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Abstract:
The aim of this research paper is to develop a new framework for an information fractal to improve the food
distribution network sustainability through two variables; Greenfield service constraints and minimum vehicle
weight fill level on board. This paper applies the proposed framework to a hypothetical distribution network.
Further, Supply Chain GURU Software is adapted to implement Greenfield analysis to identify the optimal
number and location for setting up the new facilities through different Greenfield service constraints. A new
Green Split Delivery-Vehicle Routing Problem also is developed to minimise CO2 emission and implemented
using the simulated annealing algorithm. The results revealed that the proposed dynamic control system has
led to an enhancement in both collaboration and integration to decide upon the optimal number and location
of distribution facilities as well as optimal vehicle weight fill levels to improve the sustainability throughout the
food distribution chain.
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1 Introduction

In recent decades, environmental and social considerations such as reducing raw materials, increasing both
waste and pollutants have become significant issues for organisations. Thus, the sustainable supply chain has
motivated many of the industrialists to meet customers, stakeholders and government’s expectation through
three dimensions of sustainable development; economic, environmental and social [1] in various policies of the
organisation, such as purchasing, design, manufacturing, distribution and logistics.

The food industry is one such example for a dynamic type of environment where the expectation of cus-
tomers for quality, availability and sustainability of food is high [2]. The food supply chain can be distinguished
from other kinds of supply chains, in terms of parties which are involved, process and product features, and
alternative redesign strategies [3]. It includes a vast variety of process centres like procurement and manu-
facturing companies, distributors, wholesalers, retailers and food service firms dealing with a vegetable or
animal-based products which each should acquire sustainability to develop long-term relationships with the
customers [4].

The downstream distribution of the food products to retailers through transportation is known as one of the
major sources of environmental concern within food supply chains [5]. Transportation has irreparable effects
on the environment; Consumption of resources, toxic effects on ecosystems and humans, noise and emissions
of greenhouse gases (GHG) and pollutants are examples of these risks. Apart from these negative effects, emis-
sions of GHG and carbon dioxide (CO2) are directly linked to the health of the community and, indirectly,
to the destruction of the ozone layer [6]. Most research has taken into account economic goals by minimising
the distance, the time required or the number of vehicles needed and etc. and has neglected attention to envi-
ronmental goals. Hence, Green Vehicle Routing Problem has received the attention by scholars since 2006 and
two categories including Green-VRP [7–11] and Pollution Routing Problem (PRP) [12–15], are predominantly
focused on reducing the energy consumption and CO2 emissions, respectively, however, this research paper
focuses on CO2 emission.

Sameh M. Saad is the corresponding author.
© 2019 Walter de Gruyter GmbH, Berlin/Boston.
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Unlike previous research, this paper presents a new framework for an information fractal to dynamically
improve distribution network sustainability in food retail supply chains. In comparison to the other information
structure, information fractal is distinguished due to its capabilities such as self-similarity, self-optimisation,
self-organisation, goal orientation and dynamics. The information fractal is composed of different fractal units
named as the basic fractal unit (BFU) which are identical to each other and have the ability to make decisions,
use appropriate methods, generate the goals and adapt to the dynamic environment changing by themselves
[16, 17].

To achieve the aim of this study, two methodologies are used; Greenfield analysis is used to identify the
optimal number and location of facilities with different service constraints. Greenfield analysis can be useful
for determining the location of a new facility in a regional configuration. This method of analysis is quite fre-
quently used in industry to determine the best location for a new and existing facility by which the location is
indicated by latitude and longitude. This will be involved to optimise the travelling distance, travelling time,
transportation routes etc. to consummate sustainability in the food supply chain. In this paper, also, a new ap-
proach using Split Delivery-Vehicle Routing Problem (SD-VRP) is introduced to minimise the CO2 emission by
considering minimum shipment weight that must be on the vehicle in length of each route and implemented
using simulated annealing algorithm which is programmed in MATLAB software.

1.1 SD-VRP

In 1990, the SD-VRP and its mathematical model were introduced and presented by Dror et al. [18], in which
the economic aspect of the problem of when a customer is served with more than one vehicle was considered.
Dror et al. [19] provided an integer program for the above problem and used the branch and bound algorithm to
solve it. The real application of this problem was studied by Mullaseril et al. [20] which they raised this problem
for a food distribution network at a dairy farm in Arizona, USA, when the delivery of goods to the customer
was associated with a time limitation and used heuristics algorithm which was proposed by Dror et al. [19].
Belfiore et al. [21] applied SD-VRP in a case study in Brazil, for a distribution network consisting of a central
warehouse and 519 customers in 11 sectors using Neighbourhood Search algorithm. Tavakkoli-Moghaddam
et al. [22] developed the Simulated Annealing algorithm for SD-VRP with the heterogeneous fleet. In this study,
SD-VRP formulation is modified to consider the CO2 emission and guarantee minimum vehicle weight fill level
on board in order to formulate the new Green Vehicle optimisation model.

