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Abstract 39 

The hypothalamus controls metabolism and feeding behavior via several signals with other tissues. Exercise and 40 

supplements can change hypothalamic signaling pathways, so the present study investigated the influence of 41 

eccentric resistance training and β-Hydroxy-β-methylbutyrate free acid supplement on PGC-1α expression, serum 42 

irisin, nesfatin-1 and resistin concentrations. Thirty-two male rats (8 weeks old, 200±17 g body mass) were 43 

randomized to control (CON), β-Hydroxy-β-methylbutyrate free acid (HMB) supplementation, eccentric resistance 44 

training (ERT), and β-Hydroxy-β-methylbutyrate free acid supplementation plus eccentric resistance training 45 

(HMB+ERT) groups. Training groups undertook eccentric resistance training (6 weeks, 3 times a week) and 46 

supplement groups consumed HMB-FA orally (76 mg/kg/day). Twenty-four hours after the last training session, rats 47 

were sacrificed after which serum and triceps brachii muscle were collected and sent to the laboratory for analyses. 48 

Two-way ANOVA and Pearson correlation were employed (significant level: P< 0.05). The results showed that 49 

eccentric resistance training increases skeletal muscle PGC-1α gene expression, as well as serum levels of irisin and 50 

nesfatin-1 (P= 0.001). Eccentric resistance training decreases serum concentration of resistin (P= 0.001). HMB-FA 51 

supplement increases skeletal muscle PGC-1α  gene expression (P= 0.002), as well as serum concentartion of irisin 52 

and nesfatin-1 (P= 0.001). HMB-FA decreases the serum concentration of resistin (P= 0.001). Significant 53 

correlations were observed between PGC-1α gene expression and serum concentrations of irisin, nesfatin-1 and 54 

resistin. Generally, HMB-FA with eccentric resistance training may induce crosstalk between releasing peptides 55 

from other tissues and increases maximal strength. Their combination had a more substantial effect than each 56 

intervention in isolation.  57 
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Introduction 69 

Energy homeostasis is an important aspect of bioenergetics which can be defined as an equilibrium of energy intake 70 

and energy expenditure (Lam and Ravussin 2016). The hypothalamus controls metabolism, feeding behavior 71 

(Timper and Bruning 2017) and body mass via several pathways that affect appetite including Peroxisome 72 

proliferator-activated receptor gamma coactivator (PGC-1α) (Hu et al. 2016, Park and Ahima 2015).  PGC-1α is a 73 

key signaling pathway in the metabolism of  carbohydrate, lipids  and the regulation of cellular energy (Liang and 74 

Ward 2006). In addition, it stimulates mitochondrial biogenesis and promotes the remodeling of muscle tissue via 75 

changes to fiber-type composition (Zhang et al. 2017). It is plausible that PGC-1α affects irisin, nesfatin-1 and 76 

resistin which are peptides involved in energy homeostasis (Shirvani and Arabzadeh 2018).  77 

The myokine Irisin is predominantly produced by skeletal muscle after physical exercise, and creates crosstalk 78 

between tissues. In particular,  muscle-fat crosstalk changes the phenotype of white adipose tissue (converting white 79 

fat into brown fat) and induces body mass loss (Fukushima et al. 2016). Irisin has been reported to activate 80 

thermogenic programs in white adipose tissue and improve glycemia, which is dependent on PGC-1α (Bostrom et al. 81 

2012). Thus, elevated irisin has been posited to be a possible anti-obesity agent (Spiegelman 2013). Nesfatin-1 is an 82 

anorexigenic protein likely to activate the melanocortin pathway and its involved in the regulation of blood glucose, 83 

improves insulin sensitivity, energy homeostasis, and metabolism (Dore et al. 2017, Myers 2006, Oh et al. 2006). 84 

Intracerebroventricular injection (ICV) of nesfatin-1 inhibited food intake in a dose-dependent manner results in a 85 

decrease in total body fat and body mass loss, while anti-nesfatin-1 has increased the intake of food in male rats (Oh 86 

et al. 2006). It was reported that nesfatin-1 promotes the differentiation of brown adipocytes through the PGC-1α 87 

