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Improving the safety of atrial fibrillation monitoring systems through human
verification

Abstract

In this paper we propose a hybrid decision-making process for medical diagnosis. The hypothesis tested
is that a deep learning system can provide real-time monitoring of Atrial Fibrillation (AF), a prevalent
heart arrhythmia, and a human cardiologist will then verify the results and reach a diagnosis. The
verification step adds the necessary checks and balances to increase the safety of the computer-based
diagnostic process.

In order to test hybrid-decision making, we created a prototype AF monitoring service. The
service is based on Heart Rate (HR) sensors for signal acquisition as well as Internet of Things (IoT)
technology for data communication and storage. These technologies enable transfer of HR data from
patient to central cloud server. A deep learning system is used to analyze the data, which is then
presented to a cardiologist when a dangerous condition is detected. This human specialist then works
to verify the deep learning results based on the HR data and additional knowledge obtained through
patient records or by personal interaction with the patient.

A prerequisite for safety in any computer expert system is the clarity of purpose for the decision-
making process. Health-care providers are considered customers who register patients with the AF
monitoring service. The service delivers real-time diagnostic support by providing timely alarm mes-
sages and HR analysis. The safety critical decision then lies with the human practitioner.

1. Introduction

Atrial Fibrillation (AF) is a condition that causes irregular heartbeat, and in many cases a rapid
heart-beat. AF is the most common clinically significant cardiac arrhythmia. It can cause problems
including tiredness, shortness of breath, and dizziness. These symptoms may reduce quality of life,
functional status, and cardiac performance. AF is associated with substantial medical cost, as well
as an increased risk of death. It is a potent risk factor for ischemic stroke (Wolf et al., 1991). The
absolute impact of AF on the stroke risk depends on comorbid conditions and age (Gage et al.,
2001). There are several types of AF, usually categorized as paroxysmal, persistent and permanent.
Treatment of AF is possible via medication that controls the heart-beat, as well as more invasive
procedures, such as cardioversion, that work to restore the normal heart rhythm (Lafuente-Lafuente
et al., 2015). Treatment monitoring provides the necessary feedback to ensure a positive outcome
for the patient. Current clinical practice is based on sampling patient health via consultation, and
forming an opinion concerning treatment success based on limited data. This is less desirable than
continuous monitoring, which would provide an accurate representation on how AF develops over
time. The presence of AF can be established via Heart Rate (HR) measurements (Hagiwara et al.,
2018). As such, HR is a physiological signal with high information content, because structural features
are largely absent in the signal waveform, and a low data-rate. The low data-rate is ideal for online
monitoring, with the data stored and assessed in a central location (Yang et al., 2015). The complex
structure of the signal, which is a direct consequence of the high information content, makes it difficult
for a human practitioner to entirely analyze the waveform in direct detail (Faust and Bairy, 2012).
Hence, computational methods could be useful to extract human readable features from HR signals.
State-of-the-art diagnostic support tools typically incorporate Artificial Intelligence (AI) structures to
interpret the HR signals (Faust et al., 2018a). In addition, computer support is useful to reduce inter-
and intra-operator variability, because it does not depend on subjective decision-making. However,
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that form of machine-based AF diagnosis is not safe to implement in a clinical setting, because the
machine learning system might err when presented with wrong or corrupt data. Furthermore, the
computing system will be unaware of the general circumstances of the patient.

To address these problems, we propose an AF monitoring service that incorporates a hybrid ap-
proach to medical diagnosis. A deep learning system will be used to monitor patient heart-beat in
real-time. The machine decision is reached without feature engineering, which reduces design time
errors that would impact negatively on the learning model. When a serious patient condition is de-
tected, the service framework will be directed to broadcast alarm messages to the appropriate medical
practitioners. In response to the alarm messages, a human specialist will review the evidence con-
tained in the HR trace, and fuse this information with further knowledge and experience concerning
the patient, in order to reach a diagnosis. As such, the validation process requires substantially less
time than the real-time signal analysis. However, validation and subsequent diagnosis requires higher-
order cognitive abilities. Hence, the proposed hybrid decision-making process will utilize both the
objectiveness and diligence of deep learning systems along with human ability, to fuse a multitude of
information sources and reach a diagnosis that could be implemented in a clinical setting.

