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ABSTRACT

The aim of this study is to design, develop and evaluate artificial intelligence and
statistical techniques to predict the probability of survival in traumas using knowledge
acquired from a database of confirmed traumas outcomes (survivors and not
survivors). Trauma in this study refers to body injuries from accidents or other means.
Quantifying the effects of traumas on individuals is challenging as they have many
forms, affect different organs, differ in severity and their consequence could be related
to the individual's physiological attributes (e.g. age, fragility, premedical condition etc).
It is known that appropriate intervention improves survival and may reduce disabilities
in traumas. Determining the probability of survival in traumas is important as it can
inform triage, clinical research and audit. A number of methods have been reported for
this purpose. These are based on a combination of physiological and anatomical
examination scores. However, these methods have shortcomings as for example,
combining the scores from injuries for different organs is complicated.

A method for predicting probability of survival in traumas needs to be accurate,
practical and accommodate broad cases. In this study Sheffield Hallam University,
Sheffield Children's Hospital, Sheffield University and the Trauma Audit and Research
Network (TARN) collaborated to develop improved means of predicting probability of
survival in traumas. The data used in this study were trauma cases and their outcomes
provided by the TARN. The data included 47568 adults (age: mean = 59.9 years,
standard deviation = 24.7 years) with various injuries. In total, 93.3% of cases had
survived and 6.7% of cases had not survived. The data were partitioned into calibration
(2/3 of the data) and evaluation (1/3 of the data). The trauma parameters used in the
study were: age, respiration rate (RR), systolic blood pressure (SBP), pulse (heart) rate
(PR) and the values obtained from two trauma scoring systems called Abbreviated
Injury Score (AIS) and Glasgow Coma Score (GCS). Intubation and Pre-exiting
Medical Condition (PMC) data were also considered.

Initially a detailed statistical exploration of the manner trauma these trauma parameters
related to the probability of survival outcomes was carried out and the results were
interpreted. The resulting information assisted the development of three methods to
predict probability of survival. These were based on Bayesian statistical approach
called predictive statistical diagnosis (PSD), a new method called Iterative Random
Comparison classification (IRCC) and the third method combined the IRCC with the
fuzzy inference system (FIS). The performance of these methods was compared with
each other as well as the method of predicating survival used by the TARN called Ps14
(the name refers to probability of survival method reported in 2014).

The study primarily focused on Trauma Brain Injury (TBI) as they represented the
majority of the cases. For TBI, the developed IRCC performed best amongst all
methods including Psl14. It predicted survivors and not survivors with 97.2%
and 75.9% accuracies respectively. In comparison, the predication accuracy for
Ps14 for survivors and not survivors were 97.4% and 40.2%.

The study provided resulted in new findings that indicated the manner trauma
parameters affect probability of survival and resulted in new artificial intelligence

and statistical methods of determining probability survival in trauma.
i
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Chapter 1 Introduction

Injury is a primary cause of death and disability (Mullins 1999), accounting for
10% of global burden of non-surviving cases (Laytin et al., 2017). A number of
scoring systems have been reported to quantify the severity of injury by
considering measurable or observable status of the patient’'s medical condition
(Dillon et al, 2006). Trauma scoring systems can be beneficial for a number of
situations (Wisner 1992; Kim 2012). These include (i) triage, a procedure to
assess severity of medical condition for the purpose of setting treatment priority;
(ii) prognostic evaluation, a procedure to support predication and management
of injury outcomes and (iii) research studies to compare patient groups on the
basis of injury outcomes and assessing medical care and treatments. Trauma
scoring systems can be classified into anatomical, physiological and a
combination of both. Anatomical scoring systems quantify the extent of
individual anatomical injuries, taking into account the body injury sites by
appropriate weightings (coefficients) however these weightings are often not
known when the patient visits hospital after a civilian trauma where most injury
mechanisms are blunt (e.g. falls and road traffic collisions) (Fani-Salek et al,
1999). Physiological scoring systems are based on cardiovascular, neurological
and respiratory abnormalities. They provide mechanisms to determine the
likelihood of mortality and inform triage; but can lack precision (Fani-Salek et al,
1999). Combined anatomical and physiological scoring systems integrate the
strengths of the anatomical and physiological scoring systems to improve their
estimation of the probability of survival (Meredith et al, 1995).

Trauma scores together with host factors such as Gender, age and pre-existing
medical condition (PMC) are used in models to determine probability of survival
(Reith et al, 2017; Moon et al, 2013; Chawda et al., 2004; Pike et al, 2017;
Kuwabara et al, 2010).

1.1 Background and Purpose of the Study

Assessing the level of severity of injury in a hospital’s emergency department
(ED) is highly demanding due to diversity of injury types, individual
vulnerabilities (e.g. varied age groups), large number of possible physiological

measures (e.g. heart rate, temperature, blood pressure, respiration rate etc.) as
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well as complexities in anatomical assessments (e.g. evaluating a head injury).
Early intervention in many medical and traumatic conditions can improve

survival outcome and reduce disabilities.

Injury is the main cause of death and disability (Mullins, 1999) and survival of a
severely injured person depends on the specialized care delivered in a timely
manner. Therefore, a careful assessment of the severity of injuries is essential
to reduce disabilities and mortalities. Trauma scoring systems improve triage
decisions, identify patient unexpected trauma outcomes, generate audit
information and provide objective information for external and internal outcome
comparisons (Lefering, 2002). Figure 1.1 shows a triangle of work related
injuries in the UK in 2010/ 2011 and their severities reported by (Health and
Safety Executive 2012). However, many injuries occur outside work

environment.

Injury reported by employers
118 000

Self-reported injury
leading to over-3-day absence
200 000

Self-reported injury at work
603 000

Figure 1-1Injury severity triangle 2010-11 (Health and Safety Executive 2012)

The extent of injury severity could be classified as nominal, ordinal or interval
(Health and Safety Executive 2012). Majority of characterizations of injury
severity are in nominal scales where verbal classifications are used to describe
injury. They are valuable in simplifying communication between parties. Ordinal

approaches use a positive entire numbers to provide a score to an injury
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severity. Several groupings such as fractures and many neurosurgical,
orthopedic and common injury classifications fall into this type. Interval scales
likewise give numbers however there is an implicit probability of some reliability
in the intervals between the numbers (Champion 2002).

A number of injury severity scoring systems were reported in the last decades.
These are intended to accurately and consistently quantify injuries by
considering measurable or observable status of the patient's medical conditions.
The main benefits of trauma scoring systems are (Wisner, 1992): triage which
sets priorities to treat patients; prognostic evaluation which enables the
prediction and management of injury outcomes; and research and evaluation
which compares patient groups on injury outcomes and examines the effects of

treatments.

In order to obtain the anatomical and neurological injury related information, a
number of standard scoring systems are available. A commonly used system
for assessing anatomical injuries is the Abbreviated Injury Scale (AIS)
(Gennarelli et al, 2006). It was introduced in 1971 by the Association of the
Advancement of Automotive Medicine to aid vehicle crash investigators. It has
since been revised to be more relevant to medical audit and research. AIS
classify injuries in all body regions according to their relative importance. In
order to determine an overall trauma injury score for patients with multiple
trauma injuries, the Injury Severity Score (ISS) could be used. This is an
anatomical scoring system with the maximum total score of 75 that selects the
highest AIS values in each body region (Barker et al, 1974). The three most
severely injured regions (corresponding to 3 largest scores) have their scores
squared and then summed to produce the ISS value. However, ISS has a
number of limitations in identifying the implication of the injury sites (Fani-Salek
et al,. 1999). For example, brain traumas have different implications compared
with skin bruising. ISS is nevertheless used for as an anatomical scoring system
in methods such as the TARN Ps14 in order to determine probability of survival.
The TARN is a UK center involved in researching trauma and its team receives
injury information from the UK hospitals code them according to the AIS system.
The TARN has proposed Psl14 (probability of survival prediction proposed in
2014) to predict probability of survival. In this study methods to determine

probability of survival in traumas are developed and evaluated.
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1.2 Aim and Objectives

The primary aim of this research is to develop and evaluate improved methods

of determining probability of survival in traumas. Its objectives are:

i. Analyze the trauma cases from the available TARN data base to ascertain
the interrelationships between trauma parameters such as age, Gender,
respiration rate, systolic blood pressure, pulse rate, abbreviated injury scale
Glasgow coma score, pre-existing medical conditions and intubation with
the probability of survival.

ii. Use analysis information from (i) to develop improved methods of predicting
probability of survival.

iii. A critically evaluate the methods developed in (ii) against each other and
against Ps14 for different traumas but with the main focus of traumatic brain
injury (TBI) were carried out.

iv. Publish findings in peer reviewed journals and conferences.

1.3 Study's Contribution

The study's contributions in relation to its objectives were:

i. A detailed analysis trauma parameters including age, gender, respiration
rate, systolic blood pressure, pulse rate, abbreviated injury scale,
Glasgow coma score, pre-existing medical conditions, intubation and
these are used to the probability of survival in TBI was carried out. It was
found all these parameters are significant in determining probability of
survival. The investigations indicated the manner AIS and GCS values
for different body regions relate to the probability of survival. Matlab® and
SPSS® were used in these analysis to provide visual representation of
the findings in the form of graphs, plots, distributions and clustering.
These packages were also used to complement the visual information

with tables summarizing the findings. The associated results are mostly



included in Chapter 5 but related information also appears in the
following chapters.

Three methods to predict probability of survival for TBI were proposed.
One is based on a statistical Bayesian method called predictive statistical
diagnosis (PSD). The second was a novel method referred to as lterative
random comparison classification (IRCC). IRCC uses a randomly
selected group of cases with predefined group size as part of its
operation and by interactively repeating the process determine the
probability of survival. The third method combined IRCC with fuzzy
inference system (FIS) to accommodate pre-existing medical conditions
(PMC) and intubation information. The use of FIS required careful
knowledge representation and knowledge coding. Fuzzy logic is a
valuable techniqgue to accurately representing complex imprecise
information. More details related to the development of the methods are
included in chapter 3 and 4.

A critically evaluation of the methods developed in (ii) against each other
and against Psl14 for different traumas was carried out. A number of
body regions such as head and face etc. were also included in the
evaluation but as the main fatalities in the available database were due
to TBI, the focus of the study was on TBI. The main challenge for all
methods was to improve prediction for not survivors as compared with
the existing Ps14 method as Psl14 already had a high accuracy for the
survivors. The three methods proposed in this study managed to
significantly improve the probability of prediction for not survivors. For
example for TBI, there were 1224 survivors and 224 not survivors. The
predication accuracy for not survivors for Ps14, PSD and IRCC were
40.1%, 50.0% and 75.9%. The predicating accuracies for Ps14, PSD and
IRCC for survivors were 97.3% 90.8% and 97.2%. The details of the
results that also include head and face injury, head and chest injury,
head, face and chest injury are provided in chapters 6 and 7.

The study has so far resulted in two journal papers, one book chapters
and two conferee proceedings. There is scope for at least two further

journal papers, one in preparation.



1.4 Thesis Outline
Chapter 2 Literature Review

The previous studies associated with determining probability of survival and
technological background for types of trauma scoring systems are explained
and compared.

Chapter 3 Technologies Used in the Study

The theoretical and technological background for medical methods and other
techniques that are used in this study towards achieving the set aims are

described.
Chapter 4 Methodologies
The methodologies to obtain the results included in the thesis are explained.

Chapter 5 Investigation of interrelation between trauma parameters and

survival outcomes

A statistical analysis of the subject details and their injuries as well as the
interrelationship between probability of survival and the injuries are carried out

and the results are presented.
Chapter 6 Trauma Knowledge Representation and Coding

The development of the knowledge representation and coding to assist with

determining the probability of survival is explained.
Chapter 7 Probability of Survival Estimation Method

The operations and the results for the three methods of determining probability
of survival are explained and their merits and limitations are analysed against

the exiting Ps14 method.
Chapter 8 Conclusions and Future Work

The study’s conclusions, main findings and suggestions for future work are

outlined.



1.5 Chapter Summary

The study's background, aim and objectives were discussed. The trauma
scoring systems and processing methods and systems developed to predict the
probability of survival were described. An aim of the study was development of

robust probability of survival calculation methods. These will be described in the

following chapters.



Chapter 2 Literature Review

2.1 Introduction

Trauma is one of the most important concerns in health care that can lead to
mortality and morbidity. Documentation of trauma data facilitates comparison
between patient care and outcomes from different medical centres. Triage of
trauma is used to assess level for prioritising of injured people for treatment or
transport that depend on their severity of injury. Primary triage is performed at

the scene of an accident and follow up triage at the hospital (Patient 2015).

Trauma scores provides audit and research tools to study the outcomes of
trauma and its care. Many different trauma scoring systems have been
developed; some are based on physiological scores e.g., Glasgow Coma Scale
(GCS), others rely on anatomical descriptors e.g., Abbreviated Injury Scale
(AIS).There are also combinations of both systems. However, there is no single
universally accepted system as each system has its own merits. This chapter is
divided into three main parts are: review of trauma scoring systems, artificial
intelligence techniques based on trauma scoring systems and methods to

extract keywords from Text.
2.2 Review of Trauma Scoring Systems

The trauma scoring systems can be divided into anatomical, physiological and
combined. However, some other artificial intelligence techniques have been
also used to predict probability of survival (Ps). These are summarised in Table
2-1.



Table 2-1Types of trauma scoring systems.

Anatomical Indices

Physiological Indices

Combined Anatomical/
Physiological Score

Artificial
Intelligence
Techniques base
on Trauma
Scoring Systems

e Abbreviated Injury
Scale (AIS) and (MAIS)
Injury severity score
(1SS) and (NISS)
Anatomic Profile (AP)
Trauma mortality

prediction model
(TMPM)
International

Classification of
Diseases-based ISS
(1CISS)

Organ Injury
Scales(OIS)
Penetrating
Abdominal Trauma
Index (PATI)

o Glasgow coma scale(GCS)

Paediatric Glasgow Coma Scale
(PGCS)

e Revised Trauma Score(RTS)

e Trauma Score(TS)

e Emergency Severity Index(ESI)

e Acute Physiology and Chronic Health
Evaluation(APACHE)

Rapid Acute Physiology score(RAMS)
Rapid Emergency Medicine Score
(REMS)

e Prognostic Index(P1)

e Sequential Organ Failure
Assessment Score (SOFA)

e Multiple Organ Dysfunction
syndrome (MODS)

e Systemic Inflammatory Response

Syndrome Score (SIRSS)

e MULTIPLE ORGAN FAILURE (MOF)

e Circulation, Respiratory,
Abdominal/Thoracic, Motor and
Speech Scale(CRAMS)

e Glasgow Coma Scale, Age, and
Systolic Blood Pressure (GAP)

e Logistic Organ Dysfunction
Score(LOD)

o Simplified Acute Physiology
Score(SAPS)

e Trauma Score-Injury
Severity Score
Methodology (TRISS)

e The trauma audit and
research network ( TARN
Ps14)

e Harborview assessment
for risk of mortality
(HARM)

e A Severity
Characterization of
Trauma (ASCOT)

o Drug-Rock Injury Severity
Score(DRISS)

e Trauma Index (T1)

o Pediatric Trauma Score
(PTS)

e Neural
Network(NN)

® Fuzzy Logic(FL)

e Genetic
Algorithm(GA)

o Expert System(ES)

o Artificial
Intelligent Virtual
Reality (AIVR)

e Machine Learning
(ML)

o Deep learning
(L)

2.2.1 Anatomical Systems

Abbreviated Injury Scale (AIS) is an anatomical trauma scoring system. It was
introduced in 1971 by the Association for the Advancement of Automotive
Medicine (AAAM). This association was founded in 1957 and is a professional

multidisciplinary organisation for reducing vehicle crash injuries.

AIS describes injuries in nine body parts, head, neck, face, thorax, spine,
abdomen, upper limbs, lower limbs, and external (Kim 2012). Maximum AIS
(MAIS) is used to express total severity. MAIS does not linearly increase and
decrease by varying likelihood of mortal. To provide solution for these
limitations, the injury severity score (ISS) was presented (Stevenson et al.
2001). ISS was introduced in 1974 to determine the overall injury assessed by
AIS. ISS is an ordinal scale and anatomically constructed that is between 1 and

75 by sum of square three highest scores of AIS (Champion 2002). ISS has an



ability to engage anatomic parts of injury in formulating an expectation of
outcomes (Chawda et al., 2004). However, it has some limitations that it could
expect less accurate in the case of multi-injuries in the same body region.
Another drawback of the ISS is that all injuries are given an equal AIS score
irrespective of body region where is injured. The last revision of the ISS is
known as the New Injury Severity Score (NISS). The NISS is computed as the
sum of squares of the three most significant (severe) AIS (1990 revision)
injuries and it has improved the forecast of survival and enhanced routine,
statistically, than the ISS (Stevenson et al. 2001). (Osler et al., 1997) NISS was
tested as modification of the ISS; it is the sum of the squares of the AIS scores
of a patient's three most severe injuries, irrespective of body parts.

Anatomic Profile (AP) trauma scoring system has some similarities to ISS,
however it has limitations (Champion 2002). These limitations are based on the
use of a one-dimensional score to represent the spectrum of injured body
regions and severities and from the ISS definition that excludes all but the most
serious injury in any body parts. Therefore, AP routines use four factors to
calculate injured patient: A, B, and C for severe injuries (AIS >= 3) which are
head and neck, thorax, and other defined body parts separately, and D defines
any region of body which is not serious injury. It combines the parts using the
taking the square root of the sum of the squares (Champion 2002)

AP =+A?2 + B2 +(C? + D? 2-1

Likewise, Trauma Mortality Prediction Model (TMPM-ICD9) is the an injury-
severity assessment system that uses empirical valuation from ICD-9-CM codes
(Glance et al., 2009). TMPM-ICD?9 is useful method for risk-adjustment model
once injuries are verified using ICD-9-CM coding. It probably to be used to risk-
adjust result assessment for trauma report cards at hospital (Glance el at.,
2009). It is also provided result that it expresses a probability of non-surviving
depends on the most five severe ICD-9-CM-coded injuries. Empiric scales of
injury severity for each of the trauma ICD-9-CM codes were assessed using a
regression-based method, and then used as the source for a new Trauma
Mortality Prediction Model (TMPM-ICD9). TMPM-ICD9 was compared with

International Classification of Diseases-based ISS (ICISS) model and the
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findings showed TMPM-ICD9 demonstrates a greater model performance
(Glance el at. 2009).

ICISS is also an anatomical injury system that uses ICD-9 codes. It was
introduced in 1996 to address the limitations of the ISS (Chawda et al., 2004).
This method is termed the ICD-9 Injury Severity Score (ICISS) and uses
survival risk ratios (SRRs) calculated for each ICD-9 discharge diagnosis. SRRs
are derived by dividing the number of survivors in each ICD-9 code by the total
number of patients with the same ICD-9 code. The ICISS is calculated as the
simple product of the SRRs for each of the patient’s injuries. The ICISS has
some advantages over the ISS because it permits all the injuries to contribute to
the prediction, and multi injuries are more accurately demonstrated. Moreover, it
uses information about all the injuries, composed with the patient’s three severe
injuries. Nevertheless, it is hard to compare the performance of clinics (Chawda
et al.,2004). The routine of the ICISS seemed to be unstable because its
performance could be altered by the type of formula and SRRs used (Tohira et
al., 2012).

In 1987 Organ Injury Scaling (OIS) was introduced by the Committee of
American Association for the Surgery of Trauma (A.A.S.T.) (Moore el at., 1989).
This is used to devise injury severity scores for separate organs to enable
clinical research. OIS uses the body organs: spleen, liver and kidney. The
subsequent classification system is basically an anatomic description,

measured from 1 to 5, expressing the minimum to the greatest severe injury.

Penetrating Abdominal Trauma Index (PATI) was developed in 1981.This
method is used to predict trauma patients at risk of postoperative difficulties
(Chappuis et al., 1991). It also provides an effective way to examine and help
as a tool in the decision-making procedure once dealing penetrating abdominal
trauma. For instance, in this study there are 56 patients and 28 of them were
randomised into individually group. Data were concurrently composed and
difficulties and outcome recorded. The majority of cases in each group were
young men. The typical age for the primary repair group was 26 years (range,
17 to 58 years). There were 27 males and 1 female in the primary repair group
and 25 males and 3 Female in the diversion group and for the diversion group,
23 years (range, 14 to 61 years). Diversion is distinct as (1- exteriorization of
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the injury, 2- resection of the injury with exteriorization of either exteriorization
and proximal segment or 3- debridement, if specified, and simple closure of
holes with formation of a loop or end stoma proximal to the injury). Primary
repair is demarcated as (1- debridement, if designated, with simple closure of
the holes or 2- resection of a segment of large bowel containing perforations
monitored by anastomosis). The small bowel was the additional organ injured
most routinely (Table 2-2). Injury number, involving colon injury, was similar in
both groups (Table 2-3).

Table 2-2 Associated Intra-abdominal injuries.

Organs Primary Repair | Diversion

Small bowel 15
Duodenum
Stomach

Liver

Major vascular
Kidney
Pancreas
Ureter
Diaphragm
Gallbladder
Spleen

M HAIEN PN ENEN T

RIRLINRFRINA OO0

Table 2-3 Total number of organs injured.

Number Prlma.ry Diversion
Repair
1 2 3
2-3 19 19
>4 6 7

2.2.2 Physiological Indices

There are a number of physiological trauma scoring systems, e.g. Glasgow
Coma Scale (GCS). GCS was introduced in 1974 to standardise assessment of
level of consciousness (LOC). It is also relatively simple to apply and is used in
a variety of medical assessment cases. For instance it is used to determine the
urgency of care and for neurological examinations (Fani-Salek et al., 1999).
Children who are two years and younger, they are assessed by its revised
version called Paediatric Glasgow Coma Scale (PGCS). The main reason for
using PGCS instead of GCS is that many of the assessments for adult patients
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are not be suitable for children. The PGCS comprises three assessments:
verbal, eye and motor responses. Three values are considered individually as
well as their sum (Holmes et al., 2005).

Another physiological trauma assessment system is called Revised Trauma
Score (RTS). It incorporates the GCS, systolic blood pressure and respiratory
rate as shown in Table 2-4. This index is determined by adding up the results
from the values of the three components and multiplying them by their
corresponding weights (Champion et al. 1989).

Table 2-4 Revised trauma score.

Code Glasgow Systolic Blood Pressure Respiratory Rate
Coma Scale (mmHg) (Breaths per Minute)
4 13-15 >89 10-29
3 9-12 76-89 >29
2 6—8 50-75 6-9
1 4-5 1-49 1-5
0 3 - -

Another physiological method is Trauma Score (TS). It was introduced to alter
the Triage Index in order to use systolic blood pressure and respiratory rate and
the GCS to calculate the degree of coma. TS Score is between 1 (worst
prognosis) and 16 (best prognosis) and can be calculated by sum of scores
which are given to the component variables (Champion 2002).

Another technique is Emergency Severity Index (ESI) has applications to
provide a reliable evaluation of injury severity and likely prediction of patient
disposition (Tanabe et al., 2004). It uses a five-level algorithm this algorithm
uses respiratory rate (RR), heart rate (HR), pulse oximetry (Sp0O2),
temperature (T), and peak expiratory flow rate (PEFR) (Wuerz et al., 2001).
This mothed can provide clinically related stratification of patients into five
groups according to a range of urgency. This means that it depends on patient

case severity and supply that needs (Gilboy el al 2011).

Acute Physiology and Chronic Health Evaluation (APACHE) was implemented
to predict hospital mortality between critical adult patients (Zimmerman et al.,
2006).

Rapid Acute Physiology Score (RAPS) was developed and verified for practice
as a severity scale in serious care transports. RAPS is also an abbreviated

version of the Acute Physiology and Chronic Health Evaluation (APACHE-II)
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use only variables regularly available on all patients which are transported.
Therefore, it uses four parameters which are (respiratory rate, blood pressure,
pulse, and Glasgow Coma Scale). In terms of range, it is from 0 (normal) to 16
(worst) (Rhee et al., 1987). There is similar short form name called Rapid
Emergency Medicine Score (REMS). REMS is an abbreviated version of
APACHE II. It has earlier been specially calculated as a predictor of in-hospital
mortality for nonsurgical patients presenting to the ED. REMS is determined
that REMS has predictive accuracy comparable to the well-known but more
complicated APACHE Il (Rhee et al., 1987).

The prognostic index (PI) was established in 1980 and it was derived to enable
complete separation of fatal and nonfatal cases and when consequently used in
a nine index cases and properly forecasted the outcome (Walter et al., 2001).
This method could reflect the ability of the prognostic index to distinguish

among patients at low and high risk of death.

