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ABSTRACT  
 

The aim of this study is to design, develop and evaluate artificial intelligence and 

statistical techniques to predict the probability of survival in traumas using knowledge 

acquired from a database of confirmed traumas outcomes (survivors and not 

survivors). Trauma in this study refers to body injuries from accidents or other means.  

Quantifying the effects of traumas on individuals is challenging as they have many 

forms, affect different organs, differ in severity and their consequence could be related 

to the individual's physiological attributes (e.g. age, fragility, premedical condition etc). 

It is known that appropriate intervention improves survival and may reduce disabilities 

in traumas. Determining the probability of survival in traumas is important as it can 

inform triage, clinical research and audit. A number of methods have been reported for 

this purpose. These are based on a combination of physiological and anatomical 

examination scores. However, these methods have shortcomings as for example, 

combining the scores from injuries for different organs is complicated. 

 

A method for predicting probability of survival in traumas needs to be accurate, 

practical and accommodate broad cases. In this study Sheffield Hallam University, 

Sheffield Children's Hospital, Sheffield University and the Trauma Audit and Research 

Network (TARN) collaborated to develop improved means of predicting probability of 

survival in traumas. The data used in this study were trauma cases and their outcomes 

provided by the TARN. The data included 47568 adults (age: mean = 59.9 years, 

standard deviation = 24.7 years) with various injuries. In total, 93.3% of cases had 

survived and 6.7% of cases had not survived. The data were partitioned into calibration 

(2/3 of the data) and evaluation (1/3 of the data). The trauma parameters used in the 

study were: age, respiration rate (RR), systolic blood pressure (SBP), pulse (heart) rate 

(PR) and the values obtained from two trauma scoring systems called Abbreviated 

Injury Score (AIS) and Glasgow Coma Score (GCS).  Intubation and Pre-exiting 

Medical Condition (PMC) data were also considered. 

 

Initially a detailed statistical exploration of the manner trauma these trauma parameters 

related to the probability of survival outcomes was carried out and the results were 

interpreted. The resulting information assisted the development of three methods to 

predict probability of survival. These were based on Bayesian statistical approach 

called predictive statistical diagnosis (PSD), a new method called Iterative Random 

Comparison classification (IRCC) and the third method combined the IRCC with the 

fuzzy inference system (FIS). The performance of these methods was compared with 

each other as well as the method of predicating survival used by the TARN called Ps14 

(the name refers to probability of survival method reported in 2014).     

 

The study primarily focused on Trauma Brain Injury (TBI) as they represented the 

majority of the cases.  For TBI, the developed IRCC performed best amongst all 

methods including Ps14.  It predicted survivors and not survivors with 97.2% 

and 75.9% accuracies respectively. In comparison, the predication accuracy for 

Ps14 for survivors and not survivors were 97.4% and 40.2%. 

 

The study provided resulted in new findings that indicated the manner trauma 

parameters affect probability of survival and resulted in new artificial intelligence 

and statistical methods of determining probability survival in trauma.    
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Chapter 1 Introduction 
 

Injury is a primary cause of death and disability (Mullins 1999), accounting for 

10% of global burden of non-surviving cases (Laytin et al., 2017). A number of 

scoring systems have been reported to quantify the severity of injury by 

considering measurable or observable status of the patient’s medical condition 

(Dillon et al, 2006). Trauma scoring systems can be beneficial for a number of 

situations (Wisner 1992; Kim 2012). These include (i) triage, a procedure to 

assess severity of medical condition for the purpose of setting treatment priority; 

(ii) prognostic evaluation, a procedure to support predication and management 

of injury outcomes and (iii) research studies to compare patient groups on the 

basis of injury outcomes and assessing medical care and treatments. Trauma 

scoring systems can be classified into anatomical, physiological and a 

combination of both. Anatomical scoring systems quantify the extent of 

individual anatomical injuries, taking into account the body injury sites by 

appropriate weightings (coefficients) however these weightings are often not 

known when the patient visits hospital after a civilian trauma where most injury 

mechanisms are blunt (e.g. falls and road traffic collisions) (Fani-Salek et al, 

1999). Physiological scoring systems are based on cardiovascular, neurological 

and respiratory abnormalities. They provide mechanisms to determine the 

likelihood of mortality and inform triage; but can lack precision (Fani-Salek et al, 

1999). Combined anatomical and physiological scoring systems integrate the 

strengths of the anatomical and physiological scoring systems to improve their 

estimation of the probability of survival (Meredith et al, 1995).  

Trauma scores together with host factors such as Gender, age and pre-existing 

medical condition (PMC) are used in models to determine probability of survival 

(Reith et al, 2017; Moon et al, 2013; Chawda et al., 2004; Pike et al, 2017; 

Kuwabara et al, 2010).  

 

1.1 Background and Purpose of the Study 

Assessing the level of severity of injury in a hospital’s emergency department 

(ED) is highly demanding due to diversity of injury types, individual 

vulnerabilities (e.g. varied age groups), large number of possible physiological 

measures (e.g. heart rate, temperature, blood pressure, respiration rate etc.) as 
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well as complexities in anatomical assessments (e.g. evaluating a head injury). 

Early intervention in many medical and traumatic conditions can improve 

survival outcome and reduce disabilities. 

 

Injury is the main cause of death and disability (Mullins, 1999) and survival of a 

severely injured person depends on the specialized care delivered in a timely 

manner. Therefore, a careful assessment of the severity of injuries is essential 

to reduce disabilities and mortalities. Trauma scoring systems improve triage 

decisions, identify patient unexpected trauma outcomes, generate audit 

information and provide objective information for external and internal outcome 

comparisons (Lefering, 2002). Figure 1.1 shows a triangle of work related 

injuries in the UK in 2010/ 2011 and their severities reported by (Health and 

Safety Executive 2012). However, many injuries occur outside work 

environment.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  1-1Injury severity triangle 2010-11 (Health and Safety Executive 2012) 

   

The extent of injury severity could be classified as nominal, ordinal or interval 

(Health and Safety Executive 2012). Majority of characterizations of injury 

severity are in nominal scales where verbal classifications are used to describe 

injury. They are valuable in simplifying communication between parties. Ordinal 

approaches use a positive entire numbers to provide a score to an injury 
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severity. Several groupings such as fractures and many neurosurgical, 

orthopedic and common injury classifications fall into this type. Interval scales 

likewise give numbers however there is an implicit probability of some reliability 

in the intervals between the numbers (Champion 2002). 

A number of injury severity scoring systems were reported in the last decades. 

These are intended to accurately and consistently quantify injuries by 

considering measurable or observable status of the patient's medical conditions. 

The main benefits of trauma scoring systems are (Wisner, 1992): triage which 

sets priorities to treat patients; prognostic evaluation which enables the 

prediction and management of injury outcomes; and research and evaluation 

which compares patient groups on injury outcomes and examines the effects of 

treatments.  

 

In order to obtain the anatomical and neurological injury related information, a 

number of standard scoring systems are available. A commonly used system 

for assessing anatomical injuries is the Abbreviated Injury Scale (AIS) 

(Gennarelli et al, 2006). It was introduced in 1971 by the Association of the 

Advancement of Automotive Medicine to aid vehicle crash investigators. It has 

since been revised to be more relevant to medical audit and research. AIS 

classify injuries in all body regions according to their relative importance. In 

order to determine an overall trauma injury score for patients with multiple 

trauma injuries, the Injury Severity Score (ISS) could be used. This is an 

anatomical scoring system with the maximum total score of 75 that selects the 

highest AIS values in each body region (Barker et al, 1974). The three most 

severely injured regions (corresponding to 3 largest scores) have their scores 

squared and then summed to produce the ISS value. However, ISS has a 

number of limitations in identifying the implication of the injury sites (Fani-Salek 

et al,. 1999). For example, brain traumas have different implications compared 

with skin bruising. ISS is nevertheless used for as an anatomical scoring system 

in methods such as the TARN Ps14 in order to determine probability of survival.  

The TARN is a UK center involved in researching trauma and its team receives 

injury information from the UK hospitals code them according to the AIS system. 

The TARN has proposed Ps14 (probability of survival prediction proposed in 

2014) to predict probability of survival. In this study methods to determine 

probability of survival in traumas are developed and evaluated.  
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1.2 Aim and Objectives 

The primary aim of this research is to develop and evaluate improved methods 

of determining probability of survival in traumas. Its objectives are: 

i. Analyze the trauma cases from the available TARN data base to ascertain 

the interrelationships between trauma parameters such as age, Gender, 

respiration rate, systolic blood pressure, pulse rate, abbreviated injury scale 

Glasgow coma score, pre-existing medical conditions and intubation with 

the probability of survival.  

ii. Use analysis information from (i) to develop improved methods of predicting 

probability of survival.        

iii. A critically evaluate the methods developed in (ii) against each other and 

against Ps14 for different traumas but with the main focus of traumatic brain 

injury (TBI) were carried out.  

iv. Publish findings in peer reviewed journals and conferences. 

 

1.3 Study's Contribution  

The study's contributions in relation to its objectives were: 

i. A detailed analysis trauma parameters including age, gender, respiration 

rate, systolic blood pressure, pulse rate, abbreviated injury scale, 

Glasgow coma score, pre-existing medical conditions, intubation and 

these are used to the probability of survival in TBI was carried out. It was 

found all these parameters are significant in determining probability of 

survival. The investigations indicated the manner AIS and GCS values 

for different body regions relate to the probability of survival. Matlab© and 

SPSS© were used in these analysis to provide visual representation of 

the findings in the form of graphs, plots, distributions and clustering. 

These packages were also used to complement the visual information 

with tables summarizing the findings. The associated results are mostly 
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included in Chapter 5 but related information also appears in the 

following chapters. 

ii. Three methods to predict probability of survival for TBI were proposed. 

One is based on a statistical Bayesian method called predictive statistical 

diagnosis (PSD). The second was a novel method referred to as Iterative 

random comparison classification (IRCC). IRCC uses a randomly 

selected group of cases with predefined group size as part of its 

operation and by interactively repeating the process determine the 

probability of survival. The third method combined IRCC with fuzzy 

inference system (FIS) to accommodate pre-existing medical conditions 

(PMC) and intubation information. The use of FIS required careful 

knowledge representation and knowledge coding. Fuzzy logic is a 

valuable technique to accurately representing complex imprecise 

information.  More details related to the development of the methods are 

included in chapter 3 and 4.  

iii. A critically evaluation of the methods developed in (ii) against each other 

and against Ps14 for different traumas was carried out. A number of 

body regions such as head and face etc. were also included in the 

evaluation but as the main fatalities in the available database were due 

to TBI, the focus of the study was on TBI. The main challenge for all 

methods was to improve prediction for not survivors as compared with 

the existing Ps14 method as Ps14 already had a high accuracy for the 

survivors. The three methods proposed in this study managed to 

significantly improve the probability of prediction for not survivors. For 

example for TBI, there were 1224 survivors and 224 not survivors. The 

predication accuracy for not survivors for Ps14, PSD and IRCC were 

40.1%, 50.0% and 75.9%. The predicating accuracies for Ps14, PSD and 

IRCC for survivors were 97.3% 90.8% and 97.2%.  The details of the 

results that also include head and face injury, head and chest injury, 

head, face and chest injury are provided in chapters 6 and 7. 

iv. The study has so far resulted in two journal papers, one book chapters 

and two conferee proceedings. There is scope for at least two further 

journal papers, one in preparation.  
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1.4 Thesis Outline 

Chapter 2 Literature Review 

The previous studies associated with determining probability of survival and 

technological background for types of trauma scoring systems are explained 

and compared.  

Chapter 3 Technologies Used in the Study 

 The theoretical and technological background for medical methods and other 

techniques that are used in this study towards achieving the set aims are 

described. 

Chapter 4 Methodologies 

 The methodologies to obtain the results included in the thesis are explained. 

Chapter 5 Investigation of interrelation between trauma parameters and 

survival outcomes 

A statistical analysis of the subject details and their injuries as well as the 

interrelationship between probability of survival and the injuries are carried out 

and the results are presented.     

Chapter 6 Trauma Knowledge Representation and Coding 

The development of the knowledge representation and coding to assist with 

determining the probability of survival is explained.   

Chapter 7 Probability of Survival Estimation Method   

The operations and the results for the three methods of determining probability 

of survival are explained and their merits and limitations are analysed against 

the exiting Ps14 method.  

Chapter 8 Conclusions and Future Work 

The study’s conclusions, main findings and suggestions for future work are 

outlined. 
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1.5 Chapter Summary 

The study's background, aim and objectives were discussed. The trauma 

scoring systems and processing methods and systems developed to predict the 

probability of survival were described.  An aim of the study was development of 

robust probability of survival calculation methods. These will be described in the 

following chapters.   
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Chapter 2 Literature Review 

2.1 Introduction 

Trauma is one of the most important concerns in health care that can lead to 

mortality and morbidity. Documentation of trauma data facilitates comparison 

between patient care and outcomes from different medical centres. Triage of 

trauma is used to assess level for prioritising of injured people for treatment or 

transport that depend on their severity of injury. Primary triage is performed at 

the scene of an accident and follow up triage at the hospital (Patient 2015). 

Trauma scores provides audit and research tools to study the outcomes of 

trauma and its care. Many different trauma scoring systems have been 

developed; some are based on physiological scores e.g., Glasgow Coma Scale 

(GCS), others rely on anatomical descriptors e.g., Abbreviated Injury Scale 

(AIS).There are also combinations of both systems. However, there is no single 

universally accepted system as each system has its own merits. This chapter is 

divided into three main parts are: review of trauma scoring systems, artificial 

intelligence techniques based on trauma scoring systems and methods to 

extract keywords from Text. 

2.2 Review of Trauma Scoring Systems  

The trauma scoring systems can be divided into anatomical, physiological and 

combined. However, some other artificial intelligence techniques have been 

also used to predict probability of survival (Ps). These are summarised in Table 

2-1.  
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                                   Table  2-1Types of trauma scoring systems. 

Anatomical Indices Physiological Indices 
Combined Anatomical/ 

Physiological Score 

Artificial 
Intelligence 

Techniques base 
on Trauma 

Scoring Systems 
 Abbreviated Injury 

Scale (AIS) and (MAIS) 

 Injury severity score 

(ISS) and (NISS) 

 Anatomic Profile (AP) 

 Trauma mortality 

prediction model 

(TMPM) 

 International 

Classification of 

Diseases-based ISS 

(ICISS) 

 Organ Injury 

Scales(OIS) 

 Penetrating 

Abdominal Trauma 

Index (PATI) 

 Glasgow coma scale(GCS) 

 Paediatric Glasgow Coma Scale 

(PGCS) 

 Revised Trauma Score(RTS) 

 Trauma Score(TS) 

 Emergency Severity Index(ESI) 

 Acute Physiology and Chronic Health 

Evaluation(APACHE) 

 Rapid Acute Physiology score(RAMS) 

 Rapid Emergency Medicine Score 

(REMS) 

 Prognostic Index(PI) 

 Sequential Organ Failure 

Assessment Score (SOFA) 

 Multiple Organ Dysfunction 

syndrome (MODS) 

 Systemic Inflammatory Response 

Syndrome Score (SIRSS) 

 MULTIPLE ORGAN FAILURE (MOF) 

 Circulation, Respiratory, 

Abdominal/Thoracic, Motor and 

Speech Scale(CRAMS) 

 Glasgow Coma Scale, Age, and 

Systolic Blood Pressure (GAP) 

 Logistic Organ Dysfunction 

Score(LOD) 

 Simplified Acute Physiology 

Score(SAPS) 

 Trauma Score-Injury 

Severity Score 

Methodology (TRISS) 

 The trauma audit and 

research network ( TARN 

Ps14)  

 Harborview assessment 

for risk of mortality 

(HARM) 

 A Severity 

Characterization of 

Trauma (ASCOT) 

 Drug-Rock Injury Severity 

Score(DRISS) 

 Trauma Index (TI) 

 Pediatric Trauma Score 

(PTS) 

 

 Neural 

Network(NN) 

 Fuzzy Logic(FL) 

 Genetic 

Algorithm(GA) 

 Expert System(ES) 

 Artificial 

Intelligent Virtual 

Reality (AIVR) 

 Machine Learning 

(ML) 

 Deep learning 

(DL) 

 

2.2.1 Anatomical Systems  

Abbreviated Injury Scale (AIS) is an anatomical trauma scoring system. It was 

introduced in 1971 by the Association for the Advancement of Automotive 

Medicine (AAAM). This association was founded in 1957 and is a professional 

multidisciplinary organisation for reducing vehicle crash injuries.  

AIS describes injuries in nine body parts, head, neck, face, thorax, spine, 

abdomen, upper limbs, lower limbs, and external (Kim 2012). Maximum AIS 

(MAIS) is used to express total severity. MAIS does not linearly increase and 

decrease by varying likelihood of mortal. To provide solution for these 

limitations, the injury severity score (ISS) was presented (Stevenson et al. 

2001). ISS was introduced in 1974 to determine the overall injury assessed by 

AIS. ISS is an ordinal scale and anatomically constructed that is between 1 and 

75 by sum of square three highest scores of AIS (Champion 2002). ISS has an 
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ability to engage anatomic parts of injury in formulating an expectation of 

outcomes (Chawda et al., 2004). However, it has some limitations that it could 

expect less accurate in the case of multi-injuries in the same body region. 

Another drawback of the ISS is that all injuries are given an equal AIS score 

irrespective of body region where is injured. The last revision of the ISS is  

known as the New Injury Severity Score (NISS). The NISS is computed as the 

sum of squares of the three most significant (severe) AIS (1990 revision) 

injuries and it has improved the forecast of survival and enhanced routine, 

statistically, than the ISS (Stevenson et al. 2001). (Osler et al., 1997) NISS was 

tested as modification of the ISS; it is the sum of the squares of the AIS scores 

of a patient's three most severe injuries, irrespective of body parts. 

Anatomic Profile (AP) trauma scoring system has some similarities to ISS, 

however it has limitations (Champion 2002). These limitations are based on the 

use of a one-dimensional score to represent the spectrum of injured body 

regions and severities and from the ISS definition that excludes all but the most 

serious injury in any body parts. Therefore, AP routines use four factors to 

calculate injured patient: A, B, and C for severe injuries (AIS >= 3) which are 

head and neck, thorax, and other defined body parts separately, and D defines 

any region of body which is not serious injury. It combines the parts using the 

taking the square root of the sum of the squares (Champion 2002)    

                                              √                                                                      2-1 
 

Likewise, Trauma Mortality Prediction Model (TMPM-ICD9) is the an injury-

severity assessment system that uses empirical valuation from ICD-9-CM codes 

(Glance et al., 2009). TMPM-ICD9 is useful method for risk-adjustment model 

once injuries are verified using ICD-9-CM coding. It probably to be used to risk-

adjust result assessment for trauma report cards at hospital (Glance el at., 

2009). It is also provided result that it expresses a probability of non-surviving 

depends on the most five severe ICD-9-CM-coded injuries. Empiric scales of 

injury severity for each of the trauma ICD-9-CM codes were assessed using a 

regression-based method, and then used as the source for a new Trauma 

Mortality Prediction Model (TMPM-ICD9). TMPM-ICD9 was compared with 

International Classification of Diseases-based ISS (ICISS) model and the 
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findings showed TMPM-ICD9 demonstrates a greater model performance 

(Glance el at. 2009). 

ICISS is also an anatomical injury system that uses ICD-9 codes. It was 

introduced in 1996 to address the limitations of the ISS (Chawda et al., 2004). 

