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Biocorrosion is an important type of corrosion which leads to economic losses across oli and 

gas industries, due to increased monitoring, maintenance, and a reduction in platform 

availability. Anaerobic sulfate reducing bacteria (SRB) are known to accelerate the rate of 

corrosion tenfold, by secreting specific enzymes. Mitigation strategies include: (i) cleaning 

procedures; (ii) addition of microbiocides; (iii) antifouling coatings and (iv) cathodic 

protection. Ideally, a chemical compound engineered to mitigate against biocorrosion would 

possess both antimicrobial properties, as well as efficient corrosion inhibition. Gemini 

surfactants have shown efficacy in both of these properties, however there still remains a lack 

of electrochemical information regarding biocorrosion inhibition. 

 

The inhibition of corrosion and biocorrosion, by cationic gemini surfactants, of carbon steel 

was investigated. The results showed that the inhibition efficiency of the gemini surfactants was 

high (consistently > 95 %), even at low concentrations, with the most efficient concentration 

being above the critical micelle concentration (CMC). Gemini surfactants also showed strong 

antimicrobial activity, with a minimum inhibitory concentration (0.018 mM). Corrosion 

inhibition was investigated by electrochemical impedance spectroscopy (EIS) and linear 

polarisation resistance (LPR), with biocorrosion experiments carried out in an anaerobic 

environment. Surface morphology was analysed using scanning electron microscopy (SEM). 
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1. Introduction  

Degradation of metals in aqueous environments is often the result of corrosion, which can be 

exacerbated by biological factors. Any environment containing water with dissolved gases and 

mineral salts has the potential to generate corrosive activity [1][2]. Metal deterioration, 

stimulated either directly or indirectly by biological processes is defined as biodeterioration, 

biocorrosion or microbiologically influenced corrosion (MIC). Microbiologically influenced 

corrosion is responsible for approximately 10% of all metal corrosion [3], with hundreds of 

millions of dollars spent mitigating MIC globally each year [4]. The type of microorganisms 

responsible for MIC varies greatly depending on the oxygen concentration (aerobic or anaerobic 

conditions). However, microorganisms can co-exist in surface biofilms, meaning that various 

groups of microorganisms are present, contributing to corrosion with different mechanisms. 

Groups of microorganisms known to contribute to biological corrosion include: sulfate-

reducing bacteria (SRB), sulfur-oxidizing bacteria, and acid producing bacteria (APB), bacteria 

that produce chemically aggressive organic and inorganic acids [5]. Sulfate-reducing bacteria 

are obligate anaerobes that, instead of oxygen, can use other terminal electron acceptors, for 

example sulfate. SRBs excrete hydrogen sulfide ions (HS-), which are then reduced by free 

protons to generate corrosive dissolved hydrogen sulfide gas (H2S), identified by its 

characteristic, rotten egg smell. In closed systems, such a storage tanks, H2S can be produced 

in considerable quantities, posing a serious hazard, especially for the oil industry, both in terms 

of corrosion and human health during maintenance [6]. 

The presence of SRB in an anaerobic, aqueous environment, can increase the rate of corrosion 

fourfold when compared to oxygenated conditions [7]. In aerobic conditions however, an initial 

population of aerobic bacteria can consume oxygen creating an anaerobic environment in the 

centre of the biofilm [8,9]. Once locally anaerobic conditions form, SRB can grow and 

reproduce, using nutrients excreted by the aerobic bacteria. Consequently, SRB initiate MIC, 

creating incrustations and later pits [1,10]. 

SRB are considered the most predominant group of microorganisms responsible for MIC. 

Control of their growth (for example using biocides) once a biofilm is formed, is extremely 

difficult due to the various natural defences of a biofilm.  Extracellular polymeric substances 

(EPS) create a diffusion barrier[2], and often contain quorum sensing molecules which indicate 

to other bacteria that they are under attack, and to form protective spores. 

Biocorrosion inhibitors are one way to tackle MIC [11,12], however, such compounds, as well 

as being effective corrosion inhibitors must also possess antimicrobial properties. Gemini 



surfactants are amphiphilic compounds, consisting of a hydrophilic head and a hydrophobic tail 

(Figure 1a.), and show both antimicrobial [15,16]  and corrosion inhibition properties [13,14].  

