation state.  Cr (III) was found in the cytoplasm and 

membrane fractions in the approximate proportion 2:1. In order to characterise 

the bioremediation of chromium (VI) by Mc. capsulatus Bath it was necessary to 

characterise the chromium (VI) reducing activity, to determine whether or not it 

is enzymatic and where in the cell it was located. 

In order to achieve this, the cells were fractionated and the individual fractions 

assayed for chromium (VI) reducing activity and the optimal temperature for the 

reaction was determined. In an attempt to determine the source of electrons for 

the reduction reaction, a range of electron donors was tested. To enable this, 

the abiotic reaction between the electron donors and chromium (VI) was 

investigated and conditions were found that minimised the abiotic reaction to 

enable the biological reaction to be studied. The cytoplasm, which was found to 

contain the greatest chromium (VI) reducing activity, was chosen for purification 

of the active component. A two-step procedure was then used to purify the 

chromium (VI) reducing activity, comprising Anion exchange chromatography 

followed by Capto Blue Dye Affinity chromatography. 

4.2 Methods 
 
 

4.2.1 Cr (VI) reduction by cell fractions 
 
Cells of Mc. capsulatus Bath were grown on methane, harvested, broken using 

the French press and fractionated into cytoplasm, membrane and cell wall-

associated fractions as described by Smith and Foster (1995) and detailed in 

Chapter 2 (Materials and Methods). Fractions were assayed for chromium (VI) 
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reduction activity and a range of biological electron donors (NADH, NADPH as 

electron donors for sMMO, duroquinol as electron donor for pMMO and benzyl 

viologen as efficient electron donor) were investigated to determine the 

coenzyme requirement of the enzyme(s). The duroquinol was prepared as 

follows (Zahn & DiSpirito 1996): 50 µl of concentrated HCl was added to 20 ml 

of ethanol (3 mM HCl) and then 0.2 g of duroquinone was added with stirring, 

after that 0.28 g sodium hydrosulfite (sodium dithionite) was added to the 

solution with continuous stirring for a minimum of 3 min, then the solution was 

diluted with 150 ml H2O. The solution was filtered through a Watman no. 1 filter. 

The water insoluble duroquinol remained colorless (white) and was collected on 

the filter. The duroquinol was rinsed/washed on the filter with approximately 200 

ml H2O and air dried by suction filtration for at least 5 min. The duroquinol was 

removed from the filter and then stored in a foil covered serum vial at -20 °C for 

no longer than 2 days. 

 

Chromium (VI) reduction by each of the fraction was assayed in triplicate with 

each of the electron donors. For each fraction, triplicate controls were 

performed with no added electron donor. Each assay contained potassium 

chromate to give a starting concentration of chromium (VI) of 2.6 mg L-1 (0.043 

mM), 10 µl of the electron donor solution (0.2 mM) where appropriate and 980 

µl of the cellular fraction or fraction from column chromatography. The purpose 

of the reactions without electron donor was to measure the background rate of 

reduction of chromium (VI).  

Chromium concentration was determined colorimetrically by the 

diphenylcarbazide method taking 300 µl of sample and acidifying by adding 700 
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µl 0.18 M sulfuric acid and adding 50 µl diphenylcarbazide (DPC) solutions (2.5 

g L-1 in acetone) to produce the colour change. Initial samples of culture were 

taken when potassium chromate was added and then further readings at 48 and 

96 hour time points.  

 

4.2.2 Effect of cell fractions on Cr (VI) without added electron donors at 

various temperatures 

 
In order to determine the effect of temperature on the chromium (VI)-reducing 

activity of the cellular fractions of Mc. capsulatus Bath, the fractions were 

studied for their activity at various temperatures between 10 and 50 °C.  

Fractions were incubated for 96 hours, followed by measurement of chromate 

reductase activity as already described in section 4.2.1.  

4.2.3 Effect of electron donors on chromium (VI) in the absence of cell 

fractions 

 
In order to be able to quantify the effect of added electron donors on reduction 

of chromium (VI) by the methanotroph cell fractions, it was necessary to 

determine whether any reaction occurred between chromium (VI) and the 

electron donors in the absence of added cellular fractions. A range of NADH, 

NADPH, duroquinol and benzyl viologen concentrations were investigated in 

order to find the concentration that would best allow detection of enzyme-

catalysed Cr (VI) reduction activity.  
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4.2.4 Anion exchange chromatography 

 
Anion exchange chromatography was performed with a Hiscreen Capto diethyl-

aminoethyl DEAE (CV = 4.7 ml; GE Healthcare Life Sciences) column 

connected to an Akta protein purification system. The flow rate of buffer was set 

to 2.7 ml/min throughout the preparation of the column and purification. The 

column pressure remained around 3 bar (0.3 MPa) throughout. All purification 

steps were carried out at cold room temperature with enzyme preparations 

stored at 4 °C.  

The column was washed with 1 CV of distilled water before use. This step was 

used in order to pre-equilibrate the column and remove the ethanol used for 

storage of the column. The column was then equilibrated with 10 CV of the start 

buffer (20 mM Tris- HCl, pH 8.0). According to the manufacturer of the column, 

such washing with 10 CV of starting buffer is sufficient to stabilise the UV 

baseline, pH and conductivity of the eluate. 

The cytoplasmic fraction of Mc. capsulatus Bath prepared as described in 

section 4.2.1. was made free of particulate material (including membrane 

fragments) by centrifugation in the ultra-centrifuge (105,000 × g; 60 min; 4 °C). 

The resulting supernatant (containing 300 mg total protein in 75 ml of 20 mM 

Tris-HCl, pH 8.0) was loaded onto the column.  This was within the dynamic 

binding capacity of the column based on the information provided by the 

suppliers (dynamic binding capacity of > 90 mg of protein per ml CV, hence a 

4.7 ml column can bind at least 423 mg of protein). 

The column was then washed with 10 CV of start buffer until the UV trace 

returned to the baseline. The run through was collected in case the chromate 

reducing activity did not bind to the column.  
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The column was then eluted with a linear gradient, from 0% to 100% elution 

buffer (20 mM Tris-HCl, 1M NaCl, pH 8.0) (Figure 2-4). Fractions of 5 ml were 

collected during elution and then were assayed for chromium removing activity 

(as detailed in section 4.2.1.).  

In order to regenerate the column for further use, it was washed as follows. The 

column was first washed with at least 2 CV of 2 M NaCl and washed with at 

least 4 CV of 1 M NaOH. Then the column washed with at least 2 CV of 2 M 

NaCl and washed with at least 2 CV of distilled water. Finally the column 

washed with at least 10 CV of start buffer. 