To support our hypothesis that the hybrid decision-making process can improve the accuracy and
safety of AF monitoring, we have structured the remainder of the paper in the following way. The
Methods section introduces the technologies used to implement the AF monitoring service. Having
that practical background enables us to discuss the safety aspects of AF monitoring. The Discussion
section is a main focus of this paper, because in it we consider checks and balances required to improve
the safety of an automated decision-making system. In the Conclusion, the main findings of the paper
are stated and the merits of the proposed hybrid decision-making system are highlighted.

2. Methods

The safety of an implemented clinical system can be associated with the question: How does the
system react in case of failure? Therefore, we introduce the proposed system architecture before
discussing the safety aspects of the paradigm. Figure 1 shows an overview block diagram of the
proposed AF monitoring system. With that system setup, we follow Internet of Things (IoT) design
principles, wherein the data flows from point of measurement, i.e. the patient, to a central location
for storage and processing (cloud).

Figure 1: Setup of the AF monitoring service

The main impetus behind the system setup is that HR data travels from patient to a central cloud
server. The data acquisition for the implemented AF monitoring service is captured with commercial
HR sensors, which communicate data to a smart-phone via a low power Bluetooth link. IoT technology
was employed to transfer data from the phone to a central cloud server for storage. Having the data in
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Figure 2: Overview block diagram for the deep learning inference

a central location enabled us to readily deploy a deep learning system for real-time analysis. The deep
learning system is used to determine the AF probability for a block of 100 HR samples. If the deep
learning system detects a dangerous condition, the medical practitioner receives an alarm message.
This prompts the human expert to review the machine decision and reach a diagnosis.

A safety relevant aspect for measurement, communication and storage processes is data integrity
(Faust et al., 2012). As such, this can be established by using adequate engineering principals (Bahr,
2018). Engineering best practices can be useful to reduce data corruption to a minimum (Faust et al.,
2011). However, these best practice considerations are insufficient for deep learning systems, because
formal correctness of the decision functionality cannot be established during the design procedure. In
our architecture, the input vector to the deep learning system was assigned 100 dimensions (block
of heart rate samples), wherein each element is encoded by a 2 byte integer. Therefore, the input
vector would project a state space of 216×100 = 4.4 × 10481. The time to computationally check all
these states would be enormous. Hence, a formal proof of the system as specified is not currently
implementable. However, in the subsequent sections of this paper, we propose a system that utilizes
human verification to improve the system safety for clinical use.

2.1. Deep learning

Deep learning is used to estimate the probability that a HR signal segment was measured during
AF. To realize this functionality, the HR signal is partitioned into 100 beat segments, and these seg-
ments are input to the Long Short-Term Memory (LSTM) based deep learning system. As such LSTM
is suitable for HR processing, because it is optimized for processing sample sequences (Hochreiter and
Schmidhuber, 1997). The block diagram, shown in Figure 2, documents the functionality. Based on
the data, the Deep Learning (DL) system generates a value between 0 and 1. The value indicates
the estimated AF probability for the input segment. A value of 0 indicates that the deep learning
system is certain that the analyzed signal segment does not present an AF rhythm. Conversely, if the
outcome is 1 than the deep learning system is certain that the signal segment shows an AF rhythm.

The deep learning model was established with data from PhysioNet’s Atrial Fibrillation Database
(AFDB). The data from 20 patients was used to train and test the model. Ten-fold cross validation
yielded an accuracy of 98.51% (Faust et al., 2018b). This value was established by thresholding the
estimated AF probability, i.e. all result values below 0.5 were classed as non-AF, and all result values
of 0.5 and above were classed as AF. From a safety perspective, that accuracy is the upper limit of
the system performance. However, from a medical perspective, the thresholding is not satisfactory,
because it obscures information related to the uncertainty of the deep learning system. The reading
cardiologist must be able to trace the analytic results, which implies that it must be possible to
observe both the HR waveform and the estimated AF probability. We address this problem with the
cardiologist support software program, which is described in the next section.