2 The proposed framework for Information Fractal Distribution Network

The new proposed framework for Information Fractal Distribution Network is displayed in Figure 1. As can
be seen, it has two levels including an Information Fractal – Reconfiguration Centre as a top-level fractal and the
Information Fractal – Distribution Centres as bottom level fractal with their own assigned retailers.
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Figure 1: The proposed framework for an Information Fractal Distribution Network (IFDN).

According to Ryu et al. [23], each information fractal unit consists of five function models including observer,
analyser, resolver, organiser and reporter as a BFU, see Figure 2.

Figure 2: Basic information fractal unit structure for bottom level fractal.

In the bottom level fractal, observers in the distribution centres (DCs) trace and receive the reconfiguration
orders from reconfiguration centre, transmit the orders to analysers and notify resolvers to receive the new
restructuring orders. Resolvers transmit the orders to organisers to apply the reconfiguration. Once the fractal
reconfiguration is done, resolvers apply green vehicle routing optimisation through their assigned retailers.
Analysers use output data which is transmitted from resolvers to investigate sustainability performance mea-
sures and return analysis results. Then, resolvers transmit the fractal sustainability information to the reconfig-
uration centre through the reporter function.

In the top-level fractal, the observer traces and receives reconfiguration outputs from the bottom level shown
as “Gate from outer fractal” (see Figure 2), then transmits them to the analyser and notifies the resolver. The
analyser investigates and analyses the distribution network sustainability status and transmits the analysis re-
sults to the resolver. The resolver may make decisions for any further improvement and network restructuring
regarding the analyser’s investigation. If the reconfiguration is specified by the resolver, the order should be
sent to the organiser to apply the network reconfiguration. Then, the organiser notifies the resolver of which or-
der is performed. Finally, resolvers transmit the reconfiguration orders to each DCs located in the bottom level
through reporter function which is shown as “Gate to outer fractal” (see Figure 3). This structure is demon-
strated in Figure 3 and clearly explains the internal relationships between these five function models.

Figure 3: Basic information fractal unit structure for top level fractal.

As part of the top-level’s information fractal performance, LlamaSoft, Supply Chain GURU Software [24] was
adapted to implement Greenfield analysis to identify the optimal number and location for setting up the new
facilities, given the location and demand of customers with different service constraints aiming to improve
distribution network sustainability.
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In this method, the objective is to minimise the total weighted distance. The Greenfield service constraints
such as customer demand or percentage of customers to be served within specified distances from the Green-
field site, which is a new site as the current sites are not sustainable in the long term, has a significant relation-
ship with transportation costs, CO2 emissions, transportation time and the number of vehicles in the required
fleet [25].

As part of the information fractal performances, which are in the bottom level, an integer mathematical
model is proposed and presented in the next section with which the simulating annealing algorithm is used as
a heuristic technique to identify the optimum/near-optimum solution.

2.1 Green vehicle routing optimisation mathematical model

In this research, a PRP with a homogeneous fleet of vehicles and considering the possibility of split delivery
and constraint of minimum shipment weight that must be on the vehicle during its service in each route is
investigated simultaneously and its’ integer linear programming model of the problem is described as follows:

2.1.1 Input parameters

V: Total number of nodes; with vertex set V = {0, 1, …, n}; Where node 0 corresponds to the depot and the other
nodes in this set of vertex represent the customers.

A: sets of edges; A = {(i,j)│i, j}∈ V and i ≠ j}.
K: Number of available vehicles; K = {1, …, k}.
Qk = Capacity of kth vehicle (k∈K).
Di = Customers demand (i∈V).
dij = Length of edge between the nodes i and j (i,j) ∈A
Msk = Minimum Shipment weight that must be on the kth vehicle in length of each route during its service
Cijk = CO2 emission of moving kth vehicle (k∈K) between the nodes i and j
Where:

𝐶𝑖𝑗𝑘 = ((𝑇𝑊𝑘+𝑊𝑖𝑗𝑘) 𝐸𝑘) × 𝑑𝑖𝑗

And
TWk = Tare Weight of kth vehicle, which is the weight of empty vehicle.
Wijk = Weight of shipments on board of kth vehicle between the nodes i and j
Ek = CO2 Emission rate of kth vehicle

2.1.2 Decision variables

𝑥𝑖𝑗𝑘 = { 1 if 𝑗th customer is served by 𝑘th vehicle after 𝑖th customer
0 otherwise

�

yik = The quantity of the demand of ith customer which is delivered by the kth vehicle.