(Wang et al. 2016). Hypothalamic resistin seems to be a key regulator of the brain-fat axis which regulates energy 88 

homeostasis (Rodriguez et al. 2018). ICV infusion of resistin reduced epididymal fats and  increased peripheral 89 

insulin sensitivity (Park et al. 2008). Resistin modulates food intake, hypothalamic and peripheral lipid metabolism 90 

(Nogueiras et al. 2010). It was reported that resistin regulates fatty acid Β oxidation by suppressing expression of 91 

PGC-1α (He et al. 2018). 92 

In the last decade, the use of supplements such as β-Hydroxy-β-methylbutyrate free acid (HMB) to promote fat loss 93 

and muscle growth has increased. HMB is an active metabolite of the nutritionally essential branched-chain amino 94 

acid (BCAA) leucine that has an anticatabolic role for muscle (reduces breakdown of muscle cell proteins) (He et al. 95 

2016). There is evidence to support the inhibitory effects of HMB on dexamethasone-induced increase in protein 96 



degradation and decrease in protein synthesis were regulated by p38/MAPK- and PI3K/Akt-dependent cell 97 

signaling, respectively (Aversa et al. 2012). It was demonstrated that leucine-polyphenol combinations stimulate 98 

irisin release and browning of adipose tissue (Brooke Baggett et al. 2013). To the authors knowledge, there has been 99 

no study investigating the effects of HMB on nesfatin-1 and resistin. Overall, HMB is effective in the regulation of 100 

many cellular processes such as protein synthesis and energy metabolism  (Yin et al. 2010, Li et al. 2011, Duan et al. 101 

2016, Wilson et al. 2013). HMB has numerous forms including HMB-FA and HMB-CA. HMB-FA is as dietary 102 

supplement in the free acid form and has more bioavailability compared to HMB-CA, which is a monohydrated 103 

calcium salt of the conjugate base (Wilson et al. 2013, Fuller et al. 2015).  HMB supplementation has been shown to 104 

increase muscle size (Wilson et al. 2012), and enhances force production during recovery from an injury that is 105 

created by disuse-reloading (Alway et al. 2013).  106 

Exercise has numerous influence on multiple gut peptides and consequently energy balance (Dorling et al. 2018). 107 

Studies have investigated different modes of exercise training on PGC-1α (P. C. Dinas et al. 2017, Jung and Kim 108 

2014, Norheim et al. 2014), irisin (P. C. Dinas et al. 2017, Norheim et al. 2014, Samy et al. 2015), nesfatin-1 (Algul 109 

et al. 2017, Ghanbari Niaki et al. 2013, Ghanbari-Niaki et al. 2010, Mogharnasi et al. 2018) and resistin (Cobbold 110 

2018, Shafiee and Sharifi 2017, Garcia-Hermoso et al. 2017). The effects of HMB on these factors has not been 111 

investigated widely. In addition, the combination of exercise and supplement may have  different results then each 112 

intervation alone. The aim of the present study was to investigate the influence of eccentric resistance training and β-113 

Hydroxy-β-methylbutyrate free acid supplement on PGC-1α expression, serum irisin, nesfatin-1 and resistin 114 

concentrations in rats.  115 

 116 

Material and methods 117 

Permissions  118 

The present study was conducted with the written permission of the research deputy of Baqiyatallah University 119 

(ethical code: IR.BMSU.REC.1394.82) and was in accordance with National Institutes of Health (NIH) publication.  120 

 121 

Animals and design 122 

Thirty-two male rats (Sprague Dawley family, 8 weeks old, 200±17 g weight) were used in this cross-sectional 123 

study. Animals were kept in the Baqiyatallah University of Medical Science in the animal houses in special cages 124 



where the floor was covered with clean wood chips. The  temperature  was 22 (± 2
 o

C), humidity between 45-50% 125 

with a lighting-dark cycle of 12 hours light followed by12 hours darkness. Special standard compressed food 126 

