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Abstract 

KinectFusion is a typical 3D reconstruction technique which enables generation of 

individual 3D human models from consumer depth cameras for understanding body 

shapes. The aim of this study was to: compare 3D reconstruction results obtained using 

KinectFusion from data collected with two different types of depth camera (time-of-flight 

and stereoscopic cameras) and compare these results with those of a commercial 3D 

scanning system to determine which type of depth camera gives improved reconstruction. 

Torso mannequins and machined aluminium cylinders were used as the test objects for 

this study. Two depth cameras, Microsoft Kinect V2 and Intel Realsense D435, were 

selected as the representatives of time-of-flight and stereoscopic cameras, respectively, to 

capture scan data for the reconstruction of 3D point clouds by KinectFusion techniques. 

The results showed that both time-of-flight and stereoscopic cameras, using the 

developed rotating camera rig, provided repeatable body scanning data with minimal 

operator-induced error. However, the time-of-flight camera generated more accurate 3D 

point clouds than the stereoscopic sensor. Thus, this suggests that applications requiring 

the generation of accurate 3D human models by KinectFusion techniques should consider 

using a time-of-flight camera, such as the Microsoft Kinect V2, as the image capturing 

sensor. 

 

Keywords: 3D Scanning; Imaging; Sensor; Reconstruction; KinectFusion; Depth 
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1 Introduction 

Consumer depth cameras, such as the Microsoft Kinect and Intel Realsense cameras, 

were introduced to the market during the past decade. They are cost-effective, portable 

and can capture both colour and depth in real-time 
1, 2

. Consequently, consumer depth 

cameras have been widely used in 3D reconstruction 
1
.  

 

Understanding body shapes (through 3D scanning) is an important application of 3D 

reconstruction as it enables rapid measurement of the human body with minimal physical 

contact 
3
. Furthermore, 3D scanning enables more complex body measures (e.g. body 

surface area and segmental volume) to be collected directly 
4
. This technique generates 

individual 3D human models that can be used in a range of applications, including 

anthropometric surveys 
5, 6

, virtual fitting of clothing 
7
, sports performance prediction 

8
, 

biomechanical analyses 
9-12

 and medical diagnosis 
13-15

.  

 

KinectFusion 
16

 is a typical 3D reconstruction technique which enables the generation of 

individual 3D human models from consumer depth cameras for different purposes. This 

technique requires capturing images of a participant from different perspectives, with a 

distance of 1 - 1.5 metres between the camera and the individual. A series of algorithms 

merge the images collected by the depth cameras to generate an individual 3D human 

model 
17, 18

. Ng, Hinton 
19

 compared body measurements (girths, surface areas and body 

volumes) obtained from KinectFusion using a Microsoft Kinect V2 sensor and found the 

results were highly correlated to those acquired using reference methods (R
2
 > 0.9). 

Recently, researchers have applied this technique using different types of depth cameras 

to generate 3D human models for various applications, including 3D printing 
20

, clothes 

fitting 
18

, computer animation 
21

 and body measurements 
22

. 

 

Structured light, time-of-flight, and stereoscopic cameras are the three representative 

types of depth cameras. Structured light cameras capture a projected light pattern and 

determine the distance between the camera and the object by observing the deformation 

of the pattern 
23

. Time-of-flight based cameras calculate this distance by measuring the 

travel time-of-flight of the signal emitted from the projector and received by the sensors 
23

. A stereoscopic device uses multiple cameras to capture images of an object and find 

corresponding points between image pairs to estimate the distance between the camera 

and object of interest 
24

. The different principles used to generate depth images means 

that the accuracy and repeatability of depth detection from different depth sensors varies 

between devices 
23, 25-27

. 