2.1.3 Formulation

Therefore, the vehicle routing problem formulation by Dror and Trudeau [19] can be modified in order to
consider the CO2 emission and guarantee minimum vehicle weight fill level on board in order to formulate the
proposed Green Vehicle optimisation model in this study.

The objective function represents minimisation of the total CO2 emissions generated by the transportation
fleet can be written as follows:

𝑀𝑖𝑛
𝑛

∑
𝑖=0

𝑛
∑
𝑗=0

𝐾
∑
𝑘=1

𝐶𝑖𝑗𝑥𝑖𝑗𝑘 , 𝑖 ≠ 𝑗 (1)
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The model constraints are:
Constraint (2) ensures that each customer is visited at least once which guarantees the possibility of a split

delivery.

𝑛
∑
𝑖=0

𝐾
∑
𝑘=1

𝑥𝑖𝑗𝑘 ≥ 1 , 𝑗 = 1, … , 𝑛, (2)

Constraint (3) is about entrance and exit flows (p), where if a node i is visited by vehicle k, then the amount
of product from vehicle k that enters and leaves that node must equal the demand at that node. Conversely, if
node i is not visited by vehicle k, then the amount of product from vehicle k that enters and leaves that node
must be 0. In fact, these constraints guarantee that any vehicle enters each node will definitely leave it.

𝑛
∑
𝑖=0

𝑥𝑖𝑝𝑘 −
𝑛

∑
𝑗=0

𝑥𝑝𝑗𝑘 = 0 , 𝑝 = 0, ..., 𝑛; 𝑘 = 1, ..., 𝐾, (3)

Constraint (4) guarantees that vehicle cannot continue to serve more customers in length of each route if the
weight of its shipment on board, coming down is from a specified minimum shipment weight.

𝑛
∑
𝑖=1

𝑊𝑖𝑗𝑘 ≥ 𝑀𝑠𝑘 , 𝑗 = 2, … , 𝑛; 𝑘 = 1, … , 𝐾 (4)

Constraint (5) ensures that the ith customer’s demand is completed if at least one vehicle passes through it.

𝑦𝑖𝑘 ≤ 𝐷𝑖
𝑛

∑
𝑗=0

𝑥𝑖𝑗𝑘 , 𝑖 = 1, … , 𝑛; 𝑘 = 1, … , 𝐾 (5)

Constraint (6) indicates that all customers demand is entirely fulfilled.

𝐾
∑
𝑘=1

𝑦𝑖𝑘 = 𝐷𝑖 , 𝑖 = 1, … , 𝑛 (6)

Constraint (7) imposes that the loading process on any route should not exceed the capacity of the vehicle.

𝑛
∑
𝑖=1

𝑦𝑖𝑘 ≤ 𝑄, 𝑘 = 1, … , 𝐾 (7)

Constraint (8) presents the sub tour elimination constraints where (S) refers to any collection of customers
having at least 2 and at most n−1 members.

∑
𝑖,𝑗∈𝑆

𝑥𝑖𝑗𝑘 ≤ ∣𝑆∣ − 1 , (𝑆 ⊂ {1, … , 𝑛}) ; ∣𝑆∣ ≥ 2 (8)

Equation (9) guarantees the decision variables xijk to be binary.

𝑥𝑖𝑗𝑘 ∈ {0, 1} , 𝑖 = 0, … , 𝑛; 𝑗 = 0, … , 𝑛; 𝑘 = 1, … , 𝐾 (9)

Equation (10) guarantees that the decision variable yik is positive.

𝑦𝑖𝑘 ≥ 0 , 𝑖 = 1, … , 𝑛; 𝑘 = 1, … , 𝐾 (10)

The vehicle routing optimisations model which is presented above, are determined by resolvers; to minimise
the CO2 emission. Moreover, analysers also start to measure other sustainability performances including trans-
portation costs, transportation time and the number of required vehicles which are needed to meet customers’
demands. For these purposes, the following equations are developed.
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2.1.4 Total transportation cost

𝑇𝑇𝐶 =
𝑛

∑
𝑖=0

𝑛
∑
𝑗=1

𝐾
∑
𝑘=1

𝑑𝑖𝑗𝑥𝑖𝑗𝑘 × 𝐴𝑇𝐶 (11)

Where
TTC = Total Transportation Cost
ATC = Average Transportation Cost per km
dij = The length of the edge between nodes i and j travelled by a vehicle.

2.1.5 Total transportation time

𝑇𝑡 =
𝑛

∑
𝑖=0

𝑛
∑
𝑗=1

𝐾
∑
𝑘=1

𝑑𝑖𝑗𝑥𝑖𝑗𝑘
𝐴𝐹𝑉𝑘

(12)

Where
Tt = Total transportation time
AFVk  = Average Fleet Velocity (km/h) of vehicle k

2.1.6 Number of required vehicles

The proposed mathematical model allocates certain numbers of customers to be served according to its max
load capacity until all customers’ demand has been fulfilled. This will lead to the Total Number of Vehicles
required (TNV) to be identified as an output from the proposed model.

