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Abstract: In this work, we report on the development of an electrochemical biosensor for high
selectivity and rapid detection of Hg2+ and Pb2+ ions using DNA-based specific aptamer probes
labeled with ferrocene (or methylene blue) and thiol groups at their 5′ and 3′ termini, respectively.
Aptamers were immobilized onto the surface of screen-printed gold electrodes via the SH (thiol)
groups, and then cyclic voltammetry and impedance spectra measurements were performed in
buffer solutions with the addition of HgCl2 and PbCl2 salts at different concentrations. Changes in
3D conformation of aptamers, caused by binding their respective targets, e.g., Hg2+ and Pb2+ ions,
were accompanied by an increase in the electron transfer between the redox label and the electrode.
Accordingly, the presence of the above ions can be detected electrochemically. The detection of Hg2+

and Pb2+ ions in a wide range of concentrations as low as 0.1 ng/mL (or 0.1 ppb) was achieved.
The study of the kinetics of aptamer/heavy metal ions binding gave the values of the affinity constants
of approximately 9.10−7 mol, which proved the high specificity of the aptamers used.

Keywords: aptamer sensors; electrochemical sensors; heavy metal ions; cyclic voltammetry; impedance
spectroscopy; binding kinetics

1. Introduction

The detection of toxic metal ions in aquatic environment is an important global issue because
these contaminants may have severe effects on plants, animals, and humans as well as on ecosystem [1].
Among the most toxic metallic water pollutants in aquatic environments are mercury and lead [2].
Lead can cause renal malfunction and can inhibit brain development in humans [3]; mercury can cause
damage of the brain, heart, and kidneys [4]. The detection of heavy metals in low concentrations
is a difficult task; however, it can be achieved with existing advanced analytical methods, such as
atomic absorption or atomic emission spectroscopies (AAS, AES), inductively coupled plasma mass
spectroscopy (ICP-MS), cold vapor atomic fluorescence spectroscopy (CVAFS), and high-performance
liquid chromatography (HPLC) [5]. These methods are extremely sensitive but expensive and require
specialized laboratory conditions and highly trained personnel. As a result, both the time and cost of
the analysis are very high.

An alternative approach uses biosensors, which can be much simpler and less expensive [6].
Biosensors require bioreceptors that specifically recognise and bind target analyte molecules. Typical
natural bio-receptors used in biosensors, e.g., enzymes and antibodies, are highly specific and, in many
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instances, easily provide such functionality. Synthetic bio-receptors, such as aptamers, have become
very popular recently and provide similar functionality. A wide variety of aptamers offer both an
additional and versatile way of providing the specific interactions required for biosensors. Recently,
great progress has been made in the development of optical and electrochemical techniques for the
detection of toxic metal ions using either artificial receptors, e.g., nanoparticles functionalised with
DNAzymes [7], graphene oxide chemiresistor [8], or natural biological objects such as bacteria [9] and
whole cells [10,11].

Aptamers show high affinity towards a wide range of target analytes, including proteins, metal
ions, and pathogenic microorganisms. Aptamers can bind their targets with comparable affinity and
specificity to antibodies; they also possess several advantages such as accurate and reproducible
chemical synthesis [12]. Aptamers can be easily modified with new functional groups without affecting
their activity. Numerous aptamer-based biosensors have been developed for the detection of a
wide range of targets [13]. Many aptamers have been developed for the detection of low molecular
weight pollutants in aquatic environments, for example, DNA-based aptamers specifically used for
pesticides and mycotoxins [14,15] as well as for microcystin, antibiotics, and endocrine-disturbing
chemicals [16]. Most aptamers are known to fold into their unique three-dimensional conformation
upon binding the target, a process also described as “wrapping around” the target molecules. This
change in conformation provides great flexibility for designing electrochemical apta-sensors [17],
particularly suitable for the detection of small molecules. If the aptamers are labeled with redox
groups, such as ferrocene or methylene blue, and then immobilized on an electrode surface [18], the
changes in aptamer conformation upon binding the analyte reduce the distance between the redox
tag and the electrode, and thus increase the electron transfer. The exploration of novel approaches
and methodologies, such as the amplification of apta-sensor responses, are required for the detection
of small molecules. Several methods for signal amplification have been demonstrated, such as a
rolling circle amplification of the aptamer triggered by analyte binding [19], strand displacement
amplification [20], as well as the use of labeled aptamers multiple redox active labels that can be
enzymatically detected [21]. Aptamer-functionalized nanoparticles have also been reported for signal
amplification in apta-sensors [22].