This method is termed the ICD-9 Injury Severity Score (ICISS) and uses 

survival risk ratios (SRRs) calculated for each ICD-9 discharge diagnosis. SRRs 

are derived by dividing the number of survivors in each ICD-9 code by the total 

number of patients with the same ICD-9 code. The ICISS is calculated as the 

simple product of the SRRs for each of the patient’s injuries. The ICISS has 

some advantages over the ISS because it permits all the injuries to contribute to 

the prediction, and multi injuries are more accurately demonstrated. Moreover, it 

uses information about all the injuries, composed with the patient’s three severe 

injuries. Nevertheless, it is hard to compare the performance of clinics (Chawda 

et al.,2004). The routine of the ICISS seemed to be unstable because its 

performance could be altered by the type of formula and SRRs used (Tohira  et 

al., 2012). 

In 1987 Organ Injury Scaling (OIS) was introduced by the Committee of 

American Association for the Surgery of Trauma (A.A.S.T.) (Moore el at., 1989). 

This is used to devise injury severity scores for separate organs to enable 

clinical research. OIS uses the body organs: spleen, liver and kidney. The 

subsequent classification system is basically an anatomic description, 

measured from 1 to 5, expressing the minimum to the greatest severe injury.  

Penetrating Abdominal Trauma Index (PATI) was developed in 1981.This 

method is used to predict trauma patients at risk of postoperative difficulties 

(Chappuis et al., 1991). It also provides an effective way to examine and help 

as a tool in the decision-making procedure once dealing penetrating abdominal 

trauma. For instance, in this study there are 56 patients and 28 of them were 

randomised into individually group. Data were concurrently composed and 

difficulties and outcome recorded. The majority of cases in each group were 

young men. The typical age for the primary repair group was 26 years (range, 

17 to 58 years). There were 27 males and 1 female in the primary repair group 

and 25 males and 3 Female in the diversion group and for the diversion group, 

23 years (range, 14 to 61 years). Diversion is distinct as (1- exteriorization of 
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the injury, 2- resection of the injury with exteriorization of either exteriorization 

and proximal segment or 3- debridement, if specified, and simple closure of 

holes with formation of a loop or end stoma proximal to the injury). Primary 

repair is demarcated as (1- debridement, if designated, with simple closure of 

the holes or 2- resection of a segment of large bowel containing perforations 

monitored by anastomosis). The small bowel was the additional organ injured 

most routinely (Table 2-2). Injury number, involving colon injury, was similar in 

both groups (Table 2-3). 

                                    Table  2-2 Associated Intra-abdominal injuries. 

 

 

 

 

 

 

 
 

                                 Table  2-3 Total number of organs injured. 

Number 
Primary 
Repair 

Diversion 

1 2 3 

2-3 19 19 

>4 6 7 

 

2.2.2 Physiological Indices 

There are a number of physiological trauma scoring systems, e.g. Glasgow 

Coma Scale (GCS). GCS was introduced in 1974 to standardise assessment of 

level of consciousness (LOC). It is also relatively simple to apply and is used in 

a variety of medical assessment cases. For instance it is used to determine the 

urgency of care and for neurological examinations (Fani-Salek et al., 1999).  

Children who are two years and younger, they are assessed by its revised 

version called Paediatric Glasgow Coma Scale (PGCS). The main reason for 

using PGCS instead of GCS is that many of the assessments for adult patients 

Organs Primary Repair Diversion 

Small bowel 15 21 

Duodenum 7 4 

Stomach 6 4 

Liver 6 4 

Major vascular 5 4 

Kidney 4 3 

Pancreas 2 2 

Ureter 1 3 

Diaphragm 2 - 

Gallbladder 1 - 

Spleen 1 - 
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are not be suitable for children. The PGCS comprises three assessments: 

verbal, eye and motor responses. Three values are considered individually as 

well as their sum (Holmes et al., 2005).  

Another physiological trauma assessment system is called Revised Trauma 

Score (RTS). It incorporates the GCS, systolic blood pressure and respiratory 

rate as shown in Table 2-4. This index is determined by adding up the results 

from the values of the three components and multiplying them by their 

corresponding weights (Champion et al. 1989). 

                                      Table  2-4 Revised trauma score. 

Code 
Glasgow 

Coma Scale 
Systolic Blood Pressure 

 (mmHg) 
Respiratory Rate  

(Breaths per Minute) 

4 13–15 >89 10–29 

3 9–12 76–89 >29 

2 6–8 50–75 6–9 

1 4–5 1–49 1–5 

0 3 - - 

 

Another physiological method is Trauma Score (TS). It was introduced to alter 

the Triage Index in order to use systolic blood pressure and respiratory rate and 

the GCS to calculate the degree of coma. TS Score is between 1 (worst 

prognosis) and 16 (best prognosis) and can be calculated by sum of scores 

which are given to the component variables (Champion 2002).  

Another technique is Emergency Severity Index (ESI) has applications to 

provide a reliable evaluation of injury severity and likely prediction of patient 

disposition (Tanabe et al., 2004). It uses a five-level algorithm this algorithm 

uses respiratory rate (RR), heart rate (HR),  pulse oximetry (SpO2),  

temperature (T), and peak expiratory flow rate (PEFR) (Wuerz et al., 2001). 

This mothed can provide clinically related stratification of patients into five 

groups according to a range of urgency. This means that it depends on patient 

case severity and supply that needs (Gilboy el al 2011). 

Acute Physiology and Chronic Health Evaluation (APACHE) was implemented 

to predict hospital mortality between critical adult patients (Zimmerman et al., 

2006).  

Rapid Acute Physiology Score (RAPS) was developed and verified for practice 

as a severity scale in serious care transports. RAPS is also an abbreviated 

version of the Acute Physiology and Chronic Health Evaluation (APACHE-II) 
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use only variables regularly available on all patients which are transported. 

Therefore, it uses four parameters which are (respiratory rate, blood pressure, 

pulse, and Glasgow Coma Scale). In terms of range, it is from 0 (normal) to 16 

(worst) (Rhee et al., 1987). There is similar short form name called Rapid 

Emergency Medicine Score (REMS). REMS is an abbreviated version of 

APACHE II. It has earlier been specially calculated as a predictor of in-hospital 

mortality for nonsurgical patients presenting to the ED. REMS is determined 

that REMS has predictive accuracy comparable to the well-known but more 

complicated APACHE II (Rhee et al., 1987).   

 

The prognostic index (PI) was established in 1980 and it was derived to enable 

complete separation of fatal and nonfatal cases and when consequently used in 

a nine index cases and properly forecasted the outcome (Walter et al., 2001). 

This method could reflect the ability of the prognostic index to distinguish 

among patients at low and high risk of death.  

 

The Emergency Severity Index (ESI) uses a reliable severity evaluation and 

likely forecast patient disposition (Tanabe et al., 2004). It has five-level ESI 

algorithm which was presented to triage nurses at two university hospital EDs, 

and executed into training with reinforcement and adaptation management 

plans. This method has it owns components that can enable it to predict the 

resource consumption. ESI uses RR = respiratory rate; HR = heart rate; SpO2 = 

pulse oximetry; T = temperature; PEFR = peak expiratory flow rate (Wuerz et 

al., 2001) . This method can provide clinically related stratification of patients 

into five groups according to a range of urgency. This means that it depends on 

patient case severity and supply that needs.(Gilboy el al 2011).  

 

Sequential Organ Failure Assessment (SOFA) was introduced by European 

Society of Intensive Care and Emergency Medicine during a consensus 

conference (Cabré  et al .,2005). According to this conference, initially called the 

“sepsis-related” organ failure assessment, SOFA can be useful equally to all 

ICU patients. Moreover, SOFA score is composed scores from six organ 

systems, classified from 0 to 4 according to the degree of dysfunction/failure. 

Organ systems also measured in the SOFA score are: respiratory (PO22/FIO2), 

cardiovascular (vasoactive drugs, blood pressure), haematological (platelet 
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count), renal (diuresis and creatinine), liver (bilirubin) and neurological (Glasgow 

Coma Score).But some of medical practitioners are not familiar with SOFA 

score while decisions on limiting life support were made (Cabré et al., 2005).   

Multiple Organ Dysfunction syndromes (MODS)  is used to develop clinical 

syndrome triggered by several motivations that it is the main reason of mortality 

and morbidity in patients who admitted to intensive care units. It routines for 

cardiovascular assessment which is based on the so-called “pressure-adjusted 

heart rate” (PAR), defined as the product of the heart rate (HR) multiplied by the 

ratio of the right atrial pressure (RAP) to the mean arterial pressure (MAP)  

(Cabré  et al .,2005). 

Systemic Inflammatory Response Syndrome Score (SIRSS) is one of the 

clinical expressions which deals with the action of difficult intrinsic mediators of 

the severe stage reaction (Nyström 1998). This method can be triggered by 

measurement of pancreatitis, trauma, infection, and surgery. Moreover, it can 

also compromise the function of several organ systems causing in Multiple 

Organ Dysfunction Syndrome (MODS). Therefore, the MODS and SIRSS are 

classified expressions of the inflammation related to serious patient (Nyström et 

al., 1998). In this study the SIRSS was expressed by two or more of the 

following conditions: "temperature 38°C or 36°C; heart rate 90 beats/min; 

respiratory rate 20 breaths/min or PaCO2 32 torr ( 4.3 kPa); WBC 12,000 

cells/mm3, 4000 cells/mm3 or 10% immature (band) forms". But in finding, the 

SIRSS for other signs as an example, the appearance of C-reactive protein are 

better designated as the severe stage reaction. In addition, several patients with 

SIRSS showed different degrees of organ dysfunction whereas some 

developments to progress multiple organ failure.  

Multiple organ failure (MOF) is influenced epidemic parts in several intensive 

care units (ICU). It uses to predict non-surviving case in the surgical ICU (Deitch 

et at. 1992). MOF score deals with four organs (lungs, kidneys, liver and heart) 

are regularly measured for dysfunction and scored from 0 (no dysfunction) to 3 

(severe dysfunction)(Zallen  et al .,1999). This method was examined in sepsis 

and the severity of bacterial sepsis and was assessed reflectively in 37 intra-

abdominal-sepsis and 55 trauma patients with MOF. Finally, the severity of 

MOF was graded, and an analysis was made of day of onset, incidence, 
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sequence, severity, and mortality of organ failures.  There is no difference was 

initiated between groups in severity, sequence, or mortality of organ failures 

(Goris et at. 1985).  

 

Circulation, Respiratory, Abdominal-Thoracic, Motor and Speech Scale 

(CRAMS). This method is commonly appropriate physiological trauma scoring. 

CRAMS works based on five parameters (respiration, circulation, trauma to the 

trunk, speech and motor) on a 0–2 scale. A score of 0 shows severe injury or 

absence of the factor; a score of it > 2 signify no deficit (Fani-Salek el at., 1999). 

Therefore, the overall likely score ranges from 0 which for a corpse to 10 for an 

uninjured patient. Including zero as the score for death which makes this 

method is more effective than the GCS. Where even a corpse could take more 

than 3 scales and when CRAMS score is <=8 that means critical trauma, while 

a score of 9 or 10 designates mild trauma. It discriminates between mild and 

critical trauma levels and it can be useful to avoid over-triage to trauma middles 

and even though dependable for triage part. Nevertheless, it may not be 

constantly validated on repeating scrutiny. Even though, reliable for triage part, 

CRAMS is incomplete in its capability to predict the need for operation (Fani-

Salek el at., 1999).  

 

Glasgow Coma Scale, Age, and Systolic Blood Pressure (GAP). GAP is one of 

the trauma scoring systems that could be used to perfectly forecast in-hospital 

mortality and it's also more practical than many other trauma scoring systems 

those are used in the emergency department (Kondo et al., 2011). For example, 

in this study, GAP was assessed based on the records of 13,463 trauma cases 

in a derivation data set defined by using via logistic regression. Some scoring 

systems that are Revised Trauma Score, Trauma and Injury Severity Score 

were compared with GAP. The calculation of GAP scores included GCS score 

that was from 3 to 50 points, patients age were less than 60 years (three points) 

and SBP (> 120 mmHg, six points; 60 to 120 mmHg, four points). The c-

statistics is a measure of goodness of fit for binary outcomes in a logistic 

regression model. In this study c-statistics uses for the GAP scores (0.965 for 

short-term mortality and 0.933 for long-term mortality) were superior than or 

similar to the trauma scores computed by means of other scales. Related to 
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existing instruments, its results show that the GAP scoring system reclassified 

all cases but one in the correct direction (Kondo et al., 2011). 

 

Logistic Organ Dysfunction Score (LOD) was developed to support an impartial 

tool for measuring severity classifications for organ dysfunction in the ICU and 

likelihood of mortality (Le Gall et al., 1996). In this study, LOD scores classified 

from 1 to 3 points of organ dysfunction for 6 organ measures: hepatic, 

hematologic, renal, cardiovascular, neurologic and pulmonary. This is from 1 to 

5 LOD points allocated to the stages of severity (Timsit et al., 2002) .Its scores 

were also affected in measuring severity during the first day in ICU. 

Simplified Acute Physiology Score (SAPS) is one of trauma scoring systems it 

is widely known in many hospitals (Le Gall et al., 1993). This technique uses for 

universal severity of disease and outcome prediction .It assesses acute age, 

pathophysiology, pre- and comorbidity, state at admission, and underlying 

disease. The underlying disease classification has a self-determining role for 

outcome of hospital dealing with severe patients (Schuster et al,. 1997). This 

technique is initially point for future assessment of the productivity of intensive 

care units (Le Gall et al., 1993). 

2.2.3 Combined Anatomical and Physiological Score or Methods to 

Determine Probability of Survival 

There were a number of proposed methods to determine probability of survival 

(Ps). A number of trauma injury severity scoring systems were reported that are 

intend to accurately and consistently quantify injuries by considering 

measurable or observable status of the patient's medical conditions. The main 

benefits of determining or scoring of Ps are (Fani-Salek et al., 1999):  

Triage: This sets priorities to treat patients. 

Prognostic evaluation: This enables predication and management of injury 

outcomes. 

Research and audit management: These compare patient groups on injury 

outcomes and examine the effects of treatments.  

Trauma and Injury Severity Score (TRISS) is a method that uses anatomical 

and physiological scoring systems to determine the Ps for adults sustaining 
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injuries from blunt and penetrating mechanisms (Schluter 2011). It is estimated 

by  

                                                                  
 

     
        2-2 

, , ,i AGE i RTS i ISS ib RTS ISS        
 

 

where i = 1 is for blunt mechanism and i=2 is for penetrating mechanism, i  is a 

constant for mechanism i, iAGE ,
  is the coefficient associated with AGE and 

mechanism i, iRTS ,
   is the coefficient associated with RTS and mechanism i, 

iISS ,
and is the coefficient associated with ISS and mechanism i. RTS is 

obtained by 

 

   GCSSBPRRRTS GCSSBPRR                           2-3 

where RR  is the coefficient associated with respiration rate (RR), SBP
 is the 

coefficient associated with systolic blood pressure (SBP), and GCS
 is the 

coefficient associated with GCS.  TRISS however has a number of 

shortcomings as explained in (Siritongtaworn et al., 2009). The parameter Age 

Score =0 if age <55 years and 1 if age > 55 years. The coefficients b0 to b3 

depend on the type of trauma as indicated in Table 2-5. 

                                     Table  2-5 The TRISS coefficients. 

Coefficient 
Blunt Trauma or 
Age < 15 years 

Penetrating Trauma 

b0 -1.247 -0.6029 

b1 0.9544 1.1430 

b2 -0.0768 -0.1516 

b3 -1.9052 -2.6676 

 

TRISS has been criticised because of 

 It incorporates the problems associated with ISS. 

 It cannot include tubed patients as respiration rate and verbal responses 

are not obtainable. 
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 It does not account for mix of patients and thus making comparisons 

between trauma centers difficult (Siritongtaworn et al., 2009). 

 In 2004 Trauma Audit and Research Network (TARN) (Trauma Audit and 

Research Network 2017) proposed a Probability of Survival model called Ps04. 

This model uses age, gender, Injury Severity Score (ISS) and Glasgow Coma 

Score (GCS) and intubation. In 2014, Ps14 model was introduced by 

incorporating Charlson Comorbidity Index (CCI) to the assess Pre-Existing 

Medical Conditions (PMC). To predict probability of survival in Ps14, age, 

gender, GCS and intubation and PMC parameters are required. It determines 

the percentage of probability of survival by performing retrospective measure of 

a new patient with same profile on TARN database.  For example, if Ps = 53%, 

then 53 out of every 100 people have profiles that survived and 47 people died 

based on formula. 

 

        
  

     
      2-4 

 

Where e=2.718282 and b is defined as the linear combination of the regression 

coefficients and the values of the corresponding patient’s characteristics (ISS, 

GCS, modified CCI, age and gender).  

Harborview Assessment for Risk of Mortality (HARM) is an effective tool for a 

predictive likelihood of in-hospital mortality for trauma patients. This technique 

has consistently outperformed both ICD- 9-CM Injury Severity Score (ICISS) 

and the Trauma and Injury Severity Score (TRISS) methods (Al west et al., 

2000). It is also valuable for both calibration and discrimination using 

information that is readily accessible from hospital discharge coding, and 

without requiring ED physiologic records (Al west et al., 2000). 

Severity Characterisation of Trauma (ASCOT) was introduced in 1990 

(Champion et al., 2002). It is used to improve Trauma Score-Injury Severity 

Score (TRISS). It relates emergency department admission parameters of GCS, 

systolic blood pressure, respiratory rate, age of patient, and AIS-85 anatomic 

injury scores by means of dealing with ISS limitations. 
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The Drug-Rock Injury Severity Score (DRISS) was introduced by emergency 

physicians and illustrates exactly how trauma severity scores can be advanced 

or adapted for new, specific situations (Fani-Salek et al., 1999). The DRISS is 

also one of a new combined trauma scoring system which has developed 

particularly to be more accurately and powerfully triage injured patients at rock 

concerts. The method efficiently compares medical resource which use unlike 

measures. It uses values for intoxicants as a result of the high rate of 

drug/alcohol practise at rock concerts. While not yet validated, DRISS can be 

beneficial for categorising who are injured into the groups of those needing 

more care, those who are carefully cured and released (Fani-Salek et al., 1999).   

The Trauma Index (IT) is usually used to rapidly assess patients with severe 

trauma. It has assignment for injury severity which are (minimal injury= 1, 

moderate injury= 3 or 4 and severe injury= 6) and parameters are based on 

(regions, type of injury, cardiovascular status, central nervous system status 

and respiratory status). Trauma index = (points for region + points for type of 

injury + points for cardiovascular status+ points for CNS (centre nervous 

system)  status  + points for respiratory status). Interpretation minimum score 

with trauma: 2, maximum score: 30 and scores >7 need admission to the 

hospital. The method has limitation as the trauma index is not intended for burn 

patients (Medal Military Medicine 2010). 

A Paediatric Trauma Score (PTS) is introduced as a combined method of a 

triage means and PTS was developed as a way of helping rapid precise 

assessment of the children who is injured in a routine that it can protect 

inclusive initial assessment. It is also a scoring system that it assesses based 

on six common determinants of clinical condition in the injured child. Each of the 

six factors is assigned a scoring containment that -1 (major or immediate life-

threatening injury), + 1 (minor or potentially major injury) or finally +2 (minimal 

or no injury). The arrangement of this method uses manner well-matched with 

typical advanced trauma life support procedure. Suitable diagnoses of   multiply 

injured child not only requires precise initial assessment, but also a relies on the 

variances in paediatric physiology affecting potential morbidity (Tepas et al., 

1987). 
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2.2.4 Artificial Intelligence Techniques based on Trauma Scoring Systems 

Artificial Intelligence techniques such as fuzzy logic (FL), neural networks (NN), 

expert systems and genetic algorithm (GA) were successfully used to solve 

several medical problems.  