 

In the past, researchers have typically used Microsoft Kinect version 1 (Microsoft Kinect 

V1) and version 2 (Microsoft Kinect V2) as the representative structured light and time-

of-flight cameras, respectively, to conduct comparison studies 
23, 25-27

. Gonzalez-Jorge, 

Rodríguez-Gonzálvez 
25, 26

 showed that the time-of-flight based Microsoft Kinect version 

2 captured more accurate and repeatable depth images at close range (1-2 m) than the 

structured light based Microsoft Kinect version 1. However, the 3D reconstruction results 

obtained from the time-of-flight and stereoscopic cameras have not been compared. The 

stereoscopic cameras, such as Intel Realsense sensors, have improved image resolution 



and capture frame rate compared to the Microsoft Kinect V2 sensors 
24, 28

, which might 

be a benefit for generating accurate and repeatable 3D models by KinectFusion 

techniques. 

 

Given the multiple potential applications of 3D body scanning, the accuracy and 

repeatability of low-cost solutions is of interest to a range of research communities. 

Therefore, the aim of this study was to compare the 3D reconstruction results obtained 

using KinectFusion for scan data collected via two different types of depth cameras 

(time-of-flight and stereoscopic cameras). In addition, the results were compared with 

scan data acquired from a reference commercial 3D scanning system to determine which 

type of depth camera gives improved reconstruction results. 

 

 

2 Materials and Methods 

Four cylinders and three torso mannequins were used as the test objects in this study as 

shown in Figure 1. The dimensions of these objects were measured using a large caliper 

list in Table 1. A commercial 3D surface imaging system (3dMD; 3dMD LLC, Atlanta, 

USA) was calibrated and used to obtain 3D scan data of the test objects. Because the 

sizes of mannequins were slightly larger than the 3dMD scanning regions, multiple scans 

were applied to the torso mannequins and aligned by the functions of Meshlab (version 

2016.12) 
29

 to generate reference torso meshes. According to the manufacturer and 

previous literature 
30

, the error of this system is less than 0.5 mm.  

 

[insert Figure 1.] 

 

Table 1 Dimensions of the test objects in this study 

Scanning Objects Width/ Diameter (cm) Length/ Diameter (cm) Height (cm) 

Torso 1 46.0 20.0 59.3 

Torso 3 36.6 24.0 59.6 

Torso 2 29.6 17.2 55.9 

Cylinder 1 8.7 8.7 32.1 

Cylinder 2 11.2 11.2 42.1 

Cylinder 3 16.0 16.0 42.2 

Cylinder 4 22.5 22.5 40.0 

 



 

A bespoke rotating camera rig with a stationary central platform was developed which 

enabled a depth camera to be mounted at an adjustable capture distance from the test 

object, shown in Figure 2. During the scanning process, an operator manually pushes the 

wheel-mounted rotating arm of the frame 360
o
 around the test object, allowing the depth 

camera to capture depth images of the test object from various directions. A Microsoft 

Kinect V2 was selected as the representative time-of-flight camera in this study as it can 

project powerful illumination and generate higher quality depth maps that other newer 

options (e.g. Lips DL or Asus Xtion Pro 2) as found during pilot testing.  Intel Realsense 

D435 was used as the representative stereoscopic camera as it was the latest model at the 

time of conducting the tests of this study. In addition, Intel Realsense D435 provides a 

wider field of view than Intel Realsense D415. The wider field of view can minimize the 

capturing distance which might improve the accuracy and reliability. The technical 

specifications and depth camera settings used in this study are listed in Table 2. During 

each scanning trial, only one camera captured images to avoid any camera interference, 

as shown in Figure 2. The scanning time for each trial was approximately 10 seconds. 

The Microsoft Kinect V2 or the Intel Realsense sensors captured approximately 200 and 

600 frames for each trial, respectively. Because of the stability of power supply, hardware 

compatibility, and file saving speed, the captured frame numbers were less than the 

theoretical values (300 for Microsoft Kinect V2 and 900 for Intel Realsense D435). 

 

Table 2 The technical details and depth camera settings used in this study. 

Sensor Microsoft Kinect V2 Intel Realsense D435 

Principles of depth measurement Time-of-flight Stereoscopic camera 

Theoretical field of view 70.6°×60.0°31 91.2°×65.5°32 

Image resolution 512×424 848×480 

Set capture frame rate 30 frames per second 90 frames per second 

Approximated real capture frame 
rate 

20 frames per second 60 frames per second 

 

 

[insert Figure 2.] 