Synthesized compounds include different lengths of alkyl chain and spacer. Hexamethylene-

1,6-bis(N,N dimethyl-N-dodecyloammonium bromide) (12-6-12) shows the best antifungal 

activity. 12-6-12 has two quaternary ammonium atoms and  long alkyl chain (C12), and given 

its antifungal activity, was investigated for corrosion inhibition [16]. Surfactants are present in 

diluted concentrations in single-form molecules, i.e. monomers. When the concentration of 

these substances in the solution increases, then, at a defined concentration, molecular 

associations, called micelles, are formed, whereby the solution passes from the solution to the 

colloidal form. At this concentration, termed the critical micelle concentration (CMC), the 

physical properties of the solution change rapidly due to the formation of these associations. In 

solutions with surfactant concentrations above the CMC, micelles are thermodynamically stable 

and equilibrium with monomers (Figure 1b.). The highest corrosion inhibiting efficiency is 

obtained at concentrations close to the CMC [17,18]. Initially, the surfactant molecules adsorb 

at the solution / metal interface, reducing the surface tension and forming a protective 

monolayer. It is this stage that is associated with the prevention of corrosion. At concentrations 

close to the CMC, the phase boundary is saturated, and micelles or multilayers begin to form 

in the solution. Further increasing the concentration of inhibitor has limited effects on efficiency 

[19]. 

Gemini surfactants are now recognised as multifunctional compounds, because of their many 

applications: e.g. detergents, solubilisers, biocides, and disperser agents, and now more 

recently, corrosion inhibitors  [14,17–21]. Cationic surfactants are very efficient inhibitors 

because the positive charge causes strong attachment to metal surfaces [12,14,18,25].  

However, investigations into the application of gemini surfactants as biocorrosion inhibitors is 

limited, and there is a lack of electrochemical information about their ability to mitigate 

biological corrosion [11,12]. Biocorrosion on carbon steel has been well studied, [9,26] 

however, this study aims to examine the effects of gemini surfactants on pretreated carbon steel 

with iron phosphates. The phosphating procedure is used as a pretreatment for additional 

applications such as coatings, paintings or lubricants, and therefore ubiquitously present.  

Therefore, the antimicrobial, and inhibitive properties of the gemini surfactants have been 

studied using electrochemical impedance spectroscopy (EIS), linear polarisation resistance 

(LPR), and open circuit potential (OCP). Further characterisation with scanning electron 



microscopy (SEM) provides additional evidence for the ability of gemini surfactants to provide 

protection by corrosion inhibition.  

 

2. Materials and experimental methodology 

2.1. Synthesis of cationic surfactant  

The surfactant inhibitor was synthesised in accordance with previous work [16]. N,N-dimethyl-

N dodecylamine (9.1 g, 0,045 M) was mixed with 1,6-dibromohexane (5 g, 0.02 M) in 

acetonitrile (30 mL). The reaction mixture was heated under reflux for 5 h. The solvent was 

evaporated under reduced pressure and the residue dried over P4O10 and then recrystallized from 

acetonitrile, with a yield of 84%, m.p. 231-232 °C 

The structure of the surfactant (Figure 2.) was determined using 1H and 13C NMR [16]. 

2.2. Mild steel  

Pre-phosphated mild steel coupon were used. The composition (in weight %) of the steel is: 

0.10 % C, 0.60 % Mn, 0.03 % P, 0.035 % S, 0.2 % Cu, 0.2 % Ni and 0.15 % Cr. Panels were 

pretreated with Bonderite M-FE 1000. Phosphating is used to modify the surface of ferrous and 

nonferrous materials. This process is widely used in different types of industry [15,16]. 

2.3. Characterisation of inhibition properties 

Electrochemical analysis was carried out using a conventional three electrode cell with a 

platinum counter electrode, a saturated calomel electrode (SCE) as a reference electrode and 

mild steel as the working electrode. The carbon steel was immersed over a period of 24 h in 

3.5% NaCl medium with or without inhibitor additions. All tests were repeated in triplicate, 

with one representative example of every experiment being presented. 

2.3.1. Electrochemical measurements  

All electrochemical measurements were conducted using a potentiostat (Versastat™ 4.0). 

Continuous OCP measurements were made over a 24h period. After the 24h OCP 

measurements, Linear polarization measurements (LPR) and Electrochemical Impedance 

Spectroscopy (EIS) were recorded. Linear polarization resistance measurements (LPR) were 

obtained by changing the potential from −20 to +20 mV versus the measured open circuit 

potential (OCP) with a scan rate of 10 mV min−1. EIS measurements were registered on a 

frequency range of 10 KHz to 10 mHz with a sine wave perturbation of 10 mV vs OCP. In order 

to determine cathodic and anodic kinetics, individual separate anodic and cathodic 

potentiodynamic polarisation measurements were obtained by changing the electrode potential 



automatically from OCP to −300 mV (cathodic) vs the OCP and  OCP to +300 mV (anodic) vs 

the OCP, respectively, with a scan rate 0.5 mV s−1. 

2.3.2. Surface analysis 

The morphology of the carbon steel surface before and after 24 hours immersion was studied 

by scanning electron microscopy (SEM) using a FEI Quanta 200 operating at 20 kV and 

different magnifications. Metal samples were rinsed with ethanol and dried at 30 °C prior to 

immersion and after 24 hours immersion. 