Fuzzy logic (FL) is a computational model that for processing information in way 

that it is similar to human communication and intellectual processes (Allen and 

Smith 2001; Güler and Barisci 2002 ; Elkfafi  et al., 1997). It has been used in 

defining and forecasting some cardiac diseases and depth of anaesthesia. 

FL was used in a new diagnostic system for classifying the severity of 26 

traumatic brain injuries. Trauma, Glasgow coma scores and 

electroencephalography were used for assessing the system (Güler et al., 

2008). They found a reasonable agreement between the results of neurologists 

and systems outputs for normal, serious and maximum electroencephalogram 

data. Therefore, FL can be a potential tool for determining the severity of 

trauma (Güler et al., 2008).  

Artificial neural networks (neural computing) are highly simplified models of 

human brain. They are generally complex, nonlinear and parallel structures that 

can learn to perform tasks that are difficult to solve through conventional 

sequential programming (like C) or by mathematical formulae (Haykin 2009). 

Artificial Neural Network (ANN) was also used to compare with standard 

outcome predictors to determine physiological indices and probability of survival 

(Pearl et al., 2008). As result of this ANN was shown to be able to predict 

mortality better than standard outcome predictors.   

Genetic Algorithm (GA) is an optimisation method (Kentala et al., 1999) that is 

modelled on the concept of evolution to identify the best solution amongst 

possible options. In medical field, GA has been used in applications such as 

identifying people at risk of a coronary artery disease and to determine 

reasonable outcomes (Kentala et al., 1999). 
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Likewise, expert system was used to advise advanced trauma life support 

(ATLS) trained surgeons (Clarke et al. 1988). This advice was compared to 

physicians-in-training. In this study 13 medical students and surgical residents 

and 5 cases were actual care situations those presented to the developed 

system. The classifications of the expert system were better than those of any 

individual trainee. The variances were statistically substantial for two of the 

three principal residents, 5 of 9 residents overall, and all 4 students. This 

primary validation of a prototype developed system is positive for the view of a 

computerized decision support system that can assist surgeons to make 

opening definitive managing strategies for patients who have major trauma. 

Traumatic brain injury was examined by an artificial intelligent virtual reality 

(VR)-based. This is in order to understand the vocational problem-solving skill 

training programme designed to improve career opportunities (Man et al. 2013). 

Findings showed that there is enhancement in selective memory processes and 

observation of memory function. Across-group assessment exhibited that the 

VR group achieved more positively than the therapist-led one with regard to 

objective and subjective result measures and improved vocational results. 

In another study they used different types of artificial intelligence and 

machining learning (ML) techniques to examine and evaluate injury severity. 

This system was developed of a multipara meter machine learning algorithm 

and hybrid system to predict the essential for life-saving interventions (LSIs) in 

injury patients (Liu et al. 2014). In this study, the model  used statistical tools 

those are based on and maxima, slopes and means of several vital sign 

dimensions corresponding to 79 trauma records of cases generated over 

110,000 feature groups, which were used to implement, train, and develop the 

model. Comparisons among several machine learning models showed that a 

multilayer perceptron would accurately implement the algorithm in a hybrid 

system consisting of a machine learning component and basic detection rules.  

Deep Learning (DL) was also used in the United States for predicting diabetic 

retinopathy. Diabetic retinopathy is a foremost reason of vision loss mainly 

among working-aged people (Wong et al. 2016). Therefore, DL was assessed 

diabetic retinopathy screening by using a big data base of images and data 

was divided into three sets. The total number of images is 128175 for training 

set and two for validation 9963 and 1748 images. Results showed this model 
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was significantly performed by 87% to 90% sensitivity, 98% specificity for 

identifying referable diabetic retinopathy. It was distinct as worse and 

moderate referable diabetic macular enema (DME) or diabetic retinopathy.          

Correspondingly, related eye and diabetic retinopathy diseases were predicted 

by deep learning technique (Tinge et al. 2017). This study used retinal images 

from multi-ethnic people with diabetes and 494 661 retinal images. The model 

was trained for predicting diabetic retinopathy using possible glaucoma 125 

189 images and 76 370 images and age-related macular degeneration (AMD) 

72 610 images, and presentation of the model was evaluated for predicting 

diabetic retinopathy by 112 648 images, possible glaucoma using 71 896 

images and AMD by 35 948 images. As a result of this assessment of retinal 

images from multi-ethnic cohorts of patients with diabetes, the model obligated 

high sensitivity and specificity for detecting diabetic retinopathy and 

associated eye diseases. 

 

2.3 Methods to Extract Keywords from Text 

A number of methods to search for information in a text, given some keywords 

were reported. Shah et al (2003) used a data mining technique to detect 

keywords content of different sections of a typical scientific article. 104 articles 

published in Nature Genetics were used for this purpose.  

Aho et al (1975) used an efficient algorithm to detect all incidences of a 

determinate number of keywords in a string of text. The algorithm created a 

limited state pattern matching machine from the keywords and then used the 

pattern matching machine to procedure the text string in a single pass. The 

algorithm was used to improve the rapidity of a library bibliographic search 

program. 

Extracting word-Level paraphrasing is a complex and critical indicator to context 

(Xian-Jiang et al, 2012). Multi-feature word-level Chinese paraphrase extracting 

techniques were reported by (Xian-Jiang et al., 2012). One technique used data 

mining for the target word and its nominee paraphrases were taken from the 

Internet. Another technique used a stratified probability statistical model. Their 
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study showed that retrieving candidate paraphrases from large-size quantities 

by using data mining technique can be effective.   

A method to extracting signature word from abstract Web page was reported by 

(Pang et al., 2012). They used meta data and special tags of the HTML to 

design a weighting function that allowed for the frequency, length and word 

location.  

There are approaches for automatic keyword extraction from documents. 

Keywords extractions from the linguistic and non-linguistic methods were used 

to obtain the linguistic features of the words, sentences and document (Madane 

et al, 2012). They used part-of-speech, syntactic structure and semantic 

qualities.  

An Intelligent method was used to extract engineering characteristic indexes in 

paragraph contents of a word document of a transmission and transformation 

study (Pedia Content Solutions Pvt. Ltd 2015). It created an engineering 

characteristic index library to serve as a substance database and from them the 

required information was extracted.  
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Chapter 3 Techniques Used in the Study 

3.1 Overview 

This chapter explains the operations of the trauma scoring systems, artificial 

intelligence (AI) techniques and statistical analysis techniques used in this 

study. Particular attention is given to AIS and GCS as they are most relevant to 

the study. For AI, specific consideration is given to fuzzy logic and Iterative 

Random Comparison Classification (IRCC). The Predictive Statistical Diagnosis 

(PSD) is also described.         

3.2 Trauma Scoring Systems Operations        

3.2.1 Abbreviated Injury Scale (AIS) 

AIS provides anatomical indices and editions 2008 and 2016 edition available. It 

gives comprehensive injury descriptions for diverse conditions in body regions 

with levels of severity. An example of this code is shown in Table 3-1 (AAAM 

2005, 2008). 

           Table  3-1 AIS code and injury description (AAAM 2005 updating 2008). 

Specific Anatomical Structure or Patient Condition AIS Code 

Injuries to the Head NFS 100099.9 

Crush Injury Must involve massive destruction of skull, brain and intracranial 
contents. 

113000.6 

Penetrating superficial;≤2cmbeneathentrance 116002.3 

Penetrating major; >2cm penetration 116004.5 

Avulsion superficial;minor;tissueloss≤100cm2 110802.1 

Table 3.1 shows the description of injured condition in first column and 

associated AIS code field. The first six digits describe the injury description and 

last digit explains the severity level as shown in Table 3-2.          

                          Table  3-2 AIS numeric to specific injury description. 

AIS Code 
Digits 

Numeric Conventions of Specific Injury Description 
 

1 Body Region (head, neck, face, thorax, spine, abdomen, extremity and external) 

2 Type of Anatomic Structure (Whole area, Vessels, Nerves, Organs and Skeletal) 

3 and 4 Specific Anatomic Structure (e.g. Amputation, Burn, Crush and Penetration)   

5 and 6 Level of specific injuries are assigned consecutive ( e.g. 02 for first condition 
and 04 for second condition )  

7 AIS Severity Code as explained below 

AIS has six levels of severity, from 1 to 6 and number nine indicates an 

unknown severity as described in Table 3-3. 
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                                     Table  3-3 AIS severity level code. 

AIS Code Severity Description 

1 Minor 

2 Moderate 

3 Serious 

4 Severe 

5 Critical 

6 Maximum 

9* Unknown 

 

3.2.2 The Glasgow Coma Scale (GCS)  

GCS uses physiological measurements. They use three clinical/observational 

indices to derive a numerical score for conscious level where 15 is normal 

response and 3 is no response, even to deep pain. The value of GCS is the 

sum of three best motor response components for the patient. GCS scores of 3 

to 8 denote severe, 9 to 12 is moderate and 13 to 15 is for a mild head injury as 

shown in Tables 3-4  (Kim 2012 ).  

                                Table  3-4  The Glasgow Coma Scale (GCS). 

Eye Opening (E) Best Verbal Response (V) Best Motor Response (M) 

4= spontaneous 5 = normal conversation 6 = normal 

3 = to voice 4 = disoriented 5 = localises to pain 

2 = to pain 3 = incoherent words 4 = withdraws to pain 

1 = none 2 = incomprehensible 3 = decorticate (flexion) 

 1 = none 2= decerebrate (extension) 

  1 = none 

  Total=E+V+M 

3.3 Artificial Intelligence Techniques Operations        

3.3.1 Fuzzy Logic     

Fuzzy logic is an AI method to be used in this study therefore much more 

detailed explanation of its operation as compared to other AI methods are 

provided.   
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The strength of fuzzy logic is due to the mapping of input-output relationships 

through a number of rules, its flexibility to deal with inexact and uncertain 

information and then drawing conclusions (Jantzen, 1998) (Khoukhi and 

Cherkaoui, 2008) (Muyeen and Al-Durra, 2013). Unlike crisp (binary) logic that 

has a sharp boundary between True and False, fuzzy logic facilitates 

continuous transition as shown in Figure 3-1 (Cirstea et al, 2002) 

                                     Figure  3-1Binary logic versus fuzzy logic.  

3.3.2 Fuzzy Inference System (FIS) 

Fuzzy Inference System (FIS) is built on fuzzy logic and allows decision making. 

It has four main components: fuzzification, rules base, inference engine, and 

defuzzification as shown in Figure 3-2 (Jantzen, 1998).  

 

 

 

 

 

        Figure  3-2 Block diagram of fuzzy inference system (Jantzen, 1998). 

 

FIS is used to interpret (i.e.  fuzzify) the crisp inputs into linguistic variables, and 

depending on a set of predefined rules, it computes linguistic output values 

where in turn are converted (i.e. defuzzified) into real crisp output value 

(Naoum-Sawaya and Ghaddar, 2005) and (Saraireh et al, 2008). The following 

subsections outline each component of FIS. 

Rule Base 

Inference 
Engine 

 

Fuzzification 

 

Defuzzificatio
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Input Output 

Crisp Values 

 

Fuzzy Sets 

 

Fuzzy Set 
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True      True                              False  False 
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3.3.3 Fuzzification 

This is a process of converting numerical input into linguistic terms and defining 

their degrees of belonging to the suitable fuzzy sets via membership functions. 

In fuzzy sets, an element xi in the universe of discourse X is assigned a degree 

of membership µ(xi) as shown in Figure 3-3 (Cirstea et al, 2002). A membership 

function indicates regular transition from a full belonging to a fuzzy set to not-

belonging at all with intermediate values presenting degrees of belonging (Al-

Sbou et al, 2006). In fuzzification process, different membership functions can 

be applied. For example, triangular, trapezoidal and gaussian as explained 

below (Alonso, 2014). 

Triangular membership function: Expressed by a lower limit a, an upper limit b, 

and a value m, where a < m < b as shown in Figure 3-3. 
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Figure  3-3Triangular membership (Alonso, 2014). 

Trapezoidal membership function: expressed by a lower limit a, an upper limits 

d, a lower support limit b, and an upper support limit c, where a < b < c < d. This 

is shown in Figure 3-4. 
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                                Figure  3-4 Trapezoidal membership (Alonso, 2014). 
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Gaussian membership function: expressed by a central value m and a typical 

standard deviation k > 0. The parameter k determines the function’s width 

(Alonso, 2014).  
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                              Figure  3-5 Gaussian memberships (Alonso, 2014). 

3.3.3 Rule Base 

A set of IF-THEN rules are represented in linguistic terms. They are the 

foundations of decision making process in FIS. The number of rules is 

dependent on the number of inputs and outputs variables as well as the number 

of membership functions interrelated with them (Jantzen, 1998). The general  

form of IF-THEN rules is: 

IF (Antecedent) AND (Antecedent) ……THEN (Consequent). 

Where the antecedent relates the linguistic variable to a fuzzy set, and the 

consequent represents the conclusion from IF term. Each rule may have one or 

more connectives (i.e. fuzzy operators). The most common fuzzy operations for 

IF-THEN rules are intersection, union, and complement which are respectively 

implemented by fuzzy operators AND, OR, and NOT (Klir and Yuan, 1995) 

(Ross, 1995) respectively. For instance, given that µX and µY are the degrees of 

membership functions for fuzzy sets X and Y respectively, the application of 

fuzzy operators AND, OR, and NOT can be defined as (Ross, 1995): 

AND: µX∩Y = min (µX , µY) 

OR: µX UY = max (µX , µY)                                                    3-1 

NOT: µ¬X = 1- µX 
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3.3.4 Inference Engine 

Fuzzy inference engine uses fuzzified inputs along with the rules to perform 

inference (i.e. the process of implication and then aggregation) (Jantzen, 1998). 

The fuzzified inputs can be related to more than one rule to specify how well 

each rule describes the existing situation by computing the degree of certainty 

for the IF condition. More than one rule might be triggered at the same time 

describing the specific condition. Individually these rules produces Consequent 

or Conclusion to be taken in the THEN condition. This process is performed by 

implication method which is defined as the shaping of output membership 

functions. The input for the implication is a single number given by the 

antecedent of the rule, and the output is a fuzzy set. The truncated output fuzzy 

sets from the implication process which describes the firing strength of the rules 

is then processed by an aggregation method. In the aggregation process, the 

truncated output fuzzy sets from the implication process are unified to produce 

one output fuzzy set (Ross, 1995). 

3.3.5 Defuzzification 

This is the process that converts the output linguistic value (i.e. the aggregate 

output fuzzy set) into a real numeric value. The input for the defuzzification 

process is the aggregate output fuzzy set and the output is a single number. 

Nevertheless, the aggregate of a fuzzy set covers a range of output values 

which in turn must be defuzzified to produce a single output value from the set. 

There are numerous techniques that can be used for defuzzification process 

such as centroid, bisector, middle of maximum, largest of maximum, and 

smallest of maximum. Also defuzzification has two fuzzy inference methods: 

Mamdani and Sugeno. The procedure of fuzzifying the inputs and applying the 

fuzzy operator during the fuzzy inference process are similar in both methods. 

However, the main difference between Mamdani and Sugeno is the manner the 

outputs are determined. Mamdani-type FIS is based on defuzzification process 

to generate crisp output from output fuzzy set, while Sugeno-type FIS uses 

weighted average to compute the crisp output (Arshdeep and Amrit, 2012). 

Mamdani FIS has output membership functions whereas Sugeno FIS has no 

output membership functions. Due to the interpretable and intuitive nature of the 

rule base, Mamdani-type FIS is widely used particularly for decision support 



31 
 

application (Haman and Geogranas, 2008). Therefore, Mamdani-type FIS is 

used in this study. The information flows through the process of fuzzy inference 

system: commencing from fuzzifying inputs, through the process of applying 

fuzzy operator, implication method, aggregation method, and terminating by 

defuzzification process (Abdul Aziz and Parthiban, 2006) (Yamamoto and  

Morooka 2005). The centroid method of defuzzifier equation 3-2 for the distinct 

case is                                         
∑       
 
    

   (  )

∑  
   (  )

 
   

                              3-2       

                

This method computes the centre of the area formed by the sum of all the 

output terms of the fuzzy controller. Figure 3-6 shows its membership functions 

used in a study for the linguistic variable and referred to as Thrust. It has two 

non-zero linguistic terms: Without-Thrust, with membership degree 0.6, and 

Positive-Medium, with membership degree 0.4. The defuzzified controller output 

is the position of the centre of gravity of the union of the term areas and the 

result is           (Yamamoto and  Morooka, 2005). 

 

 

 

 

 

 

 

 

 
        Figure  3-6 An example of defuzzification (Yamamoto and  Morooka, 2005).  

 

 

3- 4 Predictive Statistical Diagnosis (PSD) 

PSD uses Bayesian statistics to determine to which of a given set of predefined 

types t, a measurement expressed by a feature vector (x) belongs (Aitchison et 
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al, 1980 and Aitchison et al, 1977). It uses example cases of known types, 

represented in a training data set to obtain the values of its calibration 

parameters. Once these parameters are calibrated, it can classify an unknown 

case into the types represented by t. 

The probability that an observation vector x and parameter vector θ belongs to 

the type t1 is given by Bayesian statistics as 

 

1 1
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3-3 

 

where p(t1) is the prior probability of type t1, p(x|t1,θ) is the probability density 

function of x for a given type t1. Equation 3-3 can be rewritten as predictive 

density function for an observation x on a case of type t assessed on the 

training data Z as (Aitchison et al, 1980 and Aitchison et al, 1977). 
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To determine above, q(x|t1, Z) can be replaced with (Aitchison et al, 1977) 
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where there are nt cases of type t with feature vectors x1, x2, … xn; vt is the 

degrees of freedom given by nt − 1, mt and St are the mean and the covariance 

matrices respectively. Std represents a d-dimensional student t density 

determined as 
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where the variables v, b and c relate to equation 3-5 as v = vt, b = mt and 

1
1

nt t

 
 
 
 
 

 c S .    is the gamma function, T and −1 represent matrix transpose 

and inversion operations, respectively. Using Equation 3-4, p(t1|x, θ) is 
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determined for the cases of known types. Then to compute the probabilities for 

the unknown cases (i.e., those on the validation data set), Equation 3-6 uses 

the observation vector x for cases of known types but retains the mean (mt) and 

covariance (St) matrices to identify an unknown type. The parameters mt and St 

are calibration information for the PSD. 

 

3-5 Operation of the Iterative Random Comparison Classification (IRCC) 

IRCC is a new method of probability of survival prediction developed in this 

study. In this section the justification for using IRCC method and the principle 

behind its operation are described. It operates by comparing the injury profile of 

the trauma case being examined against the injury profiles of the trauma cases 

with known outcomes (survivors and not survivors) from a TARN data set. The 

parameters processed by IRCC were age, GCS, AIS, PR, SBP and RR. These 

parameters had significant within group (i.e. survivors or not survivors) 

variations and thus the comparison of the test case against the complete set 

would have reduced the sensitivity of the approach. Instead, IRCC compares 

the test case against randomly selected groups of cases (full description of 

IRCC is provided in the next section). To illustrate this point, Table 3.5 provides 

the average of trauma parameters for complete head injury cases consisting of 

4124 cases of 3553 (86.2%) were survivors and 571 (13.8%) were not 

survivors. The Euclidean distance (EDSN) between the trauma parameters of 

survivors and not survivors from this table is 

     √
(           )  (         )  (           )  

(             )  (           )  (           ) 
       

The corresponding Euclidean distances for the averages of the trauma 

parameters for survivors and not survivors for the three subgroups in Table 3.5 

are (each random sample contained 6 survivors and 6 not survivors, the 

justification of selecting 6 cases is provided through an analysis later in this 

thesis): 

               √
(          )  (        )  (          )  

(             )  (          )  (           ) 
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               √
(           )  (         )  (           )  
(             )  (           )  (           ) 

       

 

                   √
(           )  (      )  (         )  

(             )  (           )  (           ) 
 =57.10 

The average of Euclidean distances for the three randomly selected groups was 

47.19. This shows (47.19-19.74)/19.74 ×100= 139.06% increase in the 

differentiation of survivors and not survivors.   