 

The depth cameras were mounted at a height of approximately 40 cm, so that the sensor 

axis was aimed at the centre of the scanning object. Four capture distances were used for 

each type of RGB-D sensor, with the sensors mounted at 75cm, 100 cm, 125cm and 

150cm from the test object.  

 

Two trained operators conducted four repeated scanning trials for each type of depth 

camera and capture distance to determine the inter-operator repeatability of the manually 



driven rotation scanning system. The test protocol consisted of both operators collecting 

scan data with one sensor and then collecting data using the another sensor. In other 

words, both operators conducted the scanning process at each distance without changing 

the depth camera being used. In total, 448 scanning trials (seven objects × two depth 

cameras × four capture distances × two operators × four repeated trials) were performed. 

 

Images captured from the two depth cameras were then used as input for the 

KinectFusion techniques 
16

 to generate 3D point clouds. The resolution of KinectFusion 

was set as 256 voxels per metre for all scanning trials, which is similar to previous work 
18

. To determine the effect of resolution, 128, 384 and 512 voxels per metre for all 

scanning trials were also applied for the scanning trials with 100cm capture distances. To 

understand the effect of a shorter scanning time on reconstruction quality, the image sets 

collected during the scanning trials at 100 cm capture distance were resampled using a 

‘two-frame interval’ as input to the KinectFusion technique. The two-frame interval can 

be used to simulate halving the sensor frame rate or capturing time. The 3D scan data 

from the 3dMD system and the 3D point clouds generated with KinectFusion techniques 

were edited with bespoke software that applied random sample consensus algorithms 
33

 

and the density filters to select a region of interest (i.e. deleting scanning stage, floor, and 

the rotation platform, etc.) as shown in Figure 3. 

 

[insert Figure 3.] 

 

Three-dimensional (3D) reconstruction results for data collected with the 3dMD system, 

Microsoft Kinect V2 and Intel Realsense D435 systems were compared using point-to-

point distance. The iterative closest point algorithm was applied to align the KinectFusion 

point clouds to the reference 3D point cloud (obtained using 3dMD)before the point-to-

point distances were calculated. The accuracy of KinectFusion for each device (𝑠 ∈
{Kinect, D435}), each distance (𝑑 ∈ {(75 cm, 100cm ,125 cm, 150cm)}), each resolution 

(𝑣 ∈ {128 voxels/m, 256 voxels/m, 384 voxels/m, 256 voxels/m}), each frame 

interval (𝑓 ∈ {1 frame, 2 frames}) was represented by the mean and standard deviation 

of point-to-point difference between the KinectFusion reconstruction, and the reference 

model (𝑀𝑠,𝑑,𝑣,𝑓, 𝜎𝑠,𝑑,𝑣,𝑓) defined by equation (1) and (2). 

 

 𝑀𝑠,𝑑,𝑣,𝑓 =
∑ ∑ ∑ 𝑚𝑐,𝑜,𝑡

𝑠,𝑑,𝑣,𝑓4
𝑡=1

2
𝑜=1

7
𝑐=1

56
 (1) 

 

𝜎𝑠,𝑑,𝑣,𝑓 = √
∑ ∑ ∑ (𝑚𝑐,𝑜,𝑡

𝑠,𝑑,𝑣,𝑓
− 𝑀𝑠,𝑑,𝑣,𝑓)24

𝑡=1
2
𝑜=1

7
𝑐=1

56
 (2) 

 

where 𝑐 states the number of the scanning object,  𝑜 is the number of the operator, 

𝑡 represents the trial number and 𝑚𝑐,𝑜,𝑡
𝑠,𝑑,𝑣,𝑓

 is the mean point cloud distance between the 

reference and KinectFusion output in single trials defined by equation (3) 
34

. 

