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Abstract 

Surface reflectance and illumination level, which are confounded in the 

retinal image, must be disentangled by the visual system and a theory of 

lightness must explain how. Thus, a theory of surface lightness should also be 

a theory of perceived illumination and describe the relationship between 

them. Perceived illumination and perceived grey values have been measured 

using a new technique. Looking into a vision tunnel, observers saw two square 

apertures in the far wall, each revealing a patch of wall composed of two 

shades of grey. They adjusted the illumination level in one aperture to match 

that in the other. The stimuli placed in the apertures varied in luminance 

range, spatial frequency, and relative area. Results show that 1) illumination is 

matched for highest luminance (with no effect of spatial frequency). 

Combined with earlier findings that lightness is anchored by highest 

luminance, this supports Koffka’s suggestion that lightness and perceived 

illumination are coupled in an invariant way. 2) Changes in the relative area of 

the light and dark shades produced complementary influences on perceived 

illumination and surface lightness. That is, when stimulus conditions evoke a 

conflict between anchoring the highest luminance at white and anchoring the 

largest area at white, enlarging the darker shade causes its lightness to 

increase and the perceived illumination to decrease by the same amount, 
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further supporting Koffka. 3) These findings allow perceived illumination 

level to now be systematically incorporated into anchoring theory, which until 

this point has been solely a theory of surface lightness. 

 

Public Significance: 

A black surface in sunlight can reflect more light to the eye than a white in 

shadow. Thus, the light coming to the eye from a surface does not reveal the 

lightness (black-white dimension) of the surface. Anchoring theory is a leading 

theory of human lightness computation but, until now, was silent on the question of 

perceived illumination level. New experiments show the factors that determine 

perceived illumination level, clarifying the relationship between perceived surface 

lightness and perceived illumination.  
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The problem 

The light reaching the eye from a surface bears the imprint of both the 

light illuminating that surface and the reflecting properties of the surface itself 

and this confound forms the fundamental challenge of lightness perception. 

The visual system must disentangle reflectance (percentage of light reflected) 

from illumination and a theory of lightness must explain how these are 

disentangled. Thus, a theory of surface lightness should also be a theory of 

perceived illumination and describe the relationship between them. In this 

paper, we focus on two main questions, (1) What is the basis for perception of 

illumination level and (2) what is the relationship between perceived 

illumination and perceived surface lightness? We begin with a historical 

overview of positions and developments on these issues. 

Recognizing that the luminance (amount of light reaching the eye) from 

a surface fails to specify its reflectance, von Helmholtz (1866/1925) famously 

suggested, as Alhazen (1083/1989) had much earlier, that the visual system 

unconsciously takes into account the illumination on each surface. Helmholtz 

did not explain how illumination level could be estimated except for a 

suggestion, contained in remarks on chromatic color, that it is based on the 

average luminance of the scene. Hering (1874/1964), the main opponent of 
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Helmholtz, attributed lightness perception to “reciprocal action in the somatic 

visual field”, making no reference to the perception of illumination. 

Katz (1935), in his thorough phenomenalogical account of color 

experience, made it clear that illumination level is part of our experience of a 

scene. But he also created the basic methods for studying lightness constancy 

still used today. Although Katz criticized Helmholtz’s theory, in practical terms 

his own theory is scarcely different on how perceived illumination is 

estimated. And Katz was even more explicit that perceived illumination is 

based on average luminance, which he referred to as the “total insistence of 

the visual field” (p 279). 