(Behparvar of Karaj) for laboratory rats (crude protein: 19.50-20.50%, fat: 3.5-4.5%, fibre: 4-4.5%, calcium 0.95-127 

1%, phosphorus: 0.65-0.7%, salt: 0.5-0.55%, lysine 1.15%, methionine: 0.33%, threonine: 0.72, tryptophan: 0.25, 128 

energy: 16.16-17 mJ/kg) was provided at regaular times. The cages were fitted with urban filtered water in bottles of 129 

500 ml. Rats were randomized into four groups (8 in each group) including control (CON), β-Hydroxy-β-130 

methylbutyrate free acid supplementation (HMB), eccentric resistance training (ERT), and HMB supplementation 131 

plus eccentric resistance training (HMB+ERT). The training groups undertook eccentric resistance exercise training 132 

on a ladder while control groups activity was limited to light intensity activity (i.e. walking around the cage).  133 

Thirty minutes prior to the exercise training the HMB groups orally consumed freely force fed the supplement 134 

(Beta-TOR, USA) at a dose of 76 mg/kg/day while non-supplement groups orally consumed a saline palcebo. The 135 

dosage equivalent in human studies is 3 to 6 g/day  for an 80 kg person (Gallagher et al. 2000).  136 

 137 

One-repetition maximum measurement 138 

In the first session, one-repetition maximum (1RM) was considered as 50% of the rats body mass, as has been used 139 

previously (Gil and Kim 2015). On completion, the final load of the first session was recorded as the 1RM for the 140 

next session (Fig. 1).  141 

 142 

Training protocol  143 

Eccentric resistance exercise training was performed using a ladder (Manufactured by the Exercise Physiology 144 

Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran). The ladder was 145 

made of wood with iron steps which had a height of 1.1 m, an inclination of 80 degrees and consisted of 26 steps in 146 

total. The ladder was designed to make the rats descend the ladder while imposing a constant load. This protocol has 147 

been used  in previous research (Gil and Kim 2015). The  rats performed 10 to 12 dynamic movements (repetitions) 148 

during each landing so the intensity is different. Rats exercised on the ladder with a free load for a week, 149 

standardized as a pre-training adaptation and to allow the rats to become accustomed to the exercise. After that, the 150 

rats performed the ladder descent exercise with a weighted backpack. The exercise was loaded as follows: one 151 

repetition of ladder exercise was conducted at 50%, 75%, 90%, 100% and 120% of 1RM, after which 30g was added 152 



for each trial up to eight trials. Training ended before the 8th trial when rats showed signs of exhaustion, such as 153 

unable to descend, or were hanging from the ladder. Eccentric resistance exercise was performed three times a week 154 

for six weeks for a duration of 25 minutes per session. 155 

 156 

Rat sacrifices, serum and triceps brachii muscle collection 157 

Exactly twenty-four hours post the last training session, rats were anesthetized with intraperitoneal administration of 158 

a mixture of ketamine (supplied by Iranian company: Shiraz Iman Saba, Made in Holland, 30 – 50 mg/kg body 159 

mass) and xylazine (supplied by Iranian company: Shiraz Iman Saba, Made in Holland, 3 – 5 mg/kg body mass). 160 

Blood was collected into tubes and immediately processed for serum preparation during 10 min centrifugation at 161 

1000 × g. Serum was then stored at -80 
o
C for future analysis. Triceps brachii muscle was excised, cleaned, divided 162 

into three pieces, washed in ice-cold saline, and immediately frozen in liquid nitrogen and stored at -80°C until RNA 163 

extraction.  164 

 165 

Serum analysis   166 

Serum concentrations of irisin and nesfatin-1 were analyzed using ELISA (BioVendor Laboratory Medicine, Brno, 167 

Czech Republic) standard operating procedures. The kit sensitivity for irisin and nesfatin-1 was 0.01 ng/ml and 14 168 

ng/ml respectively. Irisin and nesfatin-1 kit inter and intra assay coefficients of variation were 10% and 8% 169 

respectively. Serum resistin concentation was analyzed by ELISA (Biovendor Research and Diagnostic Products, 170 