 



𝑚𝑐,𝑜,𝑡
𝑠,𝑑,𝑣,𝑓

= max (
∑ ‖𝑦𝑛𝑒𝑎𝑟𝑒𝑠𝑡

𝑜𝑏𝑗
(𝑥𝑖

𝑟𝑒𝑓
)  −  𝑥𝑖

𝑟𝑒𝑓
‖𝑛𝑟𝑒𝑓

𝑖=1

𝑛𝑟𝑒𝑓
 ,
∑ ‖𝑦𝑛𝑒𝑎𝑟𝑒𝑠𝑡

𝑟𝑒𝑓
(𝑥𝑖

𝑜𝑏𝑗
)  −  𝑥𝑖

𝑜𝑏𝑗
‖𝑛𝑜𝑏𝑗

𝑖=1

𝑛𝑜𝑏𝑜𝑗
 )    

(3) 

 

where 𝑛𝑟𝑒𝑓 is the point number of the 3dMD point cloud, 𝑥1
𝑟𝑒𝑓

, . . . , 𝑥𝑛
𝑟𝑒𝑓

 are the point on 

the 3dMD point cloud, 𝑦𝑛𝑒𝑎𝑟𝑒𝑠𝑡
𝑜𝑏𝑗

(𝑥𝑖
𝑟𝑒𝑓

) is the nearest point to 𝑥𝑖
𝑟𝑒𝑓

 on the KinectFusion 

point cloud, 𝑛𝑜𝑏𝑗 is the point number of the KinectFusion point cloud, 𝑥1
𝑜𝑏𝑗

, . . . , 𝑥𝑛
𝑜𝑏𝑗

 are 

the point on the KinectFusion point cloud, 𝑦𝑛𝑒𝑎𝑟𝑒𝑠𝑡
𝑟𝑒𝑓

(𝑥𝑖
𝑜𝑏𝑗

) is the nearest point to 𝑥𝑖
𝑜𝑏𝑗

 on 

the 3dMD point cloud. 

 

To determine intra-operator and inter-operator repeatability, similar methods were used 

to align and calculate the distance between pairs of  KinectFusion 3D point clouds 

captured in repeated trials with the same capture distances and depth camera devices. The 

intra-operator repeatability for each device (𝑠), each capture distance (𝑑), each resolution 

(𝑣), and each frame interval (𝑓) was represented by the mean and standard deviation of 

the point-to-point distance between the KinectFusion outputs obtained in the repeated 

trials (((𝑜1, 𝑡1), (𝑜2, 𝑡2)) ∈ {[(1,1), (1,2)], [(1,3), (1,4)], [(2,1), (2,2)], [(2,3), (2,4)]}). 

The inter-operator repeatability for each device (𝑠), each distance (𝑑), each resolution 

(𝑣), and each frame interval (𝑓) was represented by the mean standard deviation of the 

point-to-point distance between the KinectFusion Output from the inter operator repeated 

trials (𝑜1, 𝑡1), (𝑜2, 𝑡2)) ∈ {[(1,1), (2,1)], [(1,2), (2,2)], [(1,3), (2,3)], [(1,4), (2,4)]}). 

 

3 Results 

The mean point-to-point differences of KinectFusion for Microsoft Kinect V2 at 100 cm, 

125 cm and 150cm were less than 6.5 mm, while the mean point-to-point differences of 

the Realsense D435 were larger than 6.5 mm at all capture distances (Table 3). Excluding 

the data captured at 75 cm using Microsoft Kinect, the accuracy of both Microsoft Kinect 

V2 and Realsense D435 improved with an decrease in capture distance.  

 

The intra-operator repeatability for both the Microsoft Kinect V2 and Realsense D435 at 

all capture distances was less than 5mm. Similarly, the inter-operator repeatability for 

both depth cameras was less than 5mm in most cases. When the capturing distance 

increased, the intra-operator and inter-operator error for both depth cameras increased 

even though the capture durations for all scanning trials were approximately 10 seconds. 

 

Table 3 Accuracy and repeatability for different capturing distance with a fixed resolution 

(256 voxels/m) in mean ± standard deviation. 