3 Implementation of the proposed mathematical model using simulated annealing
algorithm

Simulated annealing algorithm is an effective meta-heuristic optimisation algorithm for solving optimisation
problems presented by Kirkpatrick et al. [26] and adapted from the Metropolis-Hastings algorithm [27]. They
proposed a gradual freezing technique to solve the hard optimisation problems. The main advantage of the
simulated annealing algorithm is its ability to not remain at the optimal local point and move to the global
optimum point.

In generic term, the algorithm consists of two loops: one loop reduces the initial temperature to the final
temperature and the second loop identifies the number of repetitions at each temperature. The factors affecting
the timing of temperature reduction include the initial temperature, the final temperature, how to reduce the
temperature and the number of repetitions in each temperature. Simulated annealing algorithm starts from
an initial answer and then, in a repeated loop, it moves to neighbouring answers. If the neighbour’s answer is
better than the current one, the algorithm puts it as the current answer. Otherwise, the algorithm accepts that
answer with the probability of exp (−ΔE/T) as the current answer. In this regard, ΔE is the difference between
the objective function of the current answer and the neighbour’s answer and T is a parameter called temper-
ature. At each temperature, several repetitions are performed, and then the temperature is slowly reduced. In
the initial steps, the temperature is set very high, so it is more likely to accept worse answers. With the gradual
decrease of temperature, in the final steps, there will be fewer probabilities for accepting worse answers, and so
the algorithm converges to a good answer. Thus, in this paper, in order to implement the proposed mathemat-
ical model using simulated annealing algorithm, in the beginning, an initial solution (x) and neighbourhood
solution (xnew) for the problem are created and then, aligned with simulated annealing algorithm. Figure 4
displays a logical implementation flowchart for the proposed mathematical model using simulating annealing
algorithm followed by a descriptive structure of the six steps involved. For more information, the MATLAB
codes are also provided in Appendix 1.

I. At the first step, a model for each DC based on the assigned retailers and vehicles need to be developed.
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II. Then, a discrete solution can be utilised to randomly allocating the retailers to an available vehicle to receive
the service (i. e. generate the random routes for the problem).

III. At the third step, an objective function and the problem constraints can be generated, the output consists
of a solution with a wide range of information such as CO2 emission generated per path, length of the paths
(e. g. can be used to determine both transportation time and cost), list of customers who are assigned to a
vehicle per service (e. g. can be used to determine the total number of required vehicle) and etc.

IV. Next, CO2 emission function should be developed where total CO2 emission can be determined.

V. Later, after the initial solution is developed, the neighbourhood solution as part of the Simulated Annealing
algorithm must be created.

VI. Finally, the developed initial solution and neighbourhood solution can be aligned to the Simulated Anneal-
ing algorithm. It is noteworthy that, so far, there is no perfectly good instruction to determine the accurately
simulated annealing parameters. Hence, the most practical way is to test a set of possible values to find
the most optimum set. But, it is more advisable to carefully select the simulated annealing parameters to
minimise the number of calculations and, consequently, reduce the time spend on vain perturbations [28].

Figure 4: Implementation of the proposed mathematical model using simulated annealing algorithm.

4 Application of the proposed information fractal framework in food distribution
network

In this research, a hypothetical distribution network and its data is considered: A large British food and beverage
company wanted to determine the best number and location for DCs facilities as well as number of required
fleet to meet customers demand for its national operations with multi-objective approach; minimisation of
CO2 emissions, transportation costs and maximise responsiveness. The company serves 340 stores around the
country, the customers’ daily demand weights (kg) are randomly selected from n (1,000, 4,000). Figure 5 displays
the GURU snapshot of the stores’ distribution.
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Figure 5: Supply chain guru screen shot of the considered retailers.

There is a homogeneous fleet available at the company (rigid 7.5 ton). The capacity of the vehicle is determined
as 3,000 (kg) with a CO2 emission rate of 0.0005442 kg per km [29]. Moreover, average transportation costs,
average vehicle’s velocities and vehicle’s tare weight are considered to be £2.1 per km, 90 km/h (56 mph) and
3,000 kg, respectively.