 

4.2.5 Protein concentration assay 

 
Protein concentration was measured via the BCA protein assay with bovine 

serum albumin (BSA) as the standard using the BCA protein assay kit (Thermo 

Scientific, UK, catalogue no. 23225).  Proteins in samples were separated and 

characterised by means of analytical sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE).  

SDS-12% PAGE was performed using Mini-PROTEAN TGX Precast Gels (Bio-

Rad, Watford, UK) were used. Samples were mixed with 4 × Laemmli loading 

buffer (Amresco, Solon, Ohio, USA) and heated at 95 °C for 5 min before 

loading onto the gel. Gels were run in at 100 V for 90 min in TGS running buffer 

(25mM Tris base, 192 mM glycine, 0.1% wt/vol SDS). Gels were stained with 

Instant Blue stain (Expedion, Cambridge, UK).  
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4.2.6 Purification by Capto Blue Dye Affinity Chromatography   

 
The HiScreen Capto Blue column (4.7 mL column, GE Healthcare Life 

Sciences) used in this work was supplied prepacked with 4.7 ml Capto Blue 

coupled to the base matrix by a hydrophilic spacer immobilized with a stable 

amine bond. Capto Blue is more chemically stable and has a more rigid 

agarose base matrix and this allows the use of faster flow rates and large 

sample volumes, leading to higher throughput and improved process economy. 

The column is ideal for screening of selectivity, binding and elution conditions, 

as well as small scale purifications. The column is used in an optimal way with 

liquid chromatography systems such as AKTA. 

HiScreen Capto Blue column was equilibrated with at least 5 column volume 

(CV) start buffer (20 mM Tris- HCl, pH 8.0), the flow rate of buffer was set to 2.3 

ml/min throughout the purification. The column pressure was 3 bar (0.3 MPa) 

throughout the procedure. All purification steps were carried out at cold room 

temperature at 4 °C. 

The dynamic binding capacity of the Capto Blue column matrix is reported by 

the manufacturer to be 25 mg/mL and the total volume for Capto Blue was 4.7 

ml, so the binding capacity of the column was expected to be 25 x 4.7 = 117.5 

mg of protein. Active fractions from the DEAE Anion exchange chromatography 

were pooled and the protein concentration was 2.31 mg/ml x 9 ml cytoplasm 

fraction = 20.79 mg. 

The pooled sample was dialysed against 20 mM Tris-HCl pH 8.0 using a 3.5 

kDa cut-off dialysis tubing with three changes of buffer at 4 °C to remove the 

salt used to elute the protein from the Anion exchange column and to exchange 

the proteins into the start buffer for the subsequent Dye Affinity purification step.  
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The 9 ml dialysed sample was loaded onto the Capto Blue column and then the 

column was washed with 5 CV of a start buffer (20 mM Tris- HCl, pH 8.0) (until 

the UV trace returned to near baseline), and the run through was collected in 

case the chromate reducing activity did not bind to the column.  

The column was then eluted by linear gradient elution, from 0% to 100% elution 

buffer (20 mM Tris-HCl, 2 M NaCl, pH 8.0)(Figure 4-14). Fractions of 3 ml were 

collected during elution and then the fractions corresponding to the peaks of 

absorbance were tested for chromium VI removal as shown in Figure 4-15 by 

means of the diphenyl carbazide assay.  Chromium VI reducing activity was 

found in tubes fractions 9 and 10.  

The column was washed by several steps were; the column was washed with 4 

column volumes (CV) of 0.5 M NaOH and then washed with at least 4 (CV) of 

70% ethanol after that the column washed immediately with at least 5 (CV) 

filtered start buffer (20 mM Tris-HCl, pH 8.0).  

 

  

4.3 Results 

4.3.1 Effect of cell fractions on Cr (VI) without added electron donors at 

various temperatures 

 
Although the fractions were active between 20 and 40 °C, activity of the 

fractions was found to reach a maximum at 30 °C, and was reduced at both 

higher and lower temperatures, thus proving that the enzyme is tolerant of 

temperature variations within these limits (Figure 4-1).  
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Figure 3-17 Cell fractions with Cr (VI) at 96 h in the absence of electron donors at 

various temperatures ranges between 10 and 50 °C. Data shown is from three 

independent cultures. Results plotted as mean ± 1 standard deviation (n=3).  
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Figure 3-18 Cytoplasmic chromium (VI) removal activity at 96 h. Error bars show 

standard deviation (n=3).   
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Figure 3-19 Cell membrane chromium (VI) removal activity at 96 h. Error bars show 

standard deviation (n=3).   
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Figure 3-20 Cell wall chromium (VI) removal activity at 96 h. Error bars show standard 

deviation (n=3).   

 

 

 

These results also established that the cellular fractions of Mc. capsulatus Bath 

were capable of removing chromium (VI), presumably by chemical reduction, in 

the absence of added reducing agents.  Hence, a certain amount of the reduced 

coenzyme(s) or other electron donor(s) must be present in the cellular fractions 

to account for this reduction. 
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4.3.2 Effect of electron donors on chromium (VI) in the absence of cell 

fractions  

 

It was found that 0.4 mM of NADH, NADPH, duroquinol and benzyl viologen 

reduced the concentration of Cr (VI) from 2.6 mg L-1 (0.043 mM) to (2.378, 

2.350, 2.306 and 2.305) mg L-1 (0.0396, 0.0391, 0.03843 and 0.03841) mM 

respectively. These were only a (8.54%, 9.62%, 11.31% and 11.35%) reduction. 

With such a reduction rate in this condition it would be difficult to differentiate 

reduction by a protein and NADH, NADPH, duroquinol and benzyl viologen thus 

generating the possibility of false positive results (Figure 4-5). 0.2 mM of NADH, 

NADPH, duroquinol and benzyl viologen on the other hand, did not reduced of 

Cr (VI). Hence 0.2 mM concentrations of NADH, NADPH, duroquinol and benzyl 

viologen were used as electron donor in subsequent experiments in order to 

minimise the background non-biological reduction of chromium (VI). 
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Figure 3-21 Quantification of Cr (VI) via the DPC assay, from an initial concentration of 

2.6 mg L-1 (0.043 mM) by NADH, NADPH, duroquinol and benzyl viologen were used 

at concentrations of 0.4 mM and a negative control (without NADH, NADPH, duroquinol 

and benzyl viologen) was performed. Solutions were prepared in (25 mM MOPS, pH 7) 

buffer as to simulate the conditions of the cell fractions. Results plotted as mean ± 1 

standard deviation (n=3).  
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Figure 3-22 Quantification of Cr (VI) via the DPC assay, from an initial concentration of 

2.6 mg L-1 (0.043 mM) by NADH, NADPH, duroquinol and benzyl viologen were used 

at concentrations of 0.2 mM and a negative control (without NADH, NADPH, duroquinol 

and benzyl viologen) was performed. Solutions were prepared in (25 mM MOPS, pH 7) 

buffer as to simulate the conditions of the cell fractions. Results plotted as mean ± 1 

standard deviation (n=3).  