The Emergency Severity Index (ESI) uses a reliable severity evaluation and
likely forecast patient disposition (Tanabe et al., 2004). It has five-level ESI
algorithm which was presented to triage nurses at two university hospital EDs,
and executed into training with reinforcement and adaptation management
plans. This method has it owns components that can enable it to predict the
resource consumption. ESI uses RR = respiratory rate; HR = heart rate; SpO2 =
pulse oximetry; T = temperature; PEFR = peak expiratory flow rate (Wuerz et
al., 2001) . This method can provide clinically related stratification of patients
into five groups according to a range of urgency. This means that it depends on

patient case severity and supply that needs.(Gilboy el al 2011).

Sequential Organ Failure Assessment (SOFA) was introduced by European
Society of Intensive Care and Emergency Medicine during a consensus
conference (Cabré et al .,2005). According to this conference, initially called the
“sepsis-related” organ failure assessment, SOFA can be useful equally to all
ICU patients. Moreover, SOFA score is composed scores from six organ
systems, classified from O to 4 according to the degree of dysfunction/failure.
Organ systems also measured in the SOFA score are: respiratory (PO22/F102),

cardiovascular (vasoactive drugs, blood pressure), haematological (platelet
14



count), renal (diuresis and creatinine), liver (bilirubin) and neurological (Glasgow
Coma Score).But some of medical practitioners are not familiar with SOFA
score while decisions on limiting life support were made (Cabré et al., 2005).

Multiple Organ Dysfunction syndromes (MODS) is used to develop clinical
syndrome triggered by several motivations that it is the main reason of mortality
and morbidity in patients who admitted to intensive care units. It routines for
cardiovascular assessment which is based on the so-called “pressure-adjusted
heart rate” (PAR), defined as the product of the heart rate (HR) multiplied by the
ratio of the right atrial pressure (RAP) to the mean arterial pressure (MAP)
(Cabré etal .,2005).

Systemic Inflammatory Response Syndrome Score (SIRSS) is one of the
clinical expressions which deals with the action of difficult intrinsic mediators of
the severe stage reaction (Nystrom 1998). This method can be triggered by
measurement of pancreatitis, trauma, infection, and surgery. Moreover, it can
also compromise the function of several organ systems causing in Multiple
Organ Dysfunction Syndrome (MODS). Therefore, the MODS and SIRSS are
classified expressions of the inflammation related to serious patient (Nystrom et
al., 1998). In this study the SIRSS was expressed by two or more of the
following conditions: "temperature 38°C or 36°C; heart rate 90 beats/min;
respiratory rate 20 breaths/min or PaCO2 32 torr ( 4.3 kPa); WBC 12,000
cells/mm3, 4000 cells/mm3 or 10% immature (band) forms". But in finding, the
SIRSS for other signs as an example, the appearance of C-reactive protein are
better designated as the severe stage reaction. In addition, several patients with
SIRSS showed different degrees of organ dysfunction whereas some

developments to progress multiple organ failure.

Multiple organ failure (MOF) is influenced epidemic parts in several intensive
care units (ICU). It uses to predict non-surviving case in the surgical ICU (Deitch
et at. 1992). MOF score deals with four organs (lungs, kidneys, liver and heart)
are regularly measured for dysfunction and scored from 0 (no dysfunction) to 3
(severe dysfunction)(Zallen et al .,1999). This method was examined in sepsis
and the severity of bacterial sepsis and was assessed reflectively in 37 intra-
abdominal-sepsis and 55 trauma patients with MOF. Finally, the severity of
MOF was graded, and an analysis was made of day of onset, incidence,
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sequence, severity, and mortality of organ failures. There is no difference was
initiated between groups in severity, sequence, or mortality of organ failures
(Goris et at. 1985).

Circulation, Respiratory, Abdominal-Thoracic, Motor and Speech Scale
(CRAMS). This method is commonly appropriate physiological trauma scoring.
CRAMS works based on five parameters (respiration, circulation, trauma to the
trunk, speech and motor) on a 0-2 scale. A score of 0 shows severe injury or
absence of the factor; a score of it > 2 signify no deficit (Fani-Salek el at., 1999).
Therefore, the overall likely score ranges from O which for a corpse to 10 for an
uninjured patient. Including zero as the score for death which makes this
method is more effective than the GCS. Where even a corpse could take more
than 3 scales and when CRAMS score is <=8 that means critical trauma, while
a score of 9 or 10 designates mild trauma. It discriminates between mild and
critical trauma levels and it can be useful to avoid over-triage to trauma middles
and even though dependable for triage part. Nevertheless, it may not be
constantly validated on repeating scrutiny. Even though, reliable for triage part,
CRAMS is incomplete in its capability to predict the need for operation (Fani-
Salek el at., 1999).

Glasgow Coma Scale, Age, and Systolic Blood Pressure (GAP). GAP is one of
the trauma scoring systems that could be used to perfectly forecast in-hospital
mortality and it's also more practical than many other trauma scoring systems
those are used in the emergency department (Kondo et al., 2011). For example,
in this study, GAP was assessed based on the records of 13,463 trauma cases
in a derivation data set defined by using via logistic regression. Some scoring
systems that are Revised Trauma Score, Trauma and Injury Severity Score
were compared with GAP. The calculation of GAP scores included GCS score
that was from 3 to 50 points, patients age were less than 60 years (three points)
and SBP (> 120 mmHg, six points; 60 to 120 mmHg, four points). The c-
statistics is a measure of goodness of fit for binary outcomes in a logistic
regression model. In this study c-statistics uses for the GAP scores (0.965 for
short-term mortality and 0.933 for long-term mortality) were superior than or

similar to the trauma scores computed by means of other scales. Related to
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existing instruments, its results show that the GAP scoring system reclassified

all cases but one in the correct direction (Kondo et al., 2011).

Logistic Organ Dysfunction Score (LOD) was developed to support an impartial
tool for measuring severity classifications for organ dysfunction in the ICU and
likelihood of mortality (Le Gall et al., 1996). In this study, LOD scores classified
from 1 to 3 points of organ dysfunction for 6 organ measures: hepatic,
hematologic, renal, cardiovascular, neurologic and pulmonary. This is from 1 to
5 LOD points allocated to the stages of severity (Timsit et al., 2002) .Its scores

were also affected in measuring severity during the first day in ICU.

Simplified Acute Physiology Score (SAPS) is one of trauma scoring systems it
is widely known in many hospitals (Le Gall et al., 1993). This technique uses for
universal severity of disease and outcome prediction .It assesses acute age,
pathophysiology, pre- and comorbidity, state at admission, and underlying
disease. The underlying disease classification has a self-determining role for
outcome of hospital dealing with severe patients (Schuster et al,. 1997). This
technique is initially point for future assessment of the productivity of intensive
care units (Le Gall et al., 1993).

2.2.3 Combined Anatomical and Physiological Score or Methods to

Determine Probability of Survival

There were a number of proposed methods to determine probability of survival
(Ps). A number of trauma injury severity scoring systems were reported that are
intend to accurately and consistently quantify injuries by considering
measurable or observable status of the patient's medical conditions. The main
benefits of determining or scoring of Ps are (Fani-Salek et al., 1999):

Triage: This sets priorities to treat patients.

Prognostic evaluation: This enables predication and management of injury
outcomes.

Research and audit management. These compare patient groups on injury
outcomes and examine the effects of treatments.

Trauma and Injury Severity Score (TRISS) is a method that uses anatomical

and physiological scoring systems to determine the Ps for adults sustaining
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injuries from blunt and penetrating mechanisms (Schluter 2011). It is estimated

by

_ 1
bs = 1+e~b

b= + Buce i % Prrsi XRTS + Bigs ; % 1SS

2-2

where i = 1 is for blunt mechanism and i=2 is for penetrating mechanism, % is a
constant for mechanism i, Brc is the coefficient associated with AGE and
mechanism i, Bars is the coefficient associated with RTS and mechanism i,

Pesi and is the coefficient associated with ISS and mechanism i. RTS is
obtained by

RTS = fBeq X RR+ Bagp X SBP + fcs x GCS 9.3

where P& is the coefficient associated with respiration rate (RR), Per is the

coefficient associated with systolic blood pressure (SBP), and Prcs is the
coefficient associated with GCS. TRISS however has a number of
shortcomings as explained in (Siritongtaworn et al., 2009). The parameter Age
Score =0 if age <55 years and 1 if age > 55 years. The coefficients by to bs

depend on the type of trauma as indicated in Table 2-5.

Table 2-5 The TRISS coefficients.

Coefficient E;I;r;tj;aguyrg:rgr Penetrating Trauma
bo -1.247 -0.6029
b, 0.9544 1.1430
b, -0.0768 -0.1516
b3 -1.9052 -2.6676

TRISS has been criticised because of

e Itincorporates the problems associated with ISS.
e It cannot include tubed patients as respiration rate and verbal responses

are not obtainable.
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e It does not account for mix of patients and thus making comparisons

between trauma centers difficult (Siritongtaworn et al., 2009).

In 2004 Trauma Audit and Research Network (TARN) (Trauma Audit and
Research Network 2017) proposed a Probability of Survival model called Ps04.
This model uses age, gender, Injury Severity Score (ISS) and Glasgow Coma
Score (GCS) and intubation. In 2014, Psl14 model was introduced by
incorporating Charlson Comorbidity Index (CCI) to the assess Pre-Existing
Medical Conditions (PMC). To predict probability of survival in Psl4, age,
gender, GCS and intubation and PMC parameters are required. It determines
the percentage of probability of survival by performing retrospective measure of
a new patient with same profile on TARN database. For example, if Ps = 53%,
then 53 out of every 100 people have profiles that survived and 47 people died

based on formula.

b
bs = : 2-4

1+e~b

Where €=2.718282 and b is defined as the linear combination of the regression
coefficients and the values of the corresponding patient’s characteristics (ISS,
GCS, modified CCI, age and gender).

Harborview Assessment for Risk of Mortality (HARM) is an effective tool for a
predictive likelihood of in-hospital mortality for trauma patients. This technique
has consistently outperformed both ICD- 9-CM Injury Severity Score (ICISS)
and the Trauma and Injury Severity Score (TRISS) methods (Al west et al.,
2000). It is also valuable for both calibration and discrimination using
information that is readily accessible from hospital discharge coding, and

without requiring ED physiologic records (Al west et al., 2000).

Severity Characterisation of Trauma (ASCOT) was introduced in 1990
(Champion et al., 2002). It is used to improve Trauma Score-Injury Severity
Score (TRISS). It relates emergency department admission parameters of GCS,
systolic blood pressure, respiratory rate, age of patient, and AIS-85 anatomic

injury scores by means of dealing with ISS limitations.
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The Drug-Rock Injury Severity Score (DRISS) was introduced by emergency
physicians and illustrates exactly how trauma severity scores can be advanced
or adapted for new, specific situations (Fani-Salek et al., 1999). The DRISS is
also one of a new combined trauma scoring system which has developed
particularly to be more accurately and powerfully triage injured patients at rock
concerts. The method efficiently compares medical resource which use unlike
measures. It uses values for intoxicants as a result of the high rate of
drug/alcohol practise at rock concerts. While not yet validated, DRISS can be
beneficial for categorising who are injured into the groups of those needing

more care, those who are carefully cured and released (Fani-Salek et al., 1999).

The Trauma Index (IT) is usually used to rapidly assess patients with severe
trauma. It has assignment for injury severity which are (minimal injury= 1,
moderate injury= 3 or 4 and severe injury= 6) and parameters are based on
(regions, type of injury, cardiovascular status, central nervous system status
and respiratory status). Trauma index = (points for region + points for type of
injury + points for cardiovascular status+ points for CNS (centre nervous
system) status + points for respiratory status). Interpretation minimum score
with trauma: 2, maximum score: 30 and scores >7 need admission to the
hospital. The method has limitation as the trauma index is not intended for burn
patients (Medal Military Medicine 2010).

A Paediatric Trauma Score (PTS) is introduced as a combined method of a
triage means and PTS was developed as a way of helping rapid precise
assessment of the children who is injured in a routine that it can protect
inclusive initial assessment. It is also a scoring system that it assesses based
on six common determinants of clinical condition in the injured child. Each of the
six factors is assigned a scoring containment that -1 (major or immediate life-
threatening injury), + 1 (minor or potentially major injury) or finally +2 (minimal
or no injury). The arrangement of this method uses manner well-matched with
typical advanced trauma life support procedure. Suitable diagnoses of multiply
injured child not only requires precise initial assessment, but also a relies on the
variances in paediatric physiology affecting potential morbidity (Tepas et al.,
1987).
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2.2.4 Artificial Intelligence Techniques based on Trauma Scoring Systems

Artificial Intelligence techniques such as fuzzy logic (FL), neural networks (NN),
expert systems and genetic algorithm (GA) were successfully used to solve

several medical problems.

Fuzzy logic (FL) is a computational model that for processing information in way
that it is similar to human communication and intellectual processes (Allen and
Smith 2001; Guler and Barisci 2002 ; Elkfafi et al., 1997). It has been used in

defining and forecasting some cardiac diseases and depth of anaesthesia.

FL was used in a new diagnostic system for classifying the severity of 26
traumatic  brain  injuries. Trauma, Glasgow coma scores and
electroencephalography were used for assessing the system (Gller et al.,
2008). They found a reasonable agreement between the results of neurologists
and systems outputs for normal, serious and maximum electroencephalogram
data. Therefore, FL can be a potential tool for determining the severity of
trauma (Gdiler et al., 2008).

Artificial neural networks (neural computing) are highly simplified models of
human brain. They are generally complex, nonlinear and parallel structures that
can learn to perform tasks that are difficult to solve through conventional
sequential programming (like C) or by mathematical formulae (Haykin 2009).
Artificial Neural Network (ANN) was also used to compare with standard
outcome predictors to determine physiological indices and probability of survival
(Pearl et al., 2008). As result of this ANN was shown to be able to predict
mortality better than standard outcome predictors.

Genetic Algorithm (GA) is an optimisation method (Kentala et al., 1999) that is
modelled on the concept of evolution to identify the best solution amongst
possible options. In medical field, GA has been used in applications such as
identifying people at risk of a coronary artery disease and to determine

reasonable outcomes (Kentala et al., 1999).
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Likewise, expert system was used to advise advanced trauma life support
(ATLS) trained surgeons (Clarke et al. 1988). This advice was compared to
physicians-in-training. In this study 13 medical students and surgical residents
and 5 cases were actual care situations those presented to the developed
system. The classifications of the expert system were better than those of any
individual trainee. The variances were statistically substantial for two of the
three principal residents, 5 of 9 residents overall, and all 4 students. This
primary validation of a prototype developed system is positive for the view of a
computerized decision support system that can assist surgeons to make

opening definitive managing strategies for patients who have major trauma.

Traumatic brain injury was examined by an artificial intelligent virtual reality
(VR)-based. This is in order to understand the vocational problem-solving skill
training programme designed to improve career opportunities (Man et al. 2013).
Findings showed that there is enhancement in selective memory processes and
observation of memory function. Across-group assessment exhibited that the
VR group achieved more positively than the therapist-led one with regard to

objective and subjective result measures and improved vocational results.

In another study they used different types of artificial intelligence and
machining learning (ML) techniques to examine and evaluate injury severity.
This system was developed of a multipara meter machine learning algorithm
and hybrid system to predict the essential for life-saving interventions (LSIs) in
injury patients (Liu et al. 2014). In this study, the model used statistical tools
those are based on and maxima, slopes and means of several vital sign
dimensions corresponding to 79 trauma records of cases generated over
110,000 feature groups, which were used to implement, train, and develop the
model. Comparisons among several machine learning models showed that a
multilayer perceptron would accurately implement the algorithm in a hybrid
system consisting of a machine learning component and basic detection rules.
Deep Learning (DL) was also used in the United States for predicting diabetic
retinopathy. Diabetic retinopathy is a foremost reason of vision loss mainly
among working-aged people (Wong et al. 2016). Therefore, DL was assessed
diabetic retinopathy screening by using a big data base of images and data
was divided into three sets. The total number of images is 128175 for training

set and two for validation 9963 and 1748 images. Results showed this model
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was significantly performed by 87% to 90% sensitivity, 98% specificity for
identifying referable diabetic retinopathy. It was distinct as worse and
moderate referable diabetic macular enema (DME) or diabetic retinopathy.

Correspondingly, related eye and diabetic retinopathy diseases were predicted
by deep learning technique (Tinge et al. 2017). This study used retinal images
from multi-ethnic people with diabetes and 494 661 retinal images. The model
was trained for predicting diabetic retinopathy using possible glaucoma 125
189 images and 76 370 images and age-related macular degeneration (AMD)
72 610 images, and presentation of the model was evaluated for predicting
diabetic retinopathy by 112 648 images, possible glaucoma using 71 896
images and AMD by 35 948 images. As a result of this assessment of retinal
images from multi-ethnic cohorts of patients with diabetes, the model obligated
high sensitivity and specificity for detecting diabetic retinopathy and

associated eye diseases.

2.3 Methods to Extract Keywords from Text

A number of methods to search for information in a text, given some keywords
were reported. Shah et al (2003) used a data mining technique to detect
keywords content of different sections of a typical scientific article. 104 articles

published in Nature Genetics were used for this purpose.

Aho et al (1975) used an efficient algorithm to detect all incidences of a
determinate number of keywords in a string of text. The algorithm created a
limited state pattern matching machine from the keywords and then used the
pattern matching machine to procedure the text string in a single pass. The
algorithm was used to improve the rapidity of a library bibliographic search

program.

Extracting word-Level paraphrasing is a complex and critical indicator to context
(Xian-Jiang et al, 2012). Multi-feature word-level Chinese paraphrase extracting
techniques were reported by (Xian-Jiang et al., 2012). One technique used data
mining for the target word and its nominee paraphrases were taken from the
Internet. Another technique used a stratified probability statistical model. Their
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study showed that retrieving candidate paraphrases from large-size quantities

by using data mining technique can be effective.

A method to extracting signature word from abstract Web page was reported by
(Pang et al.,, 2012). They used meta data and special tags of the HTML to
design a weighting function that allowed for the frequency, length and word

location.

There are approaches for automatic keyword extraction from documents.
Keywords extractions from the linguistic and non-linguistic methods were used
to obtain the linguistic features of the words, sentences and document (Madane
et al, 2012). They used part-of-speech, syntactic structure and semantic

qualities.

An Intelligent method was used to extract engineering characteristic indexes in
paragraph contents of a word document of a transmission and transformation
study (Pedia Content Solutions Pvt. Ltd 2015). It created an engineering
characteristic index library to serve as a substance database and from them the

required information was extracted.
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Chapter 3 Techniques Used in the Study

3.1 Overview

This chapter explains the operations of the trauma scoring systems, artificial
intelligence (Al) techniques and statistical analysis techniques used in this
study. Particular attention is given to AIS and GCS as they are most relevant to
the study. For Al, specific consideration is given to fuzzy logic and Iterative
Random Comparison Classification (IRCC). The Predictive Statistical Diagnosis
(PSD) is also described.

3.2 Trauma Scoring Systems Operations

3.2.1 Abbreviated Injury Scale (AIS)

AIS provides anatomical indices and editions 2008 and 2016 edition available. It
gives comprehensive injury descriptions for diverse conditions in body regions
with levels of severity. An example of this code is shown in Table 3-1 (AAAM
2005, 2008).

Table 3-1 AIS code and injury description (AAAM 2005 updating 2008).

Specific Anatomical Structure or Patient Condition AlS Code

Injuries to the Head NFS 100099.9

Crush Injury Must involve massive destruction of skull, brain and intracranial | 113000.6
contents.

Penetrating superficial; < 2cm beneath entrance 116002.3
Penetrating major; >2cm penetration 116004.5
Avulsion superficial; minor; tissue loss <100cm? 110802.1

Table 3.1 shows the description of injured condition in first column and
associated AIS code field. The first six digits describe the injury description and

last digit explains the severity level as shown in Table 3-2.

Table 3-2 AIS numeric to specific injury description.

AIS Code Numeric Conventions of Specific Injury Description
Digits
1 Body Region (head, neck, face, thorax, spine, abdomen, extremity and external)
2 Type of Anatomic Structure (Whole area, Vessels, Nerves, Organs and Skeletal)
3and 4 Specific Anatomic Structure (e.g. Amputation, Burn, Crush and Penetration)
5and 6 Level of specific injuries are assigned consecutive ( e.g. 02 for first condition
and 04 for second condition )
7 AIS Severity Code as explained below

AIS has six levels of severity, from 1 to 6 and number nine indicates an
unknown severity as described in Table 3-3.
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Table 3-3 AIS severity level code.

AIS Code Severity Description

1 Minor

2 Moderate
3 Serious
4 Severe

5 Critical

6 Maximum
o* Unknown

3.2.2 The Glasgow Coma Scale (GCS)

GCS uses physiological measurements. They use three clinical/observational
indices to derive a numerical score for conscious level where 15 is normal
response and 3 is no response, even to deep pain. The value of GCS is the
sum of three best motor response components for the patient. GCS scores of 3
to 8 denote severe, 9 to 12 is moderate and 13 to 15 is for a mild head injury as
shown in Tables 3-4 (Kim 2012 ).

Table 3-4 The Glasgow Coma Scale (GCS).

Eye Opening (E)

Best Verbal Response (V)

Best Motor Response (M)

4= spontaneous

5 = normal conversation

6 = normal

3 =to voice 4 = disoriented 5 = localises to pain
2 =to pain 3 = incoherent words 4 = withdraws to pain
1 =none 2 = incomprehensible 3 = decorticate (flexion)
1 =none 2= decerebrate (extension)
1 =none
Total=E+V+M

3.3 Artificial Intelligence Techniques Operations

3.3.1 Fuzzy Logic

Fuzzy logic is an Al method to be used in this study therefore much more

detailed explanation of its operation as compared to other Al methods are

provided.
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The strength of fuzzy logic is due to the mapping of input-output relationships
through a number of rules, its flexibility to deal with inexact and uncertain
information and then drawing conclusions (Jantzen, 1998) (Khoukhi and
Cherkaoui, 2008) (Muyeen and Al-Durra, 2013). Unlike crisp (binary) logic that
has a sharp boundary between True and False, fuzzy logic facilitates

continuous transition as shown in Figure 3-1 (Cirstea et al, 2002)

Classical logic Fuzzy logic

Figure 3-1Binary logic versus fuzzy logic.

3.3.2 Fuzzy Inference System (FIS)

Fuzzy Inference System (FIS) is built on fuzzy logic and allows decision making.
It has four main components: fuzzification, rules base, inference engine, and

defuzzification as shown in Figure 3-2 (Jantzen, 1998).

Fuzzy Sets

Crisp Values Fuzzy Set
Crisp Value
| Rule Base l
I- a mm) Defuzzificatio Output
Input - Fuzzification =
|- —) Inference

Engine

Figure 3-2 Block diagram of fuzzy inference system (Jantzen, 1998).

FIS is used to interpret (i.e. fuzzify) the crisp inputs into linguistic variables, and
depending on a set of predefined rules, it computes linguistic output values
where in turn are converted (i.e. defuzzified) into real crisp output value
(Naoum-Sawaya and Ghaddar, 2005) and (Saraireh et al, 2008). The following

subsections outline each component of FIS.
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3.3.3 Fuzzification

This is a process of converting numerical input into linguistic terms and defining
their degrees of belonging to the suitable fuzzy sets via membership functions.
In fuzzy sets, an element x; in the universe of discourse X is assigned a degree
of membership p(xj) as shown in Figure 3-3 (Cirstea et al, 2002). A membership
function indicates regular transition from a full belonging to a fuzzy set to not-
belonging at all with intermediate values presenting degrees of belonging (Al-
Sbou et al, 2006). In fuzzification process, different membership functions can
be applied. For example, triangular, trapezoidal and gaussian as explained
below (Alonso, 2014).

Triangular membership function: Expressed by a lower limit a, an upper limit b,

and a value m, where a <m < b as shown in Figure 3-3.

(0 X<a
[ = a<X<m 1-
m-—a
Maz(X) = box a<X<m 0
b-m
0.
0 X=b
{ 0.
0.

a m h

Figure 3-3Triangular membership (Alonso, 2014).

Trapezoidal membership function: expressed by a lower limit a, an upper limits
d, a lower support limit b, and an upper support limit ¢, where a < b <c < d. This

is shown in Figure 3-4.

0 (X<a)or(x>d) 1-

X—a
<X< 0 R-

T a<X<b
® e
Hazld) =

1, b<X<c 04.

d—x
1—c c<x<d 02-

Figure 3-4 Trapezoidal membership (Alonso, 2014).

28



Gaussian membership function: expressed by a central value m and a typical
standard deviation k > 0. The parameter k determines the function’s width
(Alonso, 2014).