5 Results analysis and discussion

5.1 Greenfield analysis results

As part of dynamic reconfiguration, to achieve the company’s sustainability objectives, three reconfiguration
scenarios are approved by the resolver in top-level fractal in which 100 % of customers are served within max-
imum sourcing distance of 113 km (first scenario), 161 km (second scenario) and 209 km (third scenario). Then,
the proposed network reconfiguration scenarios are transmitted to the organiser function. Greenfield analysis
is used by the organiser to determine the DC facilities within the best geographical locations with different
service constraints. The obtained results from GURU Software are displayed in Table 1–Table 3 in which 12,
7 and 4 potential DC facilities with their assigned retailers are determined for first, second and third scenar-
ios, respectively. For instance, Figure 6 also displays the snapshots of the GURU results for application to the
reconfiguration scenarios.

Table 1: Greenfield analysis results for first scenario.

DC Facility Latitude Longitude Number of assigned
retailers

DC1 52.57657 −1.54377 65
DC2 55.90237 −3.64298 30
DC3 53.72346 −1.34595 35
DC4 54.66324 −3.36845 11
DC5 51.5389 0.14755 40
DC6 51.60858 −3.66043 31
DC7 52.41286 0.75166 15
DC8 57.64985 −3.31961 3
DC9 53.27981 −2.8974 65
DC10 50.37546 −4.14266 5
DC11 54.95469 −1.55084 23
DC12 50.98893 −1.49658 17
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Table 2: Greenfield analysis results for second scenario.

DC Facility Latitude Longitude Number of assigned
retailers

DC1 50.71858 −3.532 15
DC2 55.6232 −2.81464 42
DC3 53.58013 −2.09142 116
DC4 51.48294 −0.38841 50
DC5 52.24223 −3.37758 55
DC6 56.4667 −2.9667 13
DC7 52.5695 −0.24053 49

Table 3: Greenfield analysis results for third scenario.

DC Facility Latitude Longitude Number of assigned
retailers

DC1 50.71858 −3.532 42
DC2 53.41493 −2.07702 161
DC3 51.87856 −0.41942 90
DC4 56.07189 −3.4537 47

Figure 6: Supply chain guru screen shot of the Greenfield analysis result (first scenario).

5.2 Vehicle routing optimisation results

As soon as the configuration orders are received from the top level, resolvers in each bottom level notified the
organisers to restructure the fractal to meet the orders. Then, in order to achieve the lowest CO2 emission, the
proposed green vehicle routing optimisation in this paper is applied by resolvers to examine the different min-
imum shipment weights using the simulating annealing heuristics search which is programmed in MATLAB
Software. When the vehicle routing optimisation, within the specified minimum shipment weight, is complete,
performance measures are investigated by analysers located in the bottom level fractals and the analysis results
are returned to the resolvers. The above loop between resolver and analyser is continued until an optimum
shipment weight is found.

Table 4 demonstrates the green vehicle routing optimisation results with split delivery through different
scenarios which are obtained by determining the optimum minimum weight shipment.

Table 4: Green vehicle routing optimisation results.

DC Facility optimum Msk (kg) C (kg) TTC (£) Tt (h) TNV (Q)

First Scenario DC1 1,300 12,868 12,180 64 58
DC2 1,550 5,970 5,643 30 28
DC3 1,800 6,286 5,880 31 33
DC4 1,000 2,523 2,371 13 11
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DC5 1,100 7,649 7,379 39 33
DC6 1,200 6,247 5,863 31 29
DC7 900 3,438 3,158 17 14
DC8 1,300 706 628 3 3
DC9 1,300 12,069 11,294 60 60
DC10 2,000 1,113 1,061 6 5
DC11 1,000 3,244 3,173 17 22
DC12 1,400 3,826 3,641 19 14

Second Scenario DC1 500 5,942 5,609 30 13
DC2 1,000 18,023 16,336 86 39
DC3 900 29,462 28,020 148 100
DC4 1,100 13,207 12,590 67 42
DC5 1,300 20,549 18,753 99 52
DC6 1,600 3,901 3,715 20 13
DC7 1,100 16,124 15,028 80 44

Third Scenario DC1 1,000 20,013 19,236 102 37
DC2 1,500 55,084 52,582 278 150
DC3 1,400 34,460 32,645 173 85
DC4 1,030 19,687 17,993 95 44

Msk = Minimum shipment weight that must be on the kth vehicle in length of each route during its service.
C = CO2 emission.
TTC = Total Transportation Cost.
Tt = Total transportation time.
TNV = Total Number of vehicles required.

5.2.1 Verification and efficiency of the proposed mathematical model

In order to evaluate the efficiency and verify the proposed model, it was also tested without considering the
minimum weight of shipments on board (Msk), which is the standard vehicle routing problem with split delivery
(SD-VRP) proposed by Dror and Trudeau [19] and results were compared with the proposed model outputs
using two criteria: mileage and CO2 emissions. Comparison of the results proved that in all scenarios, the
obtained values from the proposed model were improved in terms of both mileage and CO2 emission:
– In the first scenario, the values obtained from the proposed model in terms of both criteria, the mileage and

CO2 emissions were reduced by 7.1 % and 5.9 %, respectively (see Figure 7 and Figure 8).

