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Switching Multiple Model Filter for Boost-Phase

Missile Tracking
Henrique M. T. Menegaz, Simone Battistini

Abstract—This paper introduces a filter for tracking a

ballistic missile during its boost-phase. This filter includes

a new switching algorithm and a modified Interacting Mul-

tiple Model Unscented Filter (IMMUF) where the Markov

Transition Matrix is time-variable. Position, velocity and

all unknown parameters of a medium-range ballistic

missile model are reconstructed. Simulations demonstrate

the new filter is able to consistently estimate a missile’s

trajectory and all unknown parameters and to outperform

previous forms of the IMMUF.

Boost-Phase Tracking, Interacting Multiple Model

Unscented Filter (IMMUF), Time-Varying Markov Tran-

sition Matrix (MTM)

I. INTRODUCTION

This paper introduces a new filter for estimating the

trajectory of a tactical ballistic missile (TBM) during

its boost-phase. This filter presents two novelties: i) it is

based on a novel switching algorithm and ii) is composed

of a new Interacting Multiple Model Filter (IMMF). The

proposed filter assumes no a priori knowledge about the

system parameters and the missile maneuvers timing,

resulting in a robust estimation scheme for boosted

missile tracking.

Estimating a TBM’s trajectory during its boost-phase

is an attractive option because, in this phase, rockets are

easy to detect and countermeasures are less effective

[1]. Boost-phase estimation is challenging due to i)

the strict time available, ii) many unknown parameters

in the estimation, and iii) the boost-phase trajectory’s

multi-phases form. The trajectory of a missile during its

propelled phase is limited by physical constraints, such

as dynamic pressure, thereby limiting the possibility of

the missile to perform maneuvers. At the same time, this

defines a sequence of well-known flight phases.

The trajectory’s multi-phases form can be described

by the formalism of multiple model (MM) systems. An

MM system is composed of both discrete and continuous

variables. Usually, the continuous variables represent

the system’s internal state, acquired measurements, and
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noises; while the discrete variables denote the system’s

operating mode, and define how the continuous state

evolves.

Optimal solutions for the MM filtering problem

are computationally intractable because they require

exponentially-growing computational effort and memory

usage [2]. Thus, suboptimal approaches such as IMMFs

are required. Compared with other suboptimal filters for

MM systems such as the Generalized Pseudo Bayes,

IMMFs greatly improve performance without increasing

computational load [3]. As a result, IMMFs have been

accepted as solutions to TBM tracking [4]–[6].

IMMFs use Kalman Filters (KFs) [7], and the in-

herent non-linearity of both dynamics and measure-

ments involved in tracking a TBM calls for nonlinear

KFs—besides, tracking requires fusing measurements

provided by a variety of sensors such as space-based

infrared sensors [8] or ground-based radars [9]—. The

most widely known nonlinear KF is the Extended

Kalman Filter (EKF) [10], [11], but the literature has

introduced better alternatives to the EKF, such as the

Unscented Kalman Filters (UKFs; see Section III-A)

[12]–[14]. This work uses an IMMF with UKFs; called

Interacting Multiple Model Unscented Filter (IMMUF).

Nevertheless, IMMUFs set-up remains a difficult sub-

ject; it relies on a priori information [15] or dedicated

analysis [16]. Besides, most literature’s IMMUFs con-

sider the probabilities of the state transitioning between

modes constant [17]–[21]. This requires two quite con-

servative hypotheses: i) that the (non-constant) prob-

ability of the TBM transitioning between phases are

well approximated by constant values; and ii) that these

constant probabilities are a priori known [3], [15], [16].

As a result, this paper proposes the following two

modifications to the IMMUF:

1) Time-varying probability of transitioning between

models. This modification relaxes hypothesis i) (see

Section III-B).

2) A switching strategy between models. This modifi-

cation relaxes hypothesis ii) (see Section III).