_(x-m)i1 0.8

Haz(X) =e 2K

0.6

0.4

0.2

m

Figure 3-5 Gaussian memberships (Alonso, 2014).

3.3.3 Rule Base

A set of IF-THEN rules are represented in linguistic terms. They are the
foundations of decision making process in FIS. The number of rules is
dependent on the number of inputs and outputs variables as well as the number
of membership functions interrelated with them (Jantzen, 1998). The general
form of IF-THEN rules is:

IF (Antecedent) AND (Antecedent) ...... THEN (Consequent).

Where the antecedent relates the linguistic variable to a fuzzy set, and the
consequent represents the conclusion from IF term. Each rule may have one or
more connectives (i.e. fuzzy operators). The most common fuzzy operations for
IF-THEN rules are intersection, union, and complement which are respectively
implemented by fuzzy operators AND, OR, and NOT (Klir and Yuan, 1995)
(Ross, 1995) respectively. For instance, given that px and py are the degrees of
membership functions for fuzzy sets X and Y respectively, the application of
fuzzy operators AND, OR, and NOT can be defined as (Ross, 1995):

AND: Uy /7y = min (Ux, Hy)

OR: px Uy = max (Hx , Hv) 3-1

NOT: gy = 1- P
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3.3.4 Inference Engine

Fuzzy inference engine uses fuzzified inputs along with the rules to perform
inference (i.e. the process of implication and then aggregation) (Jantzen, 1998).
The fuzzified inputs can be related to more than one rule to specify how well
each rule describes the existing situation by computing the degree of certainty
for the IF condition. More than one rule might be triggered at the same time
describing the specific condition. Individually these rules produces Consequent
or Conclusion to be taken in the THEN condition. This process is performed by
implication method which is defined as the shaping of output membership
functions. The input for the implication is a single number given by the
antecedent of the rule, and the output is a fuzzy set. The truncated output fuzzy
sets from the implication process which describes the firing strength of the rules
is then processed by an aggregation method. In the aggregation process, the
truncated output fuzzy sets from the implication process are unified to produce
one output fuzzy set (Ross, 1995).

3.3.5 Defuzzification

This is the process that converts the output linguistic value (i.e. the aggregate
output fuzzy set) into a real numeric value. The input for the defuzzification
process is the aggregate output fuzzy set and the output is a single number.
Nevertheless, the aggregate of a fuzzy set covers a range of output values
which in turn must be defuzzified to produce a single output value from the set.
There are numerous techniques that can be used for defuzzification process
such as centroid, bisector, middle of maximum, largest of maximum, and
smallest of maximum. Also defuzzification has two fuzzy inference methods:
Mamdani and Sugeno. The procedure of fuzzifying the inputs and applying the
fuzzy operator during the fuzzy inference process are similar in both methods.
However, the main difference between Mamdani and Sugeno is the manner the
outputs are determined. Mamdani-type FIS is based on defuzzification process
to generate crisp output from output fuzzy set, while Sugeno-type FIS uses
weighted average to compute the crisp output (Arshdeep and Amrit, 2012).
Mamdani FIS has output membership functions whereas Sugeno FIS has no
output membership functions. Due to the interpretable and intuitive nature of the

rule base, Mamdani-type FIS is widely used particularly for decision support
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application (Haman and Geogranas, 2008). Therefore, Mamdani-type FIS is
used in this study. The information flows through the process of fuzzy inference
system: commencing from fuzzifying inputs, through the process of applying
fuzzy operator, implication method, aggregation method, and terminating by
defuzzification process (Abdul Aziz and Parthiban, 2006) (Yamamoto and

Morooka 2005). The centroid method of defuzzifier equation 3-2 for the distinct

N
Yi=1Zi- B, (Z)

case is Z out= 3-2

Zi1 Hout@

This method computes the centre of the area formed by the sum of all the
output terms of the fuzzy controller. Figure 3-6 shows its membership functions
used in a study for the linguistic variable and referred to as Thrust. It has two
non-zero linguistic terms: Without-Thrust, with membership degree 0.6, and
Positive-Medium, with membership degree 0.4. The defuzzified controller output
is the position of the centre of gravity of the union of the term areas and the

resultis Z , =22 (Yamamoto and Morooka, 2005).

Negative Negative Without Positive Positive
High Medium Thrust Medium High
1
0.8- A
Kz 0.6
0.4 ><
/A \
-200 -150 -100 -50 0 \l/ 50 100 150 200 z
Z oyut=22

Figure 3-6 An example of defuzzification (Yamamoto and Morooka, 2005).

3- 4 Predictive Statistical Diagnosis (PSD)

PSD uses Bayesian statistics to determine to which of a given set of predefined

types t, a measurement expressed by a feature vector (x) belongs (Aitchison et
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al, 1980 and Aitchison et al, 1977). It uses example cases of known types,
represented in a training data set to obtain the values of its calibration
parameters. Once these parameters are calibrated, it can classify an unknown
case into the types represented by t.

The probability that an observation vector x and parameter vector @ belongs to

the type t; is given by Bayesian statistics as

p(t) p(x|t,0)

,0) =
pt, | X,6) (%)

3-3

where p(ty) is the prior probability of type t1, p(x|t1,0) is the probability density
function of x for a given type t;. Equation 3-3 can be rewritten as predictive
density function for an observation x on a case of type t assessed on the
training data Z as (Aitchison et al, 1980 and Aitchison et al, 1977).

ol x,6) A1) 3.4

> pM)a(x|t, 2)

t=t,

To determine above, q(x|t;, Z) can be replaced with (Aitchison et al, 1977)

a(x|4,Z) =St [Vﬂmt'(l"'ijstj 3-5

t

where there are n; cases of type t with feature vectors xi, Xz, ... Xn; V¢ is the
degrees of freedom given by n; — 1, m¢ and S; are the mean and the covariance
matrices respectively. Sty represents a d-dimensional student t density
determined as

r[0.5(v+1)] 1

S ,b,c) = <
ta (v.0,0) 7°%r{[0.5(v—d +DJ}ve[**  [1+(x—b)T (ve) (x—b)***P ]| 3.6

where the variables v, b and c relate to equation 3-5 as v = v, b = m; and

c = [H%} St. I' is the gamma function, T and -1 represent matrix transpose

and inversion operations, respectively. Using Equation 3-4, p(ti|x, 6) is

32



determined for the cases of known types. Then to compute the probabilities for
the unknown cases (i.e., those on the validation data set), Equation 3-6 uses
the observation vector x for cases of known types but retains the mean (m;) and
covariance (S;) matrices to identify an unknown type. The parameters m; and S;

are calibration information for the PSD.

3-5 Operation of the Iterative Random Comparison Classification (IRCC)

IRCC is a new method of probability of survival prediction developed in this
study. In this section the justification for using IRCC method and the principle
behind its operation are described. It operates by comparing the injury profile of
the trauma case being examined against the injury profiles of the trauma cases
with known outcomes (survivors and not survivors) from a TARN data set. The
parameters processed by IRCC were age, GCS, AlS, PR, SBP and RR. These
parameters had significant within group (i.e. survivors or not survivors)
variations and thus the comparison of the test case against the complete set
would have reduced the sensitivity of the approach. Instead, IRCC compares
the test case against randomly selected groups of cases (full description of
IRCC is provided in the next section). To illustrate this point, Table 3.5 provides
the average of trauma parameters for complete head injury cases consisting of
4124 cases of 3553 (86.2%) were survivors and 571 (13.8%) were not
survivors. The Euclidean distance (EDsy) between the trauma parameters of

survivors and not survivors from this table is

=19.74

‘ (65.75 — 81.13)2 + (4.25 — 4.75)% + (14.34 — 11.16)? +
SN= 1(144.33 — 155.90)? + (17.72 — 18.57)% + (81.30 — 84.15)?

The corresponding Euclidean distances for the averages of the trauma
parameters for survivors and not survivors for the three subgroups in Table 3.5
are (each random sample contained 6 survivors and 6 not survivors, the
justification of selecting 6 cases is provided through an analysis later in this

thesis):

(79.6 — 69.98)2 + (4.17 — 4.5)2 + (14.67 — 9.17)2 +

Group 4: EDsy = \](157.83 _141.33)% + (21.2 — 16.83) + (85.17 — 87.33)2 ~ 2047
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_ | (46.92—80.43)2 + (3.67 — 4.83) + (14.17 — 12.33)? +
Group B: EDsy = J(131.17 —185.17)% + (18.17 — 18.67)2 + (76.83 — 84.17)2

= 64.01

. _ (43.53 — 88.48)% + (4.17 — 5)2 + (13.5 — 8.83)2 +
Group C: EDsy = J(134.17 —168.33)2 + (17.83 — 18.83)2 + (81.83 — 88.83)2

=57.10

The average of Euclidean distances for the three randomly selected groups was
47.19. This shows (47.19-19.74)/19.74 x100= 139.06% increase in the

differentiation of survivors and not survivors.

Table 3-5 Average and standard deviation of trauma parameters for head injury, all

cases.
Parameters Outcomes Mean STD
Age Survivors 65.75 21.96
(vears) Non-survivors 81.13 12.91
Survivors 4.25 0.72
AIS
Non-survivors 4.74 0.53
Survivors 14.34 7.07
GCS
Non-survivors 11.16 8.49
SBP Survivors 144.33 26.84
(mmHg) Non-survivors 155.90 34.01
RR Survivors 17.72 3.72
(bpm) Non-survivors 18.57 5.49
PR Survivors 81.30 18.18
(bpm) Non-survivors 84.15 21.30

34



Table 3-6 Average and standard deviation of trauma parameters for head injury for
three randomly selected samples. The samples are represented by groups A, B and C
and consists of 6 survivors and 6 not survivors.

Selected Selected Selected
Parameters Outcomes Sub-Group (A) | Sub-Group (B) Sub-Group (C)
Mean STD Mean STD Mean STD
Age Survivors 79.60 8.05 46.92 21.69 43.53 26.73
(vears) Non-survivors 69.98 | 23.70 | 80.43 | 19.90 | 88.48 | 10.04
AlS Survivors 4.17 0.98 3.67 0.82 417 0.41
Non-survivors 4.50 0.84 4.83 0.41 5.00 0.00
GCS Survivors 14.67 0.52 14.17 1.60 13.50 1.64
Non-survivors 9.17 5.04 12.33 2.25 8.83 5.53
SBP survivors 157.83 | 22.35 | 131.17 22.87 134.17 | 22.99
(mmHg) :
Non-survivors 141.33 | 21.20 | 185.17 | 32.60 | 16833 | 32.18
RR Survivors 21.20 2.56 18.17 3.92 17.83 2.71
(bpm) Non-survivors | 16.83 | 3.97 | 1867 | 450 | 1883 | 1.83
PR Survivors 85.17 | 23.34 | 76.83 19.53 81.83 24.29
(bpm) .
Non-survivors 87.33 20.18 84.17 13.50 88.83 16.13

The operation of the IRCC relies on comparing the trauma parameters for the
case being examined against multiple randomly selected subgroups and then
the overall percentage match is determined. The details of the IRCC operation
are outlined in Figure 3-7. A further flowchart explaining IRCC is provided in
Figure A.1, Appendix A.

35



Represent cases by vectors:
Age, GCS, AlS, SBP, RR and PR

Normalise the vectors' parameters
individually between 0 and 1

Set up a calibration file consisting of
randomly selected 2/3 of trauma cases

Determine selected group size (K) and
number of iteration (N)
Survivor Count (Cs) =0

Randomly select K Randomly select
not surviving K surviving cases
cases

{ Average vectors Average vectors

Test case (for validation this is from
test file i.e. 1/3 of trauma cases)

Measure dlstance Measure distance
(Ds) (Dn)

If Ds < Dn The Test Case is a survivor
else not survivor

Extra step: enhancement of IRCC operation

If Test Case is a
Survivor
Cs=Cs+1

Repeat
N times

Ps=Cs/N * 100

3-7 Flow chart of the IRCC operation.

Each trauma parameter is individually normalised between 0 and 1 by taking

into account the maximum and minimum values for the parameter, the formula

used for this purpose is

parameter value—minimum

Normalised parameter =
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The normalisation ensured that the parameters with a larger range to do not
dominate those with smaller range with the IRCC operations are performed. A
calibration file consisting of randomly selected 2/3 of the trauma cases and a
test file consisting of the remaining 1/3 trauma cases are created. The IRCC is
initialised by selecting comparison group size (K) and the number of iterations.

The survivor count number (Cs) is set to 0.

At the next stage K surviving cases and K not surviving cases are randomly
selected from the validation file. The parameters of their trauma vectors are

individually averaged. This lead to averaged test vectors, i.e.

For survivors: V= [ages, GCSs, AlSso, SBP., RR,,, PRy, 3-8

For not survivors: V,=[agen, GCS,q, AlSpg, SBPrg, RRpe, PRl 3-9

where the subscript 'sa’ and 'na’ represent average value for the parameters of

the survivors and not survivors respectively.
The vector for the test case is obtained. This is represented by

Test case:

[ageta/ GCSta/ Alsa/ SBPtar RRtar PRtu]
3-10

where the subscript 'ta’ represents average value for the parameters of the test
case. The test case in development phase is from the validation file to allow the
performance of the method to be established but there after could be a case
with known outcome (survivor or not survivor). The Euclidian distances between
the vectors of the test case and those for survivors (Ds) and not survivors (Dy)

are obtained,

Ds = (agesq — agea)? + (GCSsq — GCSpa)? + (AlSgq — AlSte)? 3-11
+(SBpsa - SBPta)2 + (RRsa - RRL’a)2 + (PRsa - PRL’a)2

Dn = (agena - ageta)z + (GCSna - GCSL’a)2 + (AISna - AISL’a)2 3_12
+(SBPna - SBPta)Z + (RRna - RRta)z + (PRna - PR?.‘a)2

The values Ds of D, are compared and if Ds < D, then the Survivor Count (Cy) is
incremented by 1. This is repeated for the specified number of iterations (N).

The probability of survival (as percentage) is the calculated by
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Ps = % £100 3-13

Chapter 4 Methodologies

In this chapter, the methodological framework which forms the basis of the
current work is presented. This work was carried out in collaboration with the
Trauma Audit and Research Network (TARN). The TARN database contains
tens of thousands trauma cases with their associated outcomes. . The details of
trauma are also included as further explained later in this chapter. To use this
database, it was important to conduct its statistical analysis with the view to
determine relevant information pertaining to different injuries under
consideration. This assisted the processes of trauma knowledge representation
and visualisation that in turn led to knowledge coding. The primary purpose of
this study is to develop methods to determine probability of survival in traumas.
Figures 4-1 and 4-2 depict the overview of the methodology of the procedures

followed in his study.
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Statistical Analysis of the Selected Cases from TARN database

X

Knowledge Base Representation and Coding of Trauma Data
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Data Analysis
(AIS DICTIONARY AAAM 2005)
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RR, SBP, PR, Age
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PMC
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Data collection and analysis
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PSD and IRCC Techniques W oper:tee‘:hFr:,;:zl:{eLoglc

L b
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Figure 4-1 The overall methodological framework of the research.
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Statistical Analysis of TARN

284

Exploring factors driving the outcomes

N4 L

Examining relevant
statistical techniques to
evaluate Ps14 assessment

Exploring non-survivors Exploring survivors

Investigating and identify the y J\/L _ Investigating and showing
relevant parameters for non- Show outcomes of Ps14 significant parameters that
survivors assessment give probability of survival
\ A
( 2\
& Comparing and evaluating &
both DS & Ps14 outcomes Clustering and investigating

Clustering and investigating
the relationship among

the relationship among factors \ </
{ } factors
e N
— Showing outcomes of
developed system
\, { } y,
Trauma Knowledge Trauma Knowledge

Implementing of Representation and Coding

Determining the magnitude

Representation and Coding
Determining the severity or

DS techniques to

predict %Ps

weights for every factors of weights for everv factors

Figure 4-2 The framework for statistical analysis to establish trauma knowledge
representation, coding and evaluation.

As shown in Figure 4-2, three processing stages were involved namely
statistical analysis (represented by green blocks), trauma knowledge
representation and coding (represented by orange blocks) and system
implementation and evaluation (indicated by the pink blocks).

4.1 Ethics

Based on the Research Ethic Policy of Sheffield Hallam University (SHU)
(Sheffield Hallam University 2015) which states that:

"Any research undertaken by staff or students (undergraduate or post graduate)
of the University which involves direct contact with human participants, whether
clinical, biomedical or social research, or the secondary use of human and
animal materials or specimens, or where there may be any other ethical issues,
should be subject to ethical review." (Sheffield Hallam University 2015)"

Ethic clearances were obtained at Sheffield Hallam University (appendix B).
The TARN data were anonymised and it was not possible to relate them to

40



individual patients. The data were stored on the University's networked
Research Store called Q drive for all copies in accordance with the TARN
agreement's with the University (appendix C).

4.2 Development of a User Interface to Developed System

An interface that enabled the user to be guided through the AIS stated injuries
types for various body regions and the automatically generated the associated
AIS code was developed in Matlab. This was tested for accuracy and the test
results are provided in Chapter 7. The limitation of the approach was that
doctors could not enter the patient’s injuries in their own way and they were
required to select predefined injuries. This could result in inconsistency of
coding between doctors. Therefore a new approach for determining the AIS
code and probability of survival was developed. The method allows the doctor
to enter the AIS code for injuries in their own way. The process of converting
this description to AIS code is explained in the next sections. Once AIS code is
determined, its value together with GCS, RR, SBP, PR, Gender, Age, Intubation
and PMC are processed by developed system (DS) to determine probability of

survival.

4.3 Artificial Intelligence Methods of Determining Probability of Survival

The operations involved in determining AIS code and probability of survival
relied on analysis of TARN data that had several thousand trauma cases. The

tasks to develop the system are shown in Figure 4-3.
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Injury Keywords

Doctor’s injury description

; i . Patients’
or a specific patient Injury keywords

1T

Associate matched injury keywords

TARN Data

Patient’s
AlS code

with an AIS code for the to select

Patients’

L . patient (injury description AAAM
injury information

2005 updating 2008)

Patient’s GCS, RR, SBP, PR, Develop techniques PSD, IRCC and o6p
s
Age, Intubation and PMC FIS to determine probability of |:> °

factors survival (Ps)

Figure 4-3 Operations to determine AIS code and probability of survival.

With the aid of staff from TARN, the TARN data were analysed and specific
patients’ injuries keywords associated with each case were already determined
(in the database). To determine the AIS code for a specific patient, a keyword
matching scheme was developed to search for the closest match in the TARN
database and from it the AIS code was produced based on (injury description
AAAM 2005).

The information from AIS code, GCS, RR, SBP, PR, Age, Intubation and PMC
of the cases were then processed by PSD, artificial intelligence methods, IRCC
and FIS to determine the probability of survival. To develop this using PSD,
IRCC and FIS appropriates, TARN data were used as part of the trauma

knowledge representation and coding.

4.3.1 Implementation of IRCC and PSD system developed

IRCC and PSD technique were set up and evaluated using two separate data.
One is 2/3 of the overall data and was used as calibration of the method and the
remaining 1/3 of the cases were used for evaluation of the methods. The

subjects in each set were randomly chosen. The output of processing was
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probability of survival (Ps). Figure 4-4 shows the stages to setup PSD and
IRCC.

f TARN Data \

PSD or IRCC
2/3 of data ‘

(calibration set) Algorithm
1/ 3 of data
(evaluation set) ‘
PSD or IRCC
Inputs Ps
K Model

Figure 4-4 Block diagram of IRCC and PSD techniques.

The main inputs to the probability of survival calculation methods were. AIS
code, GCS, RR, SBP, PR and Age. However, there were two other factors
(Intubation and Pre-existing Medical Conditions (PMC)) which were considered
at later stages of the developments to improve the accuracy of the method but
these were only available for some individuals. The FL technique was
implemented to combine IRCC outcomes with PMC and intubation. Further
analysis and explanation of the approaches are provided in chapter 6, where

knowledge representation and coding are outlined.

4.3.2 Implementation of FIS

4.3.2.1 Input member functions

The fuzzy inference system (FIS) had two inputs, each represented by a
number of membership functions as shown in Figure 4-5. The inputs were the
IRCC output and other factors, i.e. intubation and PMC. The reason for
combining IRCC output with Intubation and PMC score was to further improve
the results. Figure 4-6 shows IRCC output's membership functions represented
by 5 membership functions, labelled as categories 1 to 5. Further details about
how the membership functions were organised are provided in chapter 6. For
the second input to the FIS that expressed PMC and intubation, four
membership functions were used labelled as Both, Intubation, Unspecified and
PMC. As shown in Figure 4-7 these membership functions were part of

knowledge coding explained in chapter 6.
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Figure 4.8 Shows typical rules relating the inputs and output of the FIS (further

details are provided in Chapter 6)

XX P~
| ]

1
IRCC Fuzzy

{mamdani)

>Q< Savarity

Intubation&FMC

Figure 4-5 Structure of a fuzzy inference system.

Category1 Category2 Category3 Category4 Category5S

1 1 1 1 1 1 1 1 1
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
input variable "IRCC"

Figure 4-6 Membership functions for IRCC output.

T T T

Both lntubauon Unspecified

1 9 {
0.5 W v
o

o 0.4 0.5 0.6
input variable "Intubation&PMC™

Figure 4-7 Membership functions of PMC and intubation.

If (IRCC iz Category1} and (Further-Factors iz Both) then (Severity is Lewel1) (1)
If (IRCC iz Category1}) and (Further-Factors iz Intubation} then [(Severity is Lewvell) (1)
If (IRCC iz Category1} and (Further-Factors iz PMC) then (Severity is Lewvell) (1)
If (IRCC iz Category2) and (Further-Factors iz Both}) then (Severity is Lewvel1) (1)
If (IRCC iz Category2) and (Further-Factors is Intubation} then [(Severity is Lewvell) (1)
If (IRCC iz Category2) and (Further-Factors is PMC) then (Severity is Lewell) (1)
If (IRCC iz Category3) and (Further-Factors iz Both) then (Severity is Lewel1) (1)
If (IRCC iz Category3) and (Further-Factors is Intubation} then [(Severity is LewvelZ) (1)
If (IRCC iz Category3) and (Further-Factors is PMC) then (Severity is Lewvel2) (1)
10, If (IRCC iz Category4) and (Further-Factors is Both) then (Severity is Lewvell) (1

DOHINELN =

1. If (IRCLC is Category4d) and (Further-Factors is Intubation} then (Sewverity is Level2}) (1)
12, If (IRCC iz Category4) and (Further-Factors is PMC} then (Severity is Lewvel3) (1)
13. If {IRCC iz CategoryS) and (Further-Factors is Both) then (Severity is LevelZ) (1)
14, If (IRCC iz CategoryS) and (Further-Factors is Intubation} then (Sewverity is Lewvel3) (1)
15. If (IRCC iz CategoryS) and (Further-Factors is PMC} then (Severity is Leveld) (1)

Figure 4-8 Typical rules relating the inputs and output of the FIS.
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The last stage of the FIS is defuzzification where the output of the FIS is

determined. Figure 4-9 shows output membership functions used for this

purpose. Figure 4-10 shows as example of the DS operation with inclusion of
PMC and intubation.

Levell Level2 Level3 Leveld LevelS

10 )
output variable "Severity"”

Figure 4-9 Output membership of probability of survival.
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| |
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Figure 4-10 Prototype of DS mechanism when patient has further factors.
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4.4 Chapter summary

In this chapter, the approaches followed developed for determining the
probability of survival are outlined. An overview of the procedural framework of
the research for using the trauma parameters including the AIS code to predict
of probability of survival is presented. A description of the manner the FIS and
IRCC outputs were combined with further PMC and intubation is also provided.
In the chapter that follows, statistical analysis of the TARN database is
presented.
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Chapter 5 Investigation of interrelation between trauma parameters
and survival outcomes

5.1 Overview

An analysis of the data used in the study was performed using a number of
packages, each package a specific purpose. Microsoft Excel® was used to a
spread sheet. SPSS® and Matlab® were used to carried out statistical analysis
and data processing respectively. The data processing and statistical analysis

data are explained in the following sections.
5.2 Introduction of TARN Database Trauma Characteristics

The data analysis investigated the number, Age, Gender, injury types of trauma
cases, used in the study. There were about 10% more males than females and
97% of the injuries were in the blunt category and the rest, penetrating type. A
blunt traumatic injury is caused by the application of mechanical force to the
body or when the body strikes a surface in which the skin is not penetrated. A
penetrating traumatic injury is caused when a sharp object such as knife
penetrates the body. The proportion of cases that survived (lived after the
trauma) was 93.3% and the remaining cases not survivor (died) as shown Table
5-1.

Table 5-10verview of all injury trauma cases.