Helmholtz’s claim that lightness depends on perceived illumination, 

called the albedo hypothesis, also implies that lightness and perceived 

illumination are tightly coupled in a complementary relationship Anticipating 

the later decomposition models, the gestaltist Koffka (1935) affirmed a 

complementary relationship between lightness and perceived illumination 

but rejected the idea that one depends on the other, suggesting that the two 

“might as well be concomitant effects of a common cause” (p 349). He 

formalized this complementarity in an invariance theorem, writing that, “a 

combination of whiteness and brightness, possibly their product, is an 

invariant for a given local stimulation under a definite set of total conditions. 
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If two equal proximal stimulations produce two surfaces of different 

whiteness, then these surfaces will also have different brightnesses, the 

whiter one will be less, the blacker one more bright” (p 244). (Note: Koffka 

used the term brightness to mean perceived illumination whereas in modern 

usage, brightness means perceived luminance).  

Other gestalt writers, such as Gelb (1929) and Kardos (1934), endorsed 

the complementarity of surface lightness and perceived illumination. Indeed, 

Gelb’s famous illusion has been used as an example. A piece of black paper is 

suspended in midair and illuminated by a spotlight. This causes two equal and 

opposite errors. The paper is seen as much lighter than its actual value (white 

rather than black) AND its perceived illumination level is much lower than its 

actual value; that is, the paper is perceived to share the same illumination as 

the surrounding room when it is actually more brightly illuminated by the 

spotlight. Lightness and perceived illumination shift in opposite ways as soon 

as the black paper is surrounded by a larger white paper, also in the spotlight. 

Lightness shifts from white to black while perceived illumination shifts from 

the dimmer prevailing illumination of the room to the brightness of a 

spotlight. 

Later, Kozaki and Noguchi (1976; Noguchi & Kozaki, 1985) would 

introduce the term "lightness-illumination invariance hypothesis" to 
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distinguish Koffka’s more symmetrical view from the causal ordering implicit 

in the albedo hypothesis. 

Back to reductionism 

The rich development of lightness theory in Europe during the 1930s 

was cut short by developments surrounding World War II. After the war the 

center of scientific work shifted to the United States, where behaviorism was 

firmly in control. Until the 1970s, everything in lightness perception was 

attributed to lateral inhibition. A gray square on a white background appeared 

darker than an identical square on a white background because light from the 

white background inhibited neural activity associated with the enclosed gray 

square. Likewise, even though the luminance of a gray paper in bright 

illumination was much higher than that of a gray paper in shadow, the neural 

activity produced by the two papers would be similar, due to the inhibition 

produced by the brightly illuminated surround. The so-called contrast 

theories of that period had their roots in Hering (1874/1964), and like Hering, 

they made no mention of perceived illumination. Although human observers 

can report two values, lightness and perceived illumination, at each point in 

the image, contrast theories output only a single value at each point. 
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Other non-contrast theorists were skeptical about perception of the 

illumination and rejected the tight linkage between illumination and lightness. 

Beck (1959, 1961, 1972) explicitly rejected the albedo hypothesis (and by 

extension, the invariance theorem), arguing that lightness and perceived 

illumination level have separate stimulus correlates. Wallach (1976, p 32) 

wrote that, “the perception of illumination is not relevant to the issue of 

constancy.” Helson (1964) said little about perceived illumination. But the 

adaptation level in his adaptation level theory, has sometimes been treated as 

a surrogate for illumination level, and it is based explicitly on average 

luminance.  

The rise and fall of inverse optics 

The impoverished account based on lateral inhibition was swept aside 

during the cognitive revolution and the emergence of decomposition theories 

(Bergström, 1977; Barrow & Tenenbaum, 1978; Gilchrist, 1979; Marr, 1982; 

Adelson & Pentland, 1990; Adelson, 1993; Arend, 1994). The retinal image 

was decomposed into the separate components of reflectance and 

illumination that had combined to form the image. Barrow and Tenenbaum 

(1978) introduced the concept of intrinsic images. Gilchrist proposed that 

edges in the retinal image were (a) encoded, then (b) classified as changes in 
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either reflectance or illumination, and (c) integrated within each class, to 

produce two intrinsic images, one a map of the reflectances in the scene, the 

other a map of the perceived illumination across the scene (Gilchrist, 1979; 

Gilchrist, Delman & Jacobsen, 1983). Adelson (1993) spoke of “…sophisticated 

mechanisms that decompose the image into a set of intrinsic images 

representing reflectance, illumination, and transparency” (p 2044). The 

intrinsic image approach is completely consistent with Koffka’s theorem. 