Sensor Distance 

(cm) 

Accuracy 

(mm) 

Intra-
repeatability 

Inter-
repeatability 



(mm) (mm) 

Kinect 75 7.51±2.95 2.85±1.45 2.73±1.33 

Kinect 100 4.60±1.25 1.46±0.41 1.60±0.42 

Kinect 125 4.90±1.74 1.78±1.18 1.90±1.14 

Kinect 150 6.21±3.12 2.00±0.94 2.02±0.74 

D435 75 6.96±0.40 1.77±0.30 1.93±0.33 

D435 100 7.59±1.66 2.09±0.54 2.18±0.54 

D435 125  8.50±3.05 3.74±1.76 3.76±1.48 

D435 150 11.75±3.27 4.93±3.18 5.32±3.20 

 

 

The accuracy for Microsoft Kinect V2 decreased (point-to-point error increased) while 

the resolution increased. The accuracy for Realsense D435 remained at similar level (128 

voxel/m) with higher resolution applied (Table 4). For both depth cameras, the intra-

repeatability and inter-repeatability improved with increased resolution. 

 

Table 4 Accuracy and repeatability for different resolutions with a fixed capturing 

distance (100 cm) in mean ± standard deviation. 

Sensor Resolution 

(voxels/m) 

Accuracy 

(mm) 

Intra-
repeatability 

(mm) 

Inter-
repeatability 

(mm) 

Kinect 128 4.22±0.59 1.77±0.54 2.11±0.59 

Kinect 256 4.60±1.25 1.46±0.41 1.60±0.42 

Kinect 384 6.39±1.79 1.55±0.67 1.70±0.65 

Kinect 512 6.95±1.99 1.34±0.51 1.40±0.41 

D435 128 7.12±1.07 2.43±0.73 2.74±0.54 

D435 256 7.59±1.66 2.09±0.54 2.18±0.54 

D435 384 6.95±1.86 1.96±0.68 2.05±0.64 



D435 512 6.99±1.89 1.80±0.60 1.85±0.55 

 

While increasing the capturing speed (frame interval = 2), the accuracy of the Microsoft 

Kinect decreased, while the accuracy of D435 increased (Table 5). The repeatability of 

the Microsoft Kinect V2 decreased with increasing capturing speed, while the 

repeatability of the Realsense D435 remained consistent with increasing capturing speed. 

 

 

Table 5 Accuracy and repeatability for different frame interval with a fixed capturing 

distance (100 cm) and a resolution (256 voxels per meter) in mean ± standard deviation. 

Sensor Frame 
interval 
(frame) 

Equivalent 
Capturing Speed 
(second/round) 

Accuracy 

(mm) 

Intra-
repeatability 

(mm) 

Inter-
repeatability 

(mm) 

Kinect 1 10  4.60±1.25 1.46±0.41 1.60±0.42 

Kinect 2 5  5.02±2.64 2.49±3.22 2.50±2.60 

D435 1 10 7.59±1.66 2.09±0.54 2.18±0.54 

D435 2 5 6.80±0.94 2.00±0.40 2.01±0.39 

 

 

4 Discussion 

The aim of this study was to compare the 3D reconstruction results obtained from 

KinectFusion when using two different types of consumer depth cameras (time-of-flight 

and stereoscopic cameras). In addition, the results were compared with scan data acquired 

from a commercial 3D scanning system to determine which type of depth camera gives 

improved KinectFusion reconstruction results. 

 

Using Microsoft Kinect V2 sensor gave improved accuracy and repeatability compared to 

the Realsense D435 sensor at most capture distances. One possible reason for this might 

be that the time-of-flight camera (Microsoft Kinect V2) generates higher quality depth 

maps than the stereoscopic camera (Realsense D435) as shown in Figure 4. The noise 

present in the depth images might introduce error while applying KinectFusion 

techniques to reconstruct the 3D data. As shown in Figure 3, 4, and 5 the noise present 

around the neck/shoulders in the depth images caused errors in the 3D reconstruction of 

the neck/shoulder region.  

 

[insert Figure 4.] 

 



[insert Figure 5.] 

 

According to previous studies 
30, 35

, the error in point cloud distances might cause in 

excess of 10 times this error in anthropometric measurements. For example, the nominal 

accuracy (point-to-point difference) of 3dMD is around 0.2 mm 
30

, but the error in 

anthropometric measurement could be as high as 2.0 mm 
35

. Thus, the observed 

difference in accuracy between the Microsoft Kinect V2 and Realsense D435 (around 2.0 

mm for the cases with the best accuracy) could cause 2.0 cm of variation in girth 

measurements. Information fusion techniques 
36-38

, are powerful solutions for  decreasing 

the effect of noise, uncertainty, and external disturbance and could be applied to improve 

the camera pose estimation and 3D reconstruction results if improved accuracy was 

required in the future applications. 