Gender (%) Mean Age (years) % Injury Type Injury outcome Total
(standard . . Not
Male Female deviation) Blunt | Penetrating | Survivors Survivors
26098 21604 60.7 97.6% 2.4% 44499 3203 47702
(54.7%) (45.3%) (24.8) (93.3%) (6.7%)

Figures 5-1a and b show the distributions (histograms) indicating the effect of
age on the individuals surviving and not surviving in trauma. The age
distribution for survived cases shows peaks at 20, 60 and 80 years but for those
that did not survive, there is a single dominant peak at about 90 years. The
peaks in the distribution of cases that survived do not infer that more injuries
occur at those ages but there are more subjects with those ages in the analysed
data. Figure 5-2 shows the number of cases for different injury mechanisms.
The dominant injuries in order of magnitude are: fall less than 2 meters, vehicle

incident collisions, fall more than 2 meters and blow(s).
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Figure 5-3 Injury numbers in relation to the AIS defined body regions.
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Figure 5-4 provides the percentages of cases with AIS injury scores 3-6 that did
not survive. The majority of these cases had head injury (43.93%) and next
highest percentages were for thorax (22.04%) and lower limbs injuries
(15.55%).
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Figure 5-4 Body region injuries with AIS scores 3-6 and associated number of cases
that did not survive.

Figures 5-5a and b show the distributions the ISS scores for (a) those that
survive and (b) those that did not. For those that survived the ISS values peak
around 15 and for those that did not, the ISS distribution has multiple peaks;
with the largest at round 30.This shows that increasing number of ISS is not the
reason that leads to not-surviving. Due to this fact Figure 5-5b shows that Ps14
IS not very effective in determining the probability of survival for cases where

survival is not reported.
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Figure 5-5 (a) Distribution of ISS values for (a) those that survived and (b) those that
did not survive.
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Figures 5-6a and b show the probability of survival distribution as measured by
Ps14. The Psl14 values for cases who did not survive peaks between 80 to 100
but for those who survived, has a more uniform distribution. Therefore the
method has not been very sensitive in determining probability of survival for

cases who did not survive.
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Figure 5-6 (a) Ps14 values for subject who survived (left) and (b) those did not (right).

Figure 5-7a shows the number of cases with GCS less than 13 and more than
12 that survived. Figure 5.6b shows similar information for those that did not
survive. Comparing the proportion of cases with GCS less than 13 in both
figures. Figure 5.6b shows GCS < 13 in not survivors is close to GCS >12 by
93% but Figure 5.6a displays only 0.5% from total cases classified GCS >12.
This means GCS has impact of not survivors when it's scores less than 13. In
other words, GCS <13 maybe affected when it is associated with other factors

in certain conditions and this is seen in Figures 5-15, 16, 17, 18.
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Figure 5-7 (a) GCS values (a) those that survived and (b) those that did not survive.
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Figures 5-8a and b show the effects of pre-existing medical conditions (PMC)
on the probability of survival for the cases that (a) survived and (b) those that
did not survive. The value of PMC<1 indicates no pre-existing condition and
PMC>0 indicates existence of at least one pre-existing medical condition such.
The majority of those that survived did not have a pre-existing medical condition
but the opposite is the case for those that did not. This shows PMC is an

effective factor for predicting non-survivor cases.
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Figure 5-8 (a) The effect of pre-existing medical condition on (a) those that survived
and (b) those that did not survive.

Figures 5-9a and b show the number of adult cases with emergency department
respiratory rate in the healthy or normal range (considered as 12 to 20 breaths
per minute) for cases (a) that survived and (b) those that did not survive. The
proportion of cases with emergency department respiratory rate 12-20 breathes
per minute (bpm) that did survive is much higher than the cases that did not.
Therefore the respiratory rate is an important factor in determining the

probability of survival.
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Figure 5-9 (a) Number of cases with normal (12 to 20 breathes per minute) emergency
department respiratory rate (a) those that survived and (b) those that did not survive.
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Figures 5-10 a and b show the effect of normal pulse rate (heart rate) on
survival of adults. Pulse rate for healthy adults is typically between 60-100 beats
per minute (bpm). In surviving cases (Fig.5-10a), a much higher proportion of
individuals had normal pulse rate. Fig.5-10b shows the proportion of the
individuals with a normal and abnormal emergency department pule rate for
cases that did not survive is much closer than those that did survive.
Consequently, PR has a slight effect in non-survivors.
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Figure 5-10 Effect of emergency department pulse (heart) rate on probability of survival
in adults (a) survived cases (b) those that did not survive.

Blood pressure is one of the vital sign for medical examinations. Figures 5-11a
and b show the number of adult cases with emergency department (ED) -
Systolic blood pressure (SBP) in the normal range (90 to 140 mmHg) and
outside this range for the cases that survived and (b) those that did not survive.
The proportion of cases with SBP in the normal range is higher in individual that
survived than those who not survive indicating this physiological measure in an

important indicator of Ps.
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Figure 5-11 Impact of emergency department systolic blood pressure on probability of
survival in adults (a) survived cases (b) those that did not survive.
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5.3 Investigation of relationships and correlation between AIS body

regions and with other factors for non-surviving.

Figure 5-12 shows the correlation between the traumas associated with the 8
body regions as defined in AIS standard for cases that did not survive. Head
injuries occurred more often in combination with face and thorax injuries. Face
injuries are more common with head injuries. Thorax injuries occur more often

with head and abdomen injuries.

Variables
Il Correlation Head
1 .00 M M N M Correlation Face
] Correlation Thorax
Ml Correlation Abdomen
[ Correlation Spine
_ M Correlation UpperLimbs
075 M correlation LowerLimbs
[ Correlation External

0.50-

Values

0.25-

sl hyy

-0.257

T T T T T T T T
Head Face Thorax Abdomen Spine Upper Lowwer External
Limbs Limbs

AIS Body Regions

Figure 5-12 Correlation of trauma associated with the AIS defined body regions in
cases that did not survive.

Figure 5-13 shows the AIS scores of the cases with joint head, thorax and lower
limb injuries (i.e. the main body areas affected by trauma) that did not survive.
The largest number of deaths is for head (AIS score =5), thorax (AIS score= 3)

and lower limbs (AIS scores= 4 and 5) injuries.
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Figure 5-13 The interrelationship between trauma injuries associated with head, thorax,

and lower limb cases that did not survive represented by AlS scores 1-5.

Figures 5-14a and b show boxplots indicating the relations between head injury

only and thorax injury only for cases that did not survive. Both injury types have

mainly AIS score= 5 but age ranges are different. Age ranges could have been

obscured by the distribution of the specific cases in the data base that itself is

influenced by the age distribution of the population in the UK.
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Figure 5-14 Box plots indicating the relationship between (a) head only injury and (b)
thorax only injury for those that did not survive.
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Figure 5-15 shows the interrelationship between age, GCS and head only
injuries in cases that did not survive. Most cases are related head injuries
AIS=5, ages around 64- 98 years and GCS=3-6 or 13 to 15. Most head injuries
with AlS=4 had GCS values 13 to 15. As result of this AIS=5 and ages 64-98
are clearly significant factors in not survivors however with these GCS values 3

to 6 also has a big number of cases.
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Figure 5-15 The interrelationship between GCS and head injuries in cases that did not
survive.

Figure 5-16 shows analysis in Figure 5-15 extended with inclusion of gender.
Gender is a more significant factor in determining the probability of survival in
older subjects. A larger number of older (aged around 80 years) males have
head injury than females. Age can be important in determining the probability of

survival (Sammy et al., 2016).
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Figure 5-17 shows the relationships between trauma mechanisms, GCS, PMC
and head only injury in cases that did not survive. Most cases that did not
survive were associated with falls less than 2 meters, AIS scores= 4 and 5 and

PMC values -1 to 15.

Figure 5-17 Relationship for GCS, PMC, injury mechanisms and head only injuries for
cases that did not survive.
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Figure 5-18 shows the relationships for intubation, GCS, head and face only
injuries, and GCS in cases that did not survive. Most cases were associated
with intubation and head injury AlIS=5, face injuries AIS=2 and GCS=3 to 9.
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Figure 5-18 The relationships for intubation, GCS, head and face regions, and GCS in
cases that did not survive.

56



Table 5-2 provides a summary the interrelationships between injuries
associated with specific body regions and factors affecting the probability of
survival (age, PMC, GCS and gender) in cases that did not survive. Both the

number of cases and respective percentages are included.

Table 5-2 Overview of injury cases.

Age PMC GCS Gender
Body Regions Total

>54 <55 <=0 >0 <13 >=13 Male Female

Head 811 745 66 289 522 402 409 362 449
(91.86%) (8.14%) (35.64%) (64.36%) (49.57%) | (50.43%) (44.64%) (55.36%)

Lower Limbs 347 335 12 105 242 9 338 119 228
(96.54%) (3.46%) (30.26%) (69.74%) (2.60%) (97.40%) (34.30%) (65.70%)

166 28 76 118 35 159 110 84

Thorax 198 1 (g557%) | (14.43%) | (39.18%) | (60.82%) | (18.04%) | (81.96%) | (56.70%) | (43.30%)

103 26 49 70 64 62 79 50

Head & Face | 129 | 22000 | (20.15%) | (37.98%) | (54.26%) | (49.61%) | (48.06%) | (61.24%) | (38.76%)

Head& Thorax 16 11 5 10 6 12 4 7 9
& Lower limbs (68.75%) (31.25%) (62.5%) (37.5%) (75.0%) (25.0%) (43.75) (56.25%)

5.4 Chapter summary

A preliminary computational analysis of a number of important factors that
influence the probability of survival in traumas was performed. The study
highlighted some of the complexities associated with the manner traumas affect
the probability of survival. This analysis will be built upon in the following
chapters to develop models to predict the probability of survival and overcome
some limitations of the existing probability survival prediction approaches. The
main element of these models is their knowledge base that is derived from the
TARN trauma data. This information leads us to create trauma knowledge
representation and coding in following chapter. There is further statistical

analysis in Appendix A.
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Chapter 6 Trauma Knowledge Representation and Coding

6.1 Overview

In this chapter the development of the knowledge representation and coding
methods are described. Traumatic brain injury (TBI) is the focus of this
investigation. Trauma knowledge representation and coding were constructed
based on four steps as illustrated in Figure 6-1. First is the knowledge
representation and visualization of the TARN data and domain knowledge by
using Tree Decision technique. This was followed by the investigation of the
TARN data statistical analysis in order to distinguish between trauma
characteristics that led to survivors or non-survivors with the view to obtain and
determine interrelationship between injury factors and survival outcomes. Next
step was the knowledge coding this was used as enhancement of IRCC

operation part and FIS rule base that by a series of If-Then Statement.
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Figure 6-1 Planning of Knowledge representation and coding design overview.
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6.2 Knowledge Representation and Visualisation

It is valuable to visualise the knowledge so that the interrelationships between
the variables are better understood. Decision trees are a means of visualising
knowledge. A design tree for visualising parameters considered for predicting

trauma is shown in Figure 6-2.
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Figure 6-2 Decision tree for the trauma assessment system.

In this figure trauma assessment system is divided into three types. One is
anatomy and has 9 AIS conformed body regions as described in (AAAM 2005,
updating 2008). Physiological factors are (GCS, PR, SBP and RR) and every
parameter has scores or ranges that are determined by medical experts. (The
Royal Children’s Hospital Melbourne, 2018; Andersen et al.,, 2016; lain
Wheatley 2018; Verdecchia et al., 2009). Finally, other factors are Gender,

Age, Intubation and PMC.
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6.3 Description of Data Used as Input to the Models for Predicting
Probability of Survival

6.3.1 Overview

In this section the TARN data used as input to the models to predict probability
of survival are described. The data were considered in three stages: (a)
surviving cases and non survivors, (b) dividing the available cases into

calibration and test sets, identification of relevant trauma parameters.

In this section trauma brain injuries (TBI) is chosen to be investigated as it was
the main injury type in the dataset resulting in death. Table 6-1 provides the

details of these cases consisting of their age, sec and numbers.

Table 6-1 Information summary for adult TBI cases (total 4124).

Gender Age (Years) Injury Outcomes
Male Female Mean | Standard Deviation | Survivors Not survivors
2488 (60.3%) | 1636 (39.7%) | 67.9 21.6 3553 (86.2%) 571 (13.8%)

The calibration data set contained approximately 2/3 of the cases (number =
2676) and the validation data set contained the remaining 1/3 subjects (number
= 1448) Figure 6-3 shows details of the subjects' age. Figure 6-3a shows their
age boxplots divided to survivors and non-survivors. The median of age (83.7
years) for no survivors is higher than survivors (71.6 years). Figure 6.3b shows
the age distribution of all subjects. Figures 6-3c, d show the age distributions for

survivors and non-survivors respectively.
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Figure 6-3 (a) shows the boxplots for the subjects' age divided into survivors and not
survivors. (b) Shows the age distribution of all subjects, (c) the subjects included in the
calibration and (d) those in the validation set.

Figures 6-4 a and 6-4 b show the age distributions of the subjects included in

the validation set separated into survivors and not survivors respectively.
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Figure 6-4 (a) Age distributions of the subjects in the validation set for (a) survivors and
(b) not survivors.
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A summary statistics for subject's age included in the validation set is provided
in Table 6-2.

Table 6-2 Age (in years) statistical summary for subjects in the validation set.

All Subjects | Survivors | Not Survivors

Parameter
1448 1224 224
Mean 68.2 66.0 80.3
Median 75.1 71.6 83.7
Mode 87.5 87.5 85.7
Standard deviation 21.2 21.7 13.6
Variance 450.7 469.5 176.1
Range 86.2 86.2 77.2
Minimum 17.0 17.0 21.8
Maximum 103.2 103.2 99.0

6.3.2 Analysis of Trauma Parameters

The trauma parameters used as input to the developed models are analysed in
this section. The parameters were AIS, GCS, pulse (heart) rate, respiratory rate
and systolic blood pressure. In some analysis (described in later sections) the
actual values of these parameters were not used. Instead their severities were
used as input. The association of the actual values to their severities are
provided in Table 6-3. (The Royal Children’s Hospital Melbourne 2018;
Andersen et al.,, 2016; lain Wheatley 2018; Verdecchia et al., 2009). This
categorization allocated the actual values of these parameters into predefined
groupings, i.e., normal, abnormal mild, moderate severe. The reason for this
operation was that the inter-class variations within the measured variables could
be reduced and the results could be interpreted more specifically into severity
types. However, the disadvantage of this categorization is that actual readings

are replaced by their category types.

Table 6-3 Categorization of Glasgow coma score (GCS), pulse rate (PR, beats per
minute, bpm), respiratory rate (RR, breaths per minute, bpm) and systolic blood
pressure.

Measures Range Category
Score 13-15 3 (Mild)
GCS Score 9-12 2 (Moderate)
Score 3-8 1 (Severe)
Pulse rate 60-100 bpm | Normal=2 | Abnormal =1
Respiratory rate 12-20bpm | Normal=2 | Abnormal =1
Systolic blood pressure | 90-140 mmHg | Normal =2 | Abnormal =1
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Table 6-4 provides an analysis of the relationship between trauma parameters
(categorized according to Table 6-3) and the percentage survivors (number
1224 cases) and not survivors (number 224 cases) in the validation set.
Considering the not survivors, 77.2% had AIS = 5, 37.1% were categorized as
GCS =37.1 severe, 30.8% categorized as abnormal pulse rate, 26.8% were
categorized as abnormal respiration rate and 71.4% were categorized as
abnormal systolic blood pressure.

Table 6-4 Analysis of injury parameters in relation to cases that survived and those that
had not survived.

Parameters Iniurv Grade All Subjects| Survivors [Not Survivors
jury 1448 1224 224
2 12(0.8%) | 12(10%) | 0(0.0%)
ALS 3 159 (11.0%) |154 (12.6%)| 5 (2.2%)
4 507 (41.2%) | 551 (45.0%)| 46 (20.5%)
5 680 (47.0%) |507 (41.4%)| 173 (77.2%)
1(Severe) | 147 (102%) | 64(52%) | 83 (37.1%)
GCS (categorized) | 2 (Moderate) | 133 (9.2%) | 98 (8.0%) | 35 (15.6%)
3(Mild) | 1168 (80.7%) [1062 (86.8%) 106 (47.3%)
] 1 (Abnormal) | 338 (23.3%) | 269 (22.0%)| 69 (30.8%)
PR (categorized) "0 1 al) [1110 (76.7%) |955 (78.0%)| 155 (69.2%)
) 1 (Abnormal) | 236 (16.3%) |176 (14.4%)| 60 (26.8%)
RR (categorized) |\ al) 1212 (83.7%) [1048 (85.6%) 164 (73.2%)
. 1 (Abnormal) | 762 (52.6%) | 602 (49.2%)| 160 (71.4%)
SBP (categorized) | o rmal) | 686 (47.4%) |622 (50.8%)| 64 (28.6%)

Table 6-5 provides the mean and standard deviation of AIS and categorized
GCS, pulse rate (PR), respiratory rate (RR) and systolic blood pressure (SBP)
for not surviving cases included in the validation set. The results from this table
confirm the conclusion derived from Table 6-5 with regard to the particular
significance of GCS, AIS and SBP. The mean (categorized) systolic blood
pressure is close to the abnormal value while the mean GCS is close to

moderate severity and AIS represent high injury severity.

Table 6-5 The mean and standard deviation of AIS and categorized Glasgow Comas
Score GCS, PR, RR and SBP for not surviving cases included in the validation set.

Parameters Mean | Standard Deviation
AIS 4.75 0.48
GCS (categorized) | 2.10 0.92
PR (categorized) 1.69 0.46
RR (categorized) | 1.73 0.44
SBP (categorized) | 1.29 0.45
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Figure 6-5 shows the interrelationship between AIS and categorized SBP
(Figure 6-5a) and GCS and categorized SBP for not survivors included in the
validation set. The figure indicates that great majority of cases with AIS =5 had
abnormal SBP. The relationship between GCS and systolic blood pressure is
not as well defined as that for AIS and systolic blood pressure but it is seen that

1 abnormal in SBP is more associated with three levels in GCS.
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Figure 6-5 Relationship between (a) AIS and systolic blood pressure; (b) GCS and
systolic blood pressure for not survivor's that were included in the validation set. Blue
= abnormal category, Green = normal category.

6.3.3 Relationship between TBI AIS Code and GCS, SBP, RR, RP, Gender
and Age for Enhancing IRCC Operation.

To establish the inter-relationships between AIS and GCS, SBP, RR and RP,
the clustering information shown in Figure 6-6 was plotted. It showed the
highest number of cases (total) 186 were associated with PR=2 (normal), RR
=2(normal), SBP=1(abnormal), AIS=4 and GCS=3.
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Figure 6-6 The inter-relationships between pulse rate, systolic blood pressure, GCS,
AIS, and respiration rate. The values next to the circles indicate the number of
associated cases. Larger values are highlighted by darker circles. Subjects are from

the validation data set.
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Figure 6-7 Inter-relations of trauma parameters separated into (a) survivors and (b) not

survivors.

Figure 6-7 b shows the inter-relationships between pulse rate, systolic blood

pressure, GCS, AIS, and respiration rate information for not survivors included in

the validation set. A large cluster of cases appears for AIS = 5, GCS =1

(categorized as severe injury) and systolic pressure = 1 (categorized abnormal).
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Table 6-6 Analysis of injury patterns TBI included in the validation set (the patterns with
relatively small number of cases are not shown). An x in the trauma parameter columns
indicates abnormal or severe categorization for the related parameter.

_ Survivors Not survivors
o ,§ § l\; Gender Gender Trauma Parameter
‘é § 3 g number of 2, Number of Z
No. | 5 g i Bl cases § ®Im|F . cases § ]
® & |(Figure 6.8a) (Figure 6.8b) M| F PR | RR | SBP | AIS | GCS

1 |X22143| 186 |172(92.4%) | 76 |90 | 82 | 14 (7.4%) 89 | 8 6 X X

2 |X22253| 181 |169(93.3%) | 63 |121|48 | 12 (6.6%) 75 (10| 2 X

3 |X22243| 174 | 167(95.9%) | 63 |101| 66 | 7 (4.1%) 87 | 4 3 X

4 |X22153| 165 |134(81.2%) | 70 |87 |47 | 31(18.7%) | 83 |15 16 X X

5 |X22233| 53 53 (100.0%) | 61 |33 |20 | 0(0.0%) / / / X

6 |X12143| 53 47 (88.6%) | 69 |29 |18 | 6(11.3%) 81 | 3 3 X X X

7 |X12153| 47 40(85.1%) | 73 |31 9 | 7(14.8%) 8 | 6 1 X X X

8 [X22133| 42 41(97.6%) 72 (2120 1(2.3%) 79 |1 0 X X

9 |X12243| 42 37(88.1%) | 64 |19 |18 | 5 (11.9%) 89 | 4 1 X X

10 [X12253| 35 31(88.5%) | 58 |24 7 | 4(11.4%) 8 |1 3 X X

11 [X22152| 32 17 (53.1%) | 66 |12 | 5 | 15(46.8%) 80 |10| 5 X X X
12 (X22151| 30 6 (20.0%) 62 | 6 |0 | 24(80.0%) | 76 (10| 14 X X X
13 [X21143| 27 26(96.2%) | 74 (12|15 | 1(3.7%) 37 |1 0 X X X

14 |X21243| 23 23 (100.0%) | 62 |15 | 8 0 (0.0%) / / / X X

15 [X21153| 23 18(78.2%) | 72 (10| 8 | 5(21.7%) 80 | 4 1 X X X

16 |X22251| 23 14 (60.8%) | 46 |11 | 3 | 9(39.1%) 68 | 3 6 X X
17 [X21151| 20 1 (5.0%) 67 | 10| 19(95.0%) | 80 (11| 8 X X X X
18 [X21253| 19 17(89.4%) | 65 |10 | 7 | 2(10.5%) 88 |1 1 X X

19 [X12233| 16 14(87.5%) | 47 | 7 | 7 | 2(12.5%) 79 |1 1 X X

20 |X12151| 13 5(38.46%) | 54 | 3 | 2 8(61.5%) 82 |5 3 X X X X
21 |X21133| 13 13(100.0%) | 67 | 7 | 6 0(0.0%) / / / X X X

22 (X11151| 12 1(8.3%) 67 | 1|0 | 11(91.4%) 73 |7 4 X X X X X
23 |X12252| 12 8(66.6%) 53 (4|4 4(33.4%) 80 | 2 2 X X X
24 (X22242| 12 10(83.4%) | 42 |7 | 3 2(16.6%) 73 |0 2 X X
25 |X22142| 11 10(90.9%) 60 | 7|3 1(9.0%) 80 |1 0 X X X
26 [X11243| 11 11(100.0%) | 74 | 7 | 3 0(00.0%) / / / X X X

27 |X12152| 10 8(80.0%) 68 | 5|3 2(20.0%) 77 |1 1 X X X X
28 [X22252| 10 7(70.0%) 49 |6 |1 3(30.0%) 86 | 2 1 X X
29 |X11143| 10 8(80.0%) 75 | 5|3 2(20.0%) 87 |1 1 X X X X

30 (X12133| 10 9(90.0%) 61 [ 6 |3 1(10.0%) 8 |1 0 X X X

31 |X11153 9 5(55.5%) 69 | 4|1 4(44.4%) 8 | 3 1 X X X X

32 [X12251 8 4(50.0%) 63 |3 |1 4(50.0%) 66 |1 3 X X X
33 [X21152 8 5(62.5%) 74 | 3|2 3(37.5%) 8 | 3 0 X X X X

Total &

1340 1131 63.56 | 708|423 209 79.21|120| 89

Percentages

Note: Xabcde: The subscript “a” represents pulse rate (categorized as 1 abnormal, 2 normal), “b”
represents respiration rate (categorized as 1 abnormal, 2 normal), “c” represents systolic blood
pressure (categorized as 1 abnormal, 2 normal), “d” represents AIS and “e” represents GCS (1:
severe, 2: moderate and 3: mild).