In this summary, we do not comment on the many so-called brightness 

models (Blakeslee & McCourt, 1999; Grossberg & Todorović, 1988; Shapiro & 

Lu, 2011). These models seek to account for the perception of luminance 

(brightness) whereas we have focused on lightness, that is, the perception of 

surfaces that reflect light. 

The rise of mid-level theories 

By the end of the 1990s, failures of these decomposition theories were 

beginning to mount. They could not explain the familiar simultaneous contrast 

illusion in which a gray patch on a white background appears darker than the 

same patch on a black background. They could not predict failures of lightness 

constancy, which, though often small, are always present. In general, they 

portrayed a representation of the scene that is far more complete than what is 
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shown by empirical results. New work on change blindness (Rensink, O'Regan 

& Clark, 1997; Simons & Levin, 1997) was making the same point.  

Both Gilchrist and Adelson began to abandon the inverse optics 

approach, developing what Nakayama (1999) called mid-level models. These 

offered a more adequate account of perceptual experience than the low-level 

contrast theories based on lateral inhibition, but stopped short of the full-

blown representation implied by inverse optics, referred to by Adelson as 

“overkill”. Gilchrist and his collaborators (Gilchrist et al, 1999) proposed an 

anchoring theory of lightness, in which the image is parsed into frames of 

reference, closely related to the atmospheres and adaptive windows proposed 

by Adelson (2000). In like manner, Singh and Anderson (2002) rejected 

Metelli’s inverse optics account of perceived transparency, in favor of a mid-

level approach that contained its own anchoring rule. 

Some writers, such as Soranzo and Agostini (2006a, 2006b), continue to 

endorse the inverse optics approach. Others, like Brainard and his co-authors 

(Brainard & Wandell, 1991; Brainard, Wandell & Chichilnisky, 1993; 

Doerschner, Boyaci, and Maloney, (2004); Gerhard & Maloney (2010); 

Brainard & Maloney, 2011), at least in the chromatic domain, have proposed 

an equivalent illumination model, suggesting that the visual system uses the 

cone excitation from all surfaces in the scene to implicitly estimate the 
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illuminant coordinates. These coordinates are then used by the visual system, 

much as in the albedo hypothesis, to set the transformation between the color 

signal corresponding to each surface and that surface’s perceived color. 

Estimated illumination, however, may not correspond to physical illumination 

and this would explain color constancy failures. 

But especially in the lightness domain, the most widely cited theories 

are those of Gilchrist and Adelson. Until now, neither of these mid-level 

approaches has offered a concrete account of either the basis for perception of 

the illumination or of the relationship between surface lightness and 

perceived illumination. Anchoring theory, as published, is strictly a theory of 

perceived surface lightness. It has been criticized by Anderson, Whitbread and 

de Silva (2014) and others for its silence on the pregnant question of 

perceived illumination. In the work reported here, we address this deficit. 

Historically, some writers have tended to deny that illumination is 

perceived. Helmholtz (1866/1924, v. 2, p. 287) suggested that illumination is 

“eliminated” in the process of achieving lightness constancy. Katz (1935, p. 

38) remarked that: “one searches Hering’s writings in vain for a statement 

that the experience of illumination is an independent factor in ordinary 

colour-perception.” However, one need only look around to confirm that the 

overall level of illumination, as well as spatial variations in illumination are 
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perceived, and this has been documented in many reports, both older and 

more recent (Kozaki & Noguchi, 1976; Noguchi & Kozaki, 1985; Oyama, 1968; 

Noguchi & Masuda, 1971; Kozaki, 1965, 1973; Beck, 1959, 1961; Kartashova, 

et al, 2015; Xia et al, 2014; Mury et al, 2007; Xia et al, 2017). 