 

Table  3-5 Average and standard deviation of trauma parameters for head injury, all 
cases.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Parameters Outcomes Mean STD 

Age 

(years) 

Survivors 65.75 21.96 

Non-survivors 81.13 12.91 

AIS 
Survivors 4.25 0.72 

Non-survivors 4.74 0.53 

GCS 
Survivors 14.34 7.07 

Non-survivors 11.16 8.49 

SBP 

(mmHg) 

Survivors 144.33 26.84 

Non-survivors 155.90 34.01 

RR 

(bpm) 

Survivors 17.72 3.72 

Non-survivors 18.57 5.49 

PR 

(bpm) 

Survivors 81.30 18.18 

Non-survivors 84.15 21.30 
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Table  3-6 Average and standard deviation of trauma parameters for head injury for 
three randomly selected samples. The samples are represented by groups A, B and C 
and consists of 6 survivors and 6 not survivors.   

 

 

 

 

 

 
 

 

 

 

 

 

 

 

The operation of the IRCC relies on comparing the trauma parameters for the 

case being examined against multiple randomly selected subgroups and then 

the overall percentage match is determined. The details of the IRCC operation 

are outlined in Figure 3-7. A further flowchart explaining IRCC is provided in 

Figure A.1, Appendix A.  

  

Parameters Outcomes 

Selected  

Sub-Group (A) 

Selected  

Sub-Group (B) 

Selected 

 Sub-Group (C) 

Mean STD Mean STD Mean STD 

Age 

(years) 

Survivors 79.60 8.05 46.92 21.69 43.53 26.73 

Non-survivors 69.98 23.70 80.43 19.90 88.48 10.04 

AIS 
Survivors 4.17 0.98 3.67 0.82 4.17 0.41 

Non-survivors 4.50 0.84 4.83 0.41 5.00 0.00 

GCS 
Survivors 14.67 0.52 14.17 1.60 13.50 1.64 

Non-survivors 9.17 5.04 12.33 2.25 8.83 5.53 

SBP 

(mmHg) 

Survivors 157.83 22.35 131.17 22.87 134.17 22.99 

Non-survivors 141.33 21.20 185.17 32.60 168.33 32.18 

RR 

(bpm) 

Survivors 21.20 2.56 18.17 3.92 17.83 2.71 

Non-survivors 16.83 3.97 18.67 4.50 18.83 1.83 

PR 

(bpm) 

Survivors 85.17 23.34 76.83 19.53 81.83 24.29 

Non-survivors 87.33 20.18 84.17 13.50 88.83 16.13 
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                              3-7 Flow chart of the IRCC operation. 
 

Each trauma parameter is individually normalised between 0 and 1 by taking 

into account the maximum and minimum values for the parameter, the formula 

used for this purpose is   

                                           
                       

               
                            3-7 

Randomly select K 

not surviving 

cases 

Randomly select  

K surviving cases 

Average vectors 

Test case (for validation this is from 

test file i.e. 1/3 of trauma cases) 

Measure distance 

(Ds)  

Repeat 

N times 

Average vectors 

Measure distance 

(Dn)  

Determine selected group size (K) and 

number of iteration (N) 

Survivor Count (Cs) =0 

If Ds <  Dn  The Test Case is a survivor  

else not survivor 

If Test Case is a 

Survivor 

Cs=Cs+1 

Ps=Cs/N * 100 

Represent cases by vectors: 

Age, GCS, AIS, SBP, RR and PR  

Normalise the vectors' parameters 

individually between 0 and 1  

Set up a calibration file consisting of 

randomly selected 2/3 of trauma cases  

Extra step: enhancement of IRCC operation 
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The normalisation ensured that the parameters with a larger range to do not 

dominate those with smaller range with the IRCC operations are performed. A 

calibration file consisting of randomly selected 2/3 of the trauma cases and a 

test file consisting of the remaining 1/3 trauma cases are created. The IRCC is 

initialised by selecting comparison group size (K) and the number of iterations. 

The survivor count number (Cs) is set to 0. 

At the next stage K surviving cases and K not surviving cases are randomly 

selected from the validation file. The parameters of their trauma vectors are 

individually averaged. This lead to averaged test vectors, i.e. 

For survivors:  Vs= [agesa, GCSsa, AISsa, SBPsa, RRsa, PRsa]                                                                 3-8 

For not survivors: Vn= [agena GCSna, AISna, SBPna, RRna, PRna]                                         3-9 

  

where the subscript 'sa' and 'na' represent average value for the parameters of 

the survivors and not survivors respectively.  

The vector for the test case is obtained. This is represented by  

Test case: 
 Vt= 
[ageta, GCSta, AISa, SBPta, RRta, PRta]                                            
3-10 

where the subscript 'ta' represents average value for the parameters of the test 

case. The test case in development phase is from the validation file to allow the 

performance of the method to be established but there after could be a case 

with known outcome (survivor or not survivor). The Euclidian distances between 

the vectors of the test case and those for survivors (Ds) and not survivors (Dn) 

are obtained,   

                         √
(           )

  (           )
  (           )

 

 (           )
  (         )

  (         )
                                      3-11 

                          √
(           )

  (           )
  (           )

 

 (           )
  (         )

  (         )
                                   3-12 

The values Ds of Dn are compared and if Ds <  Dn then the Survivor Count (Cs) is 

incremented by 1. This is repeated for the specified number of iterations (N). 

The probability of survival (as percentage) is the calculated by 
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                                                                    3-13 

Chapter 4 Methodologies 
 

In this chapter, the methodological framework which forms the basis of the 

current work is presented. This work was carried out in collaboration with the 

Trauma Audit and Research Network (TARN). The TARN database contains 

tens of thousands trauma cases with their associated outcomes. . The details of 

trauma are also included as further explained later in this chapter. To use this 

database, it was important to conduct its statistical analysis with the view to 

determine relevant information pertaining to different injuries under 

consideration. This assisted the processes of trauma knowledge representation 

and visualisation that in turn led to knowledge coding.  The primary purpose of 

this study is to develop methods to determine probability of survival in traumas. 

Figures 4-1 and 4-2 depict the overview of the methodology of the procedures 

followed in his study. 
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Statistical Analysis of the Selected Cases from TARN database

Knowledge Base Representation and Coding of Trauma Data

Development Paths

Converting trauma 

description to AIS code
Prediction of Probability of Survival

Data Analysis
(AIS DICTIONARY AAAM 2005)

Inclusion of AIS 

                        Final Comparison  and Testing

Further Factors
Intubation and 

PMC

Inclusion of  GCS, 
RR, SBP, PR, Age 

and Sex fctors

Data collection and analysis
(TARN Database AIS,GCS, 
RR,PR,SBP,Age and Sex)

Data collection and 
analysis

(TARN Database 
PMC & Intubation)

Implement and operate 
PSD and IRCC Techniques

Implement and design the Software GUI

 Algorithm to
Extracting Text

Implement and 
operate  Fuzzy Logic 

Technique

 
 
                      Figure  4-1 The overall methodological framework of the research. 
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Figure  4-2 The framework for statistical analysis to establish trauma knowledge 

representation, coding and evaluation. 

 

As shown in Figure 4-2, three processing stages were involved namely 

statistical analysis (represented by green blocks), trauma knowledge 

representation and coding (represented by orange blocks) and system 

implementation and evaluation (indicated by the pink blocks). 

4.1 Ethics 

Based on the Research Ethic Policy of Sheffield Hallam University (SHU) 

(Sheffield Hallam University 2015) which states that:  

"Any research undertaken by staff or students (undergraduate or post graduate) 
of the University which involves direct contact with human participants, whether 
clinical, biomedical or social research, or the secondary use of human and 
animal materials or specimens, or where there may be any other ethical issues, 
should be subject to ethical review." (Sheffield Hallam University 2015)" 

Ethic clearances were obtained at Sheffield Hallam University (appendix B). 

The TARN data were anonymised and it was not possible to relate them to 

Statistical Analysis of TARN   

Exploring factors driving the outcomes 

 

Examining relevant 

statistical techniques to 

evaluate Ps14 assessment       

Exploring survivors Exploring non-survivors  

Show outcomes of Ps14 

assessment 

Investigating and identify the 

relevant parameters for non-

survivors 

Implementing of 

 DS techniques to 

predict %Ps   

Clustering and investigating 

the relationship among factors 

Trauma Knowledge 

Representation and Coding 

Determining the severity or 

weights for every factors 

 

Investigating and showing 

significant parameters that 

give probability of survival   

Showing outcomes of 

developed system 

Comparing and evaluating 

both DS & Ps14 outcomes   Clustering and investigating 

the relationship among 

factors 

Trauma Knowledge 

Representation and Coding 

Determining the magnitude 

of weights for every factors 
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individual patients. The data were stored on the University's networked 

Research Store called Q drive for all copies in accordance with the TARN 

agreement's with the University (appendix C).  

 

4.2 Development of a User Interface to Developed System  

An interface that enabled the user to be guided through the AIS stated injuries 

types for various body regions and the automatically generated the associated 

AIS code was developed in Matlab. This was tested for accuracy and the test 

results are provided in Chapter 7. The limitation of the approach was that 

doctors could not enter the patient’s injuries in their own way and they were 

required to select predefined injuries. This could result in inconsistency of 

coding between doctors. Therefore a new approach for determining the AIS 

code and probability of survival was developed. The method allows the doctor 

to enter the AIS code for injuries in their own way. The process of converting 

this description to AIS code is explained in the next sections. Once AIS code is 

determined, its value together with GCS, RR, SBP, PR, Gender, Age, Intubation 

and PMC are processed by developed system (DS) to determine probability of 

survival. 

  

4.3 Artificial Intelligence Methods of Determining Probability of Survival 

The operations involved in determining AIS code and probability of survival 

relied on analysis of TARN data that had several thousand trauma cases. The 

tasks to develop the system are shown in Figure 4-3. 
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Figure  4-3 Operations to determine AIS code and probability of survival. 

 

With the aid of staff from TARN, the TARN data were analysed and specific 

patients' injuries keywords associated with each case were already determined 

(in the database).  To determine the AIS code for a specific patient, a keyword 

matching scheme was developed to search for the closest match in the TARN 

database and from it the AIS code was produced based on (injury description 

AAAM 2005). 

 

The information from AIS code, GCS, RR, SBP, PR, Age, Intubation and PMC 

of the cases were then  processed by PSD, artificial intelligence methods, IRCC 

and FIS to determine the probability of survival. To develop this using PSD, 

IRCC and FIS appropriates, TARN data were used as part of the trauma 

knowledge representation and coding.    

 

4.3.1 Implementation of IRCC and PSD system developed 

IRCC and PSD technique were set up and evaluated using two separate data. 

One is 2/3 of the overall data and was used as calibration of the method and the 

remaining 1/3 of the cases were used for evaluation of the methods. The 

subjects in each set were randomly chosen. The output of processing was 

Patient’s GCS, RR, SBP, PR, 

Age, Intubation and PMC 

factors 

TARN Data  

Patients’ 
injury information 

Injury Keywords 

Patients’ 
Injury keywords 

Associate matched injury keywords 

with an AIS code for the to select 

patient (injury description AAAM 

2005 updating 2008) 

Patient’s

AIS code 

Develop techniques PSD, IRCC and 

FIS to determine probability of 

survival (Ps) 

%Ps 

Doctor’sinjurydescription

for a specific patient 



43 
 

probability of survival (Ps). Figure 4-4 shows the stages to setup PSD and 

IRCC. 

 

 

 

 

 

 

 

                     Figure  4-4 Block diagram of IRCC and PSD techniques. 

 

The main inputs to the probability of survival calculation methods were. AIS 

code, GCS, RR, SBP, PR and Age. However, there were two other factors 

(Intubation and Pre-existing Medical Conditions (PMC)) which were considered 

at later stages of the developments to improve the accuracy of the method but 

these were only available for some individuals. The FL technique was 

implemented to combine IRCC outcomes with PMC and intubation. Further 

analysis and explanation of the approaches are provided in chapter 6, where 

knowledge representation and coding are outlined.     

4.3.2 Implementation of FIS  

4.3.2.1 Input member functions  

The fuzzy inference system (FIS) had two inputs, each represented by a 

number of membership functions as shown in Figure 4-5. The inputs were the 

IRCC output and other factors, i.e. intubation and PMC. The reason for 

combining IRCC output with Intubation and PMC score was to further improve 

the results. Figure 4-6 shows IRCC output's membership functions represented 

by 5 membership functions, labelled as categories 1 to 5. Further details about 

how the membership functions were organised are provided in chapter 6.  For 

the second input to the FIS that expressed PMC and intubation, four 

membership functions were used labelled as Both, Intubation, Unspecified and 

PMC. As shown in Figure 4-7 these membership functions were part of 

knowledge coding explained in chapter 6.  

 

TARN Data 

1/ 3 of data  

 (evaluation set) 

PSD or IRCC 
Algorithm  

  

Ps  Inputs 

2/3 of data  

(calibration set) 
  

PSD or IRCC 

Model 
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Figure 4.8 Shows typical rules relating the inputs and output of the FIS (further 

details are provided in Chapter 6) 

                       Figure  4-5 Structure of a fuzzy inference system. 

 

                        Figure  4-6 Membership functions for IRCC output. 
 

 

 

 

 

 

 

                     Figure  4-7 Membership functions of PMC and intubation. 

 

Figure  4-8 Typical rules relating the inputs and output of the FIS. 
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The last stage of the FIS is defuzzification where the output of the FIS is 

determined. Figure 4-9 shows output membership functions used for this 

purpose. Figure 4-10 shows as example of the DS operation with inclusion of 

PMC and intubation.  

 

                   Figure  4-9 Output membership of probability of survival. 
 

 

            Figure  4-10 Prototype of DS mechanism when patient has further factors.  
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4.4 Chapter summary 

 In this chapter, the approaches followed developed for determining the 

probability of survival are outlined. An overview of the procedural framework of 

the research for using the trauma parameters including the AIS code to predict 

of probability of survival is  presented. A description of the manner the FIS and 

IRCC outputs were combined with further PMC and intubation is also provided. 

In the chapter that follows, statistical analysis of the TARN database is 

presented.  
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Chapter 5 Investigation of interrelation between trauma parameters 

and survival outcomes 

5.1 Overview 

An analysis of the data used in the study was performed using a number of 

packages, each package a specific purpose. Microsoft Excel© was used to a 

spread sheet. SPSS© and Matlab© were used to carried out statistical analysis 

and data processing respectively. The data processing and statistical analysis 

data are explained in the following sections. 

5.2 Introduction of TARN Database Trauma Characteristics 

The data analysis investigated the number, Age, Gender, injury types of trauma 

cases, used in the study. There were about 10% more males than females and 

97% of the injuries were in the blunt category and the rest, penetrating type. A 

blunt traumatic injury is caused by the application of mechanical force to the 

body or when the body strikes a surface in which the skin is not penetrated. A 

penetrating traumatic injury is caused when a sharp object such as knife 

penetrates the body. The proportion of cases that survived (lived after the 

trauma) was 93.3% and the remaining cases not survivor (died) as shown Table 

5-1. 

                                 Table  5-1Overview of all injury trauma cases. 

 

Figures 5-1a and b show the distributions (histograms) indicating the effect of 

age on the individuals surviving and not surviving in trauma. The age 

distribution for survived cases shows peaks at 20, 60 and 80 years but for those 

that did not survive, there is a single dominant peak at about 90 years. The 

peaks in the distribution of cases that survived do not infer that more injuries 

occur at those ages but there are more subjects with those ages in the analysed 

data. Figure 5-2 shows the number of cases for different injury mechanisms. 

The dominant injuries in order of magnitude are: fall less than 2 meters, vehicle 

incident collisions, fall more than 2 meters and blow(s). 

 

 

Gender (%) Mean Age (years) 
(standard 
deviation) 

% Injury Type Injury outcome Total 

Male Female Blunt Penetrating Survivors 
Not  

Survivors 
 
 

47702 26098 
(54.7%) 

21604 
(45.3%) 

60.7 
(24.8) 

97.6% 2.4% 44499 
(93.3%) 

3203 
(6.7%) 
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               Figure  5-2 Number of trauma cases for different injury mechanisms. 

 

 

Figure 5-3 The injury numbers in relation to AIS defined body regions. Lower 

limbs injuries followed by head, thorax, spine and upper limbs are the main 

affected regions. 

     Figure  5-3 Injury numbers in relation to the AIS defined body regions. 
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5-1 (a) Age distribution of individuals surviving (left) and (b)  those not surviving (right). 
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Figure 5-4 provides the percentages of cases with AIS injury scores 3-6 that did 

not survive. The majority of these cases had head injury (43.93%) and next 

highest percentages were for thorax (22.04%) and lower limbs injuries 

(15.55%). 

  

 

 

 

 

 

 

 

 

 
Figure  5-4  Body region injuries with AIS scores 3-6 and associated number of cases 
that did not survive. 

 

Figures 5-5a and b show the distributions the ISS scores for (a) those that 

survive and (b) those that did not. For those that survived the ISS values peak 

around 15 and for those that did not, the ISS distribution has multiple peaks; 

with the largest at round 30.This shows that increasing number of ISS is not the 

reason that leads to not-surviving. Due to this fact Figure 5-5b shows that Ps14 

is not very effective in determining the probability of survival for cases where 

survival is not reported.  

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure  5-5 (a) Distribution of ISS values for (a) those that survived and (b) those that 
did not survive. 
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Figures 5-6a and b show the probability of survival distribution as measured by 

Ps14. The Ps14 values for cases who did not survive peaks between 80 to 100 

but for those who survived, has a more uniform distribution. Therefore the 

method has not been very sensitive in determining probability of survival for 

cases who did not survive. 

 

 

  

 

 

 

 

 

 

 
Figure  5-6 (a) Ps14 values for subject who survived (left) and (b) those did not (right). 
 

Figure 5-7a shows the number of cases with GCS less than 13 and more than 

12 that survived. Figure 5.6b shows similar information for those that did not 

survive. Comparing the proportion of cases with GCS less than 13 in both 

figures. Figure 5.6b shows GCS < 13 in not survivors is close to GCS >12 by 

93% but Figure 5.6a displays only 0.5% from total cases classified GCS >12. 

This means GCS has impact of not survivors when it’s scores less than 13. In 

other words, GCS <13 maybe affected when it is associated with other factors 

in certain conditions and this is seen in Figures 5-15, 16, 17, 18.   

 

Figure  5-7 (a) GCS values (a) those that survived and (b) those that did not survive. 
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Figures 5-8a and b show the effects of pre-existing medical conditions (PMC) 

on the probability of survival for the cases that (a) survived and (b) those that 

did not survive. The value of PMC<1 indicates no pre-existing condition and 

PMC>0 indicates existence of at least one pre-existing medical condition such. 

The majority of those that survived did not have a pre-existing medical condition 

but the opposite is the case for those that did not. This shows PMC is an 

effective factor for predicting non-survivor cases.   