2.2. Cardiologist support

The cardiologist needs to reach a safe, reliable and accurate diagnosis, in order to achieve the best
outcome for a patient. To do so, the specialist requires the relevant information at the right time,
rather than just all the available information. In this case, relevant information means an indication of
the suspicious HR traces and reliable features from these traces. The modified Heart Rate Variability
Analysis Software (HRVAS) program addresses this need. Figure 3 shows a screenshot which depicts
the major elements of the modified HRVAS program (Ramshur, 2010). The HRVAS program was
modified such that it is possible to fetch, display and process data from the cloud server. The proposed
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use case scenario, for this cardiologist support tool, initiates by the user selecting the patient from the
drop-down list at top of the Graphical User Interface (GUI). Pressing ‘Fetch Data’ loads the estimated
AF probability from the cloud server. That data is displayed in the form of a two-dimensional graph,
presented in the upper left corner of the GUI. The graph provides an overview of the estimated AF
probability over time. It is envisioned that this graph will provide concise information concerning
disease progression. For further analysis, the cardiologist can then select a region of interest on the
first graph. This action will cause the tool to download the HR segments. The user selects a range
of deep learning results; each deep learning result is associated with a block of 100 RR intervals. The
tool downloads the RR interval blocks for which the results were selected. Furthermore, the tool
calculates a wide range of features for all of the downloaded RR intervals. Ramshur described all of
the available features in his original HRVAS documentation report (Ramshur, 2010). The graph in the
lower left corner of the GUI displays the downloaded RR intervals. These RR intervals are color-coded
in accordance with their associated estimated AF probability. The color bar, shown below the graph,
indicates the mapping between color and estimated AF probability.

The GUI of the modified HRVAS program displays the estimated AF probability first. This
behavior was a deliberate design decision, because the estimated AF probability provides an overview
of patient health – with respect to AF. The operator is required to select a region of interest before an
augmented version of the HR trace is displayed, which corresponds to the selected region. Hence, the
cardiologist sees the original evidence, augmented by the deep learning results, and the features which
provide disease relevant information. This workflow paradigm therefore guides the cardiologist from
the overview toward the detailed signals and feature analysis. Even at the signal level, the program
thereby provides support by color-coding the signal plot in terms of the estimated AF probability.
That functionality allows the cardiologist to be in control of the diagnosis process, none of the evidence
is hidden while at the same time a wide range of algorithmic support is provided.

3. Discussion

Health care applications are often difficult to develop, because there is a human element which
must be taken into account. With the hybrid decision-making process, we have proposed to syner-
gize with, rather than replace, human experts. That cooperation combines the speed and diligence
of machine classification with the overview and instinct of the human practitioners. This will maxi-
mize the detection of important clinical events, while at the same time minimizing the possibility of
misdiagnosis. Thus, an increase in systemic efficacy is attained.

From a medical perspective, the proposed system is based on the HR being a satisfactory predictor
of human health. Extracting disease-relevant information from the HR signals is an active area of
research. Hence, new knowledge becomes available over time. There is an opportunity to integrate
this new knowledge into the decision-making process. The proposed hybrid decision-making paradigm
would be ideal for continuously retraining a deep learning network. Having a human practitioner
validating the deep learning result can be used to provide relevant training data. In the case when the
human practitioner agrees with the deep learning result, the validated HR sequence can be added to
the labeled data used for training. Even more valuable would be the case where the human practitioner
rejects the deep learning result, meaning that the machine classification was thought to be incorrect.
The incorrectly identified HR traces are then assigned a higher weight for subsequent retraining of the
network, in order to correct the misconceptions of the network.