Because the fundamental problem of lightness perception stems from 

the fact that surface reflectance and illumination intensity are confounded in 

retinal luminance values, our work is focused on the perception of 

illumination intensity and its relationship to surface lightness. Thus, we do not 

review the many reports concerning the perception of lighting direction, 

diffuseness, light source distance, shading, or lighting color. 

Empirical results 

Results supporting the invariance concept have been reported by 

Oyama (1968), Kozaki and Noguchi (1976), Noguchi and Kozaki (1985), 

Gilchrist, Delman and Jacobsen (1983), Gilchrist and Jacobsen, (1984), and 

Bonato and Gilchrist (1994). Rutherford and Brainard (2002) have presented 

evidence challenging the invariance hypothesis. 

Empirical work on perceived illumination is limited, but tends to show 

that perceived illumination depends on highest luminance, rather than 

average luminance. Oyama (1968), Noguchi and Masuda (1971), and Kozaki 
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(1965; 1973) all found results supporting highest luminance. Beck (1959; 

1961) equivocated on the issue after testing perceived illumination using 

several strange textures as stimuli. Zdravković, Economou & Gilchrist (2012) 

showed that two spatially separate fields of illumination are perceptually 

treated as a single field of illumination as long as the two fields have the same 

highest luminance. 

A new method 

The aim of Experiments 1 through 4 was to determine whether 

perceived illumination is based on the highest luminance (HL) or the average 

luminance (AL) within a field of illumination. Measuring perceived 

illumination level is not as easy as measuring lightness, partly because 

illumination level is not as salient a part of our visual experience as is surface 

lightness. In previous lab work we have found the perceived illumination 

matches show more variability than lightness matches (Bonato & Gilchrist, 

1994). We created an apparatus for measuring the brightness of perceived 

illumination that we felt would be quite intuitive and simple. Observers 

adjusted the illumination in one window so that it appeared equal to the level 

of illumination in a second nearby window. These windows can be called 

occlusion frameworks, because they are bounded by occlusion edges. 
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General Method 

Apparatus 

The experiment was conducted within a vision tunnel (61 cm wide, 62 

cm high, and 203 cm deep), as shown in Figure 1. The tunnel was divided into 

a viewing booth (66 cm deep), a stimulus chamber (137 cm deep), two side-

by-side illuminations chambers (each 32 cm deep by 30 cm wide), and a 

chamber (17 cm deep) housing two light sources. 

The observer sat in the viewing booth and looked into the stimulus 

chamber through a 1.5 by 13 cm horizontal aperture. The wall at the far end of 

the stimulus chamber contained two 5.1 cm square windows (each 

subtending 2.1 degrees of visual angle) separated by 18 cm. Each window 

revealed the interior of an integrating chamber that was illuminated by light 

from a Philips halogen 60W, 120V bulb which entered the chamber through a 

round hole in the center of the back wall of each chamber. The intensity of 

light entering a chamber could be changed by adjusting the opening size of a 

circular metal diaphragm attached to the hole. A stimulus panel, containing a 

pattern of shades of gray and suspended in the center of this chamber, filled 

the window from the observer’s point of view. Light coming through the 

diaphragm struck the white backside of the stimulus panel and was reflected 
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among the white walls, providing uniform illumination on the front of the 

panel.  

The diaphragm was adjusted to provide a given intensity of illumination 

in the left-hand window, designated the standard window. A plastic knob in 

the viewing booth was connected to the diaphragm controlling the 

illumination in the right-hand, or adjustable window. The observer turned this 

knob to match the level of illumination in the two windows. Lightness matches 

were made using a separately illuminated Munsell chart housed in a metal box 

located below the viewing aperture just above the observer’s lap.  
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Figure 1 Clockwise from top: plan view of vision tunnel; outside view of tunnel; observer’s view of wall containing 

two windows; low-range Mondrian; full range Mondrian. Wall was white, but wall luminance was 18 times lower 

than a black patch in the Mondrian. 