Czech Republic) standard operating procedures. The resistin kit sensitivity was 0.25 ng/ml. The inter and intra assay 171 

coefficients of variation were 7% and 5% respectively.  172 

 173 

Evaluation of gene expression  174 

RNA extraction was performed by RNA purification kits (AccuZol, Bioneer, Cat. No: k3090,  Korea) and 85 to 175 

95 mg of triceps brachii muscle was used for each sample. Complementary DNA (cDNA) making was performed by 176 

cDNA synthesis kit (AccuPower RT PreMix) according to the manufacturer’s instructions and oligo-(dt)18 primers 177 

(0.25 μg per reaction). Real-time PCR was performed by light Cycler apparatus (Corbet Real time PCR machine, 178 

Australia). QuantiFast SYBR Green PCR Kit (Cat. No. 204052; Qiagen, GmbH, Germany) in using 15 μL reaction 179 

was used.  The 15 μL reaction contained 0.5 μL single-strand cDNA, 7.5 μL Master Mix, 1 μL of the each forward 180 



and reverse primers (5 pmol/μL), and 5 μL dH2O. PGC1α sense primer was 5
′
-GACCCTCCTCACACCAAAC-

′
3, 181 

and antisense primer was 
′
5- GCGACTGCGGTTGTGTATG -

′
3 (Shi et al. 2013). The β-actin sense and antisense 182 

primers were 
′
5-TATCGGCAATGAGCGGTTCC-

′
3 and 

′
5- CACTGTGTTGGCATAGAGG-3

′
, respectively 183 

(Rahmati-Ahmadabad et al. 2017), which were used as normalizer gene.  184 

 185 

Statistical analysis  186 

Real-time PCR cyclic threshold (CT) was analyzed by the Pfaffl method (Pfaffl 2001). All data was stored and 187 

analyzed using SPSS software, (IBM, version 24). The Kolmogorov–Smirnov test was used to assess data 188 

distribution and Levene's test was used to assess the equality of variances. Repeated measures ANOVA was used to 189 

identify any difference inrats’ body mass for the duration of the study as well as changes in 1RM. In order to infer 190 

differences between groups, two way ANOVA and Tukey Post hoc test was used. Correlations were calculated 191 

using Pearson Product Moment correlation. Due to the low sample size non parametric tests inlcuding the Freidman 192 

test and spearman correlation were also conducted but this did not alter the interpretation of the findings so only the 193 

results of the parametric tests are presented. Effect size (ES) was reported to emphasize the size of the difference 194 

rather than confound the sample size. Significance was accepted if P <0.05. Data are presented as mean ± standard 195 

deviation (SD) unless otherwise stated. 196 

 197 

Results 198 

There was no  difference  in body mass between groups (F (5, 140) = 0.40, P= 0.84; ES= 0.01) (Tab.1). 199 

 200 

Table. 1: Rat body mass in control (CON), β-Hydroxy-β-methylbutyrate free acid supplementation (HMB), eccentric resistance 201 

training (ERT), and β-Hydroxy-β-methylbutyrate free acid supplementation plus eccentric resistance training (HMB+ERT) 202 

groups.  N = 8 in each group. 203 

 204 

Groups 

Week 1 

body mass (g) 

Week 2 

body mass (g) 

Week 3 

body mass (g) 

Week 4 

body mass (g) 

Week 5 

body mass (g) 

Week 6 

body mass (g) 

CON  205.50±16.93 216.37±15.01 225.37±16.40 242.12±14.77 267.75±14.72 280.37±16.49 

HMB  197.63±17.71 206.75±18.94 217.62±18.67 236.25±18.17 259.75±16.16 271.37±18.11 

ERT  202.62±17.66 214.87±19.11 223.01±19.79 240.62±19.97 267.12±20.06 278.75±19.85 

HMB+ERT 195.87±16.96 205.25±17.01 213.62±18.70 232.62±15.46 258.37±16.62 269.62±15.93 



 205 

The mean weekly 1 RM of the exercise training groups initially (week 1, 2, 3) showed similar levels, as can be seen 206 

in Fig. 1. 1RM was significantly higher in HMB+ERT compared ERT group in week 4 (998.68± 97.98 Vs 1113.62± 207 