2.4. Biocorrosion experimental design 

2.4.1. Electrochemical measurements 

All electrochemical tests were carried out in a nitrogen filled glove box (< 10 ppm O2) by 

constant flow of nitrogen over the 12 days, and carried out at room temperature with continuous 

immersion of the electrodes. Electrochemical tests were carried out using a platinum counter 

electrode (CE), a saturated calomel electrode (SCE) as a reference electrode and a working 

electrode of mild steel (WE). OCP was recorder prior to EIS measurements which were 

determined at selected interval during the immersion period. The parameters of the EIS scans 

were the same than those used in section 2.3.1.  

In order to better ascertain inhibitor characteristics on the biotic systems, different 

concentrations were used. Table 1 shows the four types of cells used in experiment. The blank 

cell consists of Postgate B medium. The control cell contained Postgate B medium innoculated 

with D. salexigens. Cells one and two consisted of Postgate B medium, the inoculum, and 

surfactants, with the Critical Micelle Concentration reported in the literature [29], and the 

Minimal Inhbitory Concentration value determined experimentally respectively. The literature 

CMC value was also chosen for its known corrosion inhibition efficiency [18]. The final 

preparation of all the cells was carried out inside the glovebox after 24 hours of purging with 

nitrogen the closed glovebox.  

2.4.2. SRB growing conditions 

Desulfovibrio salexigens (DSM 2638, obtained from the Deutsche Sammlung von 

Mikroorganismen) was used in this study, for its ability to grow in a high saline environment. 

D. salexigens was cultivated in Postgate B medium [30], with the following composition per 

litre of water, (prepared aerobically): sodium lactate, 3.5 g; yeast extract, 1.0 g; NH4Cl, 1.0 g; 

K2HPO4, 0.5 g; MgSO4, 2.0 g; CaSO4, 1.0 g; FeSO4, 0.5 g; sodium ascorbate, 0.1 g; sodium 

thioglycollate, 0.1 g. The medium was pH adjusted to 7.0-7.5 using NaOH, then sterilised by 

autoclaving at 121°C for 15 min.  



2.4.3. Minimal Inhibitory Concentration determination  

Increasing concentrations of gemini surfactant were added to 10 ml Postgate B medium in 

Hungate tubes, with 1 ml inoculum added. When SRBs are cultivated in Postgate B medium, a 

black iron sulfide precipitate is produced, indicating growth (Figure 3.). Minimal inhibitory 

concentration was determine by standard 2-fold dilution method reported in the literature [31]. 

 

3. Results and discussion 

3.1. Corrosion inhibition efficiency of the corrosion on mild steel 

3.1.1. Open Circuit Potential 

Open circuit potential measurements were obtained at room temperature using mild steel 

samples in 3.5% NaCl with the addition of different concentrations of 12-6-12, as well as a 

control. Figure 4 shows the OCP trend with time.  

The mild steel potential after 0.5 h was – 604 mVSCE and reached – 625 mVSCE after 24 h of 

immersion, being stable during the immersion tests. When the inhibitor was added to the 

solution, the registered potential was more positive for all the concentrations compared to the 

control.  

After 24 hours immersion, the observed potential was similar for all four concentrations of 

inhibitor, and higher than the control.   

The increase in potential is related to the formation of oxide layers on the metal surface. The 

addition of quaternary ammonium salt further shifts the potential towards more positive values, 

making the metal surface more resistant to corrosion than the control immersed in the solution, 

without inhibitor additives.  

3.1.2. Potentiodynamic measurements 

Figure 5 presents the anodic and cathodic polarisation curves for samples immersed in 

solutions containing 3.5% NaCl in the presence of the different concentrations of 12-6-12.  

Comparing these results with the potentiodynamic curves obtained with the control, it can be 

observed that both the anodic and the cathodic current densities decrease in the presence of the 

surfactants, indicating that these compounds suppressed both the anodic and the cathodic 

reactions through adsorption on the mild steel surface and act as mixed type inhibitor.  

3.1.3. Linear Polarisation Resistance 

Linear polarization resistance (LPR) is a non-destructive technique, commonly used in 

corrosion studies to elucidate the corrosion trend of the material in different solutions. 



The value of corrosion current density was determined indirectly by measuring the polarization 

resistance (RP) and then using the Stern – Geary equation (1) [32] 

𝑖"#$$		 = 	
'(	')

*.,-,('(			/	')	)12
         (1) 

Where βa, βc – are the anodic and cathodic Tafel slopes coefficients of the anode and cathode 

part of the Tafel chart [V/dec] respectively, and RP – is the polarisation resistance [Ωcm2]. 

Corrosion current density can be translate a into the corrosion inhibition efficiency (IE)  using 

following equation[33–35]: 

𝐼𝐸	(%) = 	 67	)899	:		6)899
67	)899

		𝑥	100%        (2) 

Where i0 corr and icorr are the corrosion current densities with and without the surfactant inhibitor 

respectively.  