Table 6-7 shows three colours in the trauma parameters column. Red represents
AIS=5 (critical) or GCS=3 (severe), or abnormal in other parameters. Yellow
represents AlS=4 (severe) or GCS=2 (moderate). Green represents AlS=3
(serious). Using the information from the table, the trauma cases with highest
occurrence and their associated trauma parameters can be identified for both

survivors and not survivors.
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Table 6-7 Trauma scenarios and their associated trauma parameters for survivors.

su I‘ViVO rs Trauma Parameter
Scenarios' . Number of
Numbers in Injury All Cases Number of | Age Gender
No. Table 6.6 Scenarios ) That cases Mean
(Figure 67) | (Figure 6.8a) |(years)| M | F | RR | PR | SBP | AIS | GCS

1 5 X22233 53 53 (100.0%) 61 33 20 X

2 14 X21243 23 23 (100.0%) 62 15 8 X

3 21 X21133 13 13(100.0%) 67 7 6 X X X

4 26 X11243 11 11(100.0%) 74 7 3 X X X

5 8 X22133 42 41(97.6%) 72 21 20 X

6 13 X21143 27 26 (96.2%) 74 12 15 X X

7 3 X22243 174 167 (95.9%) 63 101 66 X

8 2 X22253 181 169 (93.3%) 63 121 48 X

9 1 X22143 186 172 (92.4%) 76 90 82 X
10 25 X22142 11 10(90.9%) 60 7 3 X
11 30 X12133 10 9(90.0%) 61 6 3 X X
12 18 X21253 19 17 (89.4%) 65 10 7 X X
13 6 X12143 53 47 (88.6%) 69 29 18 X X X
14 10 X12253 35 31 (88.5%) 58 24 7 X X
15 9 X12243 42 37 (88.1%) 64 19 18 X X
16 19 X12233 16 14(87.5%) 47 7 7 X X
17 7 X12153 47 40 (85.1%) 73 31 9 X X X
18 24 X22242 12 10(83.4%) 42 7 3 X
19 4 X22153 165 134 (81.2%) 70 87 47 X X
20 27 X12152 10 8(80.0%) 68 5 3 X X
21 29 X11143 10 8(80.0%) 75 5 3 X X
22 15 X21153 23 18 (78.2%) 72 10 8 X X
23 28 X22252 10 7(70.0%) 49 6 1 X
24 23 X12252 12 8(66.6%) 53 4 4 X X

664 409
1185 493 667 |90.79%)| 90.6%)

Table 6-7 presents 24 main scenarios for the survivors. The table is divided
into three parts based on percentages of the trauma cases. The first 7
scenarios are above 95% of cases. It can be seen that in these 7 scenarios
AIS <=4 and GCS is =3 (Mild). Therefore it is concluded that when AIS <=4
and GCS =3 then patients had more likelihood of survival even other factors
were not normal. The second part is form scenarios number 8 to 19. It is noted
that there is not any scenario with AIS=5 and GCS is 1. AIS=5 is repeated only
five times. The majority of these scenarios had AlIS=5 and GCS = 2 or AIS=5
and SBP= abnormal. These results indicate that when AIS <5, GCS =3 and
SBP is normal then there is a higher likelihood of survival. This information is
used in later section for knowledge coding.
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Table 6-8 Nine significant scenarios from Table 6-6 related to not survivors.

Not SUIVIVOrs

Trauma Parameter

31

X11153

9

4(44.4%)

83

3

16

X22251

23

9 (39.1%)

68

3

»

32

X21152

8

3(37.5%)

85

3

Scenarios' Number of
Numbers in Injury AllCases | Number of Gender
No Table 6.6 Scenarios That cases Age
(Figure 67) | Figure 6.8b)| V<" M F | RR | PR | SBP | AIS |GCS
1 17 X21151 20 19 (95.0%) 80 11 8 X X X X
2 22 X11151 12 11(91.4%) 73 7 4 X X X X X
3 12 X22151 30 24 (80.0%) 76 10 14 X X X
4 20 X12151 13 8(61.5%) 82 5 X X X X
5 23 X12251 8 4(50.0%) 66 1 X X X
6 11 X22152 32 15(46.8%) 80 10 X X X
7 X
8 X
9 X

155

97

77.0

53
(51.9%)

(54.3%)

Table 6-8 shows the highest percentages of scenarios of not survivors. The

first four scenarios are greater than 50% of the overall cases. They have
AIS=5, GCS=1 (severe) and SBP=1 (abnormal). Likewise, RR is abnormal

in two first scenarios. All scenarios in this table have AIS = 5 and they are

also associated with severe or moderate values for GCS and abnormal

values for SBP. The average age of the subjects is 77.0 years. In terms of

Gender, female cases are 54.3% while male cases are 51.9%. This

information is also used in later section for knowledge coding.

6.3.4 Investigation of the Relationships between AIS and Intubation and

PMC for FIS

There were 16589 trauma cases with PMC consisting of which14844 were
survivors and 1745 were not survivors. Table 6-9 shows the PMCs and the
number of cases involved for all body regions. The PMC cases that result in a
relatively larger number of deaths are highlighted as pink in Table 6-9. These
four PMCs with TBI were chosen for further investigations. Figure 6-8 shows
the interrelationships between those four PMCs, AIS, GCS and average age for

not survivors. The average of GCS and AIS scores are highlighted as red in

Figure 6-8.
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Table 6-9 PMC information for the cases studied.

Number and Number and
Number of all percentage of percentage of not
No. PMC cases survivors survivors
. 3088 376
1 Hypertension 3464 (89.1%) (10.9%)
2 Diabetes mellitus (Type 2 / noninsulin 1584 1393 191
dependent) (87.9%) (12.1%)
915 76
3 Alcohol abuse 991 (92.3%) (7.7%)
. 680 70
4 Thyroid disease 750 (90.7%) (9.3%)
. 551 98
5 Dementia 649 (84.9%) (15.1%)
558 72
6 COPD 630 (88.6%) (11.4%)
. 527 60
7 Hypercholesterolaemia 587 (89.8%) (10.2%)
. 549 33
8 Depression 582 (94.3%) (5.7%)
9 Diabetes mellitus (Type 1/ insulin 555 496 59
dependent) (89.4%) (10.6%)
420 67
10 Stroke/CVAITIA 487 (86.2%) (13.8%)
451 35
11 Asthma 486 (92.8%) (7.2%)
. 404 44
12 Other Heart disease 448 (90.2%) (9.8%)
327 39
13 Other 366 (89.3%) (10.7%)
14 Crohn's disease/Colitis/Diverticular 308 280 28
(90.9%) (9.1%)
" 257 17
15 Osteoarthritis 274 (93.8%) (6.2%)
. 237 18
16 Epilepsy 255 (92.9%) (7.1%)
11133 1283
12416 (89.6%) (10.3%)
%ale
— 30
3 Age Mean 82.5 ";u” ::g
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Figure 6-8 The interrelationships between PMC, AIS, GCS and average age for TBI not
Survivors.
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In terms of average values (red circles) for GCS and AIS scores that were
associated with Cerebrovascular Accident/Transient Ischemic Attack (stroke/
CVAITIA), PMC is about 2.2 for GCS, 4.5 for AIS and age is 82.5 years.
Whereas, Chronic Obstructive Pulmonary Disease (COPD) PMC relates to
mean age of 80.0 years, about 2.8 for GCS and 4.4 for AIS code. This
information is used in later part for knowledge coding. The number of trauma
cases with intubations for survivors and not survivors are provided in Table 6-
10. The number of cases with intubation for survivors and not survivors are

1511 and 755 respectively.

Table 6-10 Number of cases with intubation and their mean age.

. Mean Age
Trauma cases with Number of cases (years)
Intubation Y
Survivors 1511 45.8
Not survivors 775 58.3

Figure 6-9 shows the interrelations between AIS, GCS and intubation. This

indicate intubation factor is more pronounce for AlS scores 4 and 5 and GCS=1.

AlS
1 2 3 4 5

1 26 165 -1

R = —
S 17 22{—1 = o
5 ER
E =} (1]
£ 0 9 IE—U =1
1 2 2?_|:_1
[
0 35 230 =i}
[ 200 [100 | o [100] 200] 12001001 0 [ 100 [200 ] T 2001001 0
250 150 50 50 150 250250 150 50 50 150 250250 150 50
Count

Figure 6-9 Interrelationships between AIS, GCS and intubation.
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6.4 Knowledge Coding

In this section, knowledge coding is described. The coding is used as part of
IRCC method to improve its performance for predicting probability of survival
and FIS rules base. Firstly, knowledge coding incorporating TBI AIS code, GCS,

RP, RR, SBP, Age and Gender for enhancement IRCC operation.

The knowledge coding is an extension of IRCC operation to further improve
their predication accuracy. Table 6-11 indicates the IF-THEN rules for survivors

developed as part of this knowledge coding. These rules were derived from the

information provided in Table 6-7.

Table 6-11 IF-THEN rules for survivors derived from the information provided in Table

6.7
Injury

Scenarios If-Then Statement

Based on

Table 6-7
X22233
X21243
X21133 1) If (AIS>=4, GCS = 3and Age < 73) Then P=98%
X11243
X22133
X21143
X22243
X22253 2) If (AIS =5 and Age < 73) Then P=93%
22143 3) If (AIS =4, SBP=1 and Age < 73) Then P=92%
X22142 4) If (AIS =4, GCS=2, SBP=1 and Age < 73) Then P=87%
X22242
X12133 5) If (AIS =3, SBP=1, PR=1 and Age < 73) Then P=90%
X21253 6) If (AIS =5, RR=1 and Age < 73) Then P=89%
X12143 7) If (AIS =4, SBP=1, RR=1 and Age < 73) Then P=88%
X12253 8) If (AIS =5, 4, RR=1 and Age < 73) Then P=88%
X12243
X12153 9) If (AIS =5, SBP=1, RR=1 and Age < 73) Then P=84%
X22153
X12152 10) If (AIS =5, GCS=2, SBP =1, RR=1 Age < 73) Then P=80%
X11143 11) If (AIS =4, SBP =1, PR =1, RR=1 and Age < 73) Then P=80%
X21153 12) If (AIS =5, SBP =1, PR =1 and Age < 73) Then P=78%
X22252 13) If (AIS =5, GCS =2, Age < 73) Then P=70%
12252 14) If (AIS =5, GCS =2, RR =1 and Age < 73) Then P=66%

A number of scenarios were combined

associations and to reduce the number of rules.

The knowledge base coded as IF-THEN Statement for not survivors are

provided in Table 6-12. These were derived from Table 6-8.
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Table 6-12 IF-THEN rules for not survivors derived from the information provided in
Table 6-8

Injury
Scenarios If-Then Statement
Based on
Table 6-8

1) If (AIS=5, GCS=1, SBP=1, PR=1, RR=1, Age >=73,PR=1 and Gender= female) Then P= -
X21151 93%

X11151 2) If (AIS=5, GCS=1, SBP=1, PR=1, RR=1, Age >=73, PR=1 and Gender= male) Then P=-
90%
X22151 3) If (AIS=5, GCS=1, SBP=1, PR=1, Age >=73 and Gender= female) Then P=-70%
X12151 4) If (AIS=5, GCS=1, SBP=1, PR=1, , Age >=73 and Gender= male) Then P=-67%
X12951 5) If (AIS=5, GCS=1, PR=1, Age >=73 and Gender= female) P=-50%
6) If (AIS=5, GCS=1, PR =1, Age >=73 and Gender= male) P=-48%
X22152 7) If (AIS=5, GCS=2, SBP =1, Age >=73 and Gender= female) Then P=-46%
8) If (AIS=5, GCS=2, SBP =1, Age >=73 and Gender= male) Then P=-44%
X11153 9) If (AIS=5, SBP=1, RR =1, PR=1, Age >=73 and Gender= female) Then P=-44%
10) If (AIS=5, SBP=1, RR =1, PR=1, Age >=73 and Gender= male) Then P=-42%
X22251 11) If (AIS=5, GCS=1 and Age >=73 and Gender= female) Then P=-39%
12) If (AIS=5, GCS=1 and Age >=73 and Gender= male) Then P=-36%
X21152 13) If (AIS=5, GCS=2, SBP=1, RR=1 and Age >=73 and Gender= female) Then PS%=-37

14) If (AIS=5, GCS=2, SBP=1, RR=1 and Age >=73 and Gender= male) Then PS%=-34

Secondly, knowledge coding associated with PMC and Intubation for integration
of IRCC with FIS. Table 66-13 shows the knowledge coding associated with
intubation and PMC. These were derived from Tables 6-9 and 6-10 and Figures
6-8 and 6-9.

Table 6-13 knowledge coding associated with intubation and PMC

If stateril\élr?t based Intubation=yes PMC and Intubation
No. PMC If statement based on Table 6- combining weights
on Table 6-9 and ”
: 10 and Fig 6-9
Fig 6-8
If AIS>=4, If AIS>=4, GCS<=9 and
1 GCS<=12 and 7
Stroke/CVA/ITIA Age>=82 Then N a Age>=70
x=0.13 then x= 0.805
If AIS>=4, If AIS>=4,
) GCS<=12 and GCS<=6 and If AIS>=4, GCS<=9 and
2 Dementia Age>=87 Then > Age>=58 Then >
x=0.15 x=0.677 Age>=72 then x= 0.825
Dlabetes If AlS>=4 and ./ ‘\ If AIS>=4, GCS<=9 and
3 mellitus (Type 2 Age>=80 / .
/ noninsulin _ . \ Age>=69
Then x=0.12 .
dependent) / \
' . then x=0.795
/ \
/ d
If AIS>=4 and If AIS>=4, GCS<=9 and
4 COPD Age>=80 -
Then x=0.11 Age>=69
then x= 0.785
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6.5 Integration of IRCC with FIS

Integration of IRCC with FIS required deciding on the type and number of
membership functions and determining the extent of the overlap between them.
These are explained in the next section.

6.5.1 FIS Development for incorporation to IRCC

The method developing the fuzzy inference system that accommodated the
rules for PMC and intubation is explained in this section. This FIS was
combined with the IRCC to improve the accuracy of predicting probability of

survival.

Gaussian 2 membership function used to fuzzify the inputs and defuzzify the
output. This type of membership function provided flexibility to represent the
inputs and output. It is a smooth curve derived from two Gaussian membership
functions (Zheng et al,. 2011).

To aggregate the rules, each rule was applied to the corresponding
membership function and the minimum of the membership function was
mapped into associated output membership function. The output fuzzy set from
the implication process for each rule was combined together via the aggregation
process to produce the output fuzzy set. The FIS output was obtained from the
aggregation of the output fuzzy set using the centroid scheme. The centroid
method returns the centre of area under the curve of the aggregated output

values using equation (Al-Sbou et al, 2006) (6.1).

Y =Ziril inILli/Ziril/’li 6-1

where m is the number of fuzzy sets obtained after implication, y; is the centroid

of fuzzy region i, and y; is the output membership value.

There were 5 membership functions for input to the FIS. These were labelled as
categories 1-5. In order to determine the boundary between them, the IRCC
results were plotted as shown in Figure 6-10. The boundaries were then
decided by determining the maximum and minimum points on the plot. The

membership functions are shown in Figure 6-11.
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Figure 6-10 Demonstration of IRCC outcomes.
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Figure 6-11 IRCC outcomes input membership functions.

Figure 6-12 shows input membership functions associated with intubation and
PMC and intubation. They are 4 membership functions representing both PMC
and intubation, intubation only, unspecified and PMC only based on Table 6-13.

Unspecified refers to cases with related information were not available.

Both Intubation Unspecmed

MYV

1

mput variable "Inlubatlon&PMC

Figure 6-12 Membership functions for intubation and PMC.
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Table 6-14 shows the approach used to integrate IRCC output with PMC and
intubation to obtain the FIS output. This information was then used to obtain the

associated FIS output membership functions shown in Figure 6-13.

Table 6-14: Setting up of the FIS rules for PMC and intubation for associated with
IRCC output.

Rules to combine IRCC output with System output function

No PMC and intubation

Levell Level2 Level3 Leveld Level5

1 IRCC is Categoryl & Contributing \

factors is Both

2 IRCC is Categoryl & Contributing N

factors is Intubation

3 IRCC is Categoryl & Contributing N

factors is PMC

4 IRCC is Category 2 & Contributing N

factors is Both

5 IRCCis Category 2 & Contributing N
N
N

factors is Intubation

6 IRCC is Category 2& Contributing
factors is PMC

7 IRCCis Category 3 & Contributing
factors is Both

8 IRCCis Category 3 & Contributing N
factors is Intubation
9 IRCCis Category 3 & Contributing N
factors is PMC
10 | IRCCis Category 4 & Contributing N
factors is Both
11 | IRCCis Category 4 & Contributing N
factors is Intubation
12 | IRCCis Category 4 & Contributing N
factors is PMC
13 IRCCis Category 5 & Contributing N
factors is Both
14 IRCCis  Category 5& Contributing N
factors is Intubation
15 IRCCis Category 5 & Contributing N

factors is PMC

Figure 6-13 shows FIS output membership functions it has five levels based on Table
6.14.

Level1l Level2 Level3 Leveid LevelS

Figure 6-13 FIS output membership functions.
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6.6 Chapter summary

Results of the analyzing the trauma parameters used as input to the models for
predicting the probability of survival was provided in this chapter.

These results indicated that AIS, GCS, systolic blood pressure and age are
particularly sensitive for differentiating between survivors and not survivors. The
procedure for developing the FIS rules, the FIS membership functions and the
manner the IRCC output was integrated with the FIS are also explained in this

chapter.
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Chapter 7 Probability of Survival Estimation Methods

7.1 Introduction

In this chapter the operations and the results for the three methods (PSD, IRCC
and combing IRCC with FL) for determining probability of survival are explained
and their merits and limitations are analyzed against the exiting Ps14 method.
The study mainly evaluated the performance of the methods for determining the
probability of survival in adult subjects with traumatic brain injuries as TBI
represented most trauma cases. A number of other body regions were also
included in the analyses but the numbers associated with them were much
smaller. In this chapter two probabilities of survival models were developed.
One was based on Bayesian statistics that accommodated PSD and the other
was a novel approach called IRCC. There were 4124 TBI cases (age: mean =
67.9 years, standard deviation = 21.6 years). In total, 86.2% of cases were
survivors and 13.8% of cases were not survivors. The parameters considered
for input to PSD and IRCC were age, AIS, GCS, PR, SBP and RR. PSD was
used as the statistical method while IRCC is an iterative method. These two
models were calibrated on randomly selected, roughly 2/3 (number 2676), of
the trauma cases and their performances were validated on the remaining
cases (number 1448, i.e. validation dataset). The effectiveness of the two
models in determining the probability of survival was compared with Psl14
method that uses regression operation to predict probability of survival Ps14 is
the method developed by the Trauma and Research Audit Network. Fuzzy
inference system was further adopted as part of IRCC to further improve its

operation.
7.2 PSD Model

PSD required the prior probability for not survivors to be specified as part of its
operation (prior probability for survival = 1- prior probability for not survival). To
determine the most suitable value for this prior probability, prior probability
values between 0 and 1 were experimented and for each value the percentage
correct identifications for the survivors and not survivors for the calibration
(training) dataset were determined. Figure 7-1 shows the plot of these results.

The plots indicated that the highest identification accuracy was for prior
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probability equal to 0.27 and this value was chosen for the rest of the analysis

(only a section centered on 0.27 is shown in the figure).

% correct classfication for

not survived cases(red)
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- 85

% correct classification for

Survived cases (blue)

- 84

0.1 0.15 0.2 0.25 0.3

Prior probability for not surviving

Figure 7-1 The relationship between the prior probability of not survivors and the
associated percentage correct identification for the survivors (blue plot) and not
survivors (red plot).

Figure 7-2 shows the interrelationships between pulse rate, systolic blood
pressure, GCS, AIS, and respiration rate information for non-surviving cases
included in the validation set. A large cluster of cases appears for AIS = 5, GCS =

1 (categorized as severe injury) and systolic pressure = 1 (categorized abnormal).
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Figure 7-2 The interrelationships between injury parameters for non-surviving cases.

The values next to the circles indicate the number of associated cases. Larger
values are highlighted by darker circles. Subjects are from the validation data set.

Figure 7-3 shows the identification results using Ps14 for not survivors included in

the validation dataset. Figure 7.3a is for those correctly identified and Figure 7.3b is
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for cases misidentified. A large proportion of correctly identified cases are
associated with AIS = 5, GCS = 1 (categorized as severe injury) and a large
proportion of misidentified cases are associated with AIS = 5 and 4, GCS = 3

(categorized as mild injury).
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(a) (b)
Figure 7-3 ldentification results for Ps14 for non-surviving cases in the validation
dataset: (a) correctly identified cases (b) misidentified cases. The values next to the
circles indicate the number of associated cases.

Figure 7-4 shows the identification results obtained using PSD for not survivors
included in the validation dataset. Figure 7-4a is for those correctly identified and
Figure 7-4b is for those misidentified. Results consistent to those from Psl14 are
observed where a larger proportion of correctly identified cases are associated with
AIS =4 and 5, GCS =1 and 2 (categorized as severe and moderate injury) and a
large proportion of misidentified cases are associated with AIS = 5, GCS = 3

(categorized as mild injury).

Table 7.1 provides an analysis of injury patterns and performance of PSD and
Ps14 in identifying non-surviving cases included validation dataset. An X in the last
5 columns of the table indicates the associated parameter is categorized as
abnormal, serious injury (for AIS 3 to 5) or as severe injury (for GCS). The table
shows that in some injury patterns Ps14 has performed better than PSD and vice
versus. For example, the injury pattern resulting with the largest number of non-
surviving cases (i.e., 31 cases, expressed as X22153) is associated with pulse rate
= 2 (categorized as normal category), respiration rate = 2 (categorized as normal
category), systolic blood pressure = 1 (categorized as abnormal category), AIS =5

(critical) and GCS = 3 (categorized as mild injury). Only one of the associated
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cases has been correctly identified by Ps14 however 6 were correctly identified by
PSD. There were 24 cases associated with the injury pattern X22151. For this
injury pattern pulse rate = 2 (categorized as normal category), respiration rate = 2
(categorized as normal category), systolic blood pressure = 1 (categorized as
abnormal category), AIS =5 (critical) and GCS = 1 (categorized as severe injury).
Psl14 has performed better than PSD by correctly identifying from 21 out of 24
cases while PSD identified 18 cases correctly. For some injury patterns the
identification accuracy for PSD and Psl14 was 0%. An example for this is injury
pattern X22143. This is associated with pattern pulse rate = 2 (categorized as
normal category), respiration rate = 2 (categorized as normal category), systolic
blood pressure = 1 (categorized as abnormal category), AlIS = 4, and GCS = 3
(categorized as mild injury). The reason why PSD and Ps14 performance differ or
in some injury patterns they fail to identify the outcome correctly requires further

investigation.

Table 7.2 compares the results obtained using PSD and Psl14 to determine the
probability of survival in cases included in the validation dataset. The inputs to PSD
were AIS, GCS, age, systolic blood pressure, respiration rate and pulse rate. Ps14
correctly identified 97.4% of survivors and 40.2% of the not survivors. However
PSD correctly identified 90.8% of the survivors and 50.0% of not survivors. These
results indicate the main difference between the two methods relates to their
abilities to identify the not survivors.

Figures 7-5 a, b provide a further analysis of the results in Table 7-2. The figures
indicate the number of survivors and not -survivors correctly identified by Ps14 and
PSD and the overlap in the number of cases correctly identified by both methods.
The results in Table 7-2 are taken further by considering the effect of age on the
performance of PSD and Ps14. The cases included in the validation that did not
survive were divided into two groups (i) those aged between 17 years and 65 years
and (ii) those aged above 65 years. Age 65 was considered as the boundary as
criteria for immediate CT scan of the head in adults with traumatic brain injury
include age more than 65 years and some loss of consciousness or amnesia since
the injury (Moppett 2007). In the Canadian CT Head-Rules traumatic head injury
patients aged 65 are classed as high risk that warrant a CT of the head (Janich et
al., 2016). The results obtained are shown in Table 7-3. PSD has higher

identification accuracy for both age groups as compared with Ps14. Comparing the
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identification results for the two age groups; the performance of both models is
influenced by the considered age ranges. Ps14 has been more accurate for cases
aged above 65 years than those between 17-65 years. PSD on the other hand
has been much more accurate for cases aged 17-65 years as compared with

those aged over 65 years.
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Figure7-4. Identification results for PSD for not survivors included in the validation
dataset. (a) Correctly identified cases (b) misidentified cases. The values next to the
circles indicate the number of associated cases.

Table 7-1 Analysis of injury patterns for not survivors included in the validation set (the
patterns with relatively small number of cases are not shown). An x in the trauma
parameter columns indicates abnormal or severe categorization for the related
parameter.