81.30 g, F (1, 14) = 6.52, P= 0.02; ES= 0.31), 5 (179538± 180.56 Vs 2033.89± 183.61 g, F (1, 14) = 6.86, P= 0.02; 208 

ES= 0.32) and 6 (2150.56± 214.30 Vs 2433.63± 217.91g, F (1, 14) = 6.85, P= 0.02; ES= 0.33) (Fig.1). 209 

 210 

Training groups had higher tissue PGC1α than non training groups (F (1, 28) = 93.74, P= 0.001; ES= 0.77) (Fig. 211 

2A). PGC1α gene expression was significantly higher in HMB groups than non-supplement groups (F (1, 28) = 212 

11.59, P= 0.002; ES= 0.29). Eccentric resistance training and HMB supplementation has the greatest PGC1α gene 213 

expression (F (1, 28) = 5.52, P= 0.02; ES= 0.16) (Fig. 2A).  214 

 215 

For serum irisin, data analysis showed that there was a higher concentartion in training groups compared to non-216 

training groups (F (1, 28) = 104.78, P= 0.001; ES= 0.78). (Fig. 2B). Results showed that serum irisin was 217 

significantly higher in HMB groups than control (F (1, 28) = 22.59, P= 0.001; ES= 0.44). The highest irisin was for 218 

HMB + ERT (F (1, 28) = 4.53, P= 0.04; ES= 0.13) (Fig. 2B). 219 

 220 

For serum nesfatin-1, data analysis showed higher concentartion in training groups compared to non-training groups 221 

(F (1, 28) = 31.46, P= 0.001; ES= 0.52). (Fig. 2C). The results showed higher concentartions of serum nesfatin-1 in 222 

HMB groups than non-supplement groups (F (1, 28) = 34.76, P= 0.001; ES= 0.55). The highest serum nesfatin-1 223 

concentration was in the HMB + ERT group (F (1, 28) = 18.87, P= 0.001; ES= 0.40) (Fig. 2C). 224 

For serum resistin, data analysis showed that there was a lower concentrationin in training groups compared to non-225 

training groups (F (1, 28) = 63.44, P= 0.001; ES= 0.69) (Fig. 2D). Results showed that serum resistin was 226 

significantly lower in HMB groups than non-supplement groups (F (1, 28) = 34.09, P= 0.001; ES= 0.54). The lowest 227 

serum resistin concentration was in HMB + ERT  (F (1, 28) = 18.01, P= 0.001; ES= 0.39) (Fig. 2D). 228 

 229 

Positive correlations between muscle PGC-1α gene expression and plasma irisin and nesfatin-1 were observed but 230 

there was a negative correlation with plasma resistin (Tab.2). 231 

 232 



 233 

Table 2: Pearson’s correlation coefficients of PGC-1α  mRNA to other variables. 234 

Variable 

Group  

PGC-1α gene expression 

Serum Irisin  Serum Nesfatin-1  Serum Resistin  

CON 
r = 0.10 

P = 0.42 
r = 0.21 

P = 0.32 
r = 0.18 

P = 0.32 

HMB 
r = 0.54 

P = 0.12 
r =  0.48 

P = 0.12 
r = - 0.54 

P = 0.14 

ERT 
r = 0.63 

P = 0.09 
r =  0.60 

P = 0.10 
r = - 0.86 

P = 0.05  

HMB+ERT 
r = 0.95 

P = 0.01 * 
r =  0.85 

P = 0.01 * 
r = - 0.89 

P = 0.01 * 
*P<0.05 235 

 236 

Discussion 237 

The findings of this study showed that eccentric resistance training resulted in greater skeletal muscle PGC-1α 238 