Corrosion rate was calculated using the expression given [36,37] (3): 

𝐶𝑅 = 	 6)899	@A	B-∗,.BD∗B-
E		

FGH
         (3) 

Where icorr is the current density [Acm-2], Aw – 56 [g mol-1] for iron, F – Faraday’s constant 

(96 500 Cmol-1), n=2, d – density of mild steel (7.85 g cm-3), 3.15 * 107 – one year in seconds 

and 10 is a cm to mm conversion factor.  

Polarisation resistance can be determined using the gradient of the potential versus current plot.  

From the results observed in Table 2 it can be established that the corrosion inhibitor is effective 

in reducing corrosion on the carbon steel immersed in the 3.5 % NaCl solution. 

Corrosion current density was a maximum for the mild steel sample immersed in 3.5% NaCl 

without inhibitor at 119.69 [μA/cm2]. Increasing the concentrations of corrosion inhibitor 

caused a significant decrease in current density. The minimum value (0.84 [μA/cm2 ]) was 

reached in 2mM concentration of 12-6-12. This is because the gemini surfactant was offering 

protection from corrosion, and the rate of electrochemical reactions was very slow, due to 

adsorption process. Inhibition efficiency was obtained from the corrosion current density values 

(Equation 1). From the data in Table 2, can be observed that IE increases with increasing 

concentration of the inhibitor. The chosen concentration was related to CMC value, because 

this concentration should have the highest inhibition efficiency[17]. 12-6-12 reached the CMC 

value at 1mM, which was reported previously [38]. Increasing concentration above CMC did 

not cause a significant change in IE: from 98.7% (1mM) to 99.3%(2mM). In all concentrations 

investigated, the observed values of IE were above 95 %. Inhibitor is highly efficient even at 

very low concentration (0.01mM) and reached 95.2%. Corrosion current density is correlated 

to the corrosion rate (CR) value using (Equation 3).  



The corrosion rate of the sample immersed in 3.5% NaCl gave the highest value of 1.39 

[mm/year]. The addition of corrosion inhibitors significant decrease the CR and reached a 

minimum value of 0.010 [mm/year] in 2mM of 12-6-12.  

3.1.3. Electrochemical Impedance Spectroscopy 
Figure 6 shows Nyquist plots of steel after 24 hours of immersion in a 3.5% NaCl solution at 

25 oC with different concentrations of gemini surfactants around the CMC value. It can be 

observed that the size of the semicircle, clearly larger with the higher concentration of inhibitor. 

In order to obtain quantitative parameters, the EIS data was fitted to an equivalent circuit as 

known in Figure 7. The proposed equivalent circuit consists of the following elements; RS 

being the solution resistance (R1), a constant phase element (CPE 1), which corresponds to the 

capacitive behaviour of the iron phosphate film in parallel with the resistance of the defects on 

the coating. The second constant phase element (CPE 2) is related to the interface between the 

metal and the solution in the defects. An additional resistance (R2) in parallel with CPE 2 relates 

to the resistance of the double layer, which changes with the addition of the inhibitor, which 

forms a protective film. As the system is not an ideal capacitor, constant phase elements (CPE) 

are used instead of the capacitors. CPE is transformed into Cdl using Equation 4 [39]: 

𝐶 = (IJK∗1)L/N

O
           (4)  

n - is the phase shift representing the degree of non-ideality 

Inhibition efficiency (IE) was calculated according to the following equation[40–42]  
𝐼𝐸	% = 	 1	2:1P2

1	2
	100%         (5) 

where R0P and RP are the polarisation resistance values, without and with inhibitors for mild 

steel in 3.5% NaCl, respectively.  

 

The polarisation resistance (Rp) of the system is calculated as the sum of R1 and R2. The results 

obtained from the fitting are summarised in Table 3.  

An increase in the value of R2 results from the addition of inhibitor to the solution, which forms 

a layer between the electrolyte and the metal substrate. In addition, a small increase of the 

solution resistance on the pores of the iron phosphate is observed due to the presence of the 

inhibitor. The capacitance values of the phosphate do not change significantly between 

solutions, while a clear decrease in the capacitance value of the double layer/inhibitor barrier is 

observed with an increasing concentration of inhibitor, being indicative of a thicker layer 



between metal and electrolyte. This effect is clearly noticeable in the region d when the CMC 

value is reached.   

Regarding the IE, the values obtained from EIS data are high and show a similar trend to those 

obtained by LPR measurements.  

 

3.1.4. Adsorption model 
Adsorption isotherms provide information showing the interaction between the metal surface 

and the surfactant molecules, as the corrosion inhibition process appears to be based on 

displacing water molecules from the surface and replacing them with surfactant molecules on 

the mild steel surface. Experimental data was fitted to Langmuir adsorption isotherm and found 

as the most suitable mechanism of corrosion inhibition by the gemini surfactant (Figure 8.).  