A Modified IMMUF (MIMMUF) with time-varying

transition matrix has been recently presented by the

authors of this paper in [22]. The algorithm presented
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in this paper improves this former concept (See Section

III). In numerical simulations, the IMMUF of this work

outperforms the MIMMUF of [22] and a standard time-

invariant IMMUF (see Section IV).

The paper is organized as follows. Section II defines

the model of the dynamical system of the measurements,

defining the guidance strategy of the missile during its

boost phase. Section III introduces the new switching

filter. Section IV presents numerical simulations. Con-

clusions are given in Section V.

II. BOOST PHASE EQUATIONS AND MEASUREMENTS

This section describes the equations of motion of

the target missile and the measurements. The dynamical

model that will be employed in the filter is reported as

well. The sequence of phases of flight of the missile will

be exploited when forming the mode transition matrix of

the filter in Section III-B.

The trajectory of a medium range missile during its

boost phase is composed of a number of arcs which

differ by the direction and magnitude of thrust. Generally

speaking, three arcs can always be identified, namely

the vertical arc, the pitch maneuver and the gravity turn

trajectory [22], [23]. The order of these three phases

cannot mutate.

The dynamical model of the missile trajectory used in

this work is given in [23] and it is reported hereafter. The

equations of motion are written in an inertial reference

frame centered at the launch station, known as the Local

Horizontal Frame (LHF) (r̂, Ê, N̂ ) with the N̂ axis along

the North direction of the launch station, the Ê axis along

the East direction of the launch station and the r̂ axis

away from the center of Earth:




ṡk = vk−1

v̇k = Tk−1 +Gk−1 +Ak−1 = g
n0Tk−1tb

1− (1− u0)tk−1
+

−
µ

‖sk−1‖
3 sk−1 − ρVR,k−1

β0VR,k−1tb
1− (1− u0)tk−1

(1)

having defined the position vector as −→s =
[ s1 s2 s3 ]T after a transformation from the

LHF to Cartesian coordinates, the missile velocity

vector as −→v = [ v1 v2 v3 ]T , the relative wind

velocity as the difference between the latter and the

local winds ~VR = ~v − ~Vw. The accelerations considered

in the model are the gravity ~G, aerodynamic action ~A
and thrust ~T . ρ is the air density, which is modeled as

a negative exponential depending on the altitude.

Table I reports the parameters of the model. The first

four are the fundamental parameters of the model and

TABLE I: Missile model parameters

Parameter Symbol Parameter Symbol

Initial thrust

to weight ratio
n0

Relative

mass rate
q0

Reduced

ballistic

coefficient

β0

Burn-out

time
tb

Specific

impulse
Isp

Thrust over

weight ratio
n(t)

Structural over

total mass ratio
u0

Ballistic

coefficient
B

they are assumed constant. The remaining four parame-

ters are derived from the former. It is important to notice

that the sensitivity of the trajectory to the variations of

these parameters (unknown to whom is carrying out the

reconstruction of the trajectory) is very high [15]. The

n0, β0, u0 and tb parameters will be assumed unknown

to the estimator.

At the very beginning of its trajectory, the missile

passes through the vertical arc, where it can be assumed

T̂vert. = [1 0 0]T . (2)

After the vertical arc, the missile performs the pitch

maneuver. Thrust direction at the pitch over is defined

from the azimuth angle ψ and the kick angle κ:

T̂pitchov. =
[
cos κ sinκ sinψ sinκ cosψ

]T
. (3)

During the gravity turn, the thrust is aligned with the

velocity vector in order to null the incidence [24].

T̂grav.turn = V̂R. (4)

The sequence of these three phases of flight is fixed

for all ballistic missiles. The switching time between

the three phases varies from case to case and cannot

be assumed constant. In general, the pitch maneuver is

very rapid and the gravity turn lasts until the constraint

on the dynamic pressure ceases to exist, i.e. until the

missile exits from the atmosphere. In this paper it will

be assumed that the boost-phase ends at the exit from

the atmosphere. Further maneuvers outside of the atmo-

sphere will be therefore not considered. The following

features will be assumed unknown to the estimator:

1) Switching time between the phases.