Observers 

An a-priori power analysis was conducted to determine the adequate 

sample size within each experiment (see Maxwell, Kelley & Rausch, 2008). To 

this aim, we asked what would be the minimum effect that would have 

theoretical meaning in the context of the present study. Given that we are 
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investigating changes in the perception of illumination and in lightness, we 

reasoned that a theoretically meaningful effect should be at least as big as the 

just noticeable difference (JND) in perceived illumination and lightness for 

conditions comparable with those of our study. Psychophysical measurements 

of perceived illumination and lightness discrimination revealed effect size 

estimates of 0.7 and 3.2, respectively (Kozaki, 1976). This was calculated by 

comparing the physical difference between two stimuli with their perceived 

difference. Power analyses for one-tailed within-samples t-tests were 

conducted in G*Power (Faul, Erdfelder, Lang, & Buchner, 2007) using an alpha 

of .05 and power of .80 and an effect size of 0.7 (i.e. the smaller between the 

two estimations). These analyses suggested sample sizes of fifteen observers 

per experimental condition.  

A separate group of fifteen observers, all with normal or corrected-to-

normal acuity and naïve with the regard to the purpose of the experiments, 

participated in each of the experiments. The observers were undergraduate 

students at Rutgers-Newark who volunteered to participate in order to satisfy 

a course requirement. Their average age was 21, with 59% female and 41% 

male. The experiments were approved by the ethics committee of Rutgers 
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University and was conducted in accordance with the Declaration of Helsinki 

(2008).  

Procedure 

Before the beginning of each experimental session, the illumination in 

the adjustable chamber was alternately set by the experimenter to either its 

maximum or minimum intensity. After being seated in the viewing chamber, 

the observer was asked to adjust the illumination in the adjustable chamber 

until the two chambers appeared to be equally illuminated or appeared as a 

single chamber. The task was intuitive and easy to be performed. 

Next, observers were asked to match the lightness of the darkest and 

lightest patch visible in each window, using the Munsell scale. Each trial lasted 

about 2 minutes.  

All statistical analysis was conducted using log luminance values. Any 

match lying more than three standard deviations away from the mean of the 

rest of the matches was considered an outlier, and the data from that subject 

was excluded. One subject was excluded and replaced by another subject in 

each of Experiments 1, 4, and 5. 
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Experiment 1: Mondrian stimuli 

Stimuli  

The stimuli consisted of two well-articulated Mondrian patterns that 

differed in reflectance range: while the standard window contained a full 

reflectance range, from white to black, the adjustable window contained a 

truncated range from white to mid-gray. The use of frameworks of different 

range made it possible to compare the two rules. Otherwise predictions based 

on highest luminance and average luminance would be identical. 

The Mondrian in the standard window was composed of 36 rectangular 

patches ranging from white (Munsell 9.5; 35 cd/m-2) to black (Munsell 2.5) 

while the patches in the adjustable window ranged from white (Munsell 9.5) 

to only middle gray (Munsell 4.5). The illumination level in the tunnel itself 

was quite low, such that the luminance of the white wall containing the 

windows was approximately 0.34 cd/m-2. 
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Results 

Illumination matches 

Illumination matches were collected by measuring the luminance of the 

white patch (Munsell 9.5) in the adjustable window. According to Fechner’s 

law (1889), luminance matches were then transformed into logarithmic 

values. The results are shown in Figure 2, together with a sketch of the stimuli 

and predictions based on the HL and AL rules.  

 

Figure 2. Left: Observer’s view of wall. Right: Predicted (light bars) and obtained (black bar) illumination levels. 

Y-axis is log luminance, in cd/m-2, of the white patch in the adjustable chamber. 