The amount of inhibitor molecules which cover the metal surface can be expressed by the 

degree of surface coverage (θ). The value of θ for different concentrations of inhibitor in 3.5% 

NaCl media, have been evaluated using following equation [20,43,44]: 

𝜃 = RK%
B--

           (6) 

Where the IE% is the inhibition efficiency calculated from LPR. The relationship between θ 

and IE% appears to be linear [45].  

The values of the regression coefficient (R2) confirmed the validity of this approach, providing 

a value of 0.9999. This shows that the surfactant formed a single molecule adsorbed layer on 

the mild steel surface, with no chemical reaction between the adsorbed molecules. 

The change in the Gibbs free energy (ΔGads) was determined using the following equation [46–
48]  
ΔGads = – RTln (55.5Kads)         (7) 

Where R is the gas constant, T is the temperature and Kads equilibrium adsorption constant is 

determined by extrapolating the Langmuir isotherm using a linear regression method.  

Table 4 summarises the calculated thermodynamic adsorption parameters, based on the data 

obtained from the LPR. 

 

3.1.5. Surface analysis 
The surface morphology of the mild steel samples immersed in 3.5% NaCl solutions for 24 h, 

containing different concentrations of surfactant was examined by SEM. As shown in Figure 9, 

the mild steel sample before immersion is smooth and without pits (Figure 9a). The 



distinguishing features are the crystal structure of iron phosphate pre-treatment process. Close 

examination of the SEM micrographs presented in Figure 9b revealed corrosion products and 

a rougher surface than before immersion. After immersion in medium with 1mM and 2mM of 

12-6-12 in 3.5% NaCl, the surface is smooth, and the iron phosphate crystals remain unaffected 

(Figure 9c, Figure 9d). This indicates that the compound reduced the rate of corrosion and 

greatly reduced the rate of reactions that take place on the mild steel surface. This is attributed 

to the effective adsorption of the corrosion inhibitior.  

4. Biocorrosion 
Microbiologically Influenced Corrosion (MIC) is based on the consumption of hydrogen, 

organic compounds or solid iron as the electron donor, and sulfate as the electron acceptor, 

being reduced to sulfide. In this respect Von Wolzogen Kuhr and Van der Vlugt suggested the 

following overall corrosion reaction [49] 

4Fe + SO42- = 3Fe(OH)2 + FeS + 2OH-       (8) 

The reaction is defined as the cathodic depolarization theory (CDT). SRB continuously 

consume atomic hydrogen that accumulates at the cathodic site by hydrogenases. Consequently, 

this leads to an increase in metal dissolution. The explanation of these results was attributed to 

the EPS which has the ability to entrap metal ions by binding carboxylic groups of the 

exopolysaccharides and phosphate groups of the nucleic acids. This binding would affect the 

electrochemical properties of metal via formation of metal corrosion cells and galvanic coupling 

on the metal surface.  

Understanding biocorrosion requires a knowledge of how the biofilm forms and how metabolic 

activity induces modifications of the metal surface and how such modifications result in 

changes to the rates of corrosion [8]. Electrochemical methods offer an insight as to how 

surfactants can affect the biocorrosion process. The immersion time for electrochemical 

measurements was correlated with life cycle of SRB. D. salexigans enters the log phase of 

growth at day 4, then enters the stationary phase of growth at day 8 [2].   

4.1. Determination of Minimal Inhibitory Concentration  

Minimal inhibitory concentration is the lowest concentration of the biocidal agent (antibiotic or 

chemotherapeutic agent) where antimicrobial activity is observed. Determination of this value 

was the starting point in this biocorrosion study. 



Serial dilutions of 12-6-12 was prepared including range of concentrations. After visual 

observation based on the control probes (Figure 3.), the minimal inhibitory concentration was 

determined (Figure 10.). The value was between the concentrations where growth is and is not 

observed – equal to 0.018mM. Apart from the SRB, minimal inhibitory concentration was also 

determined for A.niger ATCC 16404, P.chrysogenum LOCK 0531, A.niger LOCK 0439, 

C.albicans ATCC 10231 in previous studies [16].  
 
4.2. Open Circuit Potential  

Open circuit potential (OCP) variations are shown in Figure 11. After the first day Ecorr values 

start to increase, then (after the 5th day) it begins to stabilise. The shift reaches a stable value at 

the stationary phase of the bacteria growth cycle [50]. The shift to positive potentials is 

correlated with the growth of D. salexigens [50]. This positive shift in Ecorr is known as 

ennoblement. The potential shift suggests that the activity and the growth of the SRB species 

have enhanced the redox quality of the medium and accelerated the iron dissolution [50]. The 

SRB attached to the metal surface, forming colonies which form a biofilm. The aggressiveness 

factors of the biofilm and the active metabolisms of the sessile bacteria alter the electrochemical 

process; subsequently, producing H2S and introducing multiple cathodic reactions. The 

ennoblement has been acknowledged by different investigators as the most notable 

phenomenon in the development of biocorrosion [50,51]. Ennoblement has been attributed to 

the microbial colonisation and biofilm formation, which collectively results in organometallic 

catalysis and acidification of the electrode surface [52] 

The reduction in OCP was enhanced and accelerated by the anodic dissolutions. From day 7, 

bacteria started to show visible signs of growth (evidence as black precipitate), and between 

day 5 and day 7 Ecorr stabilises.  