Injury Number f’f Cases Number of Ca.s&'zs Number of Ca-s?s Trauma Parameter
Scenarios That D1.d Not Correctly Identified Correctly Identified
Survive by Ps14 by PSD PR| RR [SBPAIS| GCS
(Figure 7-2) (Figure 7-3a) (Figure 7-4a)
X22153 31 1 (3.2%) 6 (19.4%) x | x
X22151 24 21 (87.5%) 18 (75.0%) x | x| x
X21151 19 17 (89.5%) 18 (94.7%) x | x| x
X22152 15 9 (60.0%) 7 (46.7%) X | x| x
X22143 14 0 (0.0%) 0 (0.0%) X | X
X22253 12 2 (16.7%) 0 (0.0%) X
X11151 11 8 (72.7%) 10 (90.9%) X | x| x |x X
X22251 9 8 (88.9%) 4 (44.4%) X X
X12151 8 8 (100.0%) 7 (87.5%) X | x| x
X21243 7 0 (0.0%) 0 (0.0%) X X
X12153 7 1 (14.3%) 4 (57.1%) X X
X12143 6 0 (0.0%) 0 (0.0%) X X
X12243 5 0 (0.0%) 1 (20.0%) X X
X21153 5 0 (0.0%) 4 (80.0%) X | x | x
X11153 4 1 (25.0%) 3 (75.0%) X | x X
X12251 4 3 (75.0%) 3 (75.0%) X X
X12252 4 2 (50.0%) 3 (75.0%) X X
X12253 4 0 (0.0%) 3 (75.0%) X X
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7.2.1 Results and Discussion of Ps14 Method and PSD Model

Table 7-2: Comparison of PSD and Ps14 to predict probability of survival for cases in
the validation set (when probability value was greater than or equal to 0.5, the subject
was classed as surviving and when probability value was less than 0.5, the subject was
classed as not surviving).

Number of Cases Ps14 PSD
Survived Did not survive Survived Did not survive Survived Did not survive
1224 224 1192 (97.4%) 90 (40.2%) 1112 112 (50.0%)
’ ’ (90.8%) ’

120 112 1200 11927
100 1180
w bl E 1160
m
g% 71 & 1140
E 60 E 1120 11T
£ E 100 1097
E 40 = ]
z 1080
2 1060
0 1040
Ps14 Overlap between PSD Ps14 Overlap between PSD
Ps14 and PSD Ps14 and PSD
(a) (b)

Figure7-5 The number of cases in the validation set correctly identified by Ps14 and
PSD (a) non-surviving cases; (b) surviving cases. The middle bar indicates the overlap
in correct identification of cases by both Ps14 and PSD.

Table 7-3 Performance comparison of PSD and Psl14 based on age groups for not
surviving cases in the validation dataset.

Total Number of TBI Cases _ .
Based on Age Range Ps14 Prediction Accuracy PSD Prediction Accuracy
Age (Years) Age (Years) Identified Correctly Misidentified Identified Correctly Misidentified
17-65 >66 17-65 >66 17-65 266 17-65 266 17-65 266
2% 198 6 83 20 115 21 89 5 109
(26.0%) | (41.9%) | (76.2%) | (58.0%) | (80.7%) | (44.9%) | (19.3%) | (55.0%)

In order to explore the effects of respiration rate, systolic blood pressure and pulse
rate on the accuracy of PSD in identifying the cases included in the validation set,
each parameter was separately excluded and PSD identification accuracy was
determined. The results are summarized in Table 7-4. The use of GCS and AIS on
their own sharply reduced the effectiveness of PSD, resulting in 55.1% and 31.3%
correct identification of the survivors and not survivors respectively. Inclusion of the
age with AIS and GCS significantly improved the PSD performance resulting in
82.4% and 65.2% correct identification for the survivors and not survivors
respectively. The inclusion of systolic blood pressure with age, AIS and GCS

82



resulted in 83.3% and 64.3% correct identification of survivors and not survivors

respectively (Saleh et al., 2018).

Table 7-4 lllustration of the effect of age, PR, SBP and RR on PSD performance in
identifying surviving and not-surviving cases included in the validation set.

. Correct PSD Correct PSD Correct PSD C_o_rrec_t PSD.
Number of Cases in Identification Using Identification Using AIS Identification Using Identification Using
the Validation Set AlSand GCS Only | and GCS with Age Only | AIS, GCS, Age and sgp | A1S: GCS. PR, SBP,
RR and Age

Did not Did not Did not Did not Did

Survived ! n Survived ! 11 Survived ! 11 Survived ! 11 Survived not

survive survive survive survive .
survive

1204 24 675 70 1008 146 1019 144 1112 112
(55.1%) (31.3%) (82.4%) (65.2%) (83.3%) (64.3%) (90.8%) (50.0%)

The study evaluated the performance of PSD in determining the probability of
survival in adult subjects with TBI. It highlighted some complexities in determining
the probability of survival. An issue is related to the interrelationships of injury
parameters and other factors such as age, pre-existing medical conditions that can
influence the probability of survival (Saleh et al., 2017). AlS, GCS, age, respiration
rate, pulse rate and systolic blood pressure play an important role in determining

the probability of survival in TBI cases.

7.3 IRCC Model

IRCC is an iterative classification method developed to predict probability of
survival. The calibration and evaluation of this model were based on the same
data used for PSD and Psl14. This allowed the performance of models to be
compared. About 2/3 (number 2676) randomly selected cases were used for
calibration and is the remaining 1/3 (number 1448) of the cases were used for
evaluation of the method. The trauma parameters used as input to the IRCC
were mapped from their original ranges to a range of 0 and 1 by using

] actual value — Minimum of thevalues
normaised value= 7-1

Maximum of values—minimumof values

In order to determine the optimum number of iterations and group size, these
two parameters were varied and the prediction outcome for the calibration data
set was determined. The results are plotted in Figure 7-6. This indicated that 50
iterations with group size of 6 provided highest predication accuracy and were

selected for the remaining analysis.
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Figure 7-6 The number of IRCC iteration (a) for surviving and non-surviving cases; (b)
number of random groups.

Figure 7-7 shows the interrelationship between GCS, AIS, PR and RR for not
survivors. In the following sections the performance of IRCC for determining the
probability of survival for TBI based on the validation set is described. Figure 7-
8a and b show the IRCC prediction results for not survivors correctly identified
and misidentified respectively. Not survivors are included in the analysis as the
investigations from previous sections indicated that they are harder to identify
as compared to the survivors.

A large proportion of correctly identified cases are associated with AIS =5, GCS =
1, 2 and 3 (categorized as severe, moderate and mild injury) and a large proportion

of misidentified cases are associated with AIS = 4, GCS = 3 (categorized as mild

injury).
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Figure 7-7 The interrelationships between pulse rate, systolic blood pressure, GCS,
AIS, and respiration rate information for not survivors.
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Figure 7-8 Prediction results for IRCC for not survivors cases: (a) correctly identified (b)
misidentified

Table 7-5 Shows relates the IRCC not survivors classification results from

Figures 7-8a and b to the trauma scenarios.

Table 7-5 Analysis of IRCC classification for injury patterns for TBI non-surviving
cases included in the validation set (the patterns with relatively small number of cases
are not shown). An x in the trauma parameter columns indicates abnormal or severe
categorization for the related parameter.

Number of Trauma Parameter
i Number of
Injury Nusl::?;i]gisnm n?;:ﬁ:ivfli:(;s not survivors
No. | Scenarios (Figure 7.7) correctly mi‘sidentified PR RR SBP AIS GCS
(Figure 7.8a) (Figure 7.8b)
1 X22153 31 29 (93.5%) 2 (6.4%) X X
2 X22151 24 22 (91.6%) 2 (8.3%) X X X
3 X21151 19 17(89.4%) 2 (10.6%) X X X X
4 X22152 15 13 (86.6%) 2(13.3%) X X X
6 X22143 14 2 (14.3%) 8 (85.7%) X X
7 X22253 12 9(75.0%) 3 (25.0%) X
8 X11151 11 9(81.8%) 2(18.2%) X X X X X
9 X22251 9 6 (66.6%) 3 (33.3%) X X
10 X12151 8 8(100.0%) 0(00.0%) X X X X
11 X12153 7 7(100.0%) 0 (0.0%) X X X
12 | X22243 7 0 (00.0%) 7 (100.0%) X
13 X12143 6 6 (100.0%) 0 (00.0%) X X X
14 X12243 5 1 (20.0%) 4 (80.0%) X X
15 X21153 5 5(100.0%) 0 (00.0%) X X X
16 X12253 4 4 (100.0%) 0 (00.0%) X X
17 | x12252 4 4(100.0%) 0(00.0%) X x X
18 X11153 4 4(100.0%) 0(00.0%) X X X X
19 X12251 4 3(75.0%) 1(25.0%) X X X
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In Table 7-5 the rows identified as pink colour are associated with the three
highest misclassified scenarios. The table shows that those scenarios are
associated with AIS = 4 (severe) and GCS =3 (categorized as mild injury).
However, IRCC has performed better when AIS=5 (critical) and GCS = 1, 2
(categorized as severe or moderate injury) or systolic blood pressure = 1
(categorized as abnormal category). For instance, the injury pattern resulting with
the largest number of those who were classified correctly for non-surviving cases
(i.e., 29 cases, expressed as X22153) is associated with systolic blood pressure =

1 (categorized as abnormal category) and AIS =5 (critical).
7.3.1 Results of Ps14 Method and IRCC Model

Table 7-6 provides the IRCC results and IRCC uses enhancement IRCC operation
part and a comparison with Ps14. When the probability value was greater than or
equal to 50%, the subject was classed as survivors and when probability value was
less than 50%, the subject was classed as not survivors

Table 7-6 IRCC results combined with the enhancement IRCC operation part and a
comparison with Ps14.

IRCC without
Number of Cases Ps14 enhancement IRCC IRCC
operation part
Survived Did not Survived Did not Survived Did not Survived Did not

survive

survive

survive

survive

1224

224

1192
(97.4%)

90 (40.2%)

967
(79. 0%)

160
(71.4%)

1190
(97. 2%)

170
(75.9%)

The probability of survival prediction accuracy for IRCC is higher than Ps14 for
not survivors and lower nor survivors. However, after integrating enhancement
IRCC operation as part of IRCC, its performance for survivors improved from
71.4% to 75.9%, in order to investigate the consistency of the results, different
random validations cases from the same dataset were chosen. The results are
included in Table 7-7. For all cases IRCC with enhancement IRCC operation part

performed better than IRCC on its own.
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Table 7-7 Performance of IRCC based on different random validation cases from the
same data set.

All TBI cases IRCC
Validation set Bid =
Survived ia Survived a
not survive not survive
1190 170
a 1224 224 (97. 2%) (75.9%)
1249 146
b 1289 194 (96.8%) (74.7%)
1206 151
¢ 1255 192 (96.1%) (78.6%)

7.3.2 Discussion and Comparison of Ps14 and IRCC Outcomes.

In this section the performance of IRCC in comparison with Ps14 is investigated
in more detail. The prediction threshold is 0.5 (or 50%) i.e. if probability is
greater 0.5 (50%) the individual is considered as survivor otherwise not
survivor. Figures 7-9a and 7-9b show both methods have similarities in the
manner they predict probability of survival for survivors (green peaks) but for not
survivors they have distinct performance (blue peaks). Ps14 correct prediction
relates to number of cases between 88% and 100% while for IRCC this is
between 50% and 100%. The plot shows greater number of correct prediction

by IRCC as compared with Ps14.

Ps14 Technique IRCC Technigue
Not survived Survived Not survived Survived

100 100 100

% Ps14 Outcomes
% Ps14 Outcomes
% IRCC Outcomes

P
% IRCC Outcomes

T T T T T T T T T
T T T T T T T T T T T T T
400 0 w0 100 0 10 w0 30 40 120 100 80 60 40 20 0 20 40 60 80 100 120

Number of cases
Number of cases

(a) (b)

Figure 7-9 The distribution for IRCC and Ps14 results (a) Ps14 and (b) IRCC. The red
line is the boundary for survivors and not survivors considered as 50%.

Figure 7-10 provides the Bland-Altman plot with horizontal axis as the mean
prediction from Psl14 and IRCC and vertical axis is the difference of their
outcomes for survivors and not survivors. The red and green lines represent the

region of agreement. Green line is the mean difference plus 1.96 standard

deviation and red line is mean difference minus -1.96 standard deviation. Most
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results for the two methods are with this boundary. Blue line is mean difference

(value= 7.50) of two techniques.
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Figure 7-10 Bland Altman plot for IRCC and Ps14 outcomes for survivors and not
survivors.

Figure 7-10 shows the concentration of differences is between -27 and 47. This
range is the most significant in predicting probability of survival and will be

explored further in the following sections.

Figure 7-11(a-b) show regression plots to compare IRCC and Ps14 results. This
plot shows the extent of probability of survival agreement between IRCC and
Ps14. The two methods had closer agreement with regard to the survivors than
not survivors. The blue lines in Figure 7-11 (b) is median of two methods for not
-survivors. The median for IRCC is 42 and for Ps14 is 62. Interquartile range of
IRCC is between 25 and 56 whereas for Ps14 is from 36 to 80. These indicate
that a larger number of not survivors were predicted by IRCC as compared to

Ps14 and therefore IRCC performed better than Ps14 for not survivors.
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Figure 7-11 Regression variable plots for Ps14 and IRCC outcomes for (a) both and (b)
not survived cases (green circles are survival cases and red those are not) considered

as 50%.

Association of AIS and prediction accuracy for Ps14 and IRCC for not survivors
is provided in Figures 7-12 (a) 7-12(b) respectively. It can be seen that there is
a significant difference between two techniques when AIS=2 or 3 they are not
significantly different for AIS equal to 4 and 5. The incorrect prediction by Ps14
is mainly associated with AIS scores 4 and 5 whereas IRCC showed a

significantly larger number of correct prediction for these two scores for not

SUrvivors.
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Figure 7-12 Association of AlS and prediction accuracy for (a) Ps14 and (b) IRCC for
not survivors considered as 50% (burble columns are number of cases with
AIS=5(critical) and brown those are AlS=4).
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Figure 7-13(a-b) Shows a number of not survivors that had GCS= 2 and 3
(categorized as moderate and mild trauma) were identified as survivors while

IRCC had higher identification accuracy for both scores as compared with Ps14.
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Figure 7-13 Association of GCS and prediction accuracy for (a) Ps14 and (b) IRCC for
not survivors considered as 50%. (blue columns are number of cases with
GCS=1(severe), green those are GCS=2 (moderate) and yellow those are

GCS=3(mild).

Figure 7-14 shows the manner age relates to the survival probability prediction
for not survivors obtained using the IRCC and Psl14. It indicates that larger
number not survivors correctly identified by the IRCC (triangles) as compared
with Psl14 (stars) as they appear under the 0.5 threshold (50%). of triangle
shapes are classified correctly < 50 by IRCC technique. Ps14 was especially

less sensitive for cases aged 73 years or older.
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Figure 7-14 Association of age with probability of survival prediction for IRCC and Ps14
for not survivors. Stars represent Ps14 and triangles represent IRCC. Threshold for
decision is 0.5 (50%), i.e. when probability less than 0.5 (50), case is recognised as not
survivor.

In summary, Ps14 was not as accurate in predicting the probability of survival
when AlS=4 or 5 and GCS=2 or 3. It was also less accurate for cases who aged
more than 73. IRCC was overall more accurate than Psl14. Therefore IRCC

was chosen for further developments in this study.

7.3.3 Comparison of Probability of Survival Predication Capability of Ps14,
IRCC and PSD by Considering Different Body Regions

Table 7-8 provides a summary of a comparison of Psl4, IRCC and PSD for
predicting probability of survival for trauma associated with different body regions.
The data used are the validation set. When the method's output was larger or
equal to 50% threshold (corresponding to probability = 0.5), the individual was
considered as survivor otherwise as not survivor. The traumas are for head injury
only, head and face, head and chest and head and head chest and face.
Considering the overall accuracy of probability of survival for not survivors, IRCC
performed better than Ps14 and PSD. In Table 7-8, the green rows represent
body region injuries other than the head, i.e. the first row is for TBI. For TBI
IRCC with knowledge code was used (as discussed in Chapter 6). However, for
other injuries (highlighted green in the table), IRCC without knowledge coding
was used. For other body regions, prediction for not survivors remain better
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than PSD and Ps14. However, for survivors its predication accuracy is lower as
it did not accommodate knowledge coding. The accommodation of knowledge
coding is left for further work.

Table 7-8 provides a summary of a comparison of Ps14, IRCC and PSD for predicting
probability of survival for trauma associated with different body regions.

All subjects Ps14 PSD IRCC
1%}
c
o . N
> S S o o
x 5 2 5 s 5 s 5 S
T s B s > s z s >
3 S 5 S S S S S S
5 5 7] = @ £ @ = a
@ » 5 a 5 ) 5 @ B
c z p=4 =z
— 1102 90 1112 112 1190 170
Head injury only 1224 224 (97.3%) | (40.1%) | (90.8%) | (50.0%) | (97.2%) | (75.9%)
— 945 50 913 55 900 93
Head & Face injury 992 18 | (o5.26%) | (42.37%) | (92.083%) | (46.26%) | (90.7%) | (78.8%)
. 350 46 50 315 57
Head & Chest injury 875 4 (93.33%) | (62.16%) 331 (75.56%) | (84.0%) | (77.0%)
(88.26%)
Head & Face & Chest 112 17 96 9 103 13 95 16
Injury ©5.71%) | (52.96%) | (91.71%) | (76.47%) | (84.8%) | (94.1%)

7.4 Development of a User Interface for Probability of Survival Predication

In this section a user interface to allow clinicians enter the trauma information is
developed. This is linked to IRCC combined with FIS to determine the

probability of survival.
7.4.1 Development of Trauma Scoring System Interface

The purpose of this interface is to allow clinician indicate the trauma and based
on the information AIS code is produced. Due to copyright nature of AIS, this
interface is not fully developed and only a basic prototype for demonstration
resulted from the work. The interface will not be taken further and will not in any
way medically or otherwise deployed without prior consultation and agreement
from the authorities responsible for AIS. Figure 7-15 shows a typical AIS menu
list from this interface that indicates selected traumas and associated AIS code.
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1 Specific Anatomic Structure AIS Code AIS Scale

2 |Injuries to the Face NFS 200099 9
3 | - Died of facial injury without further substantiation of injurie 200999 9
4 | Penetrating injury NFS 216000 1
5 minor; superficial 216002 1
6 | with tissue loss >25cmA2 216004 2
7 | with blood loss »20% by volume 216006 3
&  massive destruction of whole face including both eyes 216008 4
9 | Skin/subcutaneous/muscle NFS 210099 1
10| - abrasion 210202 1 [ ]
11 - contusion; hematoma 210402 1
L2 | - laceration NFS 210600 1

Figure 7-15 A section of AIS injury description and associated codes based on AAAM
dictionary.

Figure 7-16 shows the actual user interface. Help feature is included to allow

clinician query about trauma types.

AlS ASSASSMENT
V] Head & Neck Specific Anatomic Structure [ Typeit JlFace | Specific Anatomic Structure Tt 7] Chest Specific Anatomic Structure [Typeit Help
= Injuries to the Head NFS +| Severity Vascular Injury in Face NFSAf -« SeEi Vascular Injury in Thorax NFSAf  » Severity
natomic SIUGHIE. | .oy o head iniury without furt'= Anatomic Structure [External carotid artery branchies) Anatomic Structure |Aorta, thoracic NFS [OIS IV or V ()
VHOLEAREA - jury =l axi ° : " orta  [015 ] -
VesseLsmrack, | Head Injury NS involuing only b | @XM | koL Agea | “minor; superficial Minor ' |wworeArea .| - infimal tear, no disruption fitica
MEWES‘C‘MML Crush Injury Must involve massive  Severity HO ::;\Sélgs major; transection; blood 1088 ! | seyarity NO \’::;\Sélgs | with alom'c va:}ve iflvolvemen( Severity NO
INTERNAL ORGANS ., Penetrating Injury to Skull NFSa - acgrallon; pe o.ratl?n; punctur
SKELETAL - | superficial; < 2cm beneath en £ L’g:w" ORGAR) 22 1 !‘;EEI?E’!&IE.ORGA" minor; superficial; incomplete 5
CONCUSSIVEIIUF | major; »2cm penetration AlS code m SKELETAL NS code major; rupture; transection; se | AIS code E]
7 Scalp NFS % & Z + 7| with aortic root or valve in ~
(T vl ._DW . 113000.6 ﬂ i lo—— - 202024 E] T P \ | 405 U
| 7] Abdomen & Spine Specific Anatomic Structure [ ype it E ot Specific Anatomic Structure [ 1ype it 7| External & Others Specific Anatomic Structure [ 1y e it Heip
) njuries to the Whole Abdomen h « | Severity “* UPPER EXTREMITY **  « | geyerity ) Degree NFS and TBSANFS | Severity
Anstomic SUGHIE ' .| of abdominal injury witho=— Anatomic Structure |njuries to the Whole Upper Extre=| Anatomic Structure | 1st degree; superficial if 1yo o
VME|SOSLEEL:I£A * Penetrating injury NFS Minor WHOLEAREA - |- Died of upper extremity injuryy | Unknown HEXJ;';NAL » <tyo and TBSA<50% = Minor
\ERVES - superficial; minor; into peritone | Severityho | VESSELS Amputation [traumatic], partial of | Saverity NO <lyo and TBSA»50% | | Severity NO
ith ti NERVES hould OTHER TRAUNA Ind degree; partial thickness &
INTERNAL ORGAI with tissue loss *100cm*2 1 MUSCLES TENDOK »» at s| oulder 5 q g patia 1
CERVICAL SPINE with blood loss »20% by volu JONTS N bilateral*c 3rd degree; full lh!ckness and
THORACIC SPINE  |Rectus Abdominus rupture NFS# | AIS code | s at or above elbow, belowsh | AIS code 3rd degree; full thickness and | AIS code n
LUMBAR SPINE  ~ |Torso transectiona «| 5160001 + - 2 bilateralrc M) F 2nd or 3rd degree; partial or fu 9120031
o v | D . E] « [ b \ § E] v «[m ) E]

Figure 7-16 Graphic user interface.

Figure 7-17 shows an example of the manner the interface can be used.

Typing Press Enter to
description get AIS Code
Click on \ \ AIS ASSASSMENT
Body
region Head & Neck Specific Anatomic Structure Severtty ] Abdomen & Spine Specific Anatomic Structure Severty
8!
Anatomic Structure Anatomic Structure
. AIS code m AlS code [T
. J 0 E
% Face Specific Anatomic Struchure S5 e Specific Anatomic Structure Severity
Anatomic Structure Minor Anatomic Structure
. ﬂ MIOLEAER | » Vestibular apparatus‘ AiScode m AIS code ﬂ
210224 R - é
Select [Chest ehON S SeRt) 7 temal Oters Speciic Anatonic Sructure Severy
Anatomic HIE TR Anatomic Structure
structure i LBED E] AS code m
. v 0[]

Figure 7-17 Interface to generate AIS code
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In Figure 7-18 the user interface is linked to probability of survival method of

IRCC incorporating FIS. The user interface allows the injuries to be selected

and the probability of survival is then indicated. The user interface has a feature

that allows the data to be saved for later study.

&) Aricial ntellgenea Trabma Scoring Syste ([E=H=l
AIS ASSASSMENT
7 Head & Neck Specific Anatomic Structure [ Type it [FFace Specific Anatomic Structure [F Chest Specific Anatomic Structure | 100 ¢
_ Injuries to the Head NFS »| Severity “|  Severity
;Lﬁt&m“ﬁmn"m - Died of head injury without furt=) - Anatomic Structure Anatomic Structure
VESSELS,INTRACR: Head Ini_ury NFS ir_wolving only.hw - - -
NERVES,CRANIAL Crush Injury Must involve massive | Severity NO Severity NO Severity NO
INTERHAL ORGANS ,, [Penetrating Injury to Skull NFS*a 3 7 5
SKELETAL | superficial; < 2cm beneath en
CONCUSSIVEIMJUF || major; >2cm penetration AIS code AIS code AIS code B
— 7 [Scalp NFS " |[116002.3 0 [+] 0
LT U R » B - o =)
7] Abdomen & Spine Specific Anatomic Structure [ Type it |5 Extremities Specific Anatomic Structure [ ype it " External & Others _ SPecific Anatomic Structure | ypc it
~| sever Al - ] severi
Anatomic Structure iy Anatomic Structure i) Anatomic Structure i
Severity NO Severity NO Severity NO
0 0 0
AIS code AIS code AIS code
o |* . = ]
- - =) & 2 2 ]
] = i Pre-exiting Medical Condtions (PMC System's
Patient Details Age Gender,Intubation, PR,RR ,SBP and GC$ re-exiting Medical Condtions (PMC) Result
Patient Hame SubmissioniD Age Gender Intubation PR RR sBp Select pre existing conditions result
M1 13
= — Male Yes NO PER-EXISTING DISEASE ‘Z
Incident Date Incident Time: 50 -md o 100 2 105 NOT KNOWN
29-0ct-2018 11:38 AM \Adrenal disease E
i Glasgow Coma Score Score /Alcohol abuse I
Mechanism Arrival date ) g 14 Aneamia
Fall down less 3 29-0ct-2018 Eye Opening (E) ~ Best Verbal Response Best Motor Response (M) \Anorexia/Bulimia
Bl normal conversation iy e lArthtic aneurysm and dissection
LOS ICU LOS disoriented localises to pain \Arthritis
word to pain
(flexion ift'mlnl?b'l "
i decerebrate (extensic rial fibrilation
Qutcome e mes i Blood/Immune Disease NFS -
o ~| |« i ¢ e J v

Figure 7-18 Determining probability of survival (Ps) Interface.