 

From this experiment, it was discovered, via the DPC assay, that NADH, 

NADPH, duroquinol and benzyl viologen reduced Cr (VI) to Cr (III) with 

concentration (0.4 mM) from electron donor to some extent without reductase 

from the cell fractions present, so an additional control was devised is 25 mM 

MOPS (pH 7) added to it Cr (VI) in order to show whether direct (non-enzyme-

catalysed) reactions of NADH, NADPH, duroquinol and benzyl viologen with Cr 

(VI) were likely to be significant, but with  concentration (0.2 mM) from electron 

donor there are not any reduction of Cr (VI), this concentration was therefore 

used for Cr(VI) reduction by cell fractions. 
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4.3.3 Chromium (VI) reduction by cell fractions in the presence of added 

electron donors  

As observed previously (Figure 4-1), in the absence of added electron donors 

the cellular fractions removed added chromium (VI). The chromium (VI) removal 

activity was greatest in the cytoplasm, in comparison with the cell membrane 

and cell wall fractions. These fractions reduced the concentration of Cr (VI) in 

the absence of an electron donor from 2.6 mg L-1 (0.043 mM) to (0.976, 1.007 

and 1.184) mg L-1 (0.0162, 0.0167 and 0.0197) mM, respectively, over a period 

of 96 h (Figure 2-3A, B, C and D). 

In the cytoplasm and cell membrane fractions there was a substantial reduction 

of Cr (VI) during the first 48 hours, removing more than two-thirds of the initial 

concentration. However, after 48 hours the decline continued but was slower 

than first 48 hours.  

The cytoplasmic fraction caused a reduction of 62.46% which appears to be the 

maximal amount of reduction possible without adding more electron donor.  

In the cell wall fraction the rate of reduction was approximately equal before and 

after 48 hours. 

The ability of the various cell fractions to reduce 2.6 mg L-1 (0.043 mM) Cr (VI) 

was tested with 0.2 mM of NADH, NADPH, duroquinol and benzyl viologen in 

25 mM MOPS (pH 7) buffer and measured by using the DPC assay. The 

amount of reduction performed by the cytoplasm fraction increased slightly with 

added NADH.  There was also a slight increase in reduction by the membrane 

fraction upon adding duroquinol. No other significant effects of the reducing 

agents were seen.    
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The cytoplasm fraction with NADH and NADPH (green line) has further 

reduction compared with the cytoplasm fraction without NADH and NADPH 

(blue line) and the Cr (VI) removal activity was (1.868 and 1.692) mg L-1 

(0.0311, 0.0282) mM, respectively from 2.6 mg L-1 (0.043 mM) as initial 

concentration of Cr (VI), at 96 hours (Figure 4-7A  + Figure 4-8A). 

The cell membrane fraction with duroquinol has further Cr (VI) removal activity  

(1.702 mg L-1) (0.0283 mM) compared with the same fraction starved of 

duroquinol it was (1.566 mg L-1) (0.0261 mM), at 96 hours (Figure 4-9B).   
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Figure 3-23 Cell fractions plus Cr (VI) with and without NADH as electron donor. Error 

bars show the standard deviation of three biological replicates.    
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Figure 3-24 Cell fractions plus Cr (VI) with and without NADPH as electron donor. 

Error bars show the standard deviation of three biological replicates. 
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Figure 3-25 Cell fractions plus Cr (VI) with and without Duroquinol as electron donor. 

Error bars show the standard deviation of three biological replicates.  
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Figure 3-26 Cell fractions plus Cr (VI) with and without Benzyl viologen as electron 

donor. Error bars show the standard deviation of three biological replicates. 
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4.3.4 Separation of cytoplasm fraction by DEAE Anion exchange 

Chromatography  

As the initial step towards purifying the chromium (VI)-reducing activity, the 

cytoplasm fraction was separated by means of DEAE Anion exchange 

chromatography. An Anion exchange step is commonly used as a first 

chromatographic step for protein purification protocols, because it removes a lot 

of unwanted proteins and it also concentrates the protein in to small volume. A 

number of previous studies (Park et al. 2000) that have purified chromate 

reductases have used an initial Anion exchange step and so it was decided to 

begin the purification of the chromate-reducing activity from the cytoplasmic 

fraction of Mc. capsulatus Bath using such a separation.  

 

 

  

Figure 3-27 Separation of cytoplasm fraction by DEAE Anion exchange 

Chromatography. 

                       

 

- UV - Gradient - Fraction 
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Figure 3-28 Chromate reductase assays of Anion exchange fractions. Assays were 

performed as described in the Methods section of this chapter. The graph shows the 

concentration of Cr (VI) removed at the 96 h timepoint in assays with an intial Cr (VI) 

concentration of 2.6 mg L-1 (0.043 mM). 

 

A peak of chromium (VI) reducing activity was found in fractions 6, 7 and 8 from 

the Anion exchange chromatography. The fractions before and after this peak of 

chromium (VI) reduction activity, which were fractions 5 and 9, did not have any 

reduction activity (Figure 4-12). When the active fractions were analysed by 

means of SDS-PAGE, it was found that they contained a large number of 

proteins and so another purification step was needed. 

Based on the possibility that the chromate reductase may have NADH as a 

cofactor, Capto Blue Dye Affinity chromatography was chosen as the next step. 

Capto Blue Dye Affinity columns are used for purification of many proteins, such 

as albumin, interferon, lipoproteins and blood coagulating factors. The column 

also binds several enzymes including kinases, dehydrogenases and most 

enzymes requiring adenyl-containing cofactors (e.g., NAD+). It has been 
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suggested that in such Dye Affinity chromatography, the dye molecule has a 

similar shape and similar size and similar chemical properties to the natural co-

factor of the enzyme (e.g. NAD+ or NADP+) and that it therefore binds to the 

protein via the same binding site to which the co-factor binds (Garg et al. 1996). 