From an engineering perspective, standard safety assessment methods are not applicable for DL
systems. Any such standard methods would attempt to establish, beyond a reasonable doubt, that the
software app is safe, i.e. the information it provides will not harm humans under any circumstances
(Hoare, 1978; Brookes et al., 1984; Abrial and Abrial, 2005; Lamport, 1999). However, proofing this
statement would involve the exhaustive checking of all possible circumstances. For design realization,
all circumstances would mean the state space of the deep learning system (Faust et al., 2006). For the
LSTM based DL algorithm, the state space is determined by the input vector. As outlined in Section
2.1, in a practical implementation that input vector can encode 4.4 × 10481 states. It is not practical
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Figure 3: Cardiologist support with the modified HRVAS program (Ramshur, 2010).
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to explore such a state space (Anders and Grevesse, 1989). Furthermore, testing the DL algorithm
with a subset of the state space will not establish the safety of the system. The coverage of such tests
is minute, i.e. the test set will always be small when compared to the state space. Even choosing
a salient test set is not an option, because our understanding of the DL model, i.e. the weighting
pattern, is limited. Thus, it is not possible to know or to accurately estimate where the corner cases
will be. The possible corner cases include a range in the state space wherein a small change in the
input vector will cause a dramatic change in the estimated AF probability. With a subset of the state
space, we can only establish the system functionality. As an alternative, we have used ten-fold cross
validation to estimate the decision-making quality of the system. The RR interval blocks from the
known training data constitute discrete points in the state space. Testing these points are used to
inform the operator as to whether or not the system is sufficient for the purpose. However, it does
not establish system safety.

System safety for deep learning systems must originate in checks and balances procedures (Lindsay,
1992). Having the data at a central location is a prerequisite for traceability, where an operator traces
back a sequence of events to find the root cause of a safety critical fault. As such, traceability is an
important systemic safety aspect. Misdiagnosis becomes evident if there is a negative outcome for the
patient. From a system safety perspective, this is helpful information which can be used to improve the
system. For the proposed setup, the cardiologist is tasked with reaching a diagnosis; the DL system
combined with the modified HRVAS program are the support tools. These tools are also valuable
for tracing back in case a misdiagnosis occurred. The cardiologist can then retrieve the program and
inspect the relevant data, to reproduce the situation which led to misdiagnosis. In a tracing scenario,
returning to the same situation will train the cardiologist. It might even be necessary to retrain the
DL, such that relevant knowledge can be extracted from the misdiagnosis event.

The proposed hybrid decision-making system significantly reduces latency that could lead to nega-
tive patient outcomes. The data is streamed from patient to cloud server, and the deep learning system
is capable of real-time monitoring. Our testing showed that a modern Central Process Unit (CPU)
is capable of calculating the inference result for ca. 1 minute of HR data in 30 seconds. Diagnosis
by the clinical expert is a slower procedure. However, compared with state-of-the-art Holter monitor-
ing, where the diagnostic result is reached after days, the proposed method reduces latency between
measurement and diagnosis significantly.

State of the art diagnostic approaches for AF include stress test, Hoter monitor, clinical exami-
nation, Electrocardiogram (ECG), and echocardiogram. Of these methods, ECG is most often used
to confirm a diagnosis, because it monitors the electrical activity of the human heart. Therefore, re-
search work on Computer-Aided Diagnosis (CAD) for AF focuses on extracting diagnostically relevant
information from ECG and HR signals. Table 1 provides an overview of the performance measures
for ECG based studies. Only Acharya et al. (Acharya et al., 2017) used a deep learning approach
to establish the diagnosis support, all the other studies used traditional machine learning algorithms.
The performance of machine learning tends to deteriorate for large data sets, therefore it is difficult
to establish practical decision support in a clinical setting. Furthermore, ECG has a significantly
higher data rate when compared to HR. ECG signals are captured with around 256 samples a second
whereas HR generates only 1 sample a second. As a consequence, ECG is more difficult, and indeed
more costly, to communicate, store and process when compared to HR. That makes HR the better
choice for long term monitoring.