relative gene expression, increases serum concentrations of irisin and nesfatin-1 and decreases serum concentrations 239 

of resistin compared to control. In addition, HMB supplement resulted in increased skeletal muscle PGC-1α relative 240 

gene expression, increased serum concentrations of irisin and nesfatin-1, and decreased serum concentrations of 241 

resistin compared to control. The most important findings of the present study showed that a combination of 242 

eccentric resistance training and HMB supplement had a cumulative and greater effect on variables compared to 243 

exercise or HMB supplement  alone.  244 

 245 

There was a positive correlation between muscle PGC-1α gene expression with serum irisin and nesfatin-1 and a 246 

negative correlation with serum resistin. Resistance training and HMB supplementation increses 1 RM whilst no 247 

significant changes occurred in rat body mass. It appears that eccentric resistance training with and without HMB 248 

supplement can affect signalling pathways via crosstalk between tissues to increase strength.  249 

 250 

Different modes of exercise training can affect PGC-1α gene expression, but resistance training has little effect on 251 

AMPK/PGC-1α pathway (Jacobs et al. 2014). Resistance training increases the phosphorylation of the anabolic 252 

Akt/mTOR signaling pathway, as well as the activation of the translation initiation regulators p70 S6k, 4E-BP1, and 253 

eIF2B (Atherton et al. 2005). In contrast, aerobic endurance exercise increased phosphorylation of AMPK and 254 

protein levels of PGC-1α (Atherton et al. 2005). However, in the present study, we observed enhanced  PGC-1α 255 



gene expression in response to eccentric resistance training due to the similarities with aerobic endurance training as 256 

both are able to act via the AMPK/PGC-1α pathway.  257 

 258 

Results of previous studies indicates that physical training can increase irisin. Daskalopoulou et al. (Daskalopoulou 259 

et al. 2014) found  plasma levels of irisin increased in response to increased exercise load by running on a treadmill 260 

in active, young people. Also, Boström et al. (Bostrom et al. 2012) highlighted that irisin increased after three weeks 261 

of aerobic training in rats and led to an increase in energy expenditure and improved glucose homeostasis. Huh et al. 262 

(Huh et al. 2012) demonstrated that after 30 minutes of speed activity, concentrations of irisin increased 263 

significantly. To the authors knowledge, this is the first study to report an increase in serum irisin concentation 264 

following chronic eccentric resistance exercise. in rats. The results of this study are consistent with the results of 265 

previous studies that investigate responses of other types of exercise training. 266 

 267 

Plausible mechanisms for how  exercise can increase  irisin have been posited. Researchers have shown that exercise 268 

increases PGC-1α levels in skeletal muscle and increases the muscle-bearing FNDC5 membrane protein that results 269 

in the production of irisin (Schnyder and Handschin 2015). AMPKs activation during exercise is one of the factors 270 

for increasing PGC-1α and irisin (Chavanelle et al. 2017). AMPKs activation leads to the phosphorylation of PGC-271 

1α as FNDC5’s modifier and irisin secretion (Petros C. Dinas et al. 2017). Also, PGC-1α activates PPARγ. PPAR272 

γ is involved in energy metabolism and stimulates FNDC5 and irisin increase (Panati et al. 2016). It is highlighted 273 

that there is a relation between irisin amounts and precursor of FNDC5 and PGC-1α (Petros C. Dinas et al. 2017). 274 

The results of the present study showed a significant and positive correlation between PGC-1α gene expression and 275 

plasma concentrations of irisin. The eccentric resistance training is lilely to activate the PGC-1α activating signals, 276 

which may trigger a signal cascade to change the phenotype of the adipose tissue. Eccentric resistance training leads 277 

to energy consumption and heat production by increasing muscular tissue ratio to fat tissue and increasing UCP1 278 

(Chavanelle et al. 2017) thus increasing PGC-1 α , FNDC5, and irisin (Petros C. Dinas et al. 2017).  279 