With regard to the detection of heavy metal ions, different types of aptamers have been developed,
such as the T-rich aptamer, which forms a hairpin structure and binds several Hg ions [23]. Currently,
the use of aptamers labelled with either fluorescent or redox groups is very common [24]. Previously,
DNA-based aptamers containing TOTO-3 dye were designed to accommodate either Hg2+ ions via
interaction with T-T sequences or Pb2+ with G-G sequences in their respective polynucleotide chains [25].
The T-Hg2+-T complex formed due to the imino protons of the thymine nucleotide, which transposed
with Hg2+ions [26]. The interaction of these two aptamers with their respective targets induces
conformational changes in the polynucleotide chains (from linear to a folded structure), which, in turn,
affects the fluorescence of TOTO-3, i.e., the fluorescence intensity is reduced due to quenching when
the label is in proximity to the surface of gold nanoparticle. Recently, an electrochemical aptasensor,
based on (T-Hg2+-T) coordination chemistry and nanoporous gold (NPG) for signal amplification,
was designed for sensitive and selective detection of mercury ions Hg2+ in water [27]. Similarly, the
anti-Pb aptamer, labelled with Cy5 fluorescent dye and immobilized on the surface of carbon nanotube,
changed its conformation to G-quadruplex upon binding Pb2+ ions, thus bringing the label closer to
the carbon nanotube, which acted as fluorescence quencher [28]. Another Pb2+ aptasensor, based on
G-quadruplex structure, was constructed on graphene support functionalized with thionine [29].

In this paper, we used aptamers against Hg2+ and Pb2+ with nucleotide sequences similar to
those reported in [30,31] but functionalized with electrochemically active labels of ferrocene and
methylene blue, respectively, at 5′ termini. The sensing mechanism of these aptamer probes was
based on the changes in the DNA strand’s conformation from the linear to folded structures upon
binding the respective metal ions, which affected the electron transfer between the redox label and the
metal electrode.
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2. Experimental Methodology

2.1. Aptamers and Other Chemicals

The following modified deoxy ribonucleotides (P1 and P2) selected as specific aptamers for Hg2+

and Pb2+ ions, respectively, were purchased from Sangon-Biotech (Shanghai, China):

P1: Ferrocene-5′-TTCTTTCTT-CCCC-TTCTTTCTT-3′-SH, [30].
P2: Methylene blue-5′-CAACGGTTGGTGTGGTTGG-3′-SH, [31].

The thiol groups (-SH) at the C3 termini were designed to provide strong and oriented binding
of the aptamers to screen-printed gold electrodes. The redox functional groups, e.g., ferrocene or
methylene blue, were attached to C5 termini to provide distinctive electrochemical properties, such as
current peaks on CV characteristics associated with oxidation and reduction reactions.

The other chemicals used (all from Sigma Aldrich) were Hepes and phosphate-binding buffers
(HBB and PBB), and 1,4-dithiothreitol (DTT). Hepes binding buffer (HBB) was prepared by dissolving
50 mM Hepes sodium salt, 3 mM MgCl2, 120 mM NaCl, and 5 mM KCl in deionized Milli-Q water.
The pH of the buffer was adjusted to 7.4. Similarly, phosphate-binding buffer (PBB) was prepared by
dissolving 10 mM Na2HPO4, 1.76 mM KH2PO4, 3 mM MgCl2, 2.7 mM KCl, and 137 mM NaCl. The
pH of the buffer was adjusted to 7.4. The addition of MgCl2 to the buffers was essential to preserve
the secondary structure of aptamer from self-coiling. For long-term storage, as-received aptamer was
prepared in sterilized, deionized water at 100 µM and stored at −20 ◦C in small aliquots.