Table 2 provides an overview of current research work on HR based AF detection. The HR is
captured by measuring the beat to beat interval of the human heart. Faust et al. were the only
authors who proposed to use a deep learning algorithm to discriminate between AF and normal HR
signals. None of the papers in this limited review discusses the safety aspects of reaching a medical
diagnosis. The papers concentrate on the performance figures of novel and innovative methods to
make sense of HR signals. With our work we pick up where these other studies left off and show how
deep learning based decision making can be used as part of a hybrid diagnosis process.
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Table 1: Research work on automated ECG based AF detection
Author Method Decision support quality in %

Feature
engineering

Classifier Specificity Sensitivity Accuracy

Sufi and Khalil
(2011)

Correlation-based
feature subset,
expectation
maximization

Rule-based — — 97.00

Martis et al.
(2013)

Independent
component
analysis

Gaussian mixture
model

99.33% 99.32% 99.33%

Prasad et al.
(2013)

Independent
component
analysis

K-nearest
neighbour

98.75% 98.75% 97.65%

Martis et al.
(2014a)

Wavelet coupled
with independent
component
analysis

K-nearest
neighbour

100% 99.61% 99.45%

Martis et al.
(2014b)

Higher order
spectra coupled
with independent
component
analysis

K-nearest
neighbour

– 100% 99.50%

Acharya et al.
(2016)

Entropies, signal
energy, Fractal
dimension,
Largest Lupnov
event

Decision tree 84.10 99.30 96.30

Desai et al. (2016) Recurrence
quantification
analysis

Rotation forest — — 98.37

Acharya et al.
(2017)

– 11-layer
Convolutional
neural network

93.13 98.09 92.50

Kumar et al.
(2018)

Wavelets and
entropy measures

Decision tree 97.60% 95.80% 96.84%

Table 2: Research work on automated HR based AF detection
Author Method Decision support quality in %

Feature
engineering

Classifier Specificity Sensitivity Accuracy

Mohebbi and
Ghassemian
(2011)

Recurrence
quantification
analysis

Support vector
machine

100.0 97.00 -

Kennedy et al.
(2016)

Sample entropy,
Statistical HR
features

Random forest 98.30 92.80 —

Faust et al.
(2018b). Used as
example in this
study.

– Long short-term
memory recurrent
neural network

– – 98.51
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3.1. Future work

In many circumstances, HR signals are robust to noise, because the the electrical activity of
the heart beat, known as R wave peak, typically coincides with the highest amplitude in the ECG.
However, heart disease may act to alter the electrical activity of the heart sufficiently so that the R peak
is no longer the greatest amplitude point in the signal, and beat detection is no longer straightforward
(Mart́ınez et al., 2004). Detecting the heartbeat then becomes a matter of interpretation, which can
influence Heart Rate Variability (HRV). The performance of the deep learning model can also degrade
if a different beat detection method is used during training. More studies are needed to confirm that
the deep learning model is robust in this scenario.

3.2. Limitations

Herein we have discussed at AF patient safety from the perspective of checks and balances in
an automated computerized system. We used two decision processes, with the final decision resting
solely on the cardiologist. Systemic problems caused by design-time errors have not yet been addressed.
Data loss through the software framework would corrupt the data stream. In this case the automated
decision-making process would reach a wrong conclusion. A formal and model driven design is needed
to eliminate the problem. Furthermore, the decision-making process is susceptible to design-time
errors (Song et al., 2012).

4. Conclusion

DL systems model human decision-making. Therefore, it is not surprising that such systems suffer
from similar safety problems as human decision-making. It is necessary to increase the safety of
the system to better mimic human decision-making. We introduced checks and balances to better
ensure that the correct route is followed, designed to make an AF diagnosis safer. The main idea
was to combine human and machine decision-making. The machine classifier analysed HR signals and
published the results as estimated AF probabilities in real-time. A cardiologist could then look at the
results and investigate specific regions of the HR signals.