 Also, Dye Affinity chromatography has been successfully used to purify 

chromate reductases previously. For example, the cytoplasmic chromate 

reductase was purified from the crude soluble fraction of Thermus scotoductus 

to homogeneity through DEAE-Toyopearl, phenyl-Toyopearl, Blue Sepharose 

Dye Affinity chromatography, and Sephacryl S100HR chromatography 

(Opperman et al. 2008). 
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Figure 3-29 SDS-PAGE gel images of the Anion exchange fractions of Mc. capsulatus 

Bath. The amount of marker that loaded in the gel was 5 µl and the amount of each 

fraction that loaded in the gel was 15 µl. The image is representative of three replicates 

of experiments.   
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4.3.5 Purification by Capto Blue Dye Affinity Chromatography 
 
  

 

Figure 3-30 Absorbance trace from Capto Blue chromatography step during the 

purification of the reductase from the cytoplasm fraction. Blue line, absorbance at 280 

nm; purple line, salt gradient; red line, fractions. 

 
 

 

 

 

 

    

                                                

 

- UV - Gradient - Fraction 



104 
 

  

 

Figure 3-31 Chromate reductase assays of Capto Blue fractions. Assays were 

performed as described in the Methods section of this chapter. The graph shows the 

concentration of Cr (VI) removed at the 96 h timepoint in assays with an intial Cr (VI) 

concentration of 2.6 mg L-1 (0.043 mM).      

     

After dialysis, the pooled active fractions (6, 7 and 8) from the Anion exchange 

column, containing 20.79 mg of protein were loaded onto the column and eluted 

with a salt gradient as detailed in the Methods section. A peak of chromium (VI) 

reducing activity was found in fractions 9 and 10 from the Capto Blue 

chromatography (Figure 4-14 and 4-15). The fraction before and after a peak of 

chromium (VI) reduction activity, which were 8 and 11, did not have any 

reduction activity. SDS-PAGE revealed a single protein of 17 kDa molecular 

mass in fractions 9 and 10 (Figure 4-16). 
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Figure 3-32 SDS-PAGE gel images of the Capto Blue fractions of Mc. capsulatus Bath. 

The amount of marker that loaded in the gel was 5 µl and the amount of each fraction 

that loaded in the gel was 15 µl. The image is representative of three replicates of 

experiments.   
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4.4 Conclusion 
 
 
The cell fractions of Mc. capsulatus Bath were studied for their chromium (VI) 

removal activity at various temperatures. The activity of the fractions was found 

to reach a maximum at 30 °C, and this activity was reduced at both higher and 

lower temperatures. It was found that the chromate reduction in E. cloacae HO1 

was observed at pH 6.0 to 8.5 (optimum pH, 7.0) and at 10 to 40 °C (optimum, 

30 °C) (Wang et al. 1989).The optimum temperature of this reaction is 

somewhat lower than the optimum temperature (45 °C) for the growth of Mc. 

capsulatus Bath. The temperature activity profile (Figure 4-1) indicates that 

there is a substantial amount of activity as high as 50 °C and as low as 10 °C 

(for example, 30.76 and 26.09% of the maximal activity at 50 °C and 10 °C, 

respectively, for the cytoplasm fraction). This shows that the enzyme or other 

molecular species involved in chromium (VI) reduction is tolerant of temperature 

variations. 

From the experiment with various electron donors at a concentration of 0.4 mM 

in 25 mM MOPS buffer (pH 7.0), it was discovered that NADH, NADPH, 

duroquinol and benzyl viologen reduced Cr (VI) to Cr (III) without any of the cell 

fractions present. In order to avoid this direct, non-biological reaction between 

Cr (VI) and the electron donors, the concentration of electron donors was 

reduced to 0.2 mM. At this concentration, there was no observable removal of  

Cr (VI) by any of the electron donors over a period of 96 h. This concentration of 

each electron donor was therefore used for Cr (VI) reduction assays with the 

cell fractions. All cellular fractions reduced Cr (VI) to Cr (III); reduction activity 

was greatest in the cytoplasm fraction.  
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The chromium (VI)-removing activity was partially purified from the cytoplasmic 

fraction by DEAE Anion exchange Chromatography as a first step and then 

purified by Capto Blue Dye Affinity Chromatography.  Its activity was enhanced 

(by 1.34%) by adding the electron donor NADH, although most of the activity 

even in this highly purified protein-containing fraction was independent of added 

NADH.  A previous study conducted by Manikandan et al. (2016) also found a 

substantial chromate-reducing activity in a purified chromate reductase from a 

Bacillus isolate even in the absence of added electron donors. Hence, in this 

previous study as well as in the work reported in this chapter, either a source of 

electrons copurifies with the protein or the protein itself is able to provide 

electrons for the reaction. The fractions from the Capto Blue Dye Affinity 

chromatography that showed the peak of chromium (VI)-removing activity 

contained a single 17-kDa cytoplasm-derived protein for the chromium (VI) 

removal activity of these fractions. The majority of previous studies, such as that 

of Manikandan et al. (2016), have observed that a chromate reductase 

enzymes are generally proteins of at least 30 kDa in size.  The enzyme purified 

from Bacillus sp. DGV 019 by Manikandan et al. (2016) had a molecular mass 

of 34.2 kDa. In contrast to this, and more similar to the current study of Mc. 

capsulatus, a very recent report found that a substantially smaller protein from 

S. maltophilia, of molecular weight around 25 kDa had chromate (VI) reduction 

acivity (Baldiris et al. 2018). Another possibility that cannot be excluded without 

further work is that the chromium (VI) reducing activity reported in the purified 

protein samples this chapter may be due to a non-protein small molecule that 

copurifies with the 17-kDa protein. Future identification of the 17-kDa protein 

and subsequent bioinformatic analysis may indicate whether it is likely to be 

responsible for chromium (VI) reduction.  
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Chapter 5 Enrichment and isolation of methanotrophs from sediment 

samples 
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5.1 Introduction 
 

The uptake of heavy metals in the environment by microorganisms is mainly by 

the following mechanisms, biosorption, bioaccumulation, and efflux and 

chemical transformation such as reduction or precipitation. Chromium reduction 

has been reported in several species of bacteria, fungi, yeasts and some 

actinomycetes to date (Mala et al. 2015). The different population of microbes 

present in different habitats have different capabilities to reduce the hexavalent 

chromium and transform other heavy metal pollutants.  

Methanotrophic bacteria are considered as suitable organisms for 

bioremediation of organic pollutants because of their co-metabolic 

transformation of such compounds, possibility of complete compound 

degradation without the formation of toxic metabolites, board spectrum of 

compounds availability and widely available and inexpensive growth of 

substrate (Sullivan et al. 1998).  