If illumination were determined by the HL rule, the expected log 

luminance of the white in the adjustable chamber would have been 1.54 (i.e. 

the same luminance of the white square in the standard chamber). However, if 

the match were determined by the AL rule, the expected log luminance of the 
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white in the adjustable chamber would have been 1.21, calculated as shown in 

equation 1. 
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Equation 1 

 

Where: 

ALR9.5 = Luminance of Munsell 9.5 in the adjustable window according to AL rule. 
R9.5 = Reflectance of Munsell 9.5 (i.e. 90%). 
R2.5 = Reflectance of Munsell 2.5 (i.e. 4.61%). 
LumR  = Luminance of reflectance R in the standard window. 
RR  = Reflectance R in the adjustable window. 
RAR = Relative Area of the surface with reflectance R. 
 

Hence, according to the AL rule, the luminance of a given reflectance in 

the adjustable window is the ratio between the average luminance in the 

standard window and the average reflectance in the adjustable window, 

multiplied by its reflectance (Munsell 9.5 in equation 1).  
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A one sample t-test1 revealed that matches were significantly different 

from the AL rule (t(14) = 3.5; p < 0.01) but not significantly different from the 

predicted HL rule (p = 0.75). Because our conclusion in favor of the HL rule is 

based on a statistically null difference between the prediction based on HL 

rule and the luminance of the white square in the standard window, we 

conducted a JZS t test as described by Rouder, Speckman, Sun, Morey, and 

Iverson (2009) between the HL rule’s predictions and the data (1.54). This 

analysis was conducted in R (R Core Team, 2018) through of the 

“BayesFactor” package (Morey & Rouder, 2018). The obtained Bayes Factor 

BF01 of 3.68 indicates that the relative odds of the HL rule’s prediction are 

3.68 higher relative to the alternative hypothesis that the data are different 

from the HL rule. This is positive evidence that in this experiment illumination 

perception was determined by the HL.  

Reflectance (Munsell) matches for Experiments 1-4 are presented 

together in the results section for Experiment 4. 

                                                
1 Data of the experiments in this project were found to be normally distributed with Kolmogorov-Smirnov 
tests < 0.19 and ps > 0.11. 
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Experiment 2: Low frequency checkerboards - Incremental 

illumination 

The aim of experiment 2 was to test the HL and AL rules in simple, 

poorly articulated frameworks. In this experiment, the two windows 

contained only two reflectances each. Again, the standard window contained 

the full reflectance range and the adjustable window had only a truncated 

range. 

Stimuli 

Each window contained a 2 by 2 checkerboard pattern (see figure 3). 

Each square subtended 1.05 degrees of visual angle. The checkerboard in the 

standard window was composed of white (Munsell 9.5; 35.2 cd/m-2) and black 

(Munsell 2.75; 2.41 cd/m-2) checks; while the checks in the adjustable 

chamber were white (Munsell 9.5) and light gray (Munsell 8).  

Results 

 The results are shown in figure 3. 
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Figure 3. Stimuli and results for Experiment 2. 

 

A one sample t-test revealed that illumination matches were 

significantly different from the AL rule (t(14) = 14.24; p < 0.01); however, the 

results did not differ significantly from the expected HL rule (p = 0.91). A JZS t 

test was conducted comparing the HL and the data. This test yielded a Bayes 

Factor BF01 of 3.8, providing positive evidence that also in experiment 2 

perceived illumination was determined by the HL. 
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Experiment 3: High frequency checkerboards - incremental 

illumination 

Experiment 3 was identical to Experiment 2 except that we used a 

higher frequency checkerboard (see Figure 4) in the two windows. We did so 

in order to test the possibility that as the spatial frequency of the 

checkerboard increases the basis for matching illumination levels might shift 

from highest luminance to average luminance. The logic was as follows. As 

spatial frequency increases to the point at which the checks can no longer be 

resolved, the only match available would be one based on the only visible 

luminance, corresponding to the average luminance (Linnell & Foster, 2002). 