 

  

 

  

 

 

 

 

 

Figure  5-8 (a) The effect of pre-existing medical condition on (a) those that survived 
and (b) those that did not survive. 
 

Figures 5-9a and b show the number of adult cases with emergency department 

respiratory rate in the healthy or normal range (considered as 12 to 20 breaths 

per minute) for cases (a) that survived and (b) those that did not survive. The 

proportion of cases with emergency department respiratory rate 12-20 breathes 

per minute (bpm) that did survive is much higher than the cases that did not. 

Therefore the respiratory rate is an important factor in determining the 

probability of survival.  

 

 

 

 

 

 

 

Figure  5-9 (a) Number of cases with normal (12 to 20 breathes per minute) emergency 
department respiratory rate (a) those that survived and (b) those that did not survive. 
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Figures 5-10 a and b show the effect of normal pulse rate (heart rate) on 

survival of adults. Pulse rate for healthy adults is typically between 60-100 beats 

per minute (bpm). In surviving cases (Fig.5-10a), a much higher proportion of 

individuals had normal pulse rate. Fig.5-10b shows the proportion of the 

individuals with a normal and abnormal emergency department pule rate for 

cases that did not survive is much closer than those that did survive. 

Consequently, PR has a slight effect in non-survivors.    

 

 

  

 

 

 

 

Figure  5-10 Effect of emergency department pulse (heart) rate on probability of survival 
in adults (a) survived cases (b) those that did not survive. 

 

Blood pressure is one of the vital sign for medical examinations. Figures 5-11a 

and b show the number of adult cases with emergency department (ED) -

Systolic blood pressure (SBP) in the normal range (90 to 140 mmHg) and 

outside this range for the cases that survived and (b) those that did not survive. 

The proportion of cases with SBP in the normal range is higher in individual that 

survived than those who not survive indicating this physiological measure in an 

important indicator of Ps. 

 

 

 

 

 

 
 
 
 
 
Figure  5-11 Impact of emergency department systolic blood pressure on probability of 
survival in adults (a) survived cases (b) those that did not survive. 
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5.3 Investigation of relationships and correlation between AIS body 

regions and with other factors for non-surviving. 

Figure 5-12 shows the correlation between the traumas associated with the 8 

body regions as defined in AIS standard for cases that did not survive. Head 

injuries occurred more often in combination with face and thorax injuries. Face 

injuries are more common with head injuries. Thorax injuries occur more often 

with head and abdomen injuries. 

Figure  5-12 Correlation of trauma associated with the AIS defined body regions in 
cases that did not survive. 

 

Figure 5-13 shows the AIS scores of the cases with joint head, thorax and lower 

limb injuries (i.e. the main body areas affected by trauma) that did not survive. 

The largest number of deaths is for head (AIS score =5), thorax (AIS score= 3) 

and lower limbs (AIS scores= 4 and 5) injuries. 
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Figure  5-13 The interrelationship between trauma injuries associated with head, thorax, 

and lower limb cases that did not survive represented by AIS scores 1-5. 

 

Figures 5-14a and b show boxplots indicating the relations between head injury 

only and thorax injury only for cases that did not survive. Both injury types have 

mainly AIS score= 5 but age ranges are different. Age ranges could have been 

obscured by the distribution of the specific cases in the data base that itself is 

influenced by the age distribution of the population in the UK. 

 

 

 

 

 

 

 

 

 
 
 
 
Figure  5-14 Box plots indicating the relationship between (a) head only injury and (b) 
thorax only injury for those that did not survive. 

 

(a) (a) 
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Figure 5-15 shows the interrelationship between age, GCS and head only 

injuries in cases that did not survive. Most cases are related head injuries 

AIS=5, ages around 64- 98 years and GCS=3-6 or 13 to 15. Most head injuries 

with AIS=4 had GCS values 13 to 15. As result of this AIS=5 and ages 64-98 

are clearly significant factors in not survivors however with these GCS values 3 

to 6 also has a big number of cases.   

Figure  5-15 The interrelationship between GCS and head injuries in cases that did not 
survive. 

 

Figure 5-16 shows analysis in Figure 5-15 extended with inclusion of gender. 

Gender is a more significant factor in determining the probability of survival in 

older subjects. A larger number of older (aged around 80 years) males have 

head injury than females. Age can be important in determining the probability of 

survival (Sammy et al., 2016). 

Figure  5-16 The interrelationship between GCS, head injury and age in cases that did 

not survive. 
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Figure 5-17 shows the relationships between trauma mechanisms, GCS, PMC 

and head only injury in cases that did not survive. Most cases that did not 

survive were associated with falls less than 2 meters, AIS scores= 4 and 5 and 

PMC values -1 to 15.  

Figure  5-17 Relationship for GCS, PMC, injury mechanisms and head only injuries for 
cases that did not survive. 

 

Figure 5-18 shows the relationships for intubation, GCS, head and face only 

injuries, and GCS in cases that did not survive. Most cases were associated 

with intubation and head injury AIS=5, face injuries AIS=2 and GCS=3 to 9. 

 

 

 

 

 

 

 

Figure  5-18 The relationships for intubation, GCS, head and face regions, and GCS in 
cases that did not survive. 
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Table 5-2 provides a summary the interrelationships between injuries 

associated with specific body regions and factors affecting the probability of 

survival (age, PMC, GCS and gender) in cases that did not survive. Both the 

number of cases and respective percentages are included. 

 

                                      Table  5-2 Overview of injury cases. 

 

5.4 Chapter summary 

A preliminary computational analysis of a number of important factors that 

influence the probability of survival in traumas was performed. The study 

highlighted some of the complexities associated with the manner traumas affect 

the probability of survival. This analysis will be built upon in the following 

chapters to develop models to predict the probability of survival and overcome 

some limitations of the existing probability survival prediction approaches. The 

main element of these models is their knowledge base that is derived from the 

TARN trauma data. This information leads us to create trauma knowledge 

representation and coding in following chapter. There is further statistical 

analysis in Appendix A.  

 

 

  

Body Regions Total 
Age PMC GCS Gender 

>54 <55 <=0 >0 <13 >=13 Male Female 

Head  811 
745 

(91.86%) 
66 

(8.14%) 
289 

(35.64%) 
522 

(64.36%) 
402 

(49.57%) 
409 

(50.43%) 
362 

(44.64%) 
449 

(55.36%) 

Lower Limbs 347 
335 

(96.54%) 
12 

(3.46%) 
105 

(30.26%) 
242 

(69.74%) 
9 

(2.60%) 
338 

(97.40%) 
119 

(34.30%) 
228 

(65.70%) 

Thorax 194 
166 

(85.57%) 
28 

(14.43%) 
76 

(39.18%) 
118 

(60.82%) 
35 

(18.04%) 
159 

(81.96%) 
110 

(56.70%) 
84 

(43.30%) 

Head & Face 129 
103 

(79.84%) 
26 

(20.15%) 
49 

(37.98%) 
70 

(54.26%) 
64 

(49.61%) 
62 

(48.06%) 
79 

(61.24%) 
50 

(38.76%) 

Head& Thorax 
& Lower limbs 

16 
11 

(68.75%) 
5 

(31.25%) 
10 

(62.5%) 
6 

(37.5%) 
12 

(75.0%) 
4 

(25.0%) 
7 

(43.75) 
9 

(56.25%) 
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Implementation  
Enhancement of IRCC operation part and 
the combination of IRCC outcomes and 
other factors (intubation and PMC) using 

FIS 

Knowledge Acquisition  

TARN data & Domain Knowledge  

Trauma leading to 
Non-Survivors 

 

Trauma leading to 
Survivors  

 

Determining of the interrelationship between 
injury parameters and survival outcomes 

Knowledge Coding  

If- Then Statement/ Tables 

TARN Data Statistical Analysis  
 Knowledge Visualisation (E.g. Figures / Cluster 

/Graph / Tables) 
 

Knowledge Representation & Visualisation 

(Tree Decision and Visualisation& 

Transformation) 

Chapter 6 Trauma Knowledge Representation and Coding  

6.1 Overview 

In this chapter the development of the knowledge representation and coding 

methods are described. Traumatic brain injury (TBI) is the focus of this 

investigation. Trauma knowledge representation and coding were constructed 

based on four steps as illustrated in Figure 6-1. First is the knowledge 

representation and visualization of the TARN data and domain knowledge by 

using Tree Decision technique. This was followed by the investigation of the 

TARN data statistical analysis in order to distinguish between trauma 

characteristics that led to survivors or non-survivors with the view to obtain and 

determine interrelationship between injury factors and survival outcomes. Next 

step was the knowledge coding this was used as enhancement of IRCC 

operation part and FIS rule base that by a series of If-Then Statement.  

 

 

      

 

 

 

 

 

 

 

 

   

 

  

 
 
Figure  6-1 Planning of Knowledge representation and coding design overview. 
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6.2 Knowledge Representation and Visualisation 

It is valuable to visualise the knowledge so that the interrelationships between 

the variables are better understood. Decision trees are a means of visualising 

knowledge. A design tree for visualising parameters considered for predicting 

trauma is shown in Figure 6-2.   

      

 

 

 

 

 

 

 

 

 

 

 

 

 

                     Figure  6-2 Decision tree for the trauma assessment system. 

 

In this figure trauma assessment system is divided into three types. One is 

anatomy and has 9 AIS conformed body regions as described in (AAAM 2005, 

updating 2008). Physiological factors are (GCS, PR, SBP and RR) and every 

parameter has scores or ranges that are determined by medical experts. (The 

Royal Children’s Hospital Melbourne, 2018; Andersen et al., 2016; Iain 

Wheatley 2018; Verdecchia et al., 2009).  Finally, other factors are Gender, 

Age, Intubation and PMC.  
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6.3 Description of Data Used as Input to the Models for Predicting 

Probability of Survival 

6.3.1 Overview  

In this section the TARN data used as input to the models to predict probability 

of survival are described. The data were considered in three stages: (a) 

surviving cases and non survivors, (b) dividing the available cases into 

calibration and test sets, identification of relevant trauma parameters.  

In this section trauma brain injuries (TBI) is chosen to be investigated as it was 

the main injury type in the dataset resulting in death. Table 6-1 provides the 

details of these cases consisting of their age, sec and numbers. 

 
             Table  6-1 Information summary for adult TBI cases (total 4124). 

Gender Age (Years) Injury Outcomes 

Male Female Mean Standard Deviation Survivors  Not survivors 

2488 (60.3%) 1636 (39.7%) 67.9 21.6 3553 (86.2%) 571 (13.8%) 

     

The calibration data set contained approximately 2/3 of the cases (number = 

2676) and the validation data set contained the remaining 1/3 subjects (number 

= 1448) Figure 6-3 shows details of the subjects' age. Figure 6-3a shows their 

age boxplots divided to survivors and non-survivors. The median of age (83.7 

years) for no survivors is higher than survivors (71.6 years). Figure 6.3b shows 

the age distribution of all subjects. Figures 6-3c, d show the age distributions for 

survivors and non-survivors respectively.   
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Figure  6-3 (a) shows the boxplots for the subjects' age divided into survivors  and not 
survivors. (b) Shows the age distribution of all subjects, (c) the subjects included in the 
calibration and (d) those in the validation set. 
 

Figures 6-4 a and 6-4 b show the age distributions of the subjects  included in 

the validation set separated into survivors and not survivors respectively. 

 
 

         (a)           (b) 

Figure  6-4 (a) Age distributions of the subjects in the validation set for (a) survivors and 
(b) not survivors. 

 

 
(a) 

   

(b) (c) (d) 
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A summary statistics for subject's age included in the validation set is provided 

in Table 6-2. 

Table  6-2 Age (in years) statistical summary for subjects in the validation set. 

Parameter 
All Subjects Survivors Not Survivors 

1448 1224 224 

Mean 68.2 66.0 80.3 

Median 75.1 71.6 83.7 

Mode 87.5 87.5 85.7 

Standard deviation 21.2 21.7 13.6 

Variance 450.7 469.5 176.1 

Range 86.2 86.2 77.2 

Minimum 17.0 17.0 21.8 

Maximum 103.2 103.2 99.0 

 

6.3.2 Analysis of Trauma Parameters    

The trauma parameters used as input to the developed models are analysed in 

this section. The parameters were AIS, GCS, pulse (heart) rate, respiratory rate 

and systolic blood pressure.  In some analysis (described in later sections) the 

actual values of these parameters were not used. Instead their severities were 

used as input.   The association of the actual values to their severities are 

provided in Table 6-3. (The Royal Children’s Hospital Melbourne 2018; 

Andersen et al., 2016; Iain Wheatley 2018; Verdecchia et al., 2009). This  

categorization allocated the actual values of these parameters into predefined 

groupings, i.e., normal, abnormal mild, moderate severe. The reason for this 

operation was that the inter-class variations within the measured variables could 

be reduced and the results could be interpreted more specifically into severity 

types. However, the disadvantage of this categorization is that actual readings 

are replaced by their category types. 

 

Table  6-3 Categorization of Glasgow coma score (GCS), pulse rate (PR, beats per 
minute, bpm), respiratory rate (RR, breaths per minute, bpm) and systolic blood 
pressure. 
 

 

 

 

 

 

Measures Range Category 

GCS 

Score 13–15 3 (Mild) 

Score 9–12 2 (Moderate) 

Score 3–8 1 (Severe) 

Pulse rate 60–100 bpm Normal = 2 Abnormal = 1 

Respiratory rate 12–20 bpm Normal = 2 Abnormal = 1 

Systolic blood pressure 90–140 mmHg Normal = 2 Abnormal = 1 
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Table 6-4 provides an analysis of the relationship between trauma parameters 

(categorized according to Table 6-3) and the percentage survivors (number 

1224 cases) and not survivors (number 224 cases) in the validation set. 

Considering the not survivors, 77.2% had AIS = 5, 37.1% were categorized as 

GCS =37.1 severe, 30.8% categorized as abnormal pulse rate, 26.8% were 

categorized as abnormal respiration rate and 71.4% were categorized as 

abnormal systolic blood pressure. 

  

Table  6-4 Analysis of injury parameters in relation to cases that survived and those that 
had not survived. 

Parameters Injury Grade 
All Subjects Survivors Not Survivors  

1448 1224 224 

AIS 

2 12 (0.8%) 12 (1.0%) 0 (0.0%) 

3 159 (11.0%) 154 (12.6%) 5 (2.2%) 

4 597 (41.2%) 551 (45.0%) 46 (20.5%) 

5 680 (47.0%) 507 (41.4%) 173 (77.2%) 

GCS (categorized) 

1 (Severe) 147 (10.2%) 64 (5.2%) 83 (37.1%) 

2 (Moderate) 133 (9.2%) 98 (8.0%) 35 (15.6%) 

3 (Mild) 1168 (80.7%) 1062 (86.8%) 106 (47.3%) 

PR (categorized) 
1 (Abnormal) 338 (23.3%) 269 (22.0%) 69 (30.8%) 

2 (Normal) 1110 (76.7%)   955 (78.0%) 155 (69.2%) 

RR (categorized) 
1 (Abnormal) 236 (16.3%) 176 (14.4%) 60 (26.8%) 

2 (Normal) 1212 (83.7%) 1048 (85.6%) 164 (73.2%) 

SBP (categorized) 
1 (Abnormal) 762 (52.6%) 602 (49.2%) 160 (71.4%) 

2 (Normal) 686 (47.4%) 622 (50.8%) 64 (28.6%) 

Table 6-5 provides the mean and standard deviation of AIS and categorized 

GCS, pulse rate (PR), respiratory rate (RR) and systolic blood pressure (SBP) 

for not surviving cases included in the validation set. The results from this table 

confirm the conclusion derived from Table 6-5 with regard to the particular 

significance of GCS, AIS and SBP. The mean (categorized) systolic blood 

pressure is close to the abnormal value while the mean GCS is close to 

moderate severity and AIS represent high injury severity. 

 

Table  6-5 The mean and standard deviation of AIS and categorized Glasgow Comas 
Score GCS, PR, RR and SBP  for not surviving cases included in the validation set. 

Parameters Mean Standard Deviation 

AIS 4.75 0.48 

GCS (categorized) 2.10 0.92 

PR (categorized) 1.69 0.46 

RR (categorized) 1.73 0.44 

SBP (categorized) 1.29 0.45 
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Figure 6-5 shows the interrelationship between AIS and categorized SBP 

(Figure 6-5a) and GCS and categorized SBP for not survivors included in the 

validation set. The figure indicates that great majority of cases with AIS = 5 had 

abnormal SBP. The relationship between GCS and systolic blood pressure is 

not as well defined as that for AIS and systolic blood pressure but it is seen that 

1 abnormal in SBP is more associated with three levels in GCS. 

  

(a) (b) 

Figure  6-5 Relationship between (a) AIS and systolic blood pressure; (b) GCS and 
systolic blood pressure for not survivor's  that were included in the validation set. Blue 
= abnormal category, Green = normal category. 
 

6.3.3 Relationship between TBI AIS Code and GCS, SBP, RR, RP, Gender 

and Age for Enhancing IRCC Operation. 

To establish the inter-relationships between AIS and GCS, SBP, RR and RP, 

the clustering information shown in Figure 6-6 was plotted. It showed the 

highest number of cases (total) 186 were associated with PR=2 (normal), RR 

=2(normal), SBP=1(abnormal), AIS=4 and GCS=3. 
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Figure  6-6 The inter-relationships between pulse rate, systolic blood pressure, GCS, 
AIS, and respiration rate. The values next to the circles indicate the number of 
associated cases. Larger values are highlighted by darker circles. Subjects are from 
the validation data set. 
 

 

 

 

 

 

 

 
 
 
Figure  6-7 Inter-relations of trauma parameters separated into (a) survivors and (b) not 
survivors. 
 

Figure 6-7 b shows the inter-relationships between pulse rate, systolic blood 

pressure, GCS, AIS, and respiration rate information for not survivors included in 

the validation set. A large cluster of cases appears for AIS = 5, GCS = 1 

(categorized as severe injury) and systolic pressure = 1 (categorized abnormal). 
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Table  6-6 Analysis of injury patterns TBI included in the validation set (the patterns with 
relatively small number of cases are not shown). An x in the trauma parameter columns 
indicates abnormal or severe categorization for the related parameter. 