Environmental pollution can be attributed to several anthropogenic activities. 

When various toxic metals are introduced into the environment they can remain 

persistent, thereby affecting human health by entry through food chain and 

produce toxic effects. The metals which remain in the environment are held 

there by sorption, precipitation and complexation reactions. These metals can 

be removed from the soil by uptake with plants, leaching and volatilization 

process. The fate of the metals in the soil environment depends on the soil 

properties and environmental factors (Das & Dash 2014).  

Methanotrophs or methane oxidising bacteria are capable of oxidising methane 

which is a very potent greenhouse gas. These organisms can remediate a 
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range of pollutants as well as oxidising methane and using it as sole source of 

energy, thus adding a beneficial effect to the environment.  

Methanotrophs have been used in the present study because of their potential 

and promising results with the metal remediation (as detailed in the literature 

review chapter) and also these organisms which are widespread in the 

environment has not been extensively explored in terms of metal remediation 

compared to the other microbes.  

Methanotrophs are common in the environment and well suited to 

biotechnological processes. The isolation and characterization of pure cultures 

has led to the discovery of several new genera and species of 

extremophilic/tolerant methanotrophs (Trotsenko & Khmelenina 2002). Only two 

methanotrophs have been shown able to reduce Cr (VI) which are Mc. 

capsulatus Bath (Al Hasin et al. 2009) and Methylomonas koyamae (SHU 1) 

(Challa 2015). One substantial limitation on the application of methanotrophs for 

remediation of chromium (VI) is that the strains that are currently available are 

sensitive to Cr (VI). As detailed in Chapter 3, there is little or no growth or 

chromium (VI) reduction by Mc. capsulatus Bath at more than 40 mg L-1 (0.666 

mM) of chromium (VI). Hence, it would be an advantage to isolate chromium 

(VI) reducing methanotrophs that are more resistant to chromium (VI). 

Previous work has shown the diversity of methanotrophs (reviewed in the 

Introduction chapter) and the ability to isolate heavy metal resistant strains (De 

Marco et al. 2004). Other work has identified extremophilic methanotrophs, 

including thermophiles, acidophiles and alkaliphiles (Trotsenko & Khmelenina 

2002; Dunfield et al. 2007; Pol et al. 2007). Here, enrichments have been set up 

from environmental samples to isolate new methanotrophs, including 
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enrichments in the presence of chromium (VI) with the intention of finding 

chromium (VI)-resistant organisms. 

Environmental samples were taken from canal sediment from the Leeds and 

Liverpool canal and incubated in enrichment culture with methane and in the 

presence of a range of chromium VI concentrations. 

 

5.2 Methods  

Enrichment of microbes from the study sites were carried out to ensure isolation 

of various pure strains of methanotrophs to be cultivated to employ in the 

experiment. Sediment samples collected from the Leeds and Liverpool canal 

and a railway location near Doncaster that has a history of chromium (VI) 

exposure from chromium (VI) usage as a wood preservative for railway sleepers 

were used for the enrichment and isolation of methanotrophs. 0.5 g of sediment 

samples collected from the Leeds and Liverpool canal and a railway location 

near Doncaster were enriched with 50 ml of NMS media (nitrate minimal salts) 

in 250 ml Erlenmeyer flasks, with or without addition of chromium (VI) over a 

range of concentrations (0 - 100 mg L-1)(0 - 1.66 mM). Methane gas was 

introduced at 1:4 v/v with air into the culture flasks at regular intervals using 

hypodermic syringes and the flasks were sealed with subseals (Fisher) to 

prevent methane loss. The flasks were incubated at (30 and 45 °C) on a rotary 

incubator for 1 week to 10 days for the growth of methanotrophs in the flask. 

The growth of methanotrophs was observed by monitoring the turbidity of the 

enrichments in flasks. 

The cultures in the flasks were sub cultured into fresh NMS medium and 

incubated at (30 and 45 °C) on a rotary incubator for 1 week to 10 days of 
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growth. After 1 week to 10 days of growth in fresh flasks, a loopful of culture 

was streaked on fresh NMS plates and incubated at (30 and 45 °C) in a 

methane air atmosphere until single colonies of the isolate were obtained. The 

plates were then put into a gas tight jar and methane gas was introduced into 

the air in the jar as the sole source of carbon and energy and incubated at (30 

and 45 °C) for 1-3 weeks. Depending on the physical appearance and 

morphological features of colonies, colonies of the same appearance were 

streaked on fresh NMS plates and incubated at (30 and 45 °C) for 1-3 weeks for 

appropriate growth of methanotrophs on the plates. 

A pure colony of the same type that was obtained from the plates described 

above was grown on a fresh NMS plate to produce cells for the DNA 

preparation, and then the 16S rRNA gene was amplified by PCR (the methods 

for DNA purification and PCR are described in detail in chapter 2). 

The PCR product of the 16S rRNA gene from the cultivated methanotrophs was 

subjected to gel electrophoresis (method is described in chapter 2) to identify 

the presence of a product of the expected size. Later the gel electrophoresis 

product was cleaned with the Qiagen kit and then subjected to sequencing. 

 
 
 
 

5.3 Results 
 

5.3.1 Enrichment cultures 
 
A range of chromium (VI) concentrations (2, 3, 4, 5, 10, 20, 30, 50 and 100 mg 

L-1) (0.033, 0.050, 0.066, 0.083, 0.166, 0.333, 0.50, 0.833 and 1.66 mM) 

enrichments were used for environmental samples from both sampling sites in 
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the presence of methane gas at two temperatures (30 and 45 °C) to attempt to 

isolate new strains of methanotrophs. Organisms that were derived from these 

enrichments did not grow well in NMS with methane even in the absence of 

chromium (VI) and were found on subsequent analysis not to be 

methanotrophs. 

 

Enrichments that were set up in the absence of chromium (VI) were successful 

in culturing methanotrophs. One strain isolated from the Leeds and Liverpool 

Canal samples and two from the railway site are described below.  

 

5.3.1.1 Methanotroph isolate from the Leeds and Liverpool Canal 
 

5.3.1.1.1 Microscopic examination of isolated colonies 
 
A strain isolated at 45 °C from the Leeds and Liverpool Canal samples was 

characterised in detail. The isolated organism was streaked several times on 

fresh NMS plates and, prior to sequencing of the 16S rRNA genes, and was 

also examined under the microscope to observe features such as shape (Figure 

5-1). 
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Figure 0-1 Microscopic examination colonies shows the bacteria have a coccal shape. 