4.3. EIS measurements  

The Nyquist plots for EIS measurements of carbon steel coupons exposed to different media 

with SRB and inhibitors are displayed in Figure 12. Additionally, Figures 13 and 14 represent 

the Bode diagrams for phase and module respectively. As a general observation, it can be 

observed that the size of the capacitive semicircles is bigger when the inhibitor is present in the 

solution. After 7 days the solution containing the D. salexigens began to show signs of a black 

precipitate observed in the solution. The transition between the lag and log phases of the 

bacteria produced changes in the features of the Nyquist plots. The size of the Nyquist semi-

circles decreases as a consequence of the corrosion process favoured by the bacteria and 

becomes more capacitive due to the formation of the biofilm. In the case of the medium without 



bacteria, the size of the Nyquist plots decrease with the immersion time after the second day 

due to the corrosion process, however this drop is not as noticeable as in the case solution with 

just the medium with bacteria. On the other hand, when the inhibitor is added a similar effect 

is observed for both concentrations, first the bacterial activity stops and second the corrosion 

process is minimised by an order of magnitude.  

Figure 13 shows that one time constant at the intermediate frequency is operative for the first 

24 h, indicating activation and control process [53]. This behavior is attributed to the formation 

of an unstable layer based on a mixture of inorganic/organic compounds which are present in 

the medium. The first three graphs show similar behavior (Figure 13a, 13b, 13c). In the case 

of the medium with bacteria (Figure 13d), differences can also be observed after 7 days, when 

the mature biofilm formed. The impedance shifts to higher frequency, which is related to the 

growth of bacteria [54,55]. The time constant at the high frequency might be due to the 

formation of composite films containing a combination of corrosion product and biofilm [56]. 

The experimental data was fitted to the equivalent circuit shown in Figure 7, using ZView2© 

[57]. The proposed equivalent circuit consists of a solution resistance (R1), a constant phase 

element (CPE1), relating to the capacitive behavior of the film on the metal surface in parallel 

with a resistance (R2), constant phase element (CPE2) and resistance (R3) of the metal surface. 

The charge transfer resistance obtained from fitting the EIS data to the equivalent circuit are 

presented in Table 5. 

As explained previously, CPE elements where used to take into account the non-ideal behaviour 

of the capacitors, with equation 4 being used to obtain the capacitance values. 

From the results presented in Table 5, differences in the corrosion processes taking place can 

be observed between the medium with and without bacteria. In the case of the abiotic medium, 

the resistance of the phosphate layer on the steel surface, decreases with time, while the charge 

transfer resistance increases to 26 KΩ cm2 after 8 days, decreasing after 12 days to 20 KΩ cm2. 

This increase in the polarization resistance is a consequence of the presence of other compounds 

in the Postgate B medium, which were not present in the sodium chloride solution, and causing 

an enhance the protection of the metal by interacting with the substrate surface (Figure 12). 

The capacitance values of the outer phosphate coating (C1) remain constant during the entire 

duration of the experiment, as well as the capacitance values of the double layer (C2). In 

contrast with these results, when the SRB are added to the solution, a decrease in the film and 

charge transfer resistance is observed, which is due to the bacterial activity favouring the 



corrosion of the metal. Together with the decrease in the corrosion resistance, a clear increase 

in the capacitance values is shown. This rise in the capacitance values can be associated with 

two factors: the increase of the interfacial area after the bacteria become metabolically active, 

resulting from biofilm formation and the secretion of extracellular polymeric substances, or the 

charging effects, due to the metabolic activity of the bacteria leading to absorption and 

desorption of compounds on the metallic surface, such as iron sulfide films. Protective iron 

sulfide films can be found in when hydrogen sulfide is present (as in sour environments) [2,10]. 

There are always thin films adhered to the surface, however, with the bacterial suspension, the 

sulfide films are not stable. They are disrupted by the metabolism of the bacteria, for example, 

excretion of corrosive substances, such as acetic acid. Therefore, with the proliferation of the 

SRB (and metabolic products), the protective iron sulfide film decomposes to other polysulfide 

products [58]. The integrity of the protective film then degrades becoming loose and porous. 

Subsequently, the steel surface was exposed to the corrosive medium, increasing the corrosion 

rate significantly. During the last stages, when the SRB metabolic activity declined, it would 

lead to a reduction of the iron to sulfide ratio reducing the hydrogen sulfide film can occur[59]. 