2.2. Immobilization of Aptamers

The aptamers were immobilized on a gold surface via thiol groups at the 3′-termini according to
the following procedure. Stock solution of the required aptamer was diluted to 1 µM with HBB or PBB
supplemented with 1 mM of 1,4-dithiothretiol (DTT) and 3 mM of MgCl2. DTT led to the removal
of the protecting group from the SH moiety and released the aptamers with free SH end groups that
could then bind to the surface of screen-printed gold electrode. Before immobilization, the aptamers
solution samples were activated by rapid (1 min) heating up to 95 ◦C followed by 1 min cooling at 4 ◦C
using a conventional thermocycler polymerase chain reaction unit (TECHNE PCR, version TC-3000).
Following the procedure described in [32], the immobilization of aptamers was carried out by casting
aptamers solution onto the screen-printed gold electrode surface; the samples were then incubated
for 4 h at room temperature in a humidity chamber. The unreacted aptamers were removed from
the electrode surface by several rinses with non-folding buffer (HBB), then the screen-printed gold
electrode with immobilized aptamers was kept in HBB to prevent aptamers from coiling.

2.3. Electrochemical Measurements

All CV electrochemical measurements were carried out on a DropSTAT4000P potentiostat
instrument (from DropSens) controlled by Autolab software using DropSens screen-printed gold
electrodes (SPGEs). The electrodes have a conventional three electrode configuration with gold working
and counter electrodes and a Ag/AgCl pseudo-reference electrode. CV measurements were carried out
on electrodes with the immobilized aptamers, firstly, in pure buffer solution (HBB or PBB), then in
buffer solutions with the addition of either HgCl2 or PbCl2 salts in different concentrations starting
from 0.1 ng/mL up to 1µg/mL. Because the addition of heavy metal salts increased the conductivity
of buffer solutions, control measurements were carried out on electrodes without aptamers at each
concentration of metal salts.

The voltage range between −0.5 and +0.5 V was selected for these measurements to observe the
characteristic peaks of both redox labels, e.g., ferrocene and methylene blue. The labels used have
different redox potentials: 0.01 V for methylene blue, and 0.4 V for ferrocene. The selection of fixed
voltage at ±0.2 V for further analysis allowed for observation of both the oxidation and reduction
currents peaks, given their 0.2 V expansion on both sides. The aptamer/metal ions binding kinetics
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at different concentrations of metal chlorides was studied by recording current in SPGEs at fixed
potentials: −0.2 V for HgCl2 and −0.4 V for PbCl2.

The real samples of water taken from different natural resources in the area were tested using the
same screen-printed electrodes with immobilized aptamers. The reference in this case was bottled
drinking water.

Impedance spectra were measured using an impedance spectroscopy instrument 4000 A and gold
interdigitated electrodes (from Metrohm DropSens) containing 250 fringes on each side spaced by
5µm; the overlapping length was 6.76 mm. The AC voltage amplitude was 5 mV with a frequency that
varied from 100 mHz to100 kHz; no DC bias was applied. Similarly to CVs, the impedance spectra
measurements were carried out on electrodes both coated and non-coated with aptamers in buffer
solutions containing different concentrations of metal salts.

2.4. ICP-MS Measurements

In addition to electrochemical measurements, control measurements were carried out using
PerkinElmer NexIONTM 350X ICP mass spectrometer to determine traces of Hg2+ and Pb2+ in real
water samples. The ICP-MS instrument was equipped with a PE-AS91 auto-sampler. Samples
were introduced via a cross-flow nebulizer with a Scott-type spray chamber. The NexIONTM 350X,
auto-sampler, and peristaltic pump were controlled by the NexIONTM 350X Windows NT software
and were fully automated.