Figure 7-19 shows samples of TBI trauma cases and the determined probability of

survival obtained using the method obtained using either with IRCC on its own or
IRCC with FIS. The figure indicates the patient ID, his/her age, Gender, AIS code,
GCS, PR, RR, SBP, Intubation, PMC and %Ps. Green highlighted rows are
associated with IRCC with FIS and the remaining cases are for IRCC on its own.

Artificial Intellegece System to Predict Trauma Outcomes

AIS Body Region Severity Code
Patient Name |SubmissionlD| Age | Sex Head Neck Face | Chest [Abdomen| Spine |Extremities| External | Others | GCS | PR RR | SBP |Intubation PMC %Ps
Subject_1 41970 79 Female | 1160045 0 0 0 0 0 0 0 0 15 98 17 | 183 0 0 42.50%
Subject 2 15438 56 Male | 161008.4 0 0 0 0 0 0 0 0 15 | 61 17 | 156 0 0 04.00%
Subject 3 4117 36 Male | 140683.5 0 0 0 0 0 0 0 0 13 | 102 ] 15 | 160 0 0 84.20%
Subject_4 20057 41 Male | 150202.3 0 0 0 0 0 0 0 0 13 | 89 | 17 (129 1 0 08.30%
Subject_5 31986 | 68 | Make | 1204025 | 0 0 0 0 0 0 0 0 [ 3 [s8] w0 [ 1 0 22.78%
Subject 6 40136 02 Male | 1202054 0 0 0 V] 0 0 0 0 14 | 148 | 24 | 132 0 Btroke/CVA/TIA 56.00%
Subject 7 293 | 90 | Male [ 1204065 0 0 0 0 0 0 0 0 [ 3 w028 [180] o 0PD | 8.00%
Subject 8 43844 82 | Female | 140204.5 0 0 0 0 0 0 0 0 14 |17| 17 (11 1 ﬁlroke,»‘(\«'i\fﬂﬁ 42.00%
Subject 9 6472 89 | Male | 1210055 0 0 0 0 0 0 0 0 [ 9] 1819 1 |stroke/cvamy 1000%

Figure 7-19 Examples cases for related TBI and determined probability of survival. For
the head injury, GCS, PR, RR, SBP, intubation and PMC status (1=exist, 0O=does not

exist)
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7.6 Chapter summary

In this chapter, the results obtained using PSD and IRCC models for predicting
probability of survival are explained. A prototype interface for demonstration
was also provided. The results indicate that IRCC can determine the probability

of survival more accurately compared PSD and PS14.
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Chapter 8 Conclusions and Further work

8.1 Conclusions

Based upon the findings from the review of trauma scoring systems and a
description of the various techniques adopted in this research as presented in
Chapters two and three respectively; the detailed methodological framework
described in Chapter four; the investigation of interrelation between trauma
parameters and survival outcomes presented in Chapter five; trauma
knowledge representation and coding presented in Chapter six; and the
rigorous analysis of the probability of survival estimation methods presented in
Chapter seven, the summary of conclusions and key findings from the
numerous analysis carried out during the course of the activities which stems
from this research are presented in this chapter. Also presented in this chapter
are a summary of the original contributions to knowledge made by this work to
research and scholarship, the limitation of the research and an outline of

possible future extension of the current research.

To reiterate, the primary aim of this research is to develop and evaluate
improved methods of determining probability of survival in traumas. Specific
objectives include (i) a detailed analysis of the trauma cases from the available
TARN database with the view to ascertain the interrelationships between a
number of trauma parameters including age, gender, respiration rate, systolic
blood pressure, pulse rate, abbreviated injury scale Glasgow coma score, pre-
existing medical conditions and intubation with the probability of survival; (ii)
development of improved methods for the prediction of probability of survival
based on the information derived from the TARN database; (iii) critical
evaluation of the methods developed in objective two against each other and
against Ps14 for different with the main focus on traumatic brain injury (TBI).
Against this backdrop, the achievement of the research aim could be said to
have been met as a result of the following research activities and numerous

analysis that have been conducted as highlighted in the succeeding sections.
8.2 Summary of Models Developed and the Approach for their Evaluation

Three methods for predicting probability of survival were developed and their

performances were evaluated against Ps14. One employed predictive statistical
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diagnosis (PSD) that is based on Bayesian approach. The second was a novel
approach termed Iterative Random Comparison Classification (IRCC). The third
method incorporated fuzzy inference system (FIS) with the IRCC. The PSD and
IRCC used respiration rate, age, systolic blood pressure (SBP), pulse rate (RR),
Gender, Glasgow Coma Scale (GCS) and abbreviated injury scale (AlIS). The
IRCC combined with FIS further accommodated the intubation and pre-existing
medical condition (PMC).

8.2.1 Analysis of Trauma Cases

The analysis of trauma cases revolved valuable information related to the
interrelationships between trauma parameters (age, Gender, RR, SBP, PR, AIS
and GCS, PMC and Intubation) with the trauma outcomes, i.e. survivors and not
survivors. The main focus of this analysis was on TBI as it represented the
majority of cases in the available data base although several other body regions
were also considered. For TBI there were 4124 trauma cases (2488 males, i.e.
60.3% and 1636 female cases, i.e. 39.7%). Their mean age was 67.9 years
(standard deviation=21.6 years). From this population, 86.2 % (number=3553)
were survivors and 13.8% (number=571) were not survivors. It was found all
these parameters are important in determining probability of survival. The
investigation consider of each parameter individually as well as combination of
parameters jointly on the probability of survival. A variety of techniqgues were
utilised for these investigations that included distribution analysis, clustering and
statistical analysis. Detailed discussions of findings are included in chapter 5.

8.2.2 Trauma Knowledge Representation and Coding

Knowledge representations in the forms such as tree diagrams, flow charts, box
plots and cluster diagrams were developed. These assisted the knowledge
coding that took the form of a number of IF-THEN statements relating to the
trauma parameters to the outcomes (survivors and not survivors). The
developed knowledge representation and coding schemes lead to the
successful development of the fuzzy inference system that was integrated with
IRCC improve its performance. By using FIS the developed system was able to
include two parameters Intubation and PMC this is in case the patient had

related information. As result of this developed system became more
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sophisticated to cover all considerable parameters. The details of the related

schemes are included in chapter 6.
8.2.3 Development of Methods to Predict Probability of Survival

Three methods to predict probability survival in trauma were developed and the
performances were evaluated against each other as well as Ps14. The first
method was PSD that is based on Bayesian statistics. The second method was
IRCC that works by randomly selecting a subgroup of trauma cases from each
outcome (survivors and not survivors), determines the distance of their mean to
the trauma case being considered and repeating this process for predefined
number of iterations to be able to obtain probability of survival. The third
method based on combining IRCC and FIS and incorporated PMC and
intubation. PMC and intubation were not included in all three methods as only a
subset of cases had related information. The focus of the study was on TBI,
although a number of other body sections were also considered. For TBI, the
IRCC performed best amongst all methods including Psl14. It predicted
survivors and not survivors with 97.2% and 75.9% accuracies respectively. The

details of the related investigations are included in chapter 7.
8.2.4 Graphic User Interface for Predicting the Ps

A user graphic interface for the Ps was developed that can assist clinicians
enter trauma parameters and obtain the percentage of probability of survival.

This is a prototype and could save clinicians time.

8.3 Summary of Original Contributions to Knowledge
8.3.1 A Detailed Analysis of Trauma Parameters

The parameters taken into consideration include age, gender, respiration rate,
systolic blood pressure, pulse rate, abbreviated injury scale, Glasgow coma
score, pre-existing medical conditions, and intubation. All parameters were used
for the evaluation of the probability of survival in TBI, with each of them
indicating high level of significance towards the overall determination of the
probability of survival. The investigations indicated the manner AIS and GCS

values for different body regions relate to the probability of survival.
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8.3.2 Proposition of three Methods for the Effective Prediction of
Probability of Survival for TBI

The first method is based on a statistical Bayesian method known as PSD.
The second was a novel method referred to as IRCC, which employs a
randomly selected group of cases with predefined group size as part of its
operation and by iterative repeating the process, determine the probability of
survival. The third method developed is a combination of IRCC with FIS to
accommodate PMC and intubation information. The use of FIS required careful

knowledge representation and knowledge coding.
8.3.3 Critical Evaluation of the Methods Developed

The methods developed were evaluated against each other and against Ps14
for different traumas. Other body regions such as head and face were also
included in the evaluation but the focus of the study was on TBI given that it
constituted the main fatalities in the available database. The main challenge for
all methods was to improve prediction for non-survivors as compared with the
existing Ps14 method, which already had a high accuracy for the survivors. The
three methods proposed in this study managed to significantly improve the
probability of prediction for non-survivors. For example for TBI, there were 1224
survivors and 224 non-survivors. The predicted accuracy for not survivors for
Psl14, PSD and IRCC were 40.1%, 50.0% and 75.9%. The predictive
accuracies for Ps14, PSD and IRCC for survivors were 97.3% 90.8% and

97.2%.

8.4 Further Work

Although significant progress was made in this study toward developing
improved methods for predicting probability of survival, nevertheless there

remain several areas for further exploration.

e The knowledge representation and coding can be extended to for
example a larger number of body parts.

e A valuable trauma parameter is fragility. The value of this for the cases
included in this study was not available but in future this may be

accommodated and its influence in improving the accuracy of the
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prediction methods can be determined. Frailty can be related to age (e.g.
very young and very old) as well as health detrition as a result of various
medical conditions.

Inclusion of larger number of trauma cases in particular not survivors.
Analysis of duration of stay in hospital to establish whether this affected
probability of survival.

Comparison of IRCC and TARN Ps17 outcomes for determining the
probability of survival. At the time of this study Ps14 was available.

Use of artificial neural networks and deep learning to predict probability
of survival could be explored. Machine leaning using neural networks
could be valuable as they can model complex processes and non-linear
systems effectively however their black-box behaviour may be a concern
in some medical fields.

In this study only adults were included as the number of available
children trauma cases is not sufficiently large.

It will be very helpful if the developed methods are validated and
evaluated in clinicians in the medical field. This can provide very valuable
feedback to improve the developed schemes.

100



References

AAAM, A.L.S. (2005, Updating 2008). Association for the advancement of automotive
medicine. Barrington, IL.

Abdul Aziz, S. and Parthiban, J. (2006), Fuzzy Logic, [Online] Last access on 08 March
2013 at URL:
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/sbaa/report.fuzzysets.html

Aho, A. V., and Corasick, M. J. (1975). Efficient string matching: an aid to
bibliographic search. Communications of the ACM, 18(6), pp. 333-340.

Aitchison, J., & Dunsmore, I. R. (1980). Statistical prediction analysis. CUP Archive.

Aitchison, J., Habbema, J. D. F., & Kay, J. W. (1977). A critical comparison of two
methods of statistical discrimination. Applied Statistics, pp.15-25.

Allen, R. and Smith, D., (2001). Neuro-fuzzy closed-loop control of depth of
anaesthesia. Artificial Intelligence in Medicine, 21(1), pp. 185-191.

Al-Sbou, Y., Saatchi, R., Al-khayatt, S., and Strachan, R. (2006), Quality of service
assessment of multimedia traffic over wireless Ad hoc networks, International
Symposium on Communication Systems, Networks and Digital Signal Processing
(CSNDSP), pp. 129-133.

Al-Sbou, Y. A. (2006). Quality of service assessment and analysis of wireless
multimedia networks (Doctoral dissertation, Sheffield Hallam University,).

Alonso, S. K. (2014). eMathTeacher: Mamdani's Fuzzy Inference Method.

Al West, T., Rivara, F. P., Cummings, P., Jurkovich, G. J., & Maier, R. V. (2000).
Harborview assessment for risk of mortality: an improved measure of injury severity on
the basis of ICD-9-CM. Journal of Trauma and Acute Care Surgery, 49(3), pp. 530-
541.

Andersen, L. W., Kim, W. Y., Chase, M., Mortensen, S. J., Moskowitz, A., Novack, V.,
... & Donnino, M. W. (2016). The prevalence and significance of abnormal vital signs
prior to in-hospital cardiac arrest. Resuscitation, 98, pp. 112-117.

Arshdeep, K., Amrit, K. (2012), Comparison of mamdani-type and sugeno-type fuzzy
inference systems for air conditioning system, International Journal of Soft Computing
and Engineering (IJSCE), vol. 2, Issue 2, pp. 323 -325.

Baker, S. P., o'Neill, B., Haddon Jr, W., & Long, W. B. (1974). The injury severity
score: a method for describing patients with multiple injuries and evaluating emergency
care. Journal of Trauma and Acute Care Surgery, 14(3), pp. 187-196.

Cabré, L., Mancebo, J., Solsona, J. F., Saura, P., Gich, I., Blanch, L., ... & Bioethics

Working Group of the SEMICYUC. (2005). Multicenter study of the multiple organ
dysfunction syndrome in intensive care units: the usefulness of Sequential Organ

XViii


http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/sbaa/report.fuzzysets.html

Failure Assessment scores in decision making. Intensive care medicine, 31(7), pp. 927-
933.

Chawda, M. N., Hildebrand, F., Pape, H. C., & Giannoudis, P. V. (2004). Predicting
outcome after multiple trauma: which scoring system? . Injury, 35(4), pp. 347-358.

Champion, H., (2002). Trauma scoring. Scandinavian journal of surgery, 91(1), pp. 12-
22.

Champion, H. R., Sacco, W. J., COPES, W. S., GANN, D. S., Gennarelli, T. A., &
Flanagan, M. E. (1989). A revision of the trauma score. Journal of Trauma and Acute
Care Surgery, 29(5), pp. 623-629.

Cirstea, M., Dinu, A., Khor, J., and McCormick, M. (2002), Neural and fuzzy logic
control of drives and power systems. Oxford.

Clarke, J. R., Cebula, D. P., & Webber, B. L. (1988). Artificial intelligence: a
computerized decision aid for trauma. The Journal of trauma, 28(8), pp.1250-1254.

Deitch, E. A. (1992). Multiple organ failure. Pathophysiology and potential future
therapy. Annals of surgery, 216(2), pp. 117.

Dillon, B., Wang, W., & Bouamra, O. (2006). A comparison study of the injury score
models. European Journal of Trauma, 32(6), pp. 538-547.

Elkfafi, M., Shieh, J., Linkens, D. and Peacock, J., (1997). Intelligent signal processing
of evoked potentials for anaesthesia monitoring and control. IEE Proceedings-Control
Theory and Applications, 144(4), pp. 354-364.

Fani - Salek, M. H., Totten, V. Y., & Terezakis, S. A. (1999). Trauma scoring systems
explained. Emergency Medicine, 11(3), pp.155-166.

Gennarelli, T. A., & Wodzin, E. (2006). AIS 2005: a contemporary injury scale. Injury,
37(12), pp. 1083-1091.

Gilboy, N., Tanabe, T., Travers, D., & Rosenau, A. M. (2011). Emergency Severity
Index (ESI): A triage tool for emergency department. Rockville, MD: Agency for
Healthcare Research and Quality. Retrieved from http://www. ahrg.
gov/professionals/systems/hospital/esi/esil.

Glance, L. G., Osler, T. M., Mukamel, D. B., Meredith, W., Wagner, J., & Dick, A. W.
(2009). TMPM-ICD9: A trauma mortality prediction model based on ICD-9-CM codes.
Annals of surgery, 249(6), pp.1032-1039.

Goris, R. J. A, te Boekhorst, T. P., Nuytinck, J. K., & Gimbrere, J. S. (1985). Multiple-
organ failure: generalized autodestructive inflammation?. Archives of Surgery, 120(10),
pp. 1109-1115.

XiX



Guler, 1., Tunca, A., & Gilbandilar, E. (2008). Detection of traumatic brain injuries
using fuzzy logic algorithm. Expert Systems with Applications, 34(2), pp. 1312-1317.

Giiler, 1., Hardalag, F. and Baris¢i, N., (2002). Application of FFT analyzed cardiac
Doppler signals to fuzzy algorithm. Computers in biology and medicine, 32(6), pp. 435-
444,

Health and Safety Executive. (2012). [online]. Last accessed 23 06 2012 at:
http://www.hse.gov.uk/statistics/at-a-glance.pdf

Haman, A, and Geogranas, N (2008) Comparison of mamdani and sugeno fuzzy
inference systems for evaluating the quality of experienceof hapto-audio-visual
applications, IEEE International Workshop on Haptic Audio Visual Environments and
their Applications (HAVE), pp. 87-92.

Haykin, S. S., Haykin, S. S., Haykin, S. S., & Haykin, S. S. (2009). Neural networks
and learning machines (vol. 3). Upper Saddle River: Pearson.

Holmes, J.F., Palchak, M.J., Macfarlane, T. and Kuppermann, N., (2005). Performance
of the pediatric Glasgow Coma Scale in children with blunt head trauma. Academic
Emergency Medicine, 12(9), pp. 814-819.

lain  Wheatley (2018). Respiratory rate 3: how to take an accurate
measurement. Nursing 114; 7, pp. 21-22.

Jantzen, J., (1998) Design of Fuzzy Controllers. Technical report, University of
Denmark, Department of Automation, vol: 236.

Janich, K., Nguyen, H. S., Patel, M., Shabani, S., Montoure, A., & Doan, N. (2016).
Management of adult traumatic brain injury: A review. J. Trauma Treat, 5.

Kentala, E., Pyykkd, I., Laurikkala, J. and Juhola, M., (1999). Discovering diagnostic
rules from a neurotologic database with genetic algorithms. Annals of Otology,
Rhinology & Laryngology, 108(10), pp. 948-954.

Khoukhi, L., and Cherkaoui, S. (2008) Experimenting with fuzzy logic for qos
management in mobile ad hoc networks. IJCSNS International Journal of Computer
Science and Network Security, 8(8), pp. 372-386.

Kim, Y., (2012). Injury severity scoring systems: a review of application to practice.
Nursing in critical care, 17(3), pp. 138-150.

Klir, J. and Yuan, B. (1995) fuzzy sets and fuzzy logic: theory and applications.
Prentice Hall Inc. ISBN: 0131011715.

Kondo, Y., Abe, T., Kohshi, K., Tokuda, Y., Cook, E. F., & Kukita, I. (2011). Revised
trauma scoring system to predict in-hospital mortality in the emergency department:
Glasgow Coma Scale, Age, and Systolic Blood Pressure score. Critical care, 15(4),
R191.

XX


http://www.hse.gov.uk/statistics/at-a-glance.pdf

Kuwabara, K., Matsuda, S., Fushimi, K., Ishikawa, K. B., Horiguchi, H., & Fujimori, K.
(2010). Probability of survival, early critical care process, and resource use in trauma
patients. The American journal of emergency medicine, 28(6), pp. 673-681.

Laytin, A. D., Dicker, R. A., Gerdin, M., Roy, N., Sarang, B., Kumar, V., & Juillard, C.
(2017). Comparing traditional and novel injury scoring systems in a US level-I trauma
center: an opportunity for improved injury surveillance in low-and middle-income
countries. journal of surgical research, pp. 215, 60-66.

Le Gall, J. R., Lemeshow, S., & Saulnier, F. (1993). A new simplified acute physiology
score  (SAPS II) based on a European/North American  multicenter
study. Jama, 270(24), pp. 2957-2963.

Le Gall, J. R, Klar, J., Lemeshow, S., Saulnier, F., Alberti, C., Artigas, A., & Teres, D.
(1996). The logistic organ dysfunction system: a new way to assess organ dysfunction
in the intensive care unit. Jama, 276(10), pp. 802-810.

Lefering, R. (2002), "Trauma scpre systems for quality assessment”, European Journal
of Trauma, no.2, vol.28, pp.52-63.

Liu, N. T., Holcomb, J. B., Wade, C. E., Batchinsky, A. I., Cancio, L. C., Darrah, M. 1.,
& Salinas, J. (2014). Development and validation of a machine learning algorithm and
hybrid system to predict the need for life-saving interventions in trauma
patients. Medical & biological engineering & computing, 52(2), pp.193-203.

Madane, A., & Thakore, D. (2012). An approach for extracting the keyword using
frequency and distance of the word calculations. International Journal of Soft
Computing and Engineering (IJSCE), pp. 2(3).

Man, D. W. K., Poon, W. S., & Lam, C. (2013). The effectiveness of artificial
intelligent 3-D virtual reality vocational problem-solving training in enhancing
employment opportunities for people with traumatic brain injury. Brain injury, 27(9),
pp. 1016-1025.

MEDAL MILITARY MEDICINE, (2010-last update) , The Trauma Index. Available:
http://www.mymedal.org/index.php?n=Military.290109 [10/07, 2015].

Meredith, W., Rutledge, R., Hansen, A. R., Oller, D. W., Thomason, M., Cunningham,
P., & Baker, C. C. (1995). Field triage of trauma patients based upon the ability to
follow commands: a study in 29,573 injured patients. Journal of Trauma and Acute
Care Surgery, 38(1), pp. 129-135.

Moon, J. H., Seo, B. R,, Jang, J. W., Lee, J. K., & Moon, H. S. (2013). Evaluation of
probability of survival using trauma and injury severity score method in severe
neurotrauma patients. Journal of Korean Neurosurgical Society, 54(1), pp. 42.

Moppett, I. K. (2007). Traumatic brain injury: assessment, resuscitation and early
management. British Journal of Anaesthesia, 99(1), pp. 18-31.

XXi


http://www.mymedal.org/index.php?n=Military.290109

Mullins, R.J. (1999), " A historical perspective of trauma system development in the
United States”, J Trauma, vol.47, no.3, pp.1-11.

Muyeen, S. M., and Al-Durra, A (2013) modeling and control strategies of fuzzy logic
controlled inverter system for grid interconnected variable speed wind generator, IEEE
System Journal, issue 99, pp. 1-8.

Naoum-Sawaya, J., Ghaddar, B. (2005) A fuzzy logic approach for adjusting the
contention window size in IEEE 802.11e wireless ad hoc networks. International
Symposium on Communication, Control, and Single Processing (ISCCSP). pp. 1-4.

NHS England. (2018). [online]. Last accessed 08 12 2018 at:
https://www.england.nhs.uk/blog/frailty/

Nystrom, P. O. (1998). The systemic inflammatory response syndrome: definitions and
aetiology. The Journal of antimicrobial chemotherapy, 41(suppl_1), pp.1-7.

Olsson, T., Terent, A., & Lind, L. (2004). Rapid Emergency Medicine Score can predict
long-term mortality in nonsurgical emergency department patients. Academic
Emergency Medicine, 11(10), pp. 1008-1013.

Osler, T., Baker, S. P., & Long, W. (1997). A modification of the injury severity score
that both improves accuracy and simplifies scoring. Journal of Trauma and Acute Care
Surgery, 43(6), pp. 922-926.

Schluter, P. J. (2011). The trauma and injury severity score (TRISS) revised. Injury,
42(1), pp. 90-96.

Pang, N., & Lai, Z. D. (2012, August). Signature word extracting research based on web
metadata. In Instrumentation & Measurement, Sensor Network and Automation
(IMSNA), 2012 International Symposium on (vol. 2, pp. 506-508). IEEE.

Pang, B. C., Kuralmani, V., Joshi, R., Hongli, Y., Lee, K. K., Ang, B. T., ... & Ng, .
(2007). Hybrid outcome prediction model for severe traumatic brain injury. Journal of
neurotrauma, 24(1), pp.136-146.

Patient,  (2015-last) update, Trauma Triage and Scoring. Available:
http://patient.info/doctor/trauma-triage-and-scoring [10/15, 2015].

Pearl, A., Bar-or, R. and Bar-or, D., (2008). An artificial neural network derived trauma
outcome prediction score as an aid to triage for non-clinicians. Studies in health
technology and informatics, 136, pp. 253.

Pedia Content Solutions Pvt. Ltd.(2015), Network planning center, guangdong power
grid applies for patent on intelligent extracting method for engineering characteristic
indexes in paragraph contents of word document of transmission and transformation
project,

XXii


http://patient.info/doctor/trauma-triage-and-scoring

http://lcproxy.shu.ac.uk/login?url=http://search.proquest.com.lcproxy.shu.ac.uk/docvie
w/1757896427?accountid=13827, [11/05 , 2016]

Pike, I., Khalil, M., Yanchar, N. L., Tamim, H., Nathens, A. B., & Macpherson, A. K.
(2017). Establishing an injury indicator for severe paediatric injury. Injury prevention,
23(2), pp.118-123.