 

It seems that the higher-quality depth maps captured by Microsoft Kinect V2 generated 

improved 3D reconstruction results. Though the Realsense D435 captured high-resolution 

depth maps at a higher frame rate, its 3D reconstruction results were not as good as those 

generated by the Microsoft Kinect V2. However, the software development kit of 

Realsense D435 provides a wider range of options to alter the camera settings (e.g. the 

intensity of projected light) to adapt to various environments (e.g. indoor or outdoor 

environment). In this study, only the default pre-sets were used. Hence, future studies 

could improve the depth map quality generated using the Realsense D435 sensor by 

optimising these camera settings for a specific set of conditions to enhance the accuracy 

of 3D reconstruction results generated by KinectFusion. 

 

Pagliari and Pinto 
26

 suggested that the errors in depth detection with the Microsoft 

Kinect V2 increased linearly with an increase in capture distance, which might explain 

the 𝑀𝑠,𝑑,256,1 of 3D reconstruction increasing between 100 cm and 150 cm. The 

Microsoft Kinect V2 cannot capture objects at distances less than 50 cm, which cause the 

poor accuracy and repeatability of Kinect V2 at 75 cm, since the sensor cannot detect the 

sphere balls accurately and causes issues for camera pose estimation while applying 

KinectFusion. The accuracy and reliability of depth detection by the RealSense D435 

sensor  decreased from 75 cm to 150 cm, so the errors in depth detection with Realsense 

D435 might also grow with an further increase in capture distance. Therefore, it is 

suggested that a time-of-flight camera with an appropriate capture distance should be 

used for applications that require accurate and reliable reconstruction of 3D human scan 

data using KinectFusion techniques. 

 

Using high resolution (384, 512 voxels/m) when applying KinectFusion with the 

Microsoft Kinect V2 caused the accuracy to decrease. By contrast, the accuracy of the 

Realsense D435 remained at similar levels in various voxel resolutions. The possible 

reason might be that the high-resolution reconstruction is sensitive to the flying pixels 

which are generated by the Microsoft Kinect V2. Using high resolution for KinectFusion 

Reconstruction can generate dense 3D point clouds which might decrease the point-to-

point distance in repeated trials; this might explain the enhanced repeatability shown in 

trials that applied a higher resolution setting. Therefore, it is highly recommended that 



using a good flying pixels filter as the pre-process of the high-resolution KinectFusion 

reconstruction in order to obtain accurate and repeatable results. 

 

Previous studies have typically used a turning table to rotate participants 360
o
 and capture 

images from all directions using a fixed camera 
22, 39

. However, scanning procedures with 

this approach often take more than 30 seconds to complete. Typically, people cannot hold 

their breath consistently for this period without moving. Also, older and younger users 

tend to move while standing on a turning table during the scanning procedure. The 

bespoke rotating camera rig with a stationary central platform developed for this study 

enables a more rapid scanning procedure (around 10 seconds), which is similar to the 

scanning time for some commercial scanning systems used for whole-body 

measurements (e.g. Hamamatsu BLS 9036 
4
, Vitus

smart
 XXL 3D body scanner 

40
). 

Furthermore, the results in this study show that both intra-operator and inter-operator 

repeatability were similar for both depth cameras (< 3 mm in most cases), meaning the 

developed rotation platform enabled consistent image capturing of participants from all 

directions. It is probable that the use of the rotating camera rig reduced the influence of 

operator error during scanning. 