 280 

Production and secretion of irisin from the muscle is also mediated by SMAD3 (mothers against decapentaplegic 281 

homolog 3). SMAD3 is a molecule that changes energy metabolism and regulates body mass. SMAD3 suppresses 282 

FNDC5 and PGC-1α in skeletal muscle and negatively regulate plasma irisin (Tiano et al. 2015). Exercise induces 283 



phosphorylation of SMAD2 and Subsequently SMAD3 (Tiano et al. 2015). However, SMAD3 was not measured in 284 

the present study so future research should investigate this possible mechanism for increasing irisin in response to 285 

eccentric resistance training. 286 

  287 

Ghanbari-Niaki et al. (2013) evaluated the effect of eight weeks of endurance training (five days a week for 60 288 

minutes at a speed of 25 m/min with a zero gradient) on tissue nesfatin-1 gene expression and plasma levels of 289 

nesfatin-1 (Ghanbari-Niaki et al. 2013). Their results indicated that training increased the expression and plasma 290 

levels of nesfatin-1, which was related to plasma HDL concentration. Nesfatin is involved in the regulation of blood 291 

glucose, improves insulin sensitivity, energy homeostasis, and metabolism (Dore et al. 2017). The effect of exercise 292 

on nesfatin-1 has not been clearly recognized and not yet studied in response to eccentric resistance training. 293 

However, there are possible mechanisms available. Studies have shown that nesfatin-1 are affected by various 294 

factors (Li et al. 2014, Atici et al. 2017, Chaolu et al. 2011, Dore et al. 2017, J. F. Ge et al. 2015, Ayada et al. 2015). 295 

For example, it has been shown that starvation in rats decreases serum nesfatin-1 levels up to 18%. But conversely, 296 

it has been reported that nesfatin-1 concentrations returned to normal 1 to 12 hours after refeeding (Dore et al. 297 

2017). In addition, some studies have shown that there is a direct relationship between nesfatin-1 and cortisol levels. 298 

Central injection of nesfatin-1 increased  adrenocorticotropins (Jin-Fang Ge et al. 2015). According to previous 299 

studies, all of these factors are elevated as a result of eccentric resistance training protocols, which can be considered 300 

as a possible cause for increasing nesfatin-1 as a result of this method compared to studies that have not seen any 301 

changes. The adipose tissue also secretes various inflammatory cytokines that affect the expression and secretion of 302 

adipokines. For example TNF-α has different effects on adiponectin, leptin and nesfatin-1. Studies have shown that 303 

TNF-α, IL-6 and insulin increase the intracellular expression of nesfatin-1 in cultured fat cells (Ayada et al. 2015). 304 

These findings show that the expression and secretion of nesfatin-1 are regulated from different pathways.  305 

 306 

Some clinical studies have reported that there is a significant relationship between nesfatin-1 and insulin sensitivity 307 

(Khalili et al. 2017). Therefore, it is likely that exercise alters the concentration of insulin and cortisol, influencing 308 

blood glucose and nesfatin-1. These factors have not been examined in this study and warrant further investigation.  309 

 310 



It has been shown that nesfatin-1 attenuated phosphorylation of S6K and S6 during brown adipocyte differentiation. 311 

Nesfatin-1 via mTOR dependent mechanism promotes the differentiation of brown adipocytes. Activation of mTOR 312 

induced by leucine or deletion of TSC1 decreased expression of brown adipocyte-related genes UCP1, UCP3, 313 

PGC1α and PRDM16, as well as COX8B and ATP5B. Both leucine and TSC1 deletion blocked nesfatin-1-induced 314 

up-regulation of UCP1, PGC1α, COX8B and ATP5B in differentiated brown adipocytes (Wang et al. 2016). Results 315 

of the present study showed a significant and positive correlation between PGC-1 α  gene expression and serum 316 

level of nesfatin-1 which is likely because of mTOR activator elements that mentioned above. 317 

 318 

Resistin, increases as a result of obesity due to  a significant reduction in exercise and increase in energy intake 319 