3. Results and Discussion

3.1. Design Strategy of the Aptasensor

The strategy in this study (illustrated in Figure 1) relied on the principle that the aptamers could
act as chelating factor for the analytes and undergo conformational changes that lead to changes in
the electrochemical properties of aptamers containing the redox label [32]. The conformation anti-Hg
aptamer turns to a hair-pin structure accommodating several Hg2+ ions due to T-Hg-T interaction
while anti-Pb aptamer forms G-quadruplex, accommodating Pb2+ ion due to G-Pb-G interaction.
In both cases, the redox labels come closer to the electrode surface and increase the electron transfer.
The increase in concentration of target analyte can increase the concentration of coiled aptamers on the
surface and subsequently increase the electrochemical current.
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Figure 1. Schematic diagram of electrochemical detection of heavy metal ions Hg2+ (A) and Pb2+ (B)
using redox-labelled aptamers.
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The screen-printed gold electrodes activated with the anti-Hg2+ or anti-Pb2+ aptamers were
prepared as described in the Experimental Methodology section. These electrodes, functionalized with
Hg2+ and Pb2+-specific aptamers, were used either directly as apta-sensors or stored submerged in
HBB at 4 ◦C or room temperature for several days without any decrease in sensitivity.

3.2. Cyclic Electrochemical Measurements

Typical cyclic voltammograms (CVs) recorded on electrodes with immobilized aptamers in PBB
solution with added heavy metal salts in different concentrations are shown in Figure 2. The anti-Hg2+

aptamer with ferrocene redox group showed well-resolved anodic and cathodic current peaks at about
+0.2 V and −0.2 V, respectively, corresponding to oxidation and reduction of ferrocene (see Figure 2A).
There was a clear correlation between the amplitudes of the two peaks and the concentrations of
HgCl2 in the buffer solution; the current rose with the increase in Hg2+ ions contents, as demonstrated
in the schematic diagram in Figure 1. Similar results were observed for anti-Pb2+ aptamer labeled
with methylene blue (shown in Figure 2B); however, the current peaks were not as pronounced but
rather appeared as shoulders at potentials of about ±0.2 V. Again, a correlation between the values
of current and PbCl2 salt concentration was apparent and demonstrated the apta-sensing concept in
Figure 1. Notably, the measurements on samples with immobilized aptamers stored for two to three
weeks in the refrigerator (at 4 ◦C) yielded the same result as freshly deposited aptamers. The stored
samples needed re-activation by a heating/cooling cycle in PCR unit before use. The series of CVs of
samples with immobilized aptamers stored in the refrigerator for two to three weeks shown in Figure
S1 as supplementary material exhibited no principle differences with the CVs recorded on freshly
prepared aptamers (shown in Figure 2); however, the absolute values of the current differed amongst
the samples.

Control experiments were carried out on samples without immobilized aptamers. The CV curves
presented in Figure 3 showed much larger currents without characteristic peaks when compared
with the samples with aptamers, which clearly indicate that the aptamer layer acts as an insulator.
The observed current is due to electrochemical processes occurring in the buffer solution. The current
increases with the increase in concentrations of both HgCl2 and PbCl2 salts.
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∣∣∣ at +0.2 V against the concentrations
of heavy metals ions are shown in Figure 4. Therefore, the effect of background currents (Iref) caused
by the conductivity of HBB with added heavy metal salts was eliminated. The semi-logarithmic
calibration graphs of both sensors in Figure 4 showed monotonic increase of the response in a wide
range of concentrations from 0.1 to 1000 ng/mL.

The cross-sensitivity tests were carried out by measuring CV curves on samples with immobilized
anti-Hg and anti-Pb aptamers to other metal (e.g., Zn, Cu, Cd, and Pb or Hg) chloride salts. The results
of such tests presented in Figure 5 showed no responses for non-complementary metals, which confirm
high specificity of the aptamers used.

The real samples of water taken from different natural resources in the area were tested by
CV measurements on screen-printed electrodes with immobilized anti-Hg and anti-Pb aptamers.
The results were arranged on the respective calibration graphs in Figure 4. For the sake of evaluation
of Hg and Pb content in these samples, the concentration dependences in Figure 4 were extrapolated to
lower concentrations of Hg and Pb ions below the 0.01 ng/mL level. The estimated values for Hg and
Pb contents are shown near respective data points. The obtained data for real samples of water are
compared in Table 1, with the results of ICP-MS testing of the same water samples. The correlation
between the two sets of data is present in terms of the order of increased concentration; however, the
ICP-MS values were typically three to 10 times larger than those obtained with CVs.