Mc. capsulatus under the light microscope at 100x magnification. 

 

The results from the 16S rRNA gene-specific PCR and subsequent sequencing 

showed the type of organism that was been isolated from the sediments of the 

canal sediment from the Leeds and Liverpool canal and was identified as 

Methylococcus capsulatus. 

 

5.3.1.1.2 Bioremediation of chromium (VI) using the new isolate of 

Methylococcus capsulatus 

The new strain (Methylococcus capsulatus) was tested at a wide range of Cr 

(VI) concentrations from (2 to 5) mg L-1 (0.033 to 0.083) mM where the bacteria 

was capable of reducing Cr (VI) to Cr (III), (OD600 of 0.7- 0.9) and incubating the 

cultures at 45 °C in the presence of methane and air. The chromium was 

quantified in the supernatant by using HPLC-ICP-MS. 

Figure 5-2 shows the removal of Cr (VI) at 2 mg L-1 (0.033 mM) from the 

supernatant. After 48 h, 20% of Cr (VI) had been removed, and this increased 

to reach 85% Cr (VI) removal at the end of incubation period (144 h). At the end 
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of the incubation period Cr (VI) concentration had decreased to 0.32 mg L-1 

(0.0053 mM). Figure 5-3 shows the removal of Cr (VI) at 3 mg L-1 (0.050 mM). 

After 48 h, 15% of Cr (VI) had been removed, and this reached 70% Cr (VI) 

removal after 144 h. 

With 4 mg L-1 starting concentration, 5% loss of chromium (VI) occurred within 

48 h. After 144 h the percentage remaining was 20% as shows in Figure 5-4.  

When the concentration of hexavalent chromium was increased to 5 mg L-1 

(0.083 mM), a smaller proportion of the chromium was removed; only 10% of 

the chromium (VI) was removed during 144 h (Figure 5-5). The amount of Cr 

(VI) that was removed decreases as the initial concentration increases. 
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Figure 0-2 Reduction of chromium (VI) by Methylococcus capsulatus after addition of 

Cr (VI) to 2 mg L-1 (0.033 mM). Data shown is from three independent cultures. Results 

plotted as mean ± 1 standard (n=3). 
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Figure 0-3 Reduction of chromium (VI) by Methylococcus capsulatus after addition of 

Cr (VI) to 3 mg L-1 (0.050 mM). Error bars show the standard deviation of three 

biological replicates. 
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Figure 0-4 Reduction of chromium (VI) by Methylococcus capsulatus after addition of 

Cr (VI) to 4 mg L-1 (0.0666 mM). Error bars show the standard deviation of three 

biological replicates.  
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Figure 0-5 Reduction of chromium (VI) by Methylococcus capsulatus after addition of 

Cr (VI) to 5 mg L-1 (0.083 mM). Data shown is from three independent cultures. Results 

plotted as mean ± 1 standard (n=3).  

 

5.3.1.2. Isolating new strain of methanotrophs at 30 °C 
 
Two new methanotroph strains were isolated from enrichment cultures of the 

railway site samples grown on methane at temperature (30 °C) with the same 

method used above. The purity of strains was checked by plating cultures onto 

nutrient agar plates, which were incubated at 37 °C for 24 h and the strains did 

not grow on nutrient agar, which is consistent with their being pure 

methanotroph strains.    
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5.4 Conclusion 
 

In the present study when the samples of the Leeds and Liverpool canal and a 

railway location near Doncaster were enriched with methane as sole source of 

carbon and energy, three new methanotroph strains were isolated. The 

sediment samples collected from the Leeds and Liverpool canal were enriched 

at 45 °C with methane as the carbon and energy source. The isolated 

methanotrophs was identified, based on the sequencing of its 16S rRNA gene, 

as Mc. capsulatus. Previously characterised methanotrophs in this group use 

the product from formaldehyde to form biomass through the ribulose 

monophosphate (RuMP) cycle as the main pathway and so it is reasonable to 

presume that the newly isolated Mc. capsulatus strain fixes carbon via the same 

principal pathway. This organism was tested for the removal of chromium (VI) 

and it was found the organism could reduce the concentration of chromium in 

the range of 2 - 5 mg L-1 (0.033 - 0.083 mM) in the presence of methane as sole 

source of carbon and energy. The removal of Cr (VI) from the culture 

supernatant at initial concentrations of 2 and 3 mg L-1 (0.033 and 0.050 mM) 

reached 85 and 70%, respectively, at 144 h. When the concentration of 

hexavalent chromium was increased, the removal of Cr (VI) at concentration of 

4 and 5 mg L-1 (0.066 and 0.083 mM) reached 20 and 10%, respectively, at 144 

h. These results showed that as the initial concentration of Cr (IV) increased, 

the amount of Cr (VI) that was removed decreased. This promising strain for 

bioremediation applications should be characterised further. Also, the two new 

methanotroph isolates should be identified and their bioremediation potential 

characterised. 
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Chapter 6 General discussion and future directions 
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6.1 General discussion 
 

This study confirmed that the methanotrophs, which are a major microbial group 

that plays a vital role in maintaining the global methane cycle, can carry out the 

biotransformation of the chromate (VI) ions, thereby decreasing chromium 

pollution. One lab-strain of the methane-oxidising microorganisms, which used 

methane as a sole carbon and energy source, i.e., Mc. capsulatus Bath could 

reduce the chromate (VI) ions to chromate (III), as shown earlier (Al Hasin et al. 

2009). Furthermore, it was also able to reduce the mercuric ions to metallic 

mercury, which confirmed some earlier reports (Boden & Murrell 2011). Mc. 

capsulatus Bath showed an ability to remove various concentrations of the 

chromate (VI) ion (ranging between 1.4 and 1000 mg L-1)(0.0233 and 16.667 

mM), which was consistent with a previous study (Al Hasin et al. 2009).  

 

Though several studies have investigated the microbial transformation of 

chromium in the environment, none of the reports investigated the chromium 

(III) species distribution in the biomass. A number of recent studies of the 

transformation of chromium (VI)  by mixed populations of microorganisms are 

encouraging in terms of the use of methane to drive chromium (VI) 

bioremediation but do not give unambiguous information about the role of 

methanotrophs in the reduction of chromate itself.  The results presented in this 

thesis, using pure cultures of Mc. capsulatus Bath have allowed the 

transformation and accumulation of chromium species by the methanotroph 

itself to be investigated (Lai et al. 2016; Long et al. 2017; Lu et al. 2018; Lv et 

al. 2018). 