– In the second scenario, Figure 9 and Figure 10 display that there was also an improvement in both the mileage
and CO2 emissions by 7.4 % and 4.9 %, respectively.

– Finally, both the mileage and CO2 emissions were reduced by 4.9 % and 3.3 % in the third scenario as shown
in Figure 11 and Figure 12.
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Figure 7: Comparison of the generated results in terms of the mileage criterion in the first scenario.

Figure 8: Comparison of the generated results in terms of the CO2 emission criterion in the first scenario.

Figure 9: Comparison of the generated results in terms of the mileage criterion in the second scenario.

Figure 10: Comparison of the generated results in terms of the CO2 emission criterion in the second scenario.
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Figure 11: Comparison of the generated results in terms of the mileage criterion in the third scenario.

Figure 12: Comparison of the generated results in terms of the CO2 emission criterion in the third scenario.

Furthermore, a programme has been developed to do the two-way analysis of variance (ANOVA) to explore
the significant impact of the proposed model in which the minimum shipment has been applied. As shown in
Table 5, the results clearly demonstrated that both mileage and CO2 emission have significantly affected by the
shipment condition in terms of “Minimum Shipment weight that must be on the kth vehicle in length of each
route during its service” and different scenarios in terms of “Greenfield analysis” at confidence level of 95 %.

Table 5: Two-way analysis of variance (ANOVA) results.

Source Dependent
variable

Sum of
squares

DF Mean square F Tail
proba-
bility*

Scenario Mileage 589,829,862.00 2 294,914,931.0 74.80 0.000
CO2 emission 2,794,993,596.0 2 1,397,496,798. 66.872 0.000

Shipment condition Mileage 446,547,891.20 21 21,264,185.30 5.393 0.001
CO2 emission 2,089,444,203.0 21 99,497,342.98 4.761 0.001

Scenario * Shipment
condition

Mileage 232,447,536.90 6 38,741,256.15 9.826 0.000
CO2 emission 1,021,415,511.0 6 170,235,918.5 8.146 0.000

(Tail Probability*) The source is significant at 95 %, if Tail probability ≤ 0.05.
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5.3 Distribution network sustainability analysis results

As soon as the results of implementing the reconfiguration scenarios are received from the bottom level, the
analyser in the reconfiguration centre starts to investigate the network sustainability for each scenario and, in
turn, the analyser outputs are transmitted to the resolver.

– First Scenario: The result proved that 310 units of transportation assets are required to meet stores demand and
the total CO2 emission, transportation costs and transportation time are 65,939 kg, £62,271 and 329 hours,
respectively.

– Second Scenario: The result showed that 303 units of transportation assets are required and total CO2 emis-
sions, transportation costs and transportation time are 107,208 kg, £100,050 and 529 hours, respectively.

– Third Scenario: In terms of service constraint, with 100 % of customer served within max sourcing distance
of 209 km, 316 units of transportation assets are required for meeting the store’s demand and total CO2
emissions, transportation costs and transportation time are 129,244 kg, £122,455 and 648 hours, respectively.

In summary, as illustrated in Figure 13, CO2 emissions, transportation costs and transportation time display
rising trends from the first scenario to the third scenario, whilst, the Total Number of Vehicles required (TNV)
to meet the store’s demand does not follow the same trend. The reason behind this it could be due to the dif-
ferent number of customers/retailers allocated for each DC and the distance between them which is defined
as scenarios in this paper. In addition, the identified minimum shipment weight on board which is may vary
from DC to another that is defined as “Shipment condition” in this work. This means that the scenarios should
have no impact on the number of vehicles required, hence, to support this justification, a full statistical factorial
ANOVA technique was used to analyse the related results obtained from the proposed model at 95 % confi-
dence interval. As shown in Table 6, the results revealed that Total Number of Vehicles required (TNV) was not
significantly affected by the shipment condition in terms of “Minimum Shipment weight that must be on the
vehicle in length of each route during its service” and different scenarios in terms of “Greenfield analysis” at
confidence level of 95 %.

Figure 13: Performance measures trends through reconfiguration scenarios.

Table 6: Full factorial ANOVA results.
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Source Dependent
variable

Sum of
squares

DF Mean square F Tail
probability*

Scenario TNV 432.982 2 216.491 0.169 0.846
Shipment condition TNV 15,188.290 21 723.252 0.563 0.892
Scenario * Shipment
condition

TNV 13,677.617 6 2,279.603 1.775 0.168

(Tail Probability*) The source is significant at 95 %, if Tail probability ≤0.05.