Table 1. ICP-MS testing results of real samples.

Sample Number Hg2+ Ions (ng/mL) Pb2+ Ions (ng/mL)

CV Results ICP-MS Result CV Results ICP-MS Result

Sample 1 0.00035 0.0017 0.00009 0.0001
Sample 2 0.0013 0.0106 0.0006 0.0088
Sample 3 0.016 0.078 0.005 0.034
Sample 4 0.08 0.7 0.095 0.96
Sample 5 0.7 0.9 0.7 1.7
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The observed differences between CV and ICP-MS data could be attributable to several causes.
Firstly, some of the samples of very clean water used in this study showed the content of Hg, and
particularly Pb, below the calibration limit; accordingly, the concentrations of Hg and Pb ions can be
only roughly estimated. Secondly, the methodology of testing samples of water with low contents of
heavy metals was not developed properly. The choice of bottled drinking water as a reference might
not be suitable. Concurrently, aptamers are known to lose their secondary structure in clear water with
no MgCl2 stabilizer, which might have produced wrong responses.
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to Zn2+, Cu2+, Cd2+, Hg2+, and Pb2+ ions in 100 ng/mL concentrations.

3.3. Impedance Spectroscopy Measurements

The impedance spectroscopy scans were carried out on interdigitated electrodes with immobilized
aptamers (as well as on bare electrodes) in HBB solutions containing heavy metal salts. Typical results
are shown as Nyquist plots in Figure 6. Notably, there is a major difference between these two graphs;
in the presence of aptamers, the Nyquist plots in Figure 6A shift to the left and reduce in radius. This
indicates the decrease in the charge transfer resistance (Rct) of the surface layer with an increase in
Hg2+ concentration; however, in the absence of aptamers, the Nyquist plots in Figure 6B remain almost
unchanged, with a small decrease in the radius due to changes in the bulk resistivity of the solution.
Also, the nearly perfect circular shape of Nyquist curves indicates the absence of a diffusion limitation
of the charge transfer on the electrodes, an obvious result given a very small thickness of aptamer layer
was in the range of a few nanometres.

The analysis of impedance spectra using an equivalent circuit model (shown as inset in Figure 6A)
was carried out. According to the simplified impedance circuit model (when the diffusion impedance
Zdiff is neglected) [33,34], the part of the impedance at critical points of the Nyquist plot are given as:

Zre = Rb + Rct at ω = 0 and Zre = Rb at ω = ∞, (1)

where Rb is the bulk resistance of the electrolyte solution, Rct and Cdl connected in parallel are,
respectively, the charge transfer resistance and capacitance associated with an electrical charge double
layer on the surface of gold electrodes.

As seen in Figure 6, the value of Rb is very small (typically in single Ohms), while Rct is much larger
(above 900 Ω at low concentrations of heavy metals) and decreases upon an increasing concentration
of Hg2+ ions, likely the result of an enhancement of the electron transfer between the ferrocene label
and the electrode, in line with the scheme shown in Figure 1. Concurrently, the increase of Hg2+

concentration without aptamers immobilized on the surface does not show any significant effect on the
Rct values, which corresponds well to the data presented in Figure 3.

Similar results were observed for interdigitated electrodes with immobilized anti-Pb2+ aptamers
in solutions containing PbCl2.
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Figure 6. The Nyquist plots (−Zim vs. Zre) for interdigitated electrodes with immobilized anti-Hg2+

aptamers binding Hg2+ ions of different concentrations (A); the Nyquist plot for bare interdigitated
electrodes in solutions with different concentrations of HgCl2 (B).