. 
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In Chapter 3, it was noted that there was a decrease in the chromium (VI) ion 

concentration in the culture supernatant, with a subsequent increase in the 

chromium (III) concentration in the cytoplasm and membrane fractions. This 

phenomenon was investigated with biochemical and biophysical techniques, 

namely cell fractionation, Anion chromatography ICP-MS, XPS, EDX and the 

EELS imaging of the whole or sectioned cells. Electron Energy Loss 

Spectroscopy (EELS)-coupled with the Transmission Electron Microscopy 

(TEM) of the whole cells was used to derive additional information regarding the 

speciation of the chromium ions after comparing them with the chromium 

standard spectra. The cell associated chromium ions were present in a +3 

oxidation state.  

 

For determining the precise location of the chromium ions in the cells, the cells 

were fractionated in order to separate the cell membranes and cytoplasmic 

fractions. The results showed the distribution of the chromium ions between 

these fractions and showed that the membrane fraction contained 66.6% of the 

total chromium ions while the remaining 33.3% was present in the cytoplasmic 

fraction. These results were confirmed by sectioning the cells and investigating 

the chromium distribution using the ICP-MS and HAADF-TEM-EDX techniques. 

The distribution of other important elements such as oxygen, phosphorus and 

carbon, in the whole Mc. capsulatus cells was investigated using the EDX and 

TEM-coupled EELS imaging techniques. The results showed that these 

elements were non-homogenously distributed. The Mc. capsulatus Bath cells 

were also able to take up Cr (III) ions from the cell culture medium. Chromium 

uptake was an active process which reduced the chromium bioavailability. This 

would prevent the re-oxidisation of Cr (III) ions to their toxic Cr (VI) form, which 
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is a significant problem where chromium (III) becomes associated with soluble 

organic molecules such as amino acids (Varadharajan 2017), rather than (as in 

the methanotroph) being trapped within the biomass. Under a range of 

conditions tested, the removal of chromium (VI) from the medium was exactly 

matched by the appearance of cell-associated chromium (III) (Figure 3-7). This 

suggests that Mc. capsulatus Bath could be used for complete removal of 

chromium (VI) and its immobilisation within the biomass, over the conditions 

tested. The ability of Mc. capsulatus to take up chromium (III) contrasts with 

reports of other bacteria (Nishioka 1975; Petrilli & De Flora 1977), where it was 

found that the Cr (VI) ions could easily diffuse through the microbial cell 

membranes, but the Cr (III) ions could not (Figure 1-2).  

 

As observed previously by Al Hasin et al. (2009) the Cr (VI) ion reduction was 

not detected in the absence of methane, which indicated that the Mc. 

capsulatus Bath requires methane for effectively reduce the Cr (VI) ions (Figure 

3-3).  

 

Metal ions play a vital role in many cellular processes. Some metal ions such as 

Co, Ca, Cu, Cr, Mg, Zn, K and Na are essential nutrients which are needed in 

regular metabolic activities. Generally, the presence of metal ions at toxic high 

concentrations at polluted sites is harmful to microorganisms, although it also 

selects for organisms resistant to and able to detoxify such pollutants, thereby 

enabling bioremediation (Srivastava & Thakur 2006). When the microbes come 

in contact with the heavy metal ions, they interact with these ions in the 

following manners: 1) They utilise these trace metal ions for metabolic 

processes; 2) They can tolerate the metal ions till their threshold limit; 3) 
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Detoxify the metal ions; 4) They offer resistance to the toxic metal ion levels. 

Furthermore, the uptake of the heavy ions by the microbial cells is based on the 

mechanisms such as bioaccumulation, biosorption, efflux and the chemical 

transformation processes like precipitation or reduction. The chromium 

reduction has been noted in many bacterial, fungal, yeast and actinomycetes 

species (Mala et al. 2015). The different microbial populations in various 

habitats show a differing capacity for reducing the Cr (VI) ions and transforming 

other heavy metal ions. The reduction of the Cr (VI) to Cr (III) is an important 

research area. The Cr-reducing microbes were first discovered in the 1970s 

(Romanenko & Korenkov 1977), and a majority of the Cr (VI)-resistant microbial 

species belonged to the Bacillus, Ochrobactrum, Pseudomonas, Lysinibacillus, 

Arthobacter, Shewanella and Cupriavidus genera (Pei et al. 2009). These 

species become resistant to the Cr (VI) ions, detoxify them, and survive in their 

presence. The Cr (VI) reduction is a co-metabolic process or would display 

respiratory or dissimilatory properties under anaerobic conditions (Pei et al. 

2009). The Cr (VI) ion reduction is either plasmid-borne as seen in the 

Pseudomonas sp. or located in the chromosomal DNA as seen in the 

Enterobacteriaceae or Bacillus sp. (Pei et al. 2009).  

 

In the current study of Mc. capsulatus Bath a sufficiently high concentration of 

chromium (VI) was toxic to the microorganisms, shown by the lack of chromium 

(VI) removal when the initial concentration of chromium (VI) was greater than 40 

mg L-1 (0.666 mM). Likewise, with chromium (VI) concentrations greater than 40 

mg L-1 (0.666 mM), the protein concentration within the culture actually 

decreased with time (Figure 3-2).   
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Characterisation of the chromium (VI) removal reaction by ion chromatography 

and ICP-MS (Chapter 3) confirmed previous X-ray spectroscopy analysis (Al 

Hasin et al. 2009), which showed that the product of chromium (VI) 

transformation was chromium (III). In this thesis it is also clearly shown that the 

cells are able to accumulate chromium (III) derived from extracellular chromium 

(VI) and also to take up chromium (III) from the medium.   

 

Amongst the chromium-reducing bacteria (CRB), the Gram-negative microbes 

generally show a lower resistance to high Cr (VI) concentrations, in comparison 

to the Gram-positive bacteria (Coleman 1988). The microbial species use 

various resistance mechanisms for overcoming the chromium toxicity in 

environments, such as the extracellular Cr (VI) reduction, decreased uptake of 

the Cr (VI) ions, detoxification of Reactive Oxygen Species (ROS), a reduction 

of the detoxifying enzymes/ intracellular Cr (VI) concentration, presence of DNA 

repair enzymes, and the efflux of the Cr (VI) ions from cells (Thatoi et al. 2014). 

It may be that the ability of Mc. capsulatus Bath which is a Gram-negative 

bacterium, to reduce chromium (VI), is a mechanism to protect the cells against 

this toxic species. Consistent with this, hexavalent chromium ions in the range 

between 3 to 40 mg L-1 (0.050 to 0.666 mM) are effectively detoxified and no 

chromium (VI) has been observed in any part of the cell (cell wall, cell 

membrane and cytoplasm fraction) (Figure 3-8). 