The combination of machine and human decision-making is symbiotic. Machine decision-making
excels at robota tasks, such as the real-time analysis of HR signals. However, such algorithms can
fail to appropriately address unforeseen circumstances; human decision-making is required to master
them. Furthermore, a human cardiologist has personal contact with the patient. The knowledge of
this human interaction can help to improve the safety of the diagnosis.

The combination of human and machine-decision advances medical diagnosis and treatment mon-
itoring. Humans and machines work together, and the strength of their combined decision-making
ability will improve the safety, functionality and reliability of the diagnosis.
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AF Atrial Fibrillation
AFDB Atrial Fibrillation Database
AI Artificial Intelligence
CAD Computer-Aided Diagnosis
CPU Central Process Unit
DL Deep Learning

8



ECG Electrocardiogram
GUI Graphical User Interface
HR Heart Rate
HRV Heart Rate Variability
HRVAS Heart Rate Variability Analysis Software
IoT Internet of Things
LSTM Long Short-Term Memory

References

Abrial, J.R., Abrial, J.R., 2005. The B-book: assigning programs to meanings. Cambridge University
Press.

Acharya, U.R., Fujita, H., Adam, M., Lih, O.S., Hong, T.J., Sudarshan, V.K., Koh, J.E., 2016.
Automated characterization of arrhythmias using nonlinear features from tachycardia ecg beats,
in: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE. pp.
000533–000538.

Acharya, U.R., Fujita, H., Lih, O.S., Hagiwara, Y., Tan, J.H., Adam, M., 2017. Automated detection of
arrhythmias using different intervals of tachycardia ecg segments with convolutional neural network.
Information sciences 405, 81–90.

Anders, E., Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar. Geochimica et
Cosmochimica acta 53, 197–214.

Bahr, N.J., 2018. System safety engineering and risk assessment: a practical approach. CRC press.

Brookes, S.D., Hoare, C.A., Roscoe, A.W., 1984. A theory of communicating sequential processes.
Journal of the ACM (JACM) 31, 560–599.

Desai, U., Martis, R.J., Acharya, U.R., Nayak, C.G., Seshikala, G., SHETTY K, R., 2016. Diagnosis
of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers.
Journal of Mechanics in Medicine and Biology 16, 1640005.

Faust, O., Acharya, R., Sputh, B.H., Min, L.C., 2011. Systems engineering principles for the design
of biomedical signal processing systems. Computer methods and programs in biomedicine 102,
267–276.

Faust, O., Acharya, U.R., Tamura, T., 2012. Formal design methods for reliable computer-aided
diagnosis: a review. IEEE reviews in biomedical engineering 5, 15–28.

Faust, O., Bairy, M.G., 2012. Nonlinear analysis of physiological signals: a review. Journal of
Mechanics in Medicine and Biology 12, 1240015.

Faust, O., Hagiwara, Y., Hong, T.J., Lih, O.S., Acharya, U.R., 2018a. Deep learning for health-
care applications based on physiological signals: A review. Computer methods and programs in
biomedicine .

Faust, O., Shenfield, A., Kareem, M., San, T.R., Fujita, H., Acharya, U.R., 2018b. Automated detec-
tion of atrial fibrillation using long short-term memory network with rr interval signals. Computers
in biology and medicine 102, 327–335.

Faust, O., Sputh, B.H., Allen, A.R., 2006. A study of percolation phenomena in process networks.,
in: CPA, pp. 109–121.

9



Gage, B.F., Waterman, A.D., Shannon, W., Boechler, M., Rich, M.W., Radford, M.J., 2001. Validation
of clinical classification schemes for predicting stroke: results from the national registry of atrial
fibrillation. Jama 285, 2864–2870.

Hagiwara, Y., Fujita, H., Oh, S.L., Tan, J.H., San Tan, R., Ciaccio, E.J., Acharya, U.R., 2018.
Computer-aided diagnosis of atrial fibrillation based on ecg signals: a review. Information Sciences
467, 99–114.