Nevertheless, the Greenfield service constraint, with 100 % of customers served within the maximum sourcing
distance of 113 km is identified as the optimum scenario to have the lowest CO2 emissions, transportation costs
and transportation time.

6 Conclusions

In this paper, a new framework for the information fractal with two levels, named top and bottom level fractals
was proposed to optimise the food distribution network sustainability through two variables; Greenfield service
constraints and minimum weight of shipments on board.

The Fractal in the top level traced, observed and analysed the sustainability status of the distribution net-
work, determined the optimum reconfiguration solution and, then, shared with fractals in the bottom level.
Based on this information, the fractals in the bottom level implemented the reconfiguration orders and ap-
plied green vehicle routing optimisation and then transmitted the sustainability performance information to
the top-level fractal.

The proposed framework was applied to the hypothetical food distribution network. The Supply Chain
GURU Software was adapted to implement the Greenfield analysis to identify the optimal number and loca-
tion for setting up the new facilities. The new Green Split Delivery-Vehicle Routing Problem (GSD-VRP) was
developed and implemented using the simulated annealing algorithm which was programmed in the MATLAB
software.

Application of the proposed framework has introduced a dynamic control system for the distribution net-
work sustainability which has led to the increase of both collaboration and integration throughout the food
distribution network.

Moreover, it provides a systematic method through which practitioners should be able to decide upon the
optimal number and location of distribution facilities as well as optimal vehicle weight fill levels to improve the
sustainability throughout the food distribution chain.

The focus of this research paper was the environmental impact as one of the sustainability dimensions.
However, for future work, the other dimensions of sustainability should be considered, and the proposed green
vehicle routing model should be developed further to take into consideration the time window, heterogeneous
fleet and its availability for further evaluation and its effectiveness.

Appendix

A MATLAB codes

I Create the Distribution Centre model

function model=CreateDCModel(I,J) % I= number of Retailers, J= number of
Vehicle
E=[];                % CO2 Emission rate of vehicle
TW =[];            % Tare Weight of vehicle
r=[];                % Retailer Demands
c=[];                % Vehicle Capacity
x=[];                % Longitudinal coordinates of retailers
x0=[];            % Latitude coordinates of distribution centre
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y=[];                % Longitudinal coordinates of retailers
y0=[];            % Latitude coordinates of distribution centre
d=zeros(I,I);
d0=zeros(1,I);
                    for i=1:I
        %%% Distance among retailers
                                    for i2= i+1:I
                                            d(i,i2)=distdim(distance(x(i),y(i),x(i2),y(i2)),'deg','kilometers
');
                                            d(i2,i)=d(i,i2);
                                    end
                        %%%Distance from depot to each retailers
                                    d0(i)=distdim(distance(x0,y0,x(i),y(i)),'deg','kilometers');
                    end
end

II Create Random solution

 function q=CreateRandomSolution(model)
         q=randperm(I+J-1);
         DelPos=find(q>I); %DelPos= Delimiter Position
         From=[0 DelPos]+1;
         To=[DelPos I+J]-1;
         L=cell(J,1); %L= List of retailers who received the service from the
vehicle j
                     for j=1:J
                         L{j}=q(From(j):To(j))
                     end
end

III Generate the objective function. In the below code only CO2 emission calculation is presented

function sol=CO2C(q,model)
               CH=0;
               ucap=zeros(J,1);
               C=zeros(J,1);
               DC=0;
               sh=0;                %%% Vehicle load moments
           for j=1:J
                               if ~isempty(L{j})
                                           last_costm=L{j}(end);
                                               %%% Output loading weight from the depot
                                               s(j)=0;
                                               for ii=1:length(L{j})
                                                               s(j)=s(j)+r(L{j}(ii));
                                                                   ucap(j)=sum(r(L{j}));
                                                                   CH=CH+max(ucap(j)-c,0);    %%%Vehicle capacity constraint
                                               end
                                                       sh=s(j);
                                                   %%%CO2 emission from depot to first retailer
                                               C(j)=((TW+sh)*E)*d0(L{j}(1));
                                               sh=sh-r(L{j}(1));
                                               r(L{j}(1))=0;
                                               