 

The Cr (VI) transportation across the cell membrane occurs via the sulfate 

uptake pathway since the chromate and sulfate ions are oxyanions with similar 

structures (Ramírez-Díaz et al. 2008). The data presented in this thesis do not 
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directly address whether the sulfate transporter of Mc. capsulatus is involved in 

uptake of chromium (VI).  

The transportation of the Cr (III) ions into the cells is generally considered to be 

very slow due to the insolubility of Cr (III). Nonetheless, Cr (III) complexes may 

be transported using siderophores, which are also known as iron-uptake 

mediators. Siderophores are seen to be a structurally-diverse group consisting 

of biogenic chelating agents that are related to the uptake of the iron and similar 

other metal ions. Siderophores bind to several types of metal ions, solubilise the 

metal complexes and improve the mobility of the toxic heavy metal ions 

(Duckworth et al. 2014). In the present study, Mc. capsulatus Bath cells took up 

chromium (III) from the medium completely into the cytoplasm + membranes 

fraction within 1 h and the results indicate that uptake of chromium (III) is an 

active process. The involvement of transmembrane transporters or molecules 

such as siderophores in chromium (III) uptake by Mc. capsulatus has not been 

investigated. More work is needed particularly with Mc. capsulatus Bath to 

determine the reactions and genes involved in chromium (VI) reduction and 

chromium (III) accumulation. 

 

Heat-killing is known to be an effective enzyme inactivation process. Optimal 

temperatures are a significant criterion, which plays a vital role in microbial 

growth and also affect the Cr (VI) reduction. The temperature variations 

generally affect cell viability and may lead to cell death. At lower temperatures, 

in whole-cell systems the membrane fluidity decreases and enzyme activity 

decreases, and this affects the functioning of the transport system. Thus, 

metabolic reactions become slower, substrates cannot enter the cell, and so the 

rate of growth and other cellular reaction decreases. Higher temperatures cause 
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the irreversible thermal denaturation of the proteins and damage to membranes 

and small molecules (Narayani & Shetty 2013). 

 

The cell fractions of Mc. capsulatus Bath were studied for their chromium (VI) 

removal activity at various temperatures. The activity of the fractions was found 

to reach a maximum at 30 °C. This is 15 °C lower than the optimal growth 

temperature of Mc. capsulatus and the temperature at which the whole-cell 

chromium (VI) reduction experiments were performed. The chromium (VI) 

removing activity of the cytoplasm faction had 42.03% of its maximum activity at 

45 °C, which may account for the reduction observed in the whole-cell 

experiments. It is also interesting that the optimum temperature for reduction of 

selenite to elemental selenium by fractions of Mc. capsulatus Bath is also 30 °C 

(Abdurrahman Eswayah, personal communication).  

When measuring the effect of electron donors on the chromium reduction 

reaction, concentrations of electron donor of 0.4 mM led to measurable direct 

reaction between the electron donor and the chromium (VI). 0.2 mM 

concentration of each electron donor (NADH, NADPH, duroquinol and benzyl 

viologen), at which concentration the direct reaction with chromium (VI) was not 

observed, was therefore used for Cr (VI) reduction assays with the cell 

fractions. All cellular fractions reduced Cr (VI) to Cr (III); reduction activity was 

greatest in the cytoplasm fraction. The chromium (VI)-removing activity was 

purified from the cytoplasmic fraction by adding the electron donor NADH. The 

fractions from the Capto Blue Dye Affinity chromatography that showed the 

peak of chromium (VI)-removing activity contained a single 17-kDa cytoplasm-

derived protein for the chromium (VI) removal activity of these fractions. Future 
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identification of this protein and subsequent bioinformatic analysis may indicate 

whether it is likely to be responsible. 

One of the three newly isolated methanotrophs was identified, based on the 

sequencing of its 16S rRNA gene, as Mc. capsulatus which is belongs to type X 

methanotrophs. This organism was tested for the removal of chromium (VI) and 

it was found the organism could reduce the concentration of chromium in the 

range of (2 - 5) mg L-1 (0.033 - 0.083) mM in the presence of methane as sole 

source of carbon and energy. The removal of Cr (VI) from the culture 

supernatant at initial concentrations of (2 and 3) mg L-1 (0.033 and 0.050) mM 

reached 85 and 70%, respectively, at 144 h. When the concentration of 

hexavalent chromium was increased, the removal of Cr (VI) at concentration of 

4 and 5 mg L-1 (0.066 and 0.083) mM reached 20 and 10%, respectively, at 144 

h. These results showed that as the initial concentration of Cr (VI) increased, 

the amount of Cr (VI) that was removed decreased.  

 

 

6.2. Future directions 
 
The results obtained from this study provide the basis for understanding the 

growth characteristics of this group of bacteria in the presence of chromium (VI) 

and their ability to detoxify and immobilise this harmful pollutant. This study has 

extended understanding of the speciation and distribution of chromium species 

as well as that the uptake of the Cr (III) by Mc. capsulatus Bath is an active 

processes. Also the chromium (VI)-removing activity has been purified from the 

cytoplasmic fraction. 
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There are still many areas identified in this study that need to be explored. An 

area of potential interest is the identification of enzyme(s) responsible for Cr (VI) 

reduction from cell wall and cell membrane fractions, since the results reported 

in this study have concentrated on the cytoplasmic fraction. The conversion of 

Cr (VI) to Cr (III) needs to be investigated in greater detail. For example, it may 

be that there are other chromium species such as Cr (IV) and Cr (V) as 

intermediates during chromium (VI) reduction.  

Use of the new strain that has been isolated might be investigated for 

remediation of other potential heavy metal pollutants or detoxification of lead, 

mercury and arsenic. Organisms which can reduce hexavalent chromium also 

have potentiality to reduce several organic compounds. The organisms could be 

tested in the bioremediation of the organic pollutants. 

A very large number of methanotroph strains have been cultivated, of which 

only two have been tested for chromium (VI) reduction during the work reported 

in this thesis. In order to find new and useful organisms for bioremediation of 

chromium (VI), it is proposed that the interaction between chromium (VI) and 

other methanotrophs species should be investigated. 

The results presented in this study suggest that this work should be repeated 

using a field scale investigation, rather than small scale (under laboratory 

conditions), to determine whether the observed bioremediation of Cr (VI) and 

immobilisation of the resulting Cr (III) within the bacterial biomass can be scaled 

up to a practical process of industrial use.  
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