(Garcia-Hermoso et al. 2017). The present study also showed a significant and negative correlation between PGC-1α 320 

gene expression and serum levels of resistin. It possible that regular moderate-intensity physical training suppresses 321 

the expression of dual specificity protein phosphatase 1 (DUSP1), increases the expression of PGC-1α and reduces 322 

the activities of JNK and ERK (Khadir et al. 2015). Khadir et al (2015) concluded that anti-inflammatory exercise 323 

effects may be related to suppressing of NADPH oxidase, ERK1/2 and SAPK/JNK activities, and increases in SOD-324 

1 gene expression. In the presesnt study we observed a decrease in resistin after eccentric resistance training and 325 

possible regulation by PGC-1α. Regarding the effects of HMB on PGC-1α, He et al. (2016) suggested that dietary 326 

supplementation with HMB increases the gene expression of PGC-1α. They suggested that PGC-1α plays a key role 327 

in the transformation of skeletal muscle fiber type. As a nitrogen-free metabolite, HMB improves skeletal muscle 328 

function, as well as the health of the body in both animals and humans (He et al. 2016).  329 

 330 

The present study showed that HMB enhances the positive effects of resistance training on strength (1RM). Lee et 331 

al. (2012) showed that leucine (0.5 mM) increases stimulates expression PGC-1α by three- to fivefold in C2C12 cell 332 

models (Li et al. 2012). Vaughan et al. (2013) reported that leucine (0.1–0.5 mM) dose-dependently enhanced PGC-333 

1α expression in skeletal muscle cells (Vaughan et al. 2013). A few studies demonstrated the effects of HMB on 334 

irisin. Baggett et al. (2013) investigate the synergistic effects of leucine and its metabolites with polyphenols on 335 

irisin in myotubes and diet-induced obese mice. They demonstrate that leucine-polyphenol combinations stimulate 336 

irisin and PGC-1α (B. Baggett et al. 2013). To our knowledge, no research has examined the effects of HMB on 337 

nesfatin-1 and resistin. The results of the present study showed that serum nesfatin-1 increases and serum resistin 338 



decrease responses HMB supplement. The mechanism that HMB induced change in nesfatin-1 and resistin is not 339 

understood and requires further research.  340 

Limitations  341 

Blood collection were not performed each week because of the associated costs, making it impossible to identify 342 

how soon these changes may have occurred. The research was undertaken on a small sample of animals so effect 343 

sizes have been included as well as the significance of both parametric and non parametric tests. Caution should be 344 

exerted  if generalizing the findingsto humans.  345 

 346 

Conclusions 347 

The most important findings of present study showed that a combination of eccentric resistance training and HMB-348 

FA supplement has more effect on the primary outcomes measured compered to  the exercise or supplement 349 

intervention alone. Exercise and HMB supplement could increases PGC-1α gene expression that may regulate the 350 

other releasing tissues and change serum concentrations of irisin, nesfatin-1, and resistin. In general, we found that 351 

eccentric resistance training with HMB supplementation could be affected by inter-tissue crosstalk that increases the 352 

strength. Further research is needed to determine the effects of other peptides that would have allowed the authors to 353 

make further inferences about cross talk.  354 

 355 
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 388 

Figure legends 389 

Figure 1: The 1 RM of eccentric resistance training (ERT), and β-Hydroxy-β-methylbutyrate free acid 390 

supplementation plus eccentric resistance training (HMB+ERT) groups.  N = 8 in each group. 391 

Figure 2: The Real-time PCR of skeletal muscle tissue PGC-1α relative mRNA expression (A), serum Irisin (ng/ml) 392 

(B),  nesfatin-1 (ng/l) and resistin (ng/ml) (D) in control (CON), β-Hydroxy-β-methylbutyrate free acid supplementation (HMB), 393 

eccentric resistance training (ERT), and β-Hydroxy-β-methylbutyrate free acid supplementation plus eccentric resistance training 394 

(HMB+ERT) groups. N = 8 in each group 395 
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