2) Direction and magnitude of the pitch maneuver.

The measurements employed in this study are given by

a ground based radar, which is assumed to be located

at the origin of the coordinate system, without loss

of generality. The measurements are shown in Fig. 1:

they consist of range ρ̄, azimuth angle ψ and elevation
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Fig. 1: Radar measurements.

angle θ from the radar to the target [22]. Range-rate

measurements were not considered in this case. The

azimuth angle in (3) is assumed to be the same returned

from the measurements.

III. NEW FILTER FOR TBM TRAJECTORY

ESTIMATION

The TBM dynamics considered in this work is com-

posed of the three phases explained in Section II. In order

to estimate the state of the TBM during these phases, a

filter based on a switching technique is introduced. This

filter switches among three (sub)filters: two AdUKFs

(see Section III-A) and a new IMMF (see Section

III-B). The rationale of the filter for estimating a TBM

trajectory during its boost phase is presented here, and

in Section III-C an algorithm implementing this rationale

is reported as well.

An AdUKF is run in the first seconds of the trajectory,

the other AdUKF is run in the last seconds of the

trajectory, and the new IMMF is run in the time interval

between these first and last seconds. Fig. 2 sketches the

reasoning behind the switching technique. The proposed

switching mechanism is based on the following three

hypotheses:

1) In the first seconds of the trajectory (until t = t1) it

is reasonable to say that TBM is following a vertical

arc trajectory. Thus, an AdUKF is run considering

vertical arc equations for the time interval [t0, t1]
2) For the last seconds, say from a time instant t = t2

on, one can say the TBM is following a gravity turn

trajectory. Thus another AdUKF is run considering

gravity turn equations for the time interval [t2, tf ].
3) For the time interval (t1, t2), there is no certainty

about which trajectory model the TBM is following.

Therefore a multiple model filter is more adequate,

and the new IMMF is run.

The time instants t1 and t2 are defined as the following

ad-hoc functions: t1 = t̂b/2− 10 s and t2 = t̂b/2+10 s,

where t̂b is the estimate of tb. These functions of t1 and

t2 are conservative assumptions in the sense that they

result in a wide interval (t1, t2) of 20 s; this is to ensure

that the three hypotheses above hold.

Fig. 2: Time-line of the proposed switching filter.

A. Additive Unscented Kalman Filters

In the time intervals [t0, t1] and [t2, tf ] the trajectory

phase of a given TBM can be assumed known. For

[t0, t1], this trajectory is given by (1) with (2) (vertical

arc); and for [t2, tf ], by (1) with (4) (gravity turn). For

both time periods, the measurements are given by the

second equation in (5).

In order to write the nonlinear dynamic system for the

TBM trajectory, define the internal state vector at the step

time k by xk := [sTk , v
T
k , β0,k, n0,k, tb,k, u0,k]

T ∈ Φnx
.

Although the four parameters are considered constant,

their values are supposed unknown in this work. In

order to estimate their correct values, they are therefore

included in the state vector xk. This is a common practice

when both the state and the parameters of a given system

are estimated [25].

Stochastic filters such as AdUKFs can be used to esti-

mate the internal state xk of nonlinear dynamic systems,

resulting in a good trade-off between computational cost

and estimation quality [26]. AdUKFs are based on the

concepts of σ-representation (σR) and Unscented Trans-

formation (UT) [27]. The UT has interesting properties

concerning the estimation of Ȳ , PY Y and PXY :

µ
[µχ,2]
γ = Ȳ [X̄,2], Σ

[µχ,1]
γγ = P

[X̄,1]
Y Y ,Σ

[µχ,1]
χγ = P

[X̄,1]
Y Y ,

where Y [c,l] stands for the Y ’s Taylor Series around c
truncated at the lth term, Σγγ :=

∑N
i=1 w

c
i (χi−µχ)(⋄)

T

is the sample covariance, and Σχγ :=
∑N

i=1 w
cc
i (χi −

µχ)(γi − µγ)
T is the sample cross-covariance.