When the inhibitor was added, it can be noted that even at the critical inhibitory concentration, 

it is an efficient biocide and corrosion inhibitor. After 12 days, for both concentrations, the 

corrosion resistance is much greater than without an inhibitor, and no significant increase of the 

capacitive behavior (which was observed when the SRB were active) was observed. The 

polarization resistance (R1+R2) for both concentrations after 12 days are similar, indicating 

that the compound can act as both a corrosion inhibitor and biocide, even at low concentrations.  

 

5. Conclusion  

From the results obtained the following conclusions can be drawn:  
• The synthesised cationic surfactant 12-6-12 has antibacterial activity against 

D. salexigens.  
• The gemini surfactant acts as corrosion inhibitor against mild steel in 3.5% NaCl. 

Inhibition efficiency (IE) increasing with increasing concentration of the inhibitor. For 
all concentrations achieved IE values were above 95%. LPR and EIS data were in 
agreement. In the present study, Langmuir adsorption isotherm was found to be the most 
suitable model for the system studied. 

• 12-6-12 acts as a biocorrosion inhibitor. In the electrochemical cells studied, the only 
cell to cultivate D. salexigens was with media and an inoculum. Neither cell containing 
12-6-12 allowed cultivation.  



• 12-6-12 is a very efficient surfactant, inhibiting both corrosion and biocorrosion, even 
in very low concentrations.  
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Caption of figures 

Figure 1. Schematic representation of (a) gemini surfactant and (b) micelle created from gemini 
surfactants in aqueous solution.  

Figure 2. Structure of hexamethylene-1,6-bis(N,N-dimethyl-N-dodecyldodecylammonium 
bromide) (12-6-12). 

Figure 3. Hungate’s tube filled with Postgate B medium (a) and cultivated SRB (b). 

Figure 4. Open circuit potential – time curves for stainless steel electrode immersed in 3.5% 
NaCl at room temperature in the absence and presence of different concentration of the gemini 
surfactant. 
 
Figure 5. Anodic (A) and cathodic (B) curves for mild steel in 3.5% NaCl with and without 
different concentrations of 12-6-12 at room temperature. 

Figure 6. Nyquist plots of different concentrations of 12-6-12 in 3.5 % NaCl at room 
temperature after 24 h immersion. 

Figure 7. Equivalent circuit diagram for modelling the EIS data. 

Figure 8. Langmuir adsorption plot for mild steel in 3.5% NaCl solution containing various 
concentration of 12-6-12 after 24 h immersion at room temperature. 

Figure 9. SEM micrographs of mild steel surface (a) before immersion, (b) after 24 h 
immersion in 3.5% NaCl (c) after 24h immersion in 3.5% NaCl with 1mM 12-6-12  (d) after 
24h immersion in 3.5% NaCl with 2mM 12-6-12. 

Figure 10. Representative tubes contained Postgate’s B medium, SRB inoculum and increasing 
concentration of 12 -6-12 (from left to right). 

Figure 11. Open Circuit Potential (OCP) variations as a function of time under anaerobic 
conditions at room temperature.  

Figure 12. Nyquist plot of (a) cell 1 (b) cell 2 (c) medium and (d) medium with bacteria 
dependent on time under inert atmosphere.  



Figure 13. Phase angle plots as a function of time for: (a) cell 1 (b) cell 2 (c) medium and (d) 
medium with bacteria dependent on time.  

Figure 14. Modulus plot of (a) cell 1 (b) cell 2 (c) medium and (d) medium with bacteria 
dependent on time. 

Caption of Tables 

Table 1. Composition of cells designed for experiment in glove box under anaerobic conditions.   

Table 2. Linear Polarisation measurements data after 24 h immersion with and without 
inhibitors in 3.5% NaCl medium at room temperature. 

Table 3. EIS parameters for corrosion inhibitor of carbon steel in 3.5% NaCl in absence and 
presence of different concentrations of the surfactants (after 24 h) at room temperature. 

Table 4. Data obtained from Langmuir isotherm model for 12-6-12 in 3.5% NaCl after 24 h 
immersion at room temperature. 

Table 5. EIS parameters for biocorrosion in Postgate B medium in absence and presence of 
different concentrations of the surfactants at room temperature under anaerobic conditions. 

  



Table 2. Composition of cells designed for experiment in glove box under anaerobic conditions.   

 Postgate’s B 

medium 

Desulfovibrio 

salexigans 

Concentration of 

surfactant [mM] 

Blank cell x   

Control cell x x  

Surfactant cell – 

Cell1 
x x 1 – CMC point 

Surfactant cell – 

Cell2 
x x 0.018 – MIC point 

Table 2. Linear Polarisation measurements data after 24 h immersion with and without inhibitors in 3.5% NaCl medium at 
room temperature. 