Although the checks in this experiment were still very easily resolvable, we 

wondered whether a trend toward matching average luminance might begin 

to appear before they become unresolvable. 

Stimuli  

Each window contained a 6 by 6 checkerboard pattern (see figure 4, left 

panel). Each square shaping the checkerboard was 1.5 cm. In all other 

respects the method was identical to that of Experiment 2. 

Results 

The results are shown in figure 4. 
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A one sample t-test revealed that the matches were significantly higher 

than predicted from the AL rule, calculated with equation 1, (t(14) = 11.93; p < 

0.01); however, not significantly different from that predicted by the HL rule 

(p = 0.6). A JZS t test was conducted comparing the HL rule’s predictions and 

the data. The resulted Bayes Factor BF01 of 3.78 provides, again, positive 

evidence in favor of the HL rule. The results are essentially identical to those 

of Experiment 2.  

   

Figure 4. Stimuli and results for Experiment 3. 

 

Experiment 4: Decremental illumination - Low Frequency 

checkerboards 

Stimuli 
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The stimuli in experiment 4 were identical to those in experiment 2 

except that the illumination on the tunnel wall was increased (luminance of 

the wall surrounding the windows: 252.8 cd/m-2) and the illumination in the 

standard window decreased (highest luminance: 14.5 cd/m-2). In this case, the 

windows can be called shadowed occlusion frameworks. 

Results 

The results are shown in figure 5. 

 

   

Figure 5. Stimuli and results for Experiment 4. 

A one sample t-test revealed that matches were significantly different from 

the log-luminance expected according to the AL rule (i.e. 0.58 calculated as per 

equation1) (t(14) = 9; p < 0.01); but not significantly different from the 
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expected HL rule (p = 0.92). A JZS t test between the HL rule and the data 

yielded a Bayes Factor BF01 of 3.79, providing positive evidence that also in 

experiment 4 illumination perception was determined by the HL (Figure 5). 

Lightness results Experiments 1-4 

Table 1 shows the average Munsell values of the first 4 experiments for the 

highest and lowest luminances and for both the standard and adjustable 

windows. As expected, the highest luminances in the two windows were 

perceived to be the same. Furthermore, as the adjustable window contained a 

truncated range, an expansion of the lightness range was observed, consistent 

with an expected tendency toward normalization of the range (Gilchrist, 2006, 

p. 263). 
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Table 1. Average Munsell values from the first four experiments. 

Intermediate discussion 

Probably due to the relative ease of our matching task, the results of 

Experiments 1-4 show more decisively than previous work that perceived 

illumination is based on the highest luminance in a framework, not the 

average. Thus, the anchoring of perceived illumination shows a striking 

parallel to the anchoring of surface lightness, also based on highest luminance 

rather than average.  
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Note that anchoring to the highest luminance is equivalent to assuming 

a minimum intensity of illumination. Brainard and Freeman (1997) have 

shown that this assumption minimizes the disruptive effect of noise, showing 

an advantage from an evolutionary point of view. And both they and Murray 

(2013) have shown that anchoring to the highest luminance is consistent with 

the probabilistic assumptions about lighting and reflectance advanced by a 

Bayesian approach. 

Our finding that perceived illumination is based on highest luminance 

directly implies Koffka’s invariance theorem. To make this concrete, imagine a 

Mondrian in which the highest luminance is a middle gray. That gray would 

appear white and the perceived illumination would be lower than the actual. 

Now imagine we add real white surface. This would have two effects: (1) it 

would cause the lightness of the middle gray paper to move down from white 

to middle gray (a roughly five-fold decrease in perceived reflectance) and (2) 

it would cause the perceived illumination level to increase, by roughly a five-

fold increase.  