Reith, F. C., Lingsma, H. F., Gabbe, B. J., Lecky, F. E., Roberts, I., & Maas, A. I.
(2017). Differential effects of the Glasgow Coma Scale Score and its components: An
analysis of 54,069 patients with traumatic brain injury. Injury, 48(9), pp.1932-1943.

Rhee, K. J., Fisher, C. J.,, & Willitis, N. H. (1987). The rapid acute physiology
score. The American journal of emergency medicine, 5(4), pp. 278-282.

Ross (1995) Fuzzy logic with engineering applications. McGraw-Hill, USA. ISBN 007-
pp. 113637-1.

Saleh, M., Saatchi, R., Lecky, F., & Burke, D. (2018). Predictive statistical diagnosis to
determine the probability of survival in adult subjects with traumatic brain injury.
Technologies, 6(2), pp. 41.

Saleh, M., Saatchi, R., & Burke, D. (2017). Analysis of the influence of trauma injury
factors on the probability of survival. International journal of biology and biomedical
engineering, 11, pp. 88-96.

Saleh, M., Saatchi, R., Burke, D., & Lecky, F. (2017, August). Computational analysis
of factors affecting the probability of survival in trauma injuries. In Mathematics and
Computers in Sciences and in Industry (MCSI), 2017 Fourth International Conference
on (pp. 114-118). IEEE.

Sammy, 1., Lecky, F., Sutton, A., Leaviss, J., & O’Cathain, A. (2016). Factors affecting
mortality in older trauma patients—A systematic review and meta-
analysis. Injury, 47(6), pp. 1170-1183.

Schluter, P. J. (2011). The trauma and injury severity score (TRISS)
revised. Injury, 42(1), pp. 90-96.

Shah, P. K., Perez-lratxeta, C., Bork, P., and Andrade, M. A. (2003). Information
extraction from full text scientific articles: Where are the keywords?. BMC
bioinformatics, 4(1), pp. 1.

Siritongtaworn, P., & Opasanon, S. (2009). The use of trauma score-injury severity
score (TRISS) at Siriraj Hospital: How accurate is it?. Medical journal of the Medical
Association of Thailand, 92(8), pp. 1016.

Stevenson, M., Segui-Gomez, M., Lescohier, 1., Di Scala, C. and Mcdonald-Smith, G.,
(2001). An overview of the injury severity score and the new injury severity score.
Injury prevention : journal of the International Society for Child and Adolescent Injury
Prevention, 7(1), pp. pp. 10-13.

XXiii



Saraireh, M. Saatchi, R. Al-Khayatt, S. and Strachan, R. (2008) “Assessment and
improvement of quality of service using fuzzy logic and hybrid genetic-fuzzy
approaches”, ACM., vol 27, issue 2-3, pp. 95-111, ISSN:0269-2821.

Tanabe, P., Gimbel, R., Yarnold, P.R., Kyriacou, D.N. and Adams, J.G., (2004).
reliability and validity of scores on the emergency severity index version 3. Academic
Emergency Medicine, 11(1), pp. 59-65.

Tanabe, P., Gimbel, R., Yarnold, P. R.,, & Adams, J. G. (2004). The Emergency
Severity Index (version 3) 5-level triage system scores predict ED resource
consumption. Journal of Emergency Nursing, 30(1), pp. 22-29.

Tepas, J. J., Mollitt, D. L., Talbert, J. L., & Bryant, M. (1987). The pediatric trauma
score as a predictor of injury severity in the injured child. Journal of pediatric
surgery, 22(1), pp. 14-18.

The Royal Children’s Hospital Melbourne. Normal ranges for physiological variables.
Availableonline:
https://www.rch.org.au/clinicalguide/guideline_index/Normal_Ranges_for_Physiologic
al_Variables (accessed on 05 April 2018).

Ting, D. S. W., Cheung, C. Y. L., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A,, ... &
Wong, E. Y. M. (2017). Development and validation of a deep learning system for
diabetic retinopathy and related eye diseases using retinal images from multiethnic
populations with diabetes. Jama, 318(22), pp.2211-2223.

Trauma Audit and Research Network, (November 2014-last update), Improvements in
the Probability of Survival Model. Available:
https://www.tarn.ac.uk/Content.aspx?ca=4&c=3515 [13/04, 2015]. last accessed
17/05/2017

Tohira, H., Jacobs, 1., Mountain, D., Gibson, N., & Yeo, A. (2012). Systematic review
of predictive performance of injury severity scoring tools. Scandinavian journal of
trauma, resuscitation and emergency medicine, 20(1), pp. 63.

Verdecchia, P., Staessen, J. A., Angeli, F., De Simone, G., Achilli, A., Ganau, A, ... &
Reboldi, G. (2009). Usual versus tight control of systolic blood pressure in non-diabetic
patients with hypertension (Cardio-Sis): an open-label randomised trial. The
Lancet, 374(9689), pp. 525-533.

Walter, L. C., Brand, R. J., Counsell, S. R., Palmer, R. M., Landefeld, C. S., Fortinsky,
R. H., & Covinsky, K. E. (2001). Development and validation of a prognostic index for
1-year mortality in older adults after hospitalization. Jama, 285(23), pp. 2987-2994.

Wisner, D.H. (1992), "History and current status of trauma scoring system", Arch.
Surg. vol. 127, pp. 111-117.

Wong, T. Y., & Bressler, N. M. (2016). Artificial intelligence with deep learning
technology looks into diabetic retinopathy screening. Jama, 316(22), pp.2366-2367.

XXiv



Wuerz, R.C., Travers, D., Gilboy, N., Eitel, D.R., Rosenau, A. and Yazhari, R., (2001).
Implementation and refinement of the emergency severity index. Academic Emergency
Medicine, 8(2), pp. 170-176.

Xian-Jiang, H., and Zhong-Hua, Y. (2012, November). A research on multi-feature
word-level paraphrase extracting system based on context. In Multimedia Information
Networking and Security (MINES), 2012 IEEE Fourth International Conference on,
pp. 441-444.

Yager, R. R., Zadeh, L. A., Kosko, B., & Grossberg, S. (1994). Fuzzy sets, neural
networks, and soft computing (No. 006.33 F8).

Yamamoto, M., and Morooka, C. K. (2005). Dynamic positioning system of semi-
submersible platform using fuzzy control. Journal of the Brazilian Society of
Mechanical Sciences and Engineering, 27(4), pp. 449-455.

Zallen, G., Offner, P. J., Moore, E. E., Blackwell, J., Ciesla, D. J., Gabriel, J., &
Silliman, C. C. (1999). Age of transfused blood is an independent risk factor for
postinjury multiple organ failure. The American journal of surgery, 178(6), pp. 570-
572.

Zheng, H., Jiang, B., & Lu, H. (2011). An adaptive neural-fuzzy inference system

(ANFIS) for detection of bruises on Chinese bayberry (Myrica rubra) based on fractal
dimension and RGB intensity color. Journal of food engineering, 104(4), pp. 663-667.

XXV



Appendix A: Extra Work of Statistical Analysis
The highest score of GCS for Eye is N=4, Verbal is N=5 and Motor is N=6.

Table A.1 of Comparison of Eye - Verbal - Motor components for not survived

Total Total
(Eye-Verbal- Motor) number of number of
Combining two factors
as single factor single Combining two
factor factors
(Eye) (Eye-Verbal)
2 13
<=2-N-N (<=2-<=3-N)
(Verbal) (Eye- Motor)
14 7
N-<=3-N (<=3-N-<=4)
(Motor) (Verbal- Motor)
2 38
N-N-<=4 (N-<=3-<=4)

Table A.2 of Comparison of Eye - Verbal - Motor components for survived

Total Total
(Eye-Verbal- Motor) number of Combining two factors number of
as single factor single 9 Combining two
factor factors
(Eye) (Eye-Verbal)
<=2-N-N 14 (<=2-<=3-N) 143
(Verbal) (Eye- Motor)
N-<=3-N 70 (<=2-N-<=4) 17
(Motor) (Verbal- Motor)
N-N-<=4 1 (N-<=3-<=4) 17

Table A.3 of statistical analysis of age (years) range for all cases.

Age(years) Total number Of all Total number of survival Total number of not
range cases cases survival cases
18-38 5095 4881 214

(21.35%) (22.11%) (12.71%)
45-65 8153 7886 267
(34.17%) (35.57%) (15.85%)
10611
9408 1203
- 0,
7595 (44.47%) (42.43%) (71.43%)
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Table A.4 of statistical analysis of age (years) range based on Gender.

Age(years) Total number of male Total number of male Non-surviving female
range survival cases not survival cases % remarks
} 3794 161 (24.76%)

18-38 (77.73%) (75.24%) -
4774 182 o

45-65 (60.54%) (68.16%) erean) B
3185 589

7595 (33.85%) (48.96%) (51.40%) 4

Table A.5 of statistical analysis of Gender, RR, SBP and PR.

%’ Male Female Male Female Male Female
2
5 | RR ﬁ(’i RR ﬁ(’i SBP S,\l%'? SBP S,\l%'? PR PR PR PR
g | 12 1o 12- 1o 90- 9. 90- %, 60- Not 60- Not
20 P 20 P 140 | I 140 10 100 | 60-100 | 100 | 60-100
o)
© | 1059 | 463 | 694 | 300 | 841 | 787 436 618 | 1281 333 857 202
3 % % % % % % % % % % % %
US) 69.57 | 30.42 | 69.81 | 30.18 | 51.65 | 48.34 | 41.36 | 54.63 | 79.36 | 20.63 | 80.92 | 19.07
he)
o O 122 87 82 81 79 159 50 148 176 62 148 49
S| ® % % % % % % % % % % %
5| 5837 | 41.62 | 50.30 | 49.69 | 33.19 | 66.80 | 25.64 | 74.35 | 73.94 | 2605 | 75.12 | 24.87
]
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Appendix B: SHU Ethics Approval

Dear Reza,

Thanks for these. We can now take both of these to be fully approve and will file the documents you
have sent.

Regards,
Alison

From: Adam, Alison

Sent: 23 September 2015 14:07

To: Saatchi, Reza

Cc: | ACESResearch Ethics Committee (FREC)
Subject: Research ethics approvals

Dear Reza,

As you attended the FREC meetings last week you know of the outcomes of your students’ research
applications but here they are for the record.

Regards,
Alison

« MohammedSalah

Subject Title: Artificial Intelligent Methods for Frediction of Trauma Outcome for
Emergency Department Fatients

gutcome of the Committee's discussion

Approved - Subject to the following:
1. The end date on the SHUREC2A form is corrected.

2. A copy of the NHS letter that confirms no MHS Ethical Approval is reguired is supplied to ACES
FREL.

Professor Alison Adam

Cultural, Communication & Computing Research Institute
sheffield Hallam University

Cantor Building

153 Arundel Street

sheffield, 51 2MLU

d.adam@shu.ac.uk
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Appendix C: Use Agreement between TARN and SHU

CONFIDENTIAL

DATA TRANSFER AND USE AGREEMENT

THIS AGREEMENT is made the 2016 by and between

The University of Manchester with a business address at Oxford Road, Manchester,
United Kingdom (*University”)

and Sheffield Hallam University with a business address of City Campus, Howard Street,
Sheffield S1 1WB (“the Recipient’);

each a "Party" and collectively the “Parties"

WHEREAS University is a leading UK teaching and research institution and holds data in
the Trauma Audit and Research Network ("TARN"); and

WHEREAS the Recipient has an interest in access to such TARN Data; and

WHEREAS the University is prepared to allow the Recipient access to certain TARN Data
to enable a specific research project; and

WHEREAS the Parties wish to clarify their respective rights and obligations in respect of the
Recipient's use of such TARN Data and each Party's use of the Results of such research
project through entry into this Agreement.

NOW THEREFORE in consideration of the mutual promises and covenants set forth herein,
and intending to be legally bound, the Parties agree as follows:

1. Definitions

1.1 “Purpose" shall mean use by the Recipient for academic research purposes in the
specific research project detailed in Exhibit A and no other purpose.

1.2 "Pnincipal Investigator" shall mean the representative(s) of the Recipient named in
Exhibit A responsible for the conduct of the research project.

1.3 “Results” shall mean the results relating to the research performed by the Recipient
using the TARN Data including without limitation all analyses, calculations,
algorithms and meta-data irrespective of format.

1.4  “TARN Data" shall mean the proprietary data of the University requested by the
Recipient for the Purpose and collected from participants in TARN and held at the
University together with any additional information made available relating thereto.

2, Transfer of Data to the Recipient
The University will provide the TARN Data to the Recipient as soon as reasonably
possible following execution of this Agreement. Thereafter the University may

transfer such further TARN Data to the Recipient as the Parties may agree in writing
and any such additional data shall be deemed TARN Data and subject to the terms
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31

32

33

34

of this Agreement. Data will be transferred to the Principal Investigator by the
University representative responsible for the care of the TARN Data.

Treatment of Data by the Recipient

The Principal Investigator will be responsible for receipt of the TARN Data and
upholding the University’s obligations in respect of the TARN Data. Notwithstanding
the foregoing, the Recipient agrees to maintain TARN Data disclosed or transferred
to the Recipient by or on behalf of the University as confidential data with the same
degree of care it holds its own confidential data.

The Recipient will mark and store the TARN Data in such a manner that it is at all
times traceable as proprietary to the University, The Recipient will keep the TARN
Data secure using password protection as a minimum and preferably data
encryption. The Recipient will not store the TARN Data on a laptop, disc, external
drive or any other temporary media.

The Recipient will not use TARN Data or cause the same to be used except for the
Purpose. The Recipient will disclose such TARN Data only to its directors, officers,
employees, faculty, and researchers directly concemed with carrying out the
Purpose subject to the Recipient having in place with such persons obligations no
less strict than those sel out herein and remaining fully liable for any breach by such
persons. The Recipient will neither disclose the TARN Data to any third party nor
use such TARN Data for any other purpose without the prior written consent of the
University.

Each Party shall comply with the Data Protection Act 1998 ("the 1998 Act") and any
other applicable data protection legislation. Both parties agree to use all reasonable
efforts to assist each other to comply with the 1988 Act. For the avoidance of doubt,
this includes providing the other with reasonable assistance in complying with
subject access requests served under Section 7 of the 1988 Act and consulting with
the other prior to the disclosure of any personal data created in connection with the
conduct or performance of the Purpose in relation to such requests.

Exceptions.

The Recipient's obligations of nondisclosure and the limitations upon its right to use
the TARN Data shall not apply to the extent that the Recipient can demonstrate that
TARN Data: (a) was in its possession prior to the time of disclosure without
obligation to the University; or (b) is or becomes public knowledge through no fault
or omission of the Recipient; or (c) is obtained by the Recipient from a third party
under no obligation of confidentiality to the University; or (d) if the Recipient is
requesied or ordered lo disclese TARN Data in connection with a legal or
administrative proceeding, the Recipient will give the University prompt notice of
such request. The University may seek an appropriate protective order or other
remedy or waive compliance with the provisions of this Agreement or both. If the
University seeks a prolective order or other remedy, the Recipient will cooperate
with the University, at the University's expense. To the extent the University fails to
obtain a protective order or waive compliance with the relevant provisions of this
Agreement, the Recipient will disclose only that portion of the TARN Data which its
legal counsel determines the Recipient is required to disclose.
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9.1

9.2

9.3

Ownership of Results and License.

Results of the Purpose will be owned by the Recipient. The Recipient will keep the
University reasonably updated with progress of the research project and will supply
all Results to the University in a timely manner. The University will be entitled to
receive all raw data contained in the Results. The Recipient grants to the University,
without fee or payment of any kind, a perpetual, worldwide, non-exclusive, fully
sublicensable, license to use the Resulls for internal leaching and research,

Publication.

Notwithstanding the other provisions of this Agreement, it is the desire of both
Parties for Results to be published as appropriate. The Recipient may publish the
Results, will detail the source(s) of data used, and to the extent that the University
has made any significant contribution to the Results the Recipient will include
pertinent University personnel as joint authors in accordance with accepted scientific
publication practice. The University shall have the right to review all publications
which refer in any manner to the Results prior to publication by the Recipient. The
Recipient will send relevant manuscripts to the University for review prior to
publication. The University will have up to thirty (30) days to review each manuscript
(‘Review Period”) and will have the right to delete any University confidential
information from such manuscript. The Recipient will be free to publish at the end of
the Review Period.

Retention of Rights in the TARN Data.

All intellectual property rights in the TARN Data shall remain the property of the
University at all times. Nothing in this Agreement shall be construed as granting any
license to TARN Data or the University's other intellectual property rights unless
otherwise expressly set out under this Agreement.

No Further Obligation.

University is disclosing TARN Data to Recipient on the express understanding that
neither Party will be obligated to enter into any further agreements relating to the
subject matter hereof, and unless and until any final definitive agreement with
respect to the above subject matter is agreed between the Parties, the Parties will
not have any obligation to the other Party except under this Agreement or any other
definitive written agreement already entered into with respect to the subject matter.

Limited Representations and Warranties.

The University represents that the TARN Data has been derived and supplied in
accordance with all applicable laws, rules and regulations.

Each Party represents to the other, to the extent that it supplies to the other Party,
uses itself, or permits the other Party to use, data it has obtained from a third party
to perform this Agreement that it has all required permissions, licenses and consents
from such third party to do so.

The Recipient warrants it will conduct the permitted research using the TARN Data
and any third party data in accordance with all applicable laws, rules and
regulations; and save for the express warranties set forth in this Agreement, no
representations, undertakings or warranties, whether express or implied, are made
or given by either Party including without limitation (i) as to the accuracy,
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10.

11.

12.

completeness, or fitness for a particular purpose of the TARN Data; or (i) the
Results or their freedom from infringement of any third party intellectual property
rights.

Term and Termination.

This Agreement will terminate on 4" October 2020 or until the permitted research
has been completed whichever is sooner. Either Party may terminate this
Agreement without cause on giving the other not less than thirty (30) days written
notice. Those sections intending to survive expiry or earlier termination of this
Agreement will survive.

Return or removal of TARN Data.

Upon the written request of the University at any time or upon 12 months following
publication of the Results (whichever is sooner), the Recipient will promptly return all
TARN Data then in its possession or control and all copies of it save that the
Recipient will not be required to surrender or destroy any computer files stored
securely by the Recipient, its business units and Affiliates that are created during
automatic system back-up or retained for legal purposes by the legal division of the
Recipient. The Recipient will certify to the University that all electronic copies other
than those required as above have been deleted, and that all paper copies have
been destroyed.

General

Headings. Headings are provided for convenience only and do not affect the
construction or interpretation of this Agreement.

No Waiver. No waiver shall be binding unless in writing and signed by the Party
making such waiver. A waiver made on one occasion shall not be deemed a waiver
on any other or subsequent occasion. All rights of the Parties are cumulative.

Authority. Each Party represents to the other that it has the full authority to enter
into this Agreement. Each Party represents to the other that it is entering into this
Agreement as principal not agent. Each signatory represents that they have the full
authority to bind their respective company or organization to the terms of this
Agreement.

Entire Agreement and Variation. This Agreement sets forth the entire agreement
between the Parties as to its subject matter and supersedes all prior discussions,
understandings, or verbal agreements (if any) in relation thereto all of which are
replaced in their entirely by the terms of this Agreement. Notwithstanding the
foregoing, this Agreement shall not supersede or vary any other definitive written
agreements already executed between the Parties. None of the terms of this
Agreement shall be amended except in a writing signed by each Party.

Counterparts and Execution. This Agreement may be executed in two or more
counterparts each of which is separate but when taken together shall constitute one
and the same instrument.

No Third Party Rights. No third party, including without limitation any director,

officer, employee, agent or consultant of either Party or their respective Affiliates or
business units shall have or acquire any rights under this Agreement.
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Existence of Agreement The Recipienl, its studenis, researchers, directors,
officers, employees, agents and consultants wil not disclose or publicly announce
the existence of this Agreement, its terms, or any aclivities contemplated under I
without the prior written consent of the University. Motwithstanding the foregoing,
such restriction will not act to prevent any disclosure by the Recipient as required by
law or a regulatory authority, or fo any polential lender or acquirer for the purpose of
pursuing the specific transaction subject to obligations of confidentiality.

Assignment. Neither Parfy may assign this Agreement, in whole or in part, without
the prior wrilten consent of the other Party,

Governing Law. This Agreement shall, in all respects, be construed and governed
in accordance with the laws of England and Wales,
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IN WITNESS WHEREOF the Parties have caused this Agreement to be executed by the
hands of their duly authorized representatives as of the day and date first written above.

The Recipient The University of Manchester

Signed: \\ww i Signed:

............................ Print Name:

Position: Deputy Registrar Position:

Director of TARN
Signed:
Print Name:

Position:
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Exhibit A

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Purpose of the Agreement: The purpose of agreement is for Sheffield
Hallam University to receive and use anonymised patients' trauma data from
"The Trauma Audit and Research Network (TARN)" within the agreed
guidelines.

Need for the Data: The data is needed for a PhD study, the details of which
are explained below. The data shall only be used for the PhD study.

PhD Study's Details: The objectives of the study are to

Investigate and develop ways that could improve the assessment of the
injury severity. There are a number of standards, such as the Abbreviated
Injury Scale (AIS). These indicate the relative risks of treatment to life.
However, these have some shortcomings with regards to their accuracy.
These standards and their limitations are explained in a number of articles
such as (Chawsa et al., 2004) (Lefering, 2002), (Orhon et al., 2002),
(Rennie and Brady, 2007) and (Senkowski and McKenney, 1999).

ii. Develop means to determine the probability or likelihood of a patient

survival following an injury.

ili. Critically evaluate the developed approaches.

Research Student: The PhD student name is Mr Mohammed Saleh (date of
birth 24/09/1982). He is registered as a PhD full-time student at Sheffield
Hallam University. His official study start date is 05/0ct/2015 and his study's
regulatory end date is 04/0Oct/2019. He is a Libyan national and his PhD study
is sponsored by the Government of Libya.

Supervisory Arrangement: The PhD student's principal supervisor is Dr
Reza Saatchi, a Reader at Sheffield Hallam University who has about 25
years research experience. Dr Reza Saatchi takes responsibility with regard
to the conduct of this study and is the Principal Investigator for the purposes
of the Data Transfer and Use Agreement. The study is supported by co-
supervisors, Professor Derek Burke (Medical Director, Sheffield Children
Hospital, SCH) and Professor Fiona Lecky (Clinical Professor of Emergency
Medicine, University of Sheffield, UoS).

The Trauma Audit and Research Network (TARN): A brief description of
TARN is: " Established 25 years ago by a small group of collaborators, the
Trauma Audit and Research Network (TARN) is now recognised as the UK's
national clinical audit for traumatic injury and holds the largest trauma registry
in Europe. Based at Salford Royal NHS Foundation Trust, TARN's role is to
support hospitals by providing evidence of the standards of care through the
analysis of key process measures and case-mix adjusted outcomes."
[http:/femj.bmj.com/content/32/12/966 full]

The link to TARN official site is: https://www.tarm.ac.uk/
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[8] The TARN Data: The TARN Data shall be provided in anonymised electronic
form on a secure disk or secure memory storage. It will be in a spread sheet
form with a number of columns. Each row of the data sheet represents a
patient's trauma injury description divided into columns. The columns typically
include information such as Abbreviated Injury Scale (AlS) scores and codes,
injury severity score, descriptions of the nature of injury and injury outcome
(lived /died) etc.

[8]  Manner the TARN Data Shall be Stored at Sheffield Hallam University:
Although the TARN Data are anonymised and it is not possible to relate them
to individual patients, nevertheless, they are highly confidential and their
storage needs to be secure. Therefore they will be stored on the University's
networked Research Store for all master copies and, if any derivative of the
TARN Data is also confidential, they also will be kept on the same storage
facility. Data is backed up automatically on a daily basis, and can be fully
recovered in the case of accidental loss. All backups are securely kept on two
remote locations for a period of 90 days. The TARN Data will not be
downloaded onto laptops, memory sticks or other similar portable devices.

[10] Access to the TARN Data at Sheffield Hallam University: Access to the
data folders created for the purpose of this study shall be restricted to
researchers working on the project. At project close down relevant data
relating to this project will be securely archived, and all TARN Data will be
deleted from the Research Store.

[11] Safeguard Measures: The PhD student prior to accessing the TARN Data
will be required to

i.  Undergo appropriate training with regard to handling of confidential data,

ii. Sign the Data Transfer and Use Agreement between SHU and the
University of Manchester. He will also be updated with regards his role
and responsibilities by his main supervisor.
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