Properties like these make the UT a good choice to be

used in stochastic filters; it can be applied in the Kalman

Filter prediction-correction framework to form AdUKFs.

There are many definitions of AdUKFs; a systematized

presentation of them is given in [27].

AdUKFs are good options for nonlinear problems.

However, there are problems that require more than one

of these systems to properly describe their behavior. This

is the case of the TBM trajectory during the time interval

(t1, t2).
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B. Time-Varying Interacting Multiple Model Unscented

Filter

Since in the time interval (t1, t2) there is no certainty

about which trajectory model the TBM is following,

multiple choices have to be considered. In this sense,

the TBM trajectory is described by a MM system with

M different models, introduced as

xk = fmk
(xk−1) +̟,

yk = hmk
(xk) + ϑ, k ∈ N; (5)

where f is the process function; h the measurement

function; yk := [ρ̄k ψk θk]
T∈Φny the measurement vector;

̟ ∈ Φnx
the process noise; ϑ ∈ Φny

the measurement

noise; and mk ∈ M := {1, . . . ,M} is the system’s

discrete modal state (mode). The noises ̟ and ϑ are

supposed to i) be uncorrelated, ii) have mean zero, and

iii) have covariances Q and R, respectively. The param-

eter mk is assumed to follow a time-varying Markov

Chain with a Markov Transition Matrix (MTM), Π(k)
defined as:

Πij(k) := P{mk = j|mk−1 = i}, i, j ∈ M,

where, for a given event e, P{e} stands for the proba-

bility of e occurring.

The MM system (5) is set with M = 2, h1 = h2 = h,

f1 = fvert., and f2 = fpitchov..In deed, the MM system

for the time interval (t1, t2) can be written with only

two modes: one for the vertical arc and another for

the pitch maneuver. Even if the TBM is on a gravity

turn trajectory, an MM systems with this two-modes

formulation can model a gravity turn behavior as a

rotation around the missile’s transversal axis, just like

the pitch maneuver. In this way, the cardinality of M can

be reduced by 1 (instead of 3 modes, there are 2 modes),

and the computational cost of the filter is reduced.

In this paper an IMMUF is used to estimate the state

of this system. Since optimal solutions for the MM

filtering problem are computationally intractable because

they require exponentially-growing computational effort

and memory usage [2], [25], suboptimal approaches are

required. Interacting Multiple Model Filters are com-

putationally cost-efficient suboptimal estimators of MM

systems. In comparison with other suboptimal filters for

MM systems, such as the Generalized Pseudo Bayes

Filters, they greatly improve performance without in-

creasing computational load [3].

However, literature’s IMMUFs might fail to estimate a

TBM trajectory. In most literature’s IMMUFs, the MTM

Π is time-invariant [Π(k) = Π(k + 1) for every k ∈ N]

[17]–[21]. Nevertheless, with a TBM Π is rarely well

approximated by a constant value; for instance, when

the TBM system in mode mk = 1, the missile is in the

vertical arc phase; and when in mode mk = 2, in the

pitch maneuver phase; clearly, Π1,2(k) is smaller in the

beginning of mode 1 than at its end.

C. Algorithm of the Switching filter

In this paper a modified IMMUF is introduced, where

the entries of Π change linearly over time. Being ∆t the

sampling time, the new matrix Π is given as follows:

π11,k =
−k∆t+ 0.5t̂b,k−1

10
(6)

π22,k =
k∆t− 0.5t̂b,k−1

10
(7)

Π(k) =

[
π11,k 1− π11,k

1− π22,k π22,k

]
. (8)

When time is in the interval (t1, t2), the mode probability

vector is initialized with pk = [pk,1, pk,2]
T = [1, 0]T .

Since pk,1 = 1, at the beginning of the interval (t1, t2)
it is sure that the TBM will be following the vertical arc

(mk = 1). As time progresses, i) from (6), the probability

of the TBM being on the vertical arc diminishes linearly;

and ii), from (7) the probability of the TBM being in the

pitch maneuver trajectory (mk = 2) increases linearly.