3.4. The Kinetics of Aptamers (Hg2+ and Pb2+) Binding

The kinetics of Hg2+ and Pb2+ ions binding to specific aptamers were studied by recording the
time dependencies of cathodic current (at −0.2 V) of three-electrode assemblies with immobilized
aptamers for different concentrations of both metals ions. Cathodic current was chosen because of a
smaller shift of the reduction peak upon binding Hg2+ ions. Typical time dependences for anti-Hg2+

aptamers are shown in Figure 7 for different concentrations of HgCl2 salt varied from 0.01 ng/mL to
1 mg/mL. Then, the characteristic time constants (τ) were evaluated for every concentration of Hg2+ by
fitting the respective kinetics curves to rising exponential function. The resulted dependence of 1/τ
versus the concentration (C) of Hg2+ ions is shown in Figure 7 as an inset.
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Following the Langmuir adsorption law, the reciprocal time constant (1/τ) depends on the analyte
adsorption and desorption rates (ka and kd) as well as the concentration (C) of analytes (in our case,
Hg2+ and Pb2+) as:

1/τ = kaC + kd (2)

The values of ka and kd can be found, respectively, as the gradient and intercept of the linear
dependence 1/τ against C. Then, both the association constant (KA) and affinity constant (KD) can be
found as KA = ka/kd and KD = 1/KA [35,36].

The values of ka and kd were calculated as: ka = 0.1471(sec−1
·ng−1

·mL) × 271.52(g·mol−1) ×
103 (mL·ng−1) ≈ 3.94.104 (sec−1

·mol−1) and kd = 0.0363 (sec−1), where 271.52 (g·mol−1) is molecular
weight of HgCl2, and 103 factor was used as conversion from ng/mL to µg/mL. Therefore, KA = ka/kd =

1.1 × 106 (mol−1) and KD = 9.08 × 10−7 (mol) for anti-Hg2+aptamer.
A similar analysis was carried out for binding kinetics of anti-Pb2+ aptamer, and quite similar

values of KA = 1.2 × 106 (mol−1) and KD = 8.5534 × 10−7 (mol) were found.
The obtained KA and KD values for both anti-Hg2+ and anti-Pb2+ aptamers correspond well to the

aptamers affinity evaluated in the process of their synthesis [37,38], and they are typical for highly
specific binding reactions of analytes to aptamers or antibodies.

4. Conclusions and Future Work

The concept of electrochemical apta-sensor for heavy metal ions was proved, and the results
obtained were encouraging. The selectivity and sensitivity of this apta-sensor to heavy metals ions, e.g.,
Hg2+ and Pb2+, is high and thus promising for the development of novel, simple, and cost-effective
electrochemical apta-sensors for rapid detection of heavy metals in water.

A series of cyclic voltammogramm and impedance spectroscopy measurements allowed the
investigation of the mechanism of aptamer/heavy metal binding. The proposed model electrochemical
apta-sensing, based on changing the conformation of the aptamer oligonucleotide chain from a linear
to a folded one, thus bringing the redox label closer to metal surface and increasing the electron charge
transfer, was proved. A simple detection of anodic (or cathodic) current at fixed voltage corresponding
to oxidation (or reduction) peak potential is sufficient for detection of Hg2+ and Pb2+ in a wide range
of concentrations, as low as 0.1 ng/mL (or 0.1 ppb). The detection of heavy metals in real water
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samples was attempted and was partially successful; however, further work is required for developing
methodology of real samples testing.

The study of aptamer/target binding kinetics yielded the values for the association constant
KA = 1.1 × 106 (mol−1) and the affinity constant KD = 9.08× 10−7 (mol) for aptamer/Hg2+ binding; similar
values of the association constant KA = 1.2× 106 (mol−1) and the affinity constant KD = 8.33 × 10−7 (mol)
were found for aptamer/Pb2+ binding. This study proved highly specific interaction between heavy
metal ions and their specific aptamers.

Further work could focus on development of the apta-sensor array for detection of other heavy
metals (chromium, cadmium, arsenic, nickel, copper, silver, zinc, etc.) using simple DC electrochemical
transducers. The different redox-labels can be used in future for simultaneous detection of different
heavy metals.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9040/7/2/27/s1,
Figure S1. The series of CVs of samples with immobilized aptamers stored in the fridge for two to three week.
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