 

No. In
ju

ry
 

S
ce

n
ar

io
s 

A
ll

 c
as

es
 

(F
ig

u
re

 6
.7

) 

Survivors Not  survivors 

Trauma Parameter 

number of 

cases 

(Figure 6.8a) 

A
g

e
 

M
ean

 

Gender 
Number of 

cases 

(Figure 6.8b) 

A
g

e 

M
ean

 

Gender 

M F 
M F PR RR SBP AIS GCS 

1 X22143 186 172 (92.4%) 76 90 82 14 (7.4%) 89 8 6   x x  

2 X22253 181 169 (93.3%) 63 121 48 12 (6.6%) 75 10 2    x  

3 X22243 174 167 (95.9%) 63 101 66 7 (4.1%) 87 4 3    x  

4 X22153 165 134 (81.2%) 70 87 47 31 (18.7%) 83 15 16   x x  

5 X22233 53 53 (100.0%) 61 33 20 0 (0.0%) / / /    x  

6 X12143 53 47 (88.6%) 69 29 18 6 (11.3%) 81 3 3 x  x x  

7 X12153 47 40 (85.1%) 73 31 9 7 (14.8%) 86 6 1 x  x x  

8 X22133 42 41(97.6%) 72 21 20 1(2.3%) 79 1 0   x x  

9 X12243 42 37 (88.1%) 64 19 18 5 (11.9%) 89 4 1 x   x  

10 X12253 35 31 (88.5%) 58 24 7 4 (11.4%) 85 1 3 x   x  

11 X22152 32 17 (53.1%) 66 12 5 15(46.8%) 80 10 5   x x x 

12 X22151 30 6 (20.0%) 62 6 0 24 (80.0%) 76 10 14   x x x 

13 X21143 27 26 (96.2%) 74 12 15 1 (3.7%) 37 1 0  x x x  

14 X21243 23 23 (100.0%) 62 15 8 0 (0.0%) / / /  x  x  

15 X21153 23 18 (78.2%) 72 10 8 5 (21.7%) 80 4 1  x x x  

16 X22251 23 14 (60.8%) 46 11 3 9 (39.1%) 68 3 6    x x 

17 X21151 20 1 (5.0%) 67 1 0 19 (95.0%) 80 11 8  x x x x 

18 X21253 19 17 (89.4%) 65 10 7 2 (10.5%) 88 1 1  x  x  

19 X12233 16 14(87.5%) 47 7 7 2(12.5%) 79 1 1 x   x  

20 X12151 13 5(38.46%) 54 3 2 8(61.5%) 82 5 3 x  x x x 

21 X21133 13 13(100.0%) 67 7 6 0(0.0%) / / /  x x x  

22 X11151 12 1(8.3%) 67 1 0 11(91.4%) 73 7 4 x x x x x 

23 X12252 12 8(66.6%) 53 4 4 4(33.4%) 80 2 2 x   x x 

24 X22242 12 10(83.4%) 42 7 3 2(16.6%) 73 0 2    x x 

25 X22142 11 10(90.9%) 60 7 3 1(9.0%) 80 1 0   x x x 

26 X11243 11 11(100.0%) 74 7 3 0(00.0%) / / / x x  x  

27 X12152 10 8(80.0%) 68 5 3 2(20.0%) 77 1 1 x  x x x 

28 X22252 10 7(70.0%) 49 6 1 3(30.0%) 86 2 1    x x 

29 X11143 10 8(80.0%) 75 5 3 2(20.0%) 87 1 1 x x x x  

30 X12133 10 9(90.0%) 61 6 3 1(10.0%) 83 1 0 x  x x  

31 X11153 9 5(55.5%) 69 4 1 4(44.4%) 83 3 1 x x x x  

32 X12251 8 4(50.0%) 63 3 1 4(50.0%) 66 1 3 x   x x 

33 X21152 8 5(62.5%) 74 3 2 3(37.5%) 85 3 0  x x x x 

Total & 

Percentages 
1340 1131 63.56 708 423 209 79.21 120 89 

  
 

 

Note: Xabcde: The subscript “a” represents pulse rate (categorized as 1 abnormal, 2 normal), “b” 

represents respiration rate (categorized as 1 abnormal, 2 normal), “c” represents systolic blood 

pressure (categorized as 1 abnormal, 2 normal), “d” represents AIS and “e” represents GCS (1: 

severe, 2: moderate and 3: mild). 

 
Table 6-7 shows three colours in the trauma parameters column. Red represents 

AIS=5 (critical) or GCS=3 (severe), or abnormal in other parameters. Yellow 

represents AIS=4 (severe) or GCS=2 (moderate).  Green represents AIS=3 

(serious).  Using the information from the table, the trauma cases with highest 

occurrence and their associated trauma parameters can be identified for both 

survivors and not survivors. 
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Table  6-7 Trauma scenarios and their associated trauma parameters for survivors. 

 

No. 

Scenarios' 

Numbers in 

Table 6.6 

Injury 

Scenarios 

Number of  

All Cases 

That 

(Figure 6.7) 

survivors 
Trauma Parameter 

Number of 

cases 

(Figure 6.8a) 

Age 

Mean 

(years) 

Gender 

M F RR PR SBP AIS GCS 

1 5 X22233 53 53 (100.0%) 61 33 20    x  

2 14 X21243 23 23 (100.0%) 62 15 8 x   x  

3 21 X21133 13 13(100.0%) 67 7 6 x  x x  

4 26 X11243 11 11(100.0%) 74 7 3 x x  x  

5 8 X22133 42 41(97.6%) 72 21 20   x x  

6 13 X21143 27 26 (96.2%) 74 12 15 x  x x  

7 3 X22243 174 167 (95.9%) 63 101 66    x  

8 2 X22253 181 169 (93.3%) 63 121 48    x  

9 1 X22143 186 172 (92.4%) 76 90 82   x x  

10 25 X22142 11 10(90.9%) 60 7 3   x x x 

11 30 X12133 10 9(90.0%) 61 6 3  x x x  

12 18 X21253 19 17 (89.4%) 65 10 7 x   x  

13 6 X12143 53 47 (88.6%) 69 29 18  x x x  

14 10 X12253 35 31 (88.5%) 58 24 7  x  x  

15 9 X12243 42 37 (88.1%) 64 19 18  x  x  

16 19 X12233 16 14(87.5%) 47 7 7  x  x  

17 7 X12153 47 40 (85.1%) 73 31 9  x x x  

18 24 X22242 12 10(83.4%) 42 7 3    x x 

19 4 X22153 165 134 (81.2%) 70 87 47   x x  

20 27 X12152 10 8(80.0%) 68 5 3  x x x x 

21 29 X11143 10 8(80.0%) 75 5 3 x x x x  

22 15 X21153 23 18 (78.2%) 72 10 8 x  x x  

23 28 X22252 10 7(70.0%) 49 6 1    x x 

24 23 X12252 12 8(66.6%) 53 4 4  x  x x 

 1185 493 66.7 
664 

(90.7%) 

409 

(90.6%) 

 
 

 
Table 6-7 presents 24 main scenarios for the survivors. The table is divided 

into three parts based on percentages of the trauma cases. The first 7 

scenarios are above 95% of cases.  It can be seen that in these 7 scenarios 

AIS <=4 and GCS is =3 (Mild). Therefore it is concluded    that when AIS <=4 

and GCS =3 then patients had more likelihood of survival even other factors 

were not normal. The second part is form scenarios number 8 to 19. It is noted 

that there is not any scenario with AIS=5 and GCS is 1. AIS=5 is repeated only 

five times. The majority of these scenarios had AIS=5 and GCS = 2 or AIS=5 

and SBP= abnormal. These results indicate that when AIS <5, GCS =3 and 

SBP is normal then there is a higher likelihood of survival. This information is 

used in later section for knowledge coding.  
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  Table  6-8 Nine significant scenarios from Table 6-6 related to not survivors. 

 

 

No 

Scenarios' 

Numbers in 

Table 6.6 

Injury 

Scenarios 

Number of  

All Cases 

That 

(Figure 6.7) 

Not  survivors 
Trauma Parameter 

Number of 

cases 

(Figure 6.8b) 

Age 

Mean 

Gender 

M F RR PR SBP AIS GCS 

1 17 X21151 20 19 (95.0%) 80 11 8 x  x x x 

2 22 X11151 12 11(91.4%) 73 7 4 x x x x x 

3 12 X22151 30 24 (80.0%) 76 10 14   x x x 

4 20 X12151 13 8(61.5%) 82 5 3  x x x x 

5 23 X12251 8 4(50.0%) 66 1 3  x  x x 

6 11 X22152 32 15(46.8%) 80 10 5   x x x 

7 31 X11153 9 4(44.4%) 83 3 1 x x x x  

8 16 X22251 23 9 (39.1%) 68 3 6    x x 

9 32 X21152 8 3(37.5%) 85 3 0 x  x x x 

 155 97 77.0 
53 

(51.9%) 

44 

(54.3%) 
 

       

Table 6-8 shows the highest percentages of scenarios of not survivors. The 

first four scenarios are greater than 50% of the overall cases.  They have 

AIS=5, GCS=1 (severe) and SBP=1 (abnormal). Likewise, RR is abnormal 

in two first scenarios. All scenarios in this table have AIS = 5 and they are 

also associated with severe or moderate values for GCS and abnormal 

values for SBP. The average age of the subjects is 77.0 years. In terms of 

Gender, female cases are 54.3% while male cases are 51.9%. This 

information is also used in later section for knowledge coding.  

 

6.3.4 Investigation of the Relationships between AIS and Intubation and 

PMC for FIS 

There were 16589 trauma cases with PMC consisting of which14844 were 

survivors and 1745 were not survivors. Table 6-9 shows the PMCs and the 

number of cases involved for all body regions. The PMC cases that result in a 

relatively larger number of deaths are highlighted as pink in Table 6-9. These 

four PMCs with TBI were chosen for further investigations.  Figure 6-8 shows 

the interrelationships between those four PMCs, AIS, GCS and average age for 

not survivors. The average of GCS and AIS scores are highlighted as red in 

Figure 6-8. 

 

 

 



69 
 

Age Mean 82.5 

Age Mean 87.0 

Age Mean 80.0 

Age Mean 80.6 

AIS 

G
C

S
 

                               Table  6-9 PMC information for the cases studied.  

 

 

 

Figure  6-8 The interrelationships between PMC, AIS, GCS and average age for TBI not 
survivors. 

 

No. PMC 
Number of all 

cases 

Number and  
percentage of 

survivors 
 

Number and  
percentage of not 

survivors 
 

1 Hypertension 3464 
3088 

(89.1%) 
376 

(10.9%) 

2 
Diabetes mellitus (Type 2 / noninsulin 

dependent) 
1584 

1393 
(87.9%) 

191 
(12.1%) 

3 Alcohol abuse 991 
915 

(92.3%) 
76 

(7.7%) 

4 Thyroid disease 750 
680 

(90.7%) 
70 

(9.3%) 

5 Dementia 649 
551 

(84.9%) 
98 

(15.1%) 

6 COPD 630 
558 

(88.6%) 
72 

(11.4%) 

7 Hypercholesterolaemia 587 
527 

(89.8%) 
60 

(10.2%) 

8 Depression 582 
549 

(94.3%) 
33 

(5.7%) 

9 
Diabetes mellitus (Type 1 / insulin 

dependent) 
555 

496 
(89.4%) 

59 
(10.6%) 

10 Stroke/CVA/TIA 487 
420 

(86.2%) 
67 

(13.8%) 

11 Asthma 486 
451 

(92.8%) 
35 

(7.2%) 

12 Other Heart disease 448 
404 

(90.2%) 
44 

(9.8%) 

13 Other 366 
327 

(89.3%) 
39 

(10.7%) 

14 Crohn's disease/Colitis/Diverticular 308 
280 

(90.9%) 
28 

(9.1%) 

15 Osteoarthritis 274 
257 

(93.8%) 
17 

(6.2%) 

16 Epilepsy 255 
237 

(92.9%) 
18 

(7.1%) 

 
 12416 

11133 
(89.6%) 

1283 
(10.3%) 
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In terms of average values (red circles) for GCS and AIS scores that were 

associated with Cerebrovascular Accident/Transient Ischemic Attack (stroke/ 

CVA/TIA),  PMC is about 2.2 for GCS,  4.5 for AIS and age is 82.5 years. 

Whereas, Chronic Obstructive Pulmonary Disease (COPD) PMC relates to 

mean age of 80.0 years, about 2.8 for GCS and 4.4 for AIS code. This 

information is used in later part for knowledge coding. The number of trauma 

cases with intubations for survivors and not survivors are provided in Table 6-

10. The number of cases with intubation for survivors and not survivors are 

1511 and 755 respectively. 

  

                 Table  6-10 Number of cases with intubation and their mean age. 

Trauma cases with 
Intubation 

Number of cases 

Mean Age 

(years) 

 

Survivors 1511 45.8 

Not survivors 775 58.3 

 

Figure 6-9 shows the interrelations between AIS, GCS and intubation.  This 

indicate intubation factor is more pronounce for AIS scores 4 and 5 and GCS=1.   

        Figure  6-9 Interrelationships between AIS, GCS and intubation. 

 

AIS 
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6.4 Knowledge Coding  

In this section, knowledge coding is described. The coding is used as part of 

IRCC method to improve its performance for predicting probability of survival 

and FIS rules base. Firstly, knowledge coding incorporating TBI AIS code, GCS, 

RP, RR, SBP, Age and Gender for enhancement IRCC operation. 

The knowledge coding is an extension of IRCC operation to further improve 

their predication accuracy. Table 6-11 indicates the IF-THEN rules for survivors 

developed as part of this knowledge coding. These rules were derived from the 

information provided in Table 6-7. 

Table  6-11 IF-THEN rules for survivors derived from the information provided in Table 
6.7 

 

A number of scenarios were combined in Table 6-11 because of their 

associations and to reduce the number of rules.  

The knowledge base coded as IF-THEN Statement for not survivors are 

provided in Table 6-12. These were derived from Table 6-8. 

 

Injury 
Scenarios 
Based on  
Table 6-7 

If-Then Statement 
  

X22233 
X21243 
X21133 
X11243 
X22133 
X21143 
X22243 

1) If (AIS>=4, GCS = 3 and   Age <  73) Then P=98% 

 

X22253 2) If (AIS =5 and  Age <  73) Then P=93% 

X22143 3) If (AIS =4, SBP=1 and  Age <  73) Then P=92% 

X22142 
X22242 

4) If (AIS =4, GCS=2, SBP=1 and  Age <  73) Then P=87% 

X12133 5) If (AIS =3, SBP=1, PR=1 and  Age <  73) Then P=90% 

X21253 6) If (AIS =5, RR=1 and  Age <  73) Then P=89% 

X12143 7) If (AIS =4, SBP=1, RR=1 and  Age <  73) Then P=88% 

X12253 
X12243 

8) If (AIS =5, 4, RR=1 and  Age <  73) Then P=88% 

X12153 
X22153 

9) If (AIS =5, SBP=1, RR=1 and  Age <  73) Then P=84% 

X12152 10) If (AIS =5, GCS=2, SBP =1, RR=1  Age <  73) Then P=80% 

X11143 11) If (AIS =4, SBP =1, PR =1, RR=1 and  Age <  73) Then P=80% 

X21153 12) If (AIS =5, SBP =1, PR =1 and  Age <  73) Then P=78% 

X22252 13) If (AIS =5, GCS =2,  Age <  73) Then P=70% 

X12252 14) If (AIS =5, GCS =2, RR =1 and  Age <  73) Then P=66% 
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Table  6-12 IF-THEN rules for not survivors derived from the information provided in 

Table 6-8 

Injury 
Scenarios 
Based on  
Table 6-8 

If-Then Statement 
 

X21151 

X11151 

1) If (AIS=5, GCS=1, SBP=1, PR=1, RR=1, Age >=73,PR=1 and Gender= female) Then P= -

93% 

2) If (AIS=5, GCS=1, SBP=1, PR=1,  RR=1, Age >=73, PR=1 and Gender= male) Then P=-

90% 

X22151 

X12151 

3) If (AIS=5, GCS=1, SBP=1, PR=1 , Age >=73 and Gender= female) Then P=-70% 

4) If (AIS=5, GCS=1, SBP=1, PR=1, , Age >=73 and Gender= male) Then P=-67%  

X12251 
5) If (AIS=5, GCS=1, PR=1, Age >=73 and Gender= female) P=-50% 

6) If (AIS=5, GCS=1, PR =1,  Age >=73 and Gender= male) P=-48% 

X22152 
7) If (AIS=5, GCS=2, SBP =1 , Age >=73 and Gender= female) Then P=-46% 

8) If (AIS=5, GCS=2, SBP =1, Age >=73 and Gender= male) Then P=-44% 

X11153 
9) If (AIS=5, SBP=1, RR =1, PR=1, Age >=73  and Gender= female) Then P=-44% 

10) If (AIS=5, SBP=1, RR =1, PR=1, Age >=73 and Gender= male) Then P=-42% 

X22251 
11) If (AIS=5, GCS=1 and Age >=73 and Gender= female) Then P=-39% 

12) If (AIS=5, GCS=1 and Age >=73  and Gender= male) Then P=-36% 

X21152 
13) If (AIS=5, GCS=2, SBP=1, RR=1 and Age >=73 and Gender= female) Then PS%=-37 

14) If (AIS=5, GCS=2, SBP=1, RR=1 and Age >=73 and Gender= male) Then PS%=-34 

 

Secondly, knowledge coding associated with PMC and Intubation for integration 

of IRCC with FIS. Table 6 6-13 shows the knowledge coding associated with 

intubation and PMC. These were derived from Tables 6-9 and 6-10 and Figures 

6-8 and 6-9.  

 

                          Table  6-13 knowledge coding associated with intubation and PMC 

No. PMC 

PMC 
If statement based 
on Table 6-9 and 

Fig 6-8  

Intubation=yes 
If statement based on Table 6-

10 and Fig 6-9 

PMC and Intubation  
combining weights 

 

1 
 

Stroke/CVA/TIA 

 
If AIS>=4, 

GCS<=12  and 
Age>=82 Then 

x=0.13 

 
 
 

If AIS>=4, GCS<=9 and 

Age>=70 

then x= 0.805 

2 Dementia 

If AIS>=4, 
GCS<=12  and 
Age>=87 Then 

x=0.15 

If AIS>=4, GCS<=9 and 

Age>=72 then x= 0.825 

3 

Diabetes 
mellitus (Type 2 

/ noninsulin 
dependent) 

If AIS>=4 and 
Age>=80 

Then x=0.12 

If AIS>=4, GCS<=9 and 

Age>=69 

then x= 0.795 

4 COPD 
If AIS>=4 and 

Age>=80 
Then x=0.11 

If AIS>=4, GCS<=9 and 

Age>=69 

then x= 0.785 

If AIS>=4, 

GCS<=6 and 

Age>=58 Then 

x= 0.677 
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6.5 Integration of IRCC with FIS  

Integration of IRCC with FIS required deciding on the type and number of 

membership functions and determining the extent of the overlap between them. 

These are explained in the next section.      

6.5.1 FIS Development for incorporation to IRCC   

The method developing the fuzzy inference system that accommodated the 

rules for PMC and intubation is explained in this section. This FIS was 

combined with the IRCC to improve the accuracy of predicting probability of 

survival.  

Gaussian 2 membership function used to fuzzify the inputs and defuzzify the 

output. This type of membership function provided flexibility to represent the 

inputs and output. It is a smooth curve derived from two Gaussian membership 

functions (Zheng et al,. 2011). 

To aggregate the rules, each rule was applied to the corresponding 

membership function and the minimum of the membership function was 

mapped into associated output membership function. The output fuzzy set from 

the implication process for each rule was combined together via the aggregation 

process to produce the output fuzzy set. The FIS output was obtained from the 

aggregation of the output fuzzy set using the centroid scheme. The centroid 

method returns the centre of area under the curve of the aggregated output 

values using equation (Al-Sbou et al, 2006) (6.1). 

                                               
 


m

i ii

m

i i
yY

11
/ 

                                                        
6-1 

where m is the number of fuzzy sets obtained after implication,    is the centroid 

of fuzzy region i, and    is the output membership value. 

There were 5 membership functions for input to the FIS. These were labelled as 

categories 1-5. In order to determine the boundary between them, the IRCC 

results were plotted as shown in Figure 6-10. The boundaries were then 

decided by determining the maximum and minimum points on the plot. The 

membership functions are shown in Figure 6-11. 
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                             Figure  6-10 Demonstration of IRCC outcomes. 

                       Figure  6-11 IRCC outcomes input membership functions. 

 

Figure 6-12 shows input membership functions associated with intubation and 

PMC and intubation. They are 4 membership functions representing both PMC 

and intubation, intubation only, unspecified and PMC only based on Table 6-13. 

Unspecified refers to cases with related information were not available.   

                    Figure  6-12 Membership functions for intubation and PMC. 
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Table 6-14 shows the approach used to integrate IRCC output with PMC and 

intubation to obtain the FIS output. This information was then used to obtain the 

associated FIS output membership functions shown in Figure 6-13.       