                                               %%% CO2 emission among retailers
                                           for k=2:numel(L{j})
                                           %%% Apply constraint to guarantee that vehicle cannot continue to
serve more customers in length of each route if the weight of its shipment
on board, coming down is from a specified minimum shipment weight.
                                                           DC=DC+max(Ms-sh,0);
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                                                                                       if sh>=r(L{j}(k))
                                                                                                   sh=sh-r(L{j}(k));
                                                                                                   r(L{j}(k))=0;
                                                                                   else
                                                                                                   r(L{j}(k))=r(L{j}(k))-sh;
                                                                                                   sh=0;    
                                                                                                   last_costm=L{j}(k);
                                                                                   end
                                           C(j)=C(j)+((vw+sh)*E)*d(L{j}(k-1),L{j}(k));
                                           end
                                               %%% CO2 emission from last retailer to depot
                                               C(j)=C(j)+(TW*E)*d0(last_costm)
                               end
                                   %%% Identify retailers which their demand is not fully fulfilled
                                   rn=nonzeros(r);
                                   rr=find(r==0);
                                   A=d;
                                   A(rr,:)=[];
                                   A(:,rr)=[];
                                   A0=d0;
                                   A0(:,rr)=[];
                                   In=numel(rn);
                                   Jn=numel(rn);
                                   rb=zeros(In,1);
                                   rb=rn;
               end
end

IV Generate CO2 emission function

 function [z sol]=MyCO2(q,model)
          global    NFE;
          NFE=NFE+1;
          sol=CO2C(q,model);
          eta=[];
          beta=[];
          z=sol.TotalC;
          z=z+ beta*sol.CH+ eta*sol.DC;
                      
end

V Create neighbourhood Solution (xnew)

function qnew=CreateNeighbor(q)
               m=randi([1 3]);
           switch m
                           case 1
                                           % Do Swap
                                           qnew=Swap(q);
                           case    2
                                           % Do Reversion
                                           qnew=Reversion(q);
                           case    3
                                           % Do Insertion
                                           qnew=Insertion(q);
           end
end
    
function    qnew=Swap(q)
           n=numel(q);
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           i=randsample(n,2);
           i1=i(1);
           i2=i(2);
           qnew=q;
           qnew([i1 i2])=q([i2 i1]);
end
function qnew=Reversion(q)
           n=numel(q);
           i=randsample(n,2);
           i1=min(i(1),i(2));
           i2=max(i(1),i(2));
           qnew=q;
           qnew(i1:i2)=q(i2:-1:i1);
end
function    qnew=Insertion(q)
           n=numel(q);
           i=randsample(n,2);
           i1=i(1);
           i2=i(2);
           if    i1<i2
                           qnew=[q(1:i1-1) q(i1+1:i2) q(i1) q(i2+1:end)];
           else
                           qnew=[q(1:i2) q(i1) q(i2+1:i1-1) q(i1+1:end)];
           end
end

VI Simulated Annealing algorithm

clc;
clear;
close all;
global NFE;
NFE=0;
     
Problem Definition
model=SelectModel();                                                                            % Select Model of the Problem
CO2Function=@(q) MyCO2(q,model);                            %    Objective Function, CO2 emission
                             function
    
SA Parameters
MaxIt=1000;                        % Maximum Number of Iterations by default
MaxIt2=80;                        % Maximum Number of Inner Iterations by default
T0=100;                                    % Initial Temperature by default
alpha=0.99;                    % Temperature Damping Rate by default
       
Initialisation
%    Create Initial Solution
x.Position=CreateRandomSolution(model);
[x.CO2 x.Sol]=CO2Function(x.Position);
%    Update Best Solution Ever Found
BestSol=x;
%    Array to Hold Best CO2 Values
BestCO2=zeros(MaxIt,1);
%    Array to Hold NFEs
nfe=zeros(MaxIt,1);
%    Set Initial Temperature
T=T0;
     
SA Main Loop
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for it=1:MaxIt
                for it2=1:MaxIt2
                                % Create Neighbor
                                xnew.Position=CreateNeighbor(x.Position);
                                [xnew.CO2 xnew.Sol]=CO2Function(xnew.Position);
                                if xnew.CO2<=x.CO2
                                                % xnew is better, so it is accepted
                                                x=xnew;        
                                else
                                                % xnew is not better, so it is accepted conditionally
                                                delta=xnew.CO2-x.CO2;
                                                p=exp(-delta/T);
                                                if    rand<=p
                                                                x=xnew;
                                                end
                                end
                end
                %    Update Best Solution
                                if    x.CO2<=BestSol.CO2
                                                BestSol=x;
                                end
                %    Store Best CO2
                BestCO2(it)=BestSol.CO2;
                if    BestSol.Sol.IsFeasible
                                FLAG='    *';
                else
                                FLAG='';
                end
                % Store  NFE
                nfe(it)=NFE;
                % Display Iteration Information
                disp(['Iteration ' num2str(it) ': Best CO2 = ' num2str(BestCO2(it)) FLAG
]);
                % Reduce Temperature
                T=alpha*T;
                %Plot Solution
%                    figure(1);
%                    PlotSolution(BestSol.Sol,model);
%                    pause(0.01);
end
   
Results
figure;
plot(nfe,BestCO2,'LineWidth',2);
xlabel('NFE');
ylabel('Best CO2');
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