Hoare, C.A.R., 1978. Communicating sequential processes. Communications of the ACM 21, 666–677.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural computation 9, 1735–1780.

Kennedy, A., Finlay, D.D., Guldenring, D., Bond, R.R., Moran, K., McLaughlin, J., 2016. Automated
detection of atrial fibrillation using rr intervals and multivariate-based classification. Journal of
electrocardiology 49, 871–876.

Kumar, M., Pachori, R.B., Acharya, U.R., 2018. Automated diagnosis of atrial fibrillation ecg sig-
nals using entropy features extracted from flexible analytic wavelet transform. Biocybernetics and
Biomedical Engineering 38, 564–573.

Lafuente-Lafuente, C., Valembois, L., Bergmann, J.F., Belmin, J., 2015. Antiarrhythmics for main-
taining sinus rhythm after cardioversion of atrial fibrillation. Cochrane Database of Systematic
Reviews .

Lamport, L., 1999. Specifying concurrent systems with tlaˆ+. NATO ASI SERIES F COMPUTER
AND SYSTEMS SCIENCES 173, 183–250.

Lindsay, F., 1992. Successful health and safety management. the contribution of management audit.
Safety science 15, 387–402.

Mart́ınez, J.P., Almeida, R., Olmos, S., Rocha, A.P., Laguna, P., 2004. A wavelet-based ecg delineator:
evaluation on standard databases. IEEE Transactions on biomedical engineering 51, 570–581.

Martis, R.J., Acharya, U.R., Adeli, H., Prasad, H., Tan, J.H., Chua, K.C., Too, C.L., Yeo, S.W.J.,
Tong, L., 2014a. Computer aided diagnosis of atrial arrhythmia using dimensionality reduction
methods on transform domain representation. Biomedical signal processing and control 13, 295–
305.

Martis, R.J., Acharya, U.R., Adeli, H., Prasad, H., Tan, J.H., Chua, K.C., Too, C.L., Yeo, S.W.J.,
Tong, L., 2014b. Computer aided diagnosis of atrial arrhythmia using dimensionality reduction
methods on transform domain representation. Biomedical signal processing and control 13, 295–
305.

Martis, R.J., Acharya, U.R., Prasad, H., Chua, C.K., Lim, C.M., 2013. Automated detection of atrial
fibrillation using bayesian paradigm. Knowledge-Based Systems 54, 269–275.

Mohebbi, M., Ghassemian, H., 2011. Prediction of paroxysmal atrial fibrillation using recurrence
plot-based features of the rr-interval signal. Physiological measurement 32, 1147.

Prasad, H., Martis, R.J., Acharya, U.R., Min, L.C., Suri, J.S., 2013. Application of higher order spectra
for accurate delineation of atrial arrhythmia, in: 2013 35th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), IEEE. pp. 57–60.

Ramshur, J.T., 2010. DESIGN, EVALUATION, AND APPLICAION OF HEART RATE VARIABIL-
ITY ANALYSIS SOFTWARE (HRVAS). Master’s thesis. The University of Memphis.

10



Song, Z., Ji, Z., Ma, J.G., Sputh, B., Acharya, U.R., Faust, O., 2012. A systematic approach to
embedded biomedical decision making. Computer methods and programs in biomedicine 108, 656–
664.

Sufi, F., Khalil, I., 2011. Diagnosis of cardiovascular abnormalities from compressed ecg: a data
mining-based approach. IEEE transactions on information technology in biomedicine 15, 33–39.

Wolf, P.A., Abbott, R.D., Kannel, W.B., 1991. Atrial fibrillation as an independent risk factor for
stroke: the framingham study. Stroke 22, 983–988.

Yang, J.J., Li, J.Q., Niu, Y., 2015. A hybrid solution for privacy preserving medical data sharing in
the cloud environment. Future Generation Computer Systems 43, 74–86.

11


	Introduction
	Methods
	Deep learning
	Cardiologist support

	Discussion
	Future work
	Limitations

	Conclusion