Table  6-14: Setting up of the FIS rules for PMC and intubation for associated with 

IRCC output. 

 
No 

Rules to combine IRCC output with 
PMC and intubation 

System output function  

Level1 Level2 Level3 Level4 Level5 

1 IRCC is Category1 &  Contributing  
factors  is Both 

√     

2 IRCC is  Category1 &  Contributing  
factors  is  Intubation 

√ 
    

3 IRCC is  Category1 &  Contributing  
factors  is  PMC 

√     

4 IRCC is   Category 2 &  Contributing  
factors  is  Both 

√     

5 IRCC is   Category 2 &  Contributing  
factors  is  Intubation 

√ 
    

6 IRCC is   Category 2&  Contributing  
factors  is  PMC 

√     

7 IRCC is    Category 3 &  Contributing  
factors  is  Both 

√     

8 IRCC is    Category 3 &  Contributing  
factors  is  Intubation 

 
√    

9 IRCC is    Category 3 &  Contributing  
factors  is PMC 

 √    

10 IRCC is     Category 4 &  Contributing  
factors  is  Both 

√     

11 IRCC is     Category 4 &  Contributing  
factors  is  Intubation 

 √    

12 IRCC is     Category 4 &  Contributing  
factors  is PMC 

  √   

13 IRCC is      Category 5 &  Contributing  
factors  is  Both 

 √    

14 IRCC is      Category 5&  Contributing  
factors  is  Intubation 

  √   

15 IRCC is      Category 5 &  Contributing  
factors  is PMC 

   √  

 

Figure 6-13 shows FIS output membership functions it has five levels based on Table 

6.14.    

                             Figure  6-13 FIS output membership functions. 
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6.6 Chapter summary 

Results of the analyzing the trauma parameters used as input to the models for 

predicting the probability of survival was provided in this chapter.  

These results indicated that AIS, GCS, systolic blood pressure and age are 

particularly sensitive for differentiating between survivors and not survivors. The 

procedure for developing the FIS rules, the FIS membership functions and the 

manner the IRCC output was integrated with the FIS are also explained in this 

chapter.             
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Chapter 7 Probability of Survival Estimation Methods 

7.1 Introduction 

In this chapter the operations and the results for the three methods (PSD, IRCC 

and combing IRCC with FL) for determining probability of survival are explained 

and their merits and limitations are analyzed against the exiting Ps14 method. 

The study mainly evaluated the performance of the methods for determining the 

probability of survival in adult subjects with traumatic brain injuries as TBI 

represented most trauma cases. A number of other body regions were also 

included in the analyses but the numbers associated with them were much 

smaller. In this chapter two probabilities of survival models were developed. 

One was based on Bayesian statistics that accommodated PSD and the other 

was a novel approach called IRCC. There were 4124 TBI cases (age: mean = 

67.9 years, standard deviation = 21.6 years). In total, 86.2% of cases were 

survivors and 13.8% of cases were not survivors. The parameters considered 

for input to PSD and IRCC were age, AIS, GCS, PR, SBP and RR. PSD was 

used as the statistical method while IRCC is an iterative method.  These two 

models were calibrated on randomly selected, roughly 2/3 (number 2676), of 

the trauma cases and their performances were validated on the remaining 

cases (number 1448, i.e. validation dataset). The effectiveness of the two 

models in determining the probability of survival was compared with Ps14 

method that uses regression operation to predict probability of survival Ps14 is 

the method developed by the Trauma and Research Audit Network. Fuzzy 

inference system was further adopted as part of IRCC to further improve its 

operation.   

7.2 PSD Model 

PSD required the prior probability for not survivors to be specified as part of its 

operation (prior probability for survival = 1- prior probability for not survival). To 

determine the most suitable value for this prior probability, prior probability 

values between 0 and 1 were experimented and for each value the percentage 

correct identifications for the survivors and not survivors for the calibration 

(training) dataset were determined. Figure 7-1 shows the plot of these results. 

The plots indicated that the highest identification accuracy was for prior 
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probability equal to 0.27 and this value was chosen for the rest of the analysis 

(only a section centered on 0.27 is shown in the figure). 

 

 

Figure  7-1 The relationship between the prior probability of not survivors and the 
associated percentage correct identification for the survivors (blue plot) and not 
survivors (red plot).  

 

Figure 7-2 shows the interrelationships between pulse rate, systolic blood 

pressure, GCS, AIS, and respiration rate information for non-surviving cases 

included in the validation set. A large cluster of cases appears for AIS = 5, GCS = 

1 (categorized as severe injury) and systolic pressure = 1 (categorized abnormal). 

 
Figure  7-2 The interrelationships between injury parameters for non-surviving cases.  

 

The values next to the circles indicate the number of associated cases. Larger 

values are highlighted by darker circles. Subjects are from the validation data set.  

 

Figure 7-3 shows the identification results using Ps14 for not survivors included in 

the validation dataset. Figure 7.3a is for those correctly identified and Figure 7.3b is 
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for cases misidentified. A large proportion of correctly identified cases are 

associated with AIS = 5, GCS = 1 (categorized as severe injury) and a large 

proportion of misidentified cases are associated with AIS = 5 and 4, GCS = 3 

(categorized as mild injury). 

 

  
(a) (b) 

Figure  7-3 Identification results for Ps14 for non-surviving cases in the validation 
dataset: (a) correctly identified cases (b) misidentified cases. The values next to the 
circles indicate the number of associated cases. 

 

Figure 7-4 shows the identification results obtained using PSD for not survivors 

included in the validation dataset. Figure 7-4a is for those correctly identified and 

Figure 7-4b is for those misidentified. Results consistent to those from Ps14 are 

observed where a larger proportion of correctly identified cases are associated with 

AIS = 4 and 5, GCS = 1 and 2 (categorized as severe and moderate injury) and a 

large proportion of misidentified cases are associated with AIS = 5, GCS = 3 

(categorized as mild injury). 

 

Table 7.1 provides an analysis of injury patterns and performance of PSD and 

Ps14 in identifying non-surviving cases included validation dataset. An X in the last 

5 columns of the table indicates the associated parameter is categorized as 

abnormal, serious injury (for AIS 3 to 5) or as severe injury (for GCS). The table 

shows that in some injury patterns Ps14 has performed better than PSD and vice 

versus. For example, the injury pattern resulting with the largest number of non-

surviving cases (i.e., 31 cases, expressed as X22153) is associated with pulse rate 

= 2 (categorized as normal category), respiration rate = 2 (categorized as normal 

category), systolic blood pressure = 1 (categorized as abnormal category), AIS = 5 

(critical) and GCS = 3 (categorized as mild injury). Only one of the associated 
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cases has been correctly identified by Ps14 however 6 were correctly identified by 

PSD. There were 24 cases associated with the injury pattern X22151. For this 

injury pattern pulse rate = 2 (categorized as normal category), respiration rate = 2 

(categorized as normal category), systolic blood pressure = 1 (categorized as 

abnormal category), AIS = 5 (critical) and GCS = 1 (categorized as severe injury). 

Ps14 has performed better than PSD by correctly identifying from 21 out of 24 

cases while PSD identified 18 cases correctly. For some injury patterns the 

identification accuracy for PSD and Ps14 was 0%. An example for this is injury 

pattern X22143. This is associated with pattern pulse rate = 2 (categorized as 

normal category), respiration rate = 2 (categorized as normal category), systolic 

blood pressure = 1 (categorized as abnormal category), AIS = 4, and GCS = 3 

(categorized as mild injury). The reason why PSD and Ps14 performance differ or 

in some injury patterns they fail to identify the outcome correctly requires further 

investigation. 

 

Table 7.2 compares the results obtained using PSD and Ps14 to determine the 

probability of survival in cases included in the validation dataset. The inputs to PSD 

were AIS, GCS, age, systolic blood pressure, respiration rate and pulse rate. Ps14 

correctly identified 97.4% of survivors and 40.2% of the not survivors. However 

PSD correctly identified 90.8% of the survivors and 50.0% of not survivors. These 

results indicate the main difference between the two methods relates to their 

abilities to identify the not survivors. 

Figures 7-5 a, b provide a further analysis of the results in Table 7-2. The figures 

indicate the number of survivors and not -survivors correctly identified by Ps14 and 

PSD and the overlap in the number of cases correctly identified by both methods. 

The results in Table 7-2 are taken further by considering the effect of age on the 

performance of PSD and Ps14. The cases included in the validation that did not 

survive were divided into two groups (i) those aged between 17 years and 65 years 

and (ii) those aged above 65 years. Age 65 was considered as the boundary as 

criteria for immediate CT scan of the head in adults with traumatic brain injury 

include age more than 65 years and some loss of consciousness or amnesia since 

the injury (Moppett   2007). In the Canadian CT Head-Rules traumatic head injury 

patients aged 65 are classed as high risk that warrant a CT of the head (Janich et 

al., 2016). The results obtained are shown in Table 7-3. PSD has higher 

identification accuracy for both age groups as compared with Ps14. Comparing the 
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identification results for the two age groups; the performance of both models is 

influenced by the considered age ranges. Ps14 has been more accurate for cases 

aged above 65 years than those between 17–65 years. PSD on the other hand 

has been much more accurate for cases aged 17–65 years as compared with 

those aged over 65 years. 

 

  
(a) (b) 

Figure 7-4. Identification results for PSD for not survivors included in the validation 
dataset. (a) Correctly identified cases (b) misidentified cases. The values next to the 
circles indicate the number of associated cases. 
 

Table  7-1 Analysis of injury patterns for not survivors included in the validation set (the 

patterns with relatively small number of cases are not shown). An x in the trauma 

parameter columns indicates abnormal or severe categorization for the related 

parameter. 

Injury 

Scenarios 

Number of Cases 

That Did Not 

Survive  

(Figure 7-2) 

Number of Cases 

Correctly Identified 

by Ps14  

(Figure 7-3a) 

Number of Cases 

Correctly Identified 

by PSD  

(Figure 7-4a) 

Trauma Parameter 

PR RR SBP AIS GCS 

X22153 31 1 (3.2%) 6 (19.4%)   x x  

X22151 24 21 (87.5%) 18 (75.0%)   x x x 

X21151 19 17 (89.5%) 18 (94.7%)   x x x 

X22152 15 9 (60.0%) 7 (46.7%)   x x x 

X22143 14 0 (0.0%) 0 (0.0%)   x x  

X22253 12 2 (16.7%) 0 (0.0%)    x  

X11151 11 8 (72.7%) 10 (90.9%) x x x x x 

X22251 9 8 (88.9%) 4 (44.4%) x   x  

X12151 8 8 (100.0%) 7 (87.5%)   x x x 

X21243 7 0 (0.0%) 0 (0.0%) x   x  

X12153 7 1 (14.3%) 4 (57.1%) x  x x  

X12143 6 0 (0.0%) 0 (0.0%) x  x x  

X12243 5 0 (0.0%) 1 (20.0%) x   x  

X21153 5 0 (0.0%) 4 (80.0%)  x x x  

X11153 4 1 (25.0%) 3 (75.0%) x x x x  

X12251 4 3 (75.0%) 3 (75.0%) x   x x 

X12252 4 2 (50.0%) 3 (75.0%) x   x x 

X12253 4 0 (0.0%) 3 (75.0%) x   x  
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7.2.1 Results and Discussion of Ps14 Method and PSD Model 

Table  7-2: Comparison of PSD and Ps14 to predict probability of survival for cases in 
the validation set (when probability value was greater than or equal to 0.5, the subject 
was classed as surviving and when probability value was less than 0.5, the subject was 
classed as not surviving). 

Number of Cases Ps14 PSD 

Survived Did not survive Survived Did not survive Survived Did not survive 

1224 224 1192 (97.4%) 90 (40.2%) 
1112 

(90.8%) 
112 (50.0%) 

 

  
(a) (b) 

Figure 7-5 The number of cases in the validation set correctly identified by Ps14 and 
PSD (a) non-surviving cases; (b) surviving cases. The middle bar indicates the overlap 
in correct identification of cases by both Ps14 and PSD. 

 
Table  7-3 Performance comparison of PSD and Ps14 based on age groups for not 
surviving cases in the validation dataset. 

Total Number of TBI Cases 
Based on Age Range 

Ps14 Prediction Accuracy PSD Prediction Accuracy 

Age (Years) Age (Years) Identified Correctly Misidentified Identified Correctly  Misidentified 

17–65 ≥66 17–65 ≥66 17–65 ≥66 17–65 ≥66 17–65 ≥66 

26 198 
6 83 20 115 21 89 5 109 

(26.0%) (41.9%) (76.2%) (58.0%) (80.7%) (44.9%) (19.3%) (55.0%) 

 

In order to explore the effects of respiration rate, systolic blood pressure and pulse 

rate on the accuracy of PSD in identifying the cases included in the validation set, 

each parameter was separately excluded and PSD identification accuracy was 

determined. The results are summarized in Table 7-4. The use of GCS and AIS on 

their own sharply reduced the effectiveness of PSD, resulting in 55.1% and 31.3% 

correct identification of the survivors and not survivors respectively. Inclusion of the 

age with AIS and GCS significantly improved the PSD performance resulting in 

82.4% and 65.2% correct identification for the survivors and not survivors 

respectively. The inclusion of systolic blood pressure with age, AIS and GCS 
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resulted in 83.3% and 64.3% correct identification of survivors and not survivors 

respectively (Saleh et al., 2018). 

 

Table  7-4 Illustration of the effect of age, PR, SBP and RR on PSD performance in 
identifying surviving and not-surviving cases included in the validation set. 

Number of Cases in 
the Validation Set 

Correct PSD 
Identification Using 
AIS and GCS Only 

Correct PSD 
Identification Using AIS 
and GCS with Age Only 

Correct PSD 
Identification Using 

AIS, GCS, Age and SBP 

Correct PSD 
Identification Using 
AIS, GCS, PR, SBP, 

RR and Age 

Survived 
Did not 

survive 
Survived 

Did not 

survive 
Survived 

Did not 

survive 
Survived 

Did not 

survive  
Survived 

Did 

not 

survive 

1224 224 
675 

(55.1%) 

70 

(31.3%) 

1008 

(82.4%) 

146 

(65.2%) 

1019 

(83.3%) 

144 

(64.3%) 

1112 

(90.8%) 

112 

(50.0%) 

 

The study evaluated the performance of PSD in determining the probability of 

survival in adult subjects with TBI. It highlighted some complexities in determining 

the probability of survival. An issue is related to the interrelationships of injury 

parameters and other factors such as age, pre-existing medical conditions that can 

influence the probability of survival (Saleh et al., 2017). AIS, GCS, age, respiration 

rate, pulse rate and systolic blood pressure play an important role in determining 

the probability of survival in TBI cases. 

 

7.3 IRCC Model 

IRCC is an iterative classification method developed to predict probability of 

survival.  The calibration and evaluation of this model were based on the same 

data used for PSD and Ps14. This allowed the performance of models to be 

compared. About 2/3 (number 2676) randomly selected cases were used for 

calibration and is the remaining 1/3 (number 1448) of the cases were used for 

evaluation of the method.  The trauma parameters used as input to the IRCC 

were mapped from their original ranges to a range of 0 and 1 by using 

min

actual value Minimumof thevalues
normaised value

Maximumof values imumof values





   7-1 

In order to determine the optimum number of iterations and group size, these 

two parameters were varied and the prediction outcome for the calibration data 

set was determined. The results are plotted in Figure 7-6.  This indicated that 50 

iterations with group size of 6 provided highest predication accuracy and were 

selected for the remaining analysis. 
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Figure  7-6 The number of IRCC iteration (a) for surviving and non-surviving cases; (b) 
number of random groups. 

Figure 7-7 shows the interrelationship between GCS, AIS, PR and RR for not 

survivors. In the following sections the performance of IRCC for determining the 

probability of survival for TBI based on the validation set is described. Figure 7-

8a and b show the IRCC prediction results for not survivors correctly identified 

and misidentified respectively. Not survivors are included in the analysis as the 

investigations from previous sections indicated that they are harder to identify 

as compared to the survivors.     

 A large proportion of correctly identified cases are associated with AIS = 5, GCS = 

1, 2 and 3 (categorized as severe, moderate and mild injury) and a large proportion 

of misidentified cases are associated with AIS = 4, GCS = 3 (categorized as mild 

injury). 

Figure  7-7 The interrelationships between pulse rate, systolic blood pressure, GCS, 
AIS, and respiration rate information for not survivors.  
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Figure  7-8 Prediction results for IRCC for not survivors cases: (a) correctly identified (b) 
misidentified 

Table 7-5 Shows relates the IRCC not survivors classification results from 

Figures 7-8a and b to the trauma scenarios. 

 

Table  7-5  Analysis of IRCC classification for injury patterns for TBI non-surviving 
cases included in the validation set (the patterns with relatively small number of cases 
are not shown). An x in the trauma parameter columns indicates abnormal or severe 
categorization for the related parameter. 

 

No. 

Injury  

Scenarios 

Number of not 

survivors 

 (Figure 7.7) 

 Number of 

not survivors 

identified 

correctly  

(Figure 7.8a) 

Number of 

not survivors 

misidentified  

(Figure 7.8b) 

Trauma Parameter 

PR RR SBP AIS GCS 

1 X22153 31  29 (93.5%) 2 (6.4%)   x x  

2 X22151 24  22 (91.6%) 2 (8.3%)   x x x 

3 X21151 19 17(89.4%) 2 (10.6%)  x x x x 

4 X22152 15 13 (86.6%) 2(13.3%)   x x x 

6 X22143 14 2 (14.3%) 8 (85.7%)   x x  

7 X22253 12 9(75.0%) 3 (25.0%)    x  

8 X11151 11 9(81.8%) 2(18.2%) x x x x x 

9 X22251 9  6 (66.6%) 3 (33.3%)    x x 

10 X12151 8 8(100.0%) 0(00.0%) x  x x x 

11 X12153 7  7(100.0%) 0 (0.0%) x  x x  

12 X22243 7  0 (00.0%) 7 (100.0%)    x  

13 X12143 6 6 (100.0%) 0 (00.0%) x  x x  

14 X12243 5  1 (20.0%) 4 (80.0%) x   x  

15 X21153 5 5(100.0%) 0 (00.0%)  x x x  

16 X12253 4  4 (100.0%) 0 (00.0%) x   x  

17 X12252 4 4(100.0%) 0(00.0%) x   x x 

18 X11153 4 4(100.0%) 0(00.0%) x x x x  

19 X12251 4 3(75.0%) 1(25.0%) x   x x 
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In Table 7-5 the rows identified as pink colour are associated with the three 

highest misclassified scenarios.  The table shows that those scenarios are 

associated with AIS = 4 (severe) and GCS =3 (categorized as mild injury). 

However, IRCC has performed better when AIS=5 (critical) and GCS = 1, 2 

(categorized as severe or moderate injury) or systolic blood pressure = 1 

(categorized as abnormal category). For instance, the injury pattern resulting with 

the largest number of those who were classified correctly for non-surviving cases 

(i.e., 29 cases, expressed as X22153) is associated with systolic blood pressure = 

1 (categorized as abnormal category) and AIS = 5 (critical). 

7.3.1 Results of Ps14 Method and IRCC Model 

Table 7-6 provides the IRCC results and IRCC uses enhancement IRCC operation 

part and a comparison with Ps14. When the probability value was greater than or 

equal to 50%, the subject was classed as survivors and when probability value was 

less than 50%, the subject was classed as not survivors 

Table  7-6 IRCC results combined with the enhancement IRCC operation part and a 
comparison with Ps14. 