- Concentration of 
surfactant [mM] icorr [μA/cm2] Βa  

[mV/dec] 
Βc 

[mV/dec] 
CR 

[mm/year] 
Inhibition 

efficiency [%] 
3.5% NaCl 0 119.69±1.21 109±1 296±3 1.39±0.12 - 

12-6-12 

0.01 5.79±0.03 42±3 211±3 0.068±0.002 95.2±0.2 
0.1 1.78±0.23 33±2 180±3 0.021±0.003 98.5±0.2 

1 – CMC point 1.61±0.34 44±3 80±3 0.019±0.001 98.7±0.2 
2 0.84±0.01 55±2 87±3 0.010±0.06 99.3±0.3 

 

Table 3. EIS parameters for corrosion inhibitor of carbon steel in 3.5% NaCl in absence and presence of different concentrations of the surfactants (after 
24 h) at room temperature. 

 Concentration of  
surfactant [mM] 

`Rs  
[Ω cm2] 

C1 

[μF/cm2] 
α1 R1  

[Ω cm2] 
C2  

[μF/cm2] 
α2 R2 

[Ω cm2] Χ2 Inhibition 
efficiency[%] 

Rp 

[Ωcm2] 
3.5% 
NaCl 0 

 
6 ±1 

 
22 ±1 

 
0.69 

 
18 ±2 

 
2388 ±30 

 
0.53 

 
272 ±21 

 
1x10-3 -- 289 

12-6-12 
0.01 22 ±3 32 ±4 0.69 84 ±9 2002 ±40 0.55 2294 ±33 6x10-3 87 2318 
0.1 21 ±4 21 ±1 0.72 84  ±7 285 ±38 0.64 3236 ±41 2x10-3 91 3320 
1 23 ±3 25 ±5 0.69 98 ±6 104 ±13 0.61 6270 ±56 7x10-3 95 6368 
2 21 ±3 26 ±3 0.82 427 ±18 20 ±3 0.59 7840 ±45 3x10-3 96 8267 

 

Table 4. Data obtained from Langmuir isotherm model for 12-6-12 in 3.5% NaCl after 24 h immersion at room temperature. 

Concentration of 

surfactant [mM] 

Ɵ Kads 
*103[dm3/mol] 

ΔGads [kJ/mol] R2 slope 

0.01 0.95 

0.565±0.087 -25.65±1.21 0.999 1.0072 
0.1 0.98 

1 0.98 

2 0.99 

 

 

 

 

Table 5. EIS parameters for biocorrosion in Postgate B medium in absence and presence of different concentrations of the 
surfactants at room temperature under anaerobic conditions. 

 Days `Rs  
[Ω cm2] 

C1 

[μF/cm2] 
α1 R1  

[Ω cm2] 
C2  

[μF/cm2] 
α2 R2 

[Ω cm2] Χ2 



Medium 

Day 0 6±1 35±2 0.72 2221±18 368±5 0.98 10479±125 3x10-3 

Day 8 9±1 16±3 0.77 689±8 177±4 0.87 26019±149 2x10-3 

Day 12 8±1 12±3 0.89 21±2 223±23 0.77 20397±150 3x10-3 

Medium 

+ 

Bacteria 

Day 0  13±1 16.3±5 0.88 1061±19 19±1 0.66 10785±102 4x10-3 

Day 8 5±1 3769±196 0.84 498±16 1707±17 0.84 7128±109 3x10-3 

Day 12 5±1 15500±208 0.93 567±13 4777±89 0.83 9345±145 8x10-3 

Cell 1 

Day 0 12±2 27±1 0.85 629±2 3±1 0.517 11188±385 9x10-3 

Day 8  12±2 15±1 0.86 4634±4 400±23 0.68 45085±249 8x10-3 

Day 12 27±5 12±1 0.84 5231±7 436±38 0.54 31676±487 3x10-3 

Cell 2 

Day 0  12±1 23±2 0.9 345±26 87±13 0.77 6418±221 0.03 

Day 8  15±4 60±4 0.852 314±28 196±47 0.63 48577±341 6x10-4 

Day 12 16±4 50±6 0.86 3876±111 350±39 0.51 36936±411 5x10-3 
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Figure 7 

 

  

R1 CPE1

R2 CPE2

R3

Element Freedom Value Error Error %
R1 Fixed(X) 0 N/A N/A
CPE1-T Fixed(X) 0 N/A N/A
CPE1-P Fixed(X) 1 N/A N/A
R2 Fixed(X) 0 N/A N/A
CPE2-T Fixed(X) 0 N/A N/A
CPE2-P Fixed(X) 1 N/A N/A
R3 Fixed(X) 0 N/A N/A

Data File:
Circuit Model File:
Mode: Run Simulation / Freq. Range (0.001 - 1000000)
Maximum Iterations: 100
Optimization Iterations: 0
Type of Fitting: Complex
Type of Weighting: Calc-Modulus
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Figure 13 
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