These results are in line with Zdravković, Economou and Gilchrist 

(2012) who reported that two spatially separated frameworks of illumination 

function as a single framework, with about 50% efficiency, as long as the two 
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frameworks have the same highest luminance. Rutherford and Brainard 

(2002) reported experiments in which observers adjusted the illumination 

level in one miniature room to match that in another. They did not find that 

observers matched the two rooms for highest luminance, but there is a 

possible explanation. Unlike our apertures, which contained only a two-

dimensional pattern, the rooms in the Rutherford and Brainard study 

contained three-dimensional objects. All of the objects and walls in one room 

were painted different light gray shades while objects and walls in the other 

room were painted dark gray shades. Concavities present in their room (for 

example, in egg cartons) would have provided some actual reflectance 

information due to the role of mutual illumination, as shown earlier by 

Gilchrist and Jacobsen (1984). Thus, the highest luminance would not have 

appeared white, and the rooms would have appeared equally illuminated even 

though not matched for highest luminance. 

Effects of relative area 

Highest luminance and average luminance are both measures of relative 

luminance. But empirical work has shown that anchoring of lightness is also 

influenced by relative area (Li & Gilchrist, 1999; Gilchrist & Radonjić, 2009; 

Radonjić & Gilchrist, 2014). To a first rough approximation, the larger a gray 
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surface, the lighter it appears. As Kozaki (1973) and Noguchi & Masuda 

(1971) have shown, perceived illumination is also influenced by relative area. 

In our next experiment, we investigated this effect and whether the effect of 

relative area on perceived illumination is complementary to its effect on 

lightness. To make such potential effects most salient, in experiment 5 we 

maximized the change in relative area.  

Experiment 5: Test of extreme area 

The configurations in the two windows are shown in Figure 7. Both are 

composed of the same two shades of gray, but with differing relative areas. 

We expected that, under conditions of objectively equal illumination in the 

two windows, the illumination in the adjustable window would appear to be 

lower than that in the standard window, just as the lightness of the gray 

region would be higher in the adjustable window, compared with that of the 

standard window. 

Stimuli 

Both windows contained a pattern consisting of two shades of gray 

(white, Munsell 9.5 and middle gray, Munsell 4.5). The stimulus in the 

standard window was composed of a small gray region (2.6 x 1.7 cm, 
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subtending 1.1 x 0.7 degrees of visual angle) surrounded by a large white 

region covering the remainder of the window while the shades were reversed 

for the adjustable window (Figure 6, left panel). The luminances of the white 

and middle gray in the standard window were 41 and 6.6 cd/m-2, respectively. 

In all other respects the experiment was identical to the prior experiments. 

Results  

Lightness matches: The white in the adjustable window was seen as a 

Munsell 9.3, half a Munsell step lighter than the white in the standard window, 

which was seen as Munsell 8.7. This small but significant (t(14) =2.56; p<0.05) 

difference deviates from prior reports that have shown no difference for the 

highest luminance in such displays (Li & Gilchrist, 1999; Gilchrist & Radonjić, 

2009).  

 

More importantly, as we expected, the large gray region in the 

adjustable window appeared as Munsell 6.7, significantly lighter (t(14)=5.69; p. 

< 0.01) than the same gray in the standard window, which appeared as 

Munsell 3.8, consistent with prior reports of the effect of area on lightness. 



34 
 

Illumination matches: the highest luminance in the adjustable window 

was set to an average of 2.16 log cd/m-2 (figure 7, right panel), significantly 

higher than the 1.61 log cd/m-2 in the standard window (t(14)= 8.09 p. < 0.01). 

This result implies that, when objectively equal, the illumination in the 

adjustable window appeared substantially darker than that in the standard 

window, just as the gray in the adjustable window appeared substantially 

lighter. Indeed, as can be seen in Figure 6, the effects on lightness and 

perceived illumination were very close to equal and opposite, differing by only 

1.3%.  

 

Figure 6. Given equal actual illumination