At the end of (t1, t2), the probability of the vertical

arc is 0 and that of the pitch maneuver is 1. The new

filter for estimating the TBM trajectory during its boost

phase - called Switching Modified Interacting Multiple

Model Unscented Filter (SMIMMUF) - is based on i) the

switching rationale explained in the beginning of Section

III, ii) AdUKFs [27], and iii) the MIMMUF structure

described in [22]. Define k1 := quo(t1,∆t),

IV. NUMERICAL SIMULATIONS

Numerical simulations have been implemented in or-

der to validate the proposed algorithm against an un-

known target. The SMIMMUF will be compared with

a classical IMMUF and the MIMMUF of [22]. The

AdUKFs used in all cases are Homogeneous Minimum

Symmetric AdUKF’s ( [27], Tab. IV).

A. Simulation parameters

For each algorithm, 300 Monte Carlo simulations have

been run, each one differing by the initial guess. The

initial guesses belong to a normal distribution with mean

value equal to the true value of the state variables.

The covariance error matrix P (0|0) is initialized in

accordance with the variances of the initial guesses:

P0|0 = diag
[
20002 20002 20002 1002 1002 . . .

. . . 1002 (3E − 4)2 12 52 (3E − 2)2
]
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Both the classical IMMUF and the MIMMUF of [22]

run five models: one for the vertical arc, three for the

pitch maneuver with an angle κ ∈ [3.5◦, 6.5◦] (the true

value of κ being 5◦), and one for the gravity turn. The

reconstruction of the kick angle κ will be therefore left

to the filter. In the real model, the transition between the

vertical arc and the pitch maneuver occurs after 40 s and

the transition between the pitch maneuver and the gravity

turn occurs after 46 s. The process noise covariance

matrix Q is the same for all the filters and can be found

in [22]. The common scenario for all simulations is that

of the medium range missile described in [23].

B. Results

Fig. 3 to 5 show some of the results of the three

simulations, in particular the estimation errors of the first

component of ~s and ~v and of the β0 parameter. The red

line is the mean estimation error over the entire Monte

Carlo set; the green line is the estimation error of one

sample; the dashed black line is the theoretical σ-bounds

of the filter calculated from the error covariance matrix

P ; the dashed blue line is the standard deviation of the

errors. The other results are not shown for the sake of

conciseness, but they are similar to those reported here.

It can be seen that, in general, the algorithms with

time-varying MTM - referred to as two-modes (the

SMIMMUF) and five-modes (the MIMMUF of [22])

filters in the figures - provide more consistent results than

the classical IMMUF with the constant transition matrix

- referred to as constant. With the MIMMUF of [22], the

mean error diverges at the end in the estimation of ~s and

~v, while the mean error of the SMIMMUF does not. This

demonstrates the superiority of the proposed filtering

scheme with respect to the other tested algorithms.

V. CONCLUSIONS

This paper introduces a new filter for the tracking of a

ballistic missile during the boost phase. The model fed

to the filter includes several unknown parameters and

dynamics. The new filter endowed with two novelties:

1) A modified IMMUF with time-varying transition

matrix.

2) A switching rationale transitioning between Un-

scented Kalman Filters and the modified IMMUF.

The algorithm has been tested in a Monte Carlo nu-

merical simulations based on radar measurements. A

comparison with other two algorithms, a classic version

of the IMMUF and a modified IMMUF with another

time-varying MTM, has demonstrated that the proposed

solution is a valid alternative to track an unknown

ballistic missile.
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The proposed filter has shown promising results, but,

for completely assessing it, new studies should test

its robustness against adverse situations. For instance,

when data association due to false alarms or neighboring

targets is a significant problem [3], [28]; in this case,

it could be compared with filters specifically developed

for these situations, such as probabilistic data association

filters and joint probabilistic data association filters.
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