 

 

While halve the number of frames for reconstruction (frame interval = 2), the accuracy 

and repeatability of Microsoft Kinect V2 decreased but the accuracy of Realsense D435 

improved. A possible reason might be that KinectFusion restricts the permissible camera 

rig rotation velocity. Increasing the rotation velocity with Microsoft Kinect V2 caused the 

KinectFustion reconstruction from sparse frames which led to worse accuracy and 

repeatability.  However, increasing the rotation velocity with Realsense D435 could 

avoid some error accumulation of camera pose estimation and obtain accurate 3D 

reconstruction results. Hence, the operator should restrict the permissible rotation 

velocity to maintain the accuracy and repeatability of 3D reconstruction while using 

Microsoft Kinect V2 and Realsense D435.  Although using the lower rotation velocity 

with Microsoft Kinect V2 might improve the reconstruction for a rigid body, people tend 

to move when the capturing time increases. Therefore, it is worth checking whether the 

time-of-flight sensors which can capture high-quality images in high frequency to 

improve the reconstruction results. The capture rate of Microsoft Kinect V2 (around 20 

fps) is less than the theoretical values (30 fps). Further studies that use Microsoft Kinect 

V2 should control the stability of power supply, hardware compatibility, and file saving 

speed to optimize the capturing rates for improved 3D reconstruction results. As the small 

differences within this acceptable range of rotation velocity still existed and caused some 

errors between the trials. Further development of the capture system, such as automation 

of the rotating camera rig, might be required to optimize the intra-repeatability and inter-

repeatability of this scanning platform for future research in health applications. 

 

In this study, four cylinder objects and three torso mannequins were used to represent 

different body segments and shapes. Comparing to non-rigid objects (e.g. human 

participants), using these rigid objects can determine the point-to-point distance and show 

that the Microsoft Kinect V2 based system can provide accurate and repeatable 3D 

reconstruction results. However, the accuracy and reliability of anthropometric 



measurement (e.g. waist girths) of this kind of system from human participants is still 

unknown. Further studies should be conducted to examine whether this system can be 

used for obtaining anthropometric data from human participants.  
 

5 Conclusions 

This study compared the 3D reconstruction results obtained from KinectFusion, using 

two different types of depth cameras (time-of-flight and stereoscopic cameras) with the 

results acquired from a reference method, a commercial 3D scanning system. When used 

as part of the rotating rig with a stationary central platform developed for this study, both 

time-of-flight and stereo cameras enable repeatable 3D body scan data to be collected 

with minimal influence of operators on the results. However, the time-of-flight depth 

camera generated more accurate 3D point clouds than the sensor using stereoscopic 

techniques. Thus, this suggests that applications requiring high-quality depth maps and 

the generation of accurate 3D human models by KinectFusion techniques should consider 

using a time-of-flight camera, such as the Microsoft Kinect V2, as the sensor for 

capturing depth image. 
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Figure Captions 

Figure 1 The test objects used in this study. From left to right: Torso 1, Torso 3, Torso 2, 

Cylinder 1, Cylinder 2, Cylinder 3, Cylinder 4.  

 

Figure 2 A bespoke central-stationary platform with a rotating camera rig was developed 

and used in this study. A sensor (Microsoft Kinect V2) was mounted on the rotating 

camera rig (highlighted) and connected to a laptop. The diagram (bottom) shows the 

bespoke the rotating camera rig (without central-stationary platform). 

 

Figure 3 (a) The aligned 3D point cloud obtained from 3dMD (Torso 1).  (b) The 3D 

point cloud which applied random sample consensus algorithms for plane segmentation 

still contained a few isolated points. (c) The 3D point cloud applied the density filters to 

delete isolated points. (d) The reference 3D point clouds of the test object obtained from 

the 3dMD scanning system (Torso 3). (e) The processed 3D point clouds captured by 

Microsoft Kinect V2 (Torso 3).  (f) The processed 3D point clouds captured by Intel 

Realsense D435 (Torso 3). 

 

Figure 4 Left: A sample image with minimal noise around the test object captured by 

Microsoft Kinect V2. Right: A sample image with much noise around the test object 

captured by Realsense D435. 

 

Figure 5 The point-to-point difference shown on the reference 3D point cloud (top row: 

Data obtained with Microsoft Kinect V2; bottom row: Data obtained with Realsense 

D435; red: vertex distance near 0; blue: vertex distance near 30 mm; unit: mm).  

 

 