Number of Cases Ps14 
IRCC without 

enhancement IRCC 
operation part 

IRCC  

Survived 
Did not 
survive 

Survived 
Did not 
survive 

Survived 
Did not 
survive 

Survived 
Did not 
survive 

1224 224 
1192 

(97.4%) 
90 (40.2%) 

967 
(79. 0%) 

160 
(71.4%) 

1190 
(97. 2%) 

170 
(75.9%) 

 

 The probability of survival prediction accuracy for IRCC is higher than Ps14 for 

not survivors and lower nor survivors. However, after integrating enhancement 

IRCC operation as part of IRCC, its performance for survivors improved from 

71.4% to 75.9%, in order to investigate the consistency of the results, different 

random validations cases from the same dataset were chosen. The results are 

included in Table 7-7. For all cases IRCC with enhancement IRCC operation part 

performed better than IRCC on its own. 
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Table  7-7 Performance of IRCC based on different random validation cases from the 
same data set. 

 

7.3.2 Discussion and Comparison of Ps14 and IRCC Outcomes. 

In this section the performance of IRCC in comparison with Ps14 is investigated 

in more detail. The prediction threshold is 0.5 (or 50%) i.e. if probability is 

greater 0.5 (50%) the individual is considered as survivor otherwise not 

survivor.  Figures 7-9a and 7-9b show both methods have similarities in the 

manner they predict probability of survival for survivors (green peaks) but for not 

survivors they have distinct performance (blue peaks). Ps14 correct prediction 

relates to number of cases between 88% and 100% while for IRCC this is 

between 50% and 100%. The plot shows greater number of correct prediction 

by IRCC as compared with Ps14.  

Figure  7-9 The distribution for IRCC and Ps14 results (a) Ps14 and (b) IRCC. The red 
line is the boundary for survivors and not survivors considered as 50%.   

Figure 7-10 provides the Bland-Altman plot with horizontal axis as the mean 

prediction from Ps14 and IRCC and vertical axis is the difference of their 

outcomes for survivors and not survivors. The red and green lines represent the 

region of agreement. Green line is the mean difference plus 1.96 standard 

deviation and red line is mean difference minus -1.96 standard deviation. Most 

Validation set 

All TBI cases  IRCC 
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 not survive 
Survived 
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not survive 

a 1224 224 
1190 

(97. 2%) 
170 

(75.9%) 

b 1289 194 
1249 
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(74.7%) 

c 1255 192 
1206 

(96.1%) 
151 

(78.6%) 
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results for the two methods are with this boundary. Blue line is mean difference 

(value= 7.50) of two techniques.   

Figure  7-10 Bland Altman plot for IRCC and Ps14 outcomes for survivors and not 
survivors. 

 

Figure 7-10 shows the concentration of differences is between -27 and 47. This 

range is the most significant in predicting probability of survival and will be 

explored further in the following sections. 

Figure 7-11(a-b) show regression plots to compare IRCC and Ps14 results. This 

plot shows the extent of probability of survival agreement between IRCC and 

Ps14. The two methods had closer agreement with regard to the survivors than 

not survivors. The blue lines in Figure 7-11 (b) is median of two methods for not 

-survivors. The median for IRCC is 42 and for Ps14 is 62. Interquartile range of 

IRCC is between 25 and 56 whereas for Ps14 is from 36 to 80. These indicate 

that a larger number of not survivors were predicted by IRCC as compared to 

Ps14 and therefore IRCC performed better than Ps14 for not survivors. 
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Figure  7-11 Regression variable plots for Ps14 and IRCC outcomes for (a) both and (b) 
not survived cases (green circles are survival cases and red those are not) considered 
as 50%.   

 

Association of AIS and prediction accuracy for Ps14 and IRCC for not survivors 

is provided in Figures 7-12 (a) 7-12(b) respectively.  It can be seen that there is 

a significant difference between two techniques when AIS=2 or 3 they are not 

significantly different for AIS equal to 4 and 5. The incorrect prediction by Ps14 

is mainly associated with AIS scores 4 and 5 whereas IRCC showed a 

significantly larger number of correct prediction for these two scores for not 

survivors.  

Figure  7-12 Association of AIS and prediction accuracy for (a) Ps14 and (b) IRCC for 
not survivors considered as 50% (burble columns are number of cases with 
AIS=5(critical) and brown those are AIS=4).  
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Figure 7-13(a-b) Shows a number of not survivors that had GCS= 2 and 3 

(categorized as moderate and mild trauma) were identified as survivors while 

IRCC had higher identification accuracy for both scores as compared with Ps14. 

 
Figure  7-13 Association of GCS and prediction accuracy for (a) Ps14 and (b) IRCC for 
not survivors considered as 50%. (blue columns are number of cases with 
GCS=1(severe), green those are GCS=2 (moderate) and yellow those are 
GCS=3(mild).  

 

Figure 7-14 shows the manner age relates to the survival probability prediction 

for not survivors obtained using the IRCC and Ps14. It indicates that larger 

number not survivors correctly identified by the IRCC (triangles) as compared 

with Ps14 (stars) as they appear under the 0.5 threshold (50%). of triangle 

shapes are classified correctly < 50 by IRCC technique. Ps14 was especially 

less sensitive for cases aged 73 years or older.   
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Figure  7-14 Association of age with probability of survival prediction for IRCC and Ps14 
for not survivors. Stars represent Ps14 and triangles represent IRCC. Threshold for 
decision is 0.5 (50%), i.e. when probability less than 0.5 (50), case is recognised as not 
survivor.   
 

In summary, Ps14 was not as accurate in predicting the probability of survival 

when AIS=4 or 5 and GCS=2 or 3. It was also less accurate for cases who aged 

more than 73.  IRCC was overall more accurate than Ps14. Therefore IRCC 

was chosen for further developments in this study.  

7.3.3 Comparison of Probability of Survival Predication Capability of Ps14, 

IRCC and PSD by Considering Different Body Regions 

Table 7-8 provides a summary of a comparison of Ps14, IRCC and PSD for 

predicting probability of survival for trauma associated with different body regions. 

The data used are the validation set. When the method's output was larger or 

equal to 50% threshold (corresponding to probability = 0.5), the individual was 

considered as survivor otherwise as not survivor. The traumas are for head injury 

only, head and face, head and chest and head and head chest and face.  

Considering the overall accuracy of probability of survival for not survivors, IRCC 

performed better than Ps14 and PSD.  In Table 7-8, the green rows represent 

body region injuries other than the head, i.e. the first row is for TBI. For TBI 

IRCC with knowledge code was used (as discussed in Chapter 6). However, for 

other injuries (highlighted green in the table), IRCC without knowledge coding 

was used.  For other body regions, prediction for not survivors remain better 

Age (years) 

IR
C

C
 &

 P
s1

4
 O

u
tc

o
m

e
s 

 



92 
 

than PSD and Ps14. However, for survivors its predication accuracy is lower as 

it did not accommodate knowledge coding. The accommodation of knowledge 

coding is left for further work.      

 

Table  7-8 provides a summary of a comparison of Ps14, IRCC and PSD for predicting 
probability of survival for trauma associated with different body regions. 

 

7.4 Development of a User Interface for Probability of Survival Predication 

In this section a user interface to allow clinicians enter the trauma information is 

developed. This is linked to IRCC combined with FIS to determine the 

probability of survival. 

7.4.1 Development of Trauma Scoring System Interface 

The purpose of this interface is to allow clinician indicate the trauma and based 

on the information AIS code is produced. Due to copyright nature of AIS, this 

interface is not fully developed and only a basic prototype for demonstration 

resulted from the work. The interface will not be taken further and will not in any 

way medically or otherwise deployed without prior consultation and agreement 

from the authorities responsible for AIS.  Figure 7-15 shows a typical AIS menu 

list from this interface that indicates selected traumas and associated AIS code.   
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Figure  7-15 A section of AIS injury description and associated codes based on AAAM 
dictionary. 

Figure 7-16 shows the actual user interface. Help feature is included to allow 

clinician query about trauma types. 

                                      Figure  7-16 Graphic user interface.  
 

Figure 7-17 shows an example of the manner the interface can be used. 

 

 

 

 

 

 

 

 

 

 

 

                                 Figure  7-17 Interface to generate AIS code  
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In Figure 7-18 the user interface is linked to probability of survival method of 

IRCC incorporating FIS. The user interface allows the injuries to be selected 

and the probability of survival is then indicated. The user interface has a feature 

that allows the data to be saved for later study. 

            Figure  7-18 Determining probability of survival (Ps) Interface. 

 

Figure 7-19 shows samples of TBI trauma cases and the determined probability of 

survival obtained using the method obtained using either with IRCC on its own or 

IRCC with FIS. The figure indicates the patient ID, his/her age, Gender, AIS code, 

GCS, PR, RR, SBP, Intubation, PMC and %Ps. Green highlighted rows are 

associated with IRCC with FIS and the remaining cases are for IRCC on its own. 

Figure  7-19 Examples cases for related TBI and determined probability of survival. For 
the head injury, GCS, PR, RR, SBP, intubation and PMC status (1=exist, 0=does not 
exist)    
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7.6 Chapter summary 

In this chapter, the results obtained using PSD and IRCC models for predicting 

probability of survival are explained. A prototype interface for demonstration 

was also provided. The results indicate that IRCC can determine the probability 

of survival more accurately compared PSD and PS14.  
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Chapter 8 Conclusions and Further work 

8.1 Conclusions 

Based upon the findings from the review of trauma scoring systems and a 

description of the various techniques adopted in this research as presented in 

Chapters two and three respectively; the detailed methodological framework 

described in Chapter four; the investigation of interrelation between trauma 

parameters and survival outcomes presented in Chapter five; trauma 

knowledge representation and coding presented in Chapter six; and the 

rigorous analysis of the probability of survival estimation methods presented in 

Chapter seven, the summary of conclusions and key findings from the 

numerous analysis carried out during the course of the activities which stems 

from this research are presented in this chapter. Also presented in this chapter 

are a summary of the original contributions to knowledge made by this work to 

research and scholarship, the limitation of the research and an outline of 

possible future extension of the current research. 

  

To reiterate, the primary aim of this research is to develop and evaluate 

improved methods of determining probability of survival in traumas. Specific 

objectives include (i) a detailed analysis of the trauma cases from the available 

TARN database with the view to ascertain the interrelationships between a 

number of trauma parameters including age, gender, respiration rate, systolic 

blood pressure, pulse rate, abbreviated injury scale Glasgow coma score, pre-

existing medical conditions and intubation with the probability of survival; (ii) 

development of improved methods for the prediction of probability of survival 

based on the information derived from the TARN database; (iii) critical 

evaluation of the methods developed in objective two against each other and 

against Ps14 for different with the main focus on traumatic brain injury (TBI). 

Against this backdrop, the achievement of the research aim could be said to 

have been met as a result of the following research activities and numerous 

analysis that have been conducted as highlighted in the succeeding sections. 

8.2 Summary of Models Developed and the Approach for their Evaluation 

Three methods for predicting probability of survival were developed and their 

performances were evaluated against Ps14. One employed predictive statistical 
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diagnosis (PSD) that is based on Bayesian approach. The second was a novel 

approach termed Iterative Random Comparison Classification (IRCC). The third 

method incorporated fuzzy inference system (FIS) with the IRCC. The PSD and 

IRCC used respiration rate, age, systolic blood pressure (SBP), pulse rate (RR), 

Gender, Glasgow Coma Scale (GCS) and abbreviated injury scale (AIS). The 

IRCC combined with FIS further accommodated the intubation and pre-existing 

medical condition (PMC).     

8.2.1 Analysis of Trauma Cases  

The analysis of trauma cases revolved valuable information related to the 

interrelationships between trauma parameters (age, Gender, RR, SBP, PR, AIS 

and GCS, PMC and Intubation) with the trauma outcomes, i.e. survivors and not 

survivors. The main focus of this analysis was on TBI as it represented the 

majority of cases in the available data base although several other body regions 

were also considered. For TBI there were 4124 trauma cases (2488 males, i.e. 

60.3% and 1636 female cases, i.e. 39.7%). Their mean age was 67.9 years 

(standard deviation=21.6 years). From this population, 86.2 % (number=3553) 

were survivors and 13.8% (number=571) were not survivors.  It was found all 

these parameters are important in determining probability of survival. The 

investigation consider of each parameter individually as well as combination of 

parameters jointly on the probability of survival. A variety of techniques were 

utilised for these investigations that included distribution analysis, clustering and 

statistical analysis. Detailed discussions of findings are included in chapter 5. 

 

8.2.2 Trauma Knowledge Representation and Coding  

Knowledge representations in the forms such as tree diagrams, flow charts, box 

plots and cluster diagrams were developed. These assisted the knowledge 

coding that took the form of a number of IF-THEN statements relating to the 

trauma parameters to the outcomes (survivors and not survivors). The 

developed knowledge representation and coding schemes lead to the 

successful development of the fuzzy inference system that was integrated with 

IRCC improve its performance. By using FIS the developed system was able to 

include two parameters Intubation and PMC this is in case the patient had 

related information. As result of this developed system became more 
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sophisticated to cover all considerable parameters.  The details of the related 

schemes are included in chapter 6. 

8.2.3 Development of Methods to Predict Probability of Survival  

Three methods to predict probability survival in trauma were developed and the 

performances were evaluated against each other as well as Ps14.  The first 

method was PSD that is based on Bayesian statistics. The second method was 

IRCC that works by randomly selecting a subgroup of trauma cases from each 

outcome (survivors and not survivors), determines the distance of their mean to 

the trauma case being considered and repeating this process for predefined 

number of iterations to be able to obtain probability of survival.  The third 

method based on combining IRCC and FIS and incorporated PMC and 

intubation. PMC and intubation were not included in all three methods as only a 

subset of cases had related information. The focus of the study was on TBI, 

although a number of other body sections were also considered. For TBI, the 

IRCC performed best amongst all methods including Ps14.  It predicted 

survivors and not survivors with 97.2% and 75.9% accuracies respectively. The 

details of the related investigations are included in chapter 7.  

8.2.4  Graphic User Interface for Predicting the Ps  

A user graphic interface for the Ps was developed that can assist clinicians 

enter trauma parameters and obtain the percentage of probability of survival. 

This is a prototype and could save clinicians time.  

 

 8.3 Summary of Original Contributions to Knowledge 

8.3.1 A Detailed Analysis of Trauma Parameters  

The parameters taken into consideration include age, gender, respiration rate, 

systolic blood pressure, pulse rate, abbreviated injury scale, Glasgow coma 

score, pre-existing medical conditions, and intubation. All parameters were used 

for the evaluation of the probability of survival in TBI, with each of them 

indicating high level of significance towards the overall determination of the 

probability of survival. The investigations indicated the manner AIS and GCS 

values for different body regions relate to the probability of survival.  
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8.3.2 Proposition of three Methods for the Effective Prediction of 

Probability of Survival for TBI  

The first method is based on a statistical Bayesian method known as PSD. 

The second was a novel method referred to as IRCC, which employs a 

randomly selected group of cases with predefined group size as part of its 

operation and by iterative repeating the process, determine the probability of 

survival. The third method developed is a combination of IRCC with FIS to 

accommodate PMC and intubation information. The use of FIS required careful 

knowledge representation and knowledge coding.  

8.3.3 Critical Evaluation of the Methods Developed  

The methods developed were evaluated against each other and against Ps14 

for different traumas. Other body regions such as head and face were also 

included in the evaluation but the focus of the study was on TBI given that it 

constituted the main fatalities in the available database. The main challenge for 

all methods was to improve prediction for non-survivors as compared with the 

existing Ps14 method, which already had a high accuracy for the survivors. The 

three methods proposed in this study managed to significantly improve the 

probability of prediction for non-survivors. For example for TBI, there were 1224 

survivors and 224 non-survivors. The predicted accuracy for not survivors for 

Ps14, PSD and IRCC were 40.1%, 50.0% and 75.9%. The predictive 

accuracies for Ps14, PSD and IRCC for survivors were 97.3% 90.8% and 

97.2%.   

 

8.4 Further Work  

Although significant progress was made in this study toward developing 

improved methods for predicting probability of survival, nevertheless there 

remain several areas for further exploration. 

 The knowledge representation and coding can be extended to for 

example a larger number of body parts.  

 A valuable trauma parameter is fragility. The value of this for the cases 

included in this study was not available but in future this may be 

accommodated and its influence in improving the accuracy of the 
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prediction methods can be determined. Frailty can be related to age (e.g. 

very young and very old) as well as health detrition as a result of various 

medical conditions.    

 Inclusion of larger number of trauma cases in particular not survivors.  

 Analysis of duration of stay in hospital to establish whether this affected 

probability of survival.  

 Comparison of IRCC and TARN Ps17 outcomes for determining the 

probability of survival. At the time of this study Ps14 was available.  

 Use of artificial neural networks and deep learning to predict probability 

of survival could be explored. Machine leaning using neural networks 

could be valuable as they can model complex processes and non-linear 

systems effectively however their black-box behaviour may be a concern 

in some medical fields. 

 In this study only adults were included as the number of available 

children trauma cases is not sufficiently large.  

 It will be very helpful if the developed methods are validated and 

evaluated in clinicians in the medical field. This can provide very valuable 

feedback to improve the developed schemes.
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Appendix A: Extra Work of Statistical Analysis  
 

The highest score of GCS for Eye is N=4, Verbal is N=5 and Motor is N=6. 

Table A.1 of Comparison of Eye - Verbal - Motor components for not survived 

(Eye-Verbal- Motor) 

as single factor 

Total 

number of 

single 

factor 

Combining two factors 

Total 

number of 

Combining two 

factors 

(Eye) 

<=2-N-N 
2 

(Eye-Verbal) 

(<=2-<=3-N) 
13 

(Verbal) 

N-<=3-N 
14 

(Eye- Motor) 

(<=3-N-<=4) 
7 

(Motor) 

N-N-<=4 
2 

(Verbal- Motor) 

(N-<=3-<=4) 
38 

 

Table A.2 of Comparison of Eye - Verbal - Motor components for survived 

(Eye-Verbal- Motor) 
as single factor 

Total 
number of 

single 
factor 

Combining two factors 

Total 
number of 

Combining two 
factors 

(Eye) 
<=2-N-N 

14 
(Eye-Verbal) 
(<=2-<=3-N) 

143 

(Verbal) 
N-<=3-N 

70 
(Eye- Motor) 
(<=2-N-<=4) 

17 

(Motor) 
N-N-<=4 

11 
(Verbal- Motor) 

(N-<=3-<=4) 
117 

 

 

Table A.3 of statistical analysis of age (years) range for all cases. 

Age(years) 
range 

Total number Of all 
cases 

Total number of survival 
cases 

Total number of  not 
survival cases 

18-38 
5095 

(21.35%) 
4881 

(22.11%) 
214 

(12.71%) 

45-65 
8153 

(34.17%) 
7886 

(35.57%) 
267 

(15.85%) 

75-95 
10611 

(44.47%) 
 

9408 
(42.43%) 

1203 
(71.43%) 
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            Table A.4 of statistical analysis of age (years) range based on Gender. 

Age(years) 
range 

Total number of  male  
survival cases 

Total number of male  
not survival cases 

Non-surviving  female 
% remarks 

18-38 
3794 

(77.73%) 
161 

(75.24%) 

 
(24.76%) 

45-65 
4774 

(60.54%) 
182 

(68.16%) 
(31.84%) 

75-95 
3185 

(33.85%) 
589 

(48.96%) 
(51.40%) 

 

   Table A.5 of statistical analysis of Gender, RR, SBP and PR. 
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Figure A.1 IRCC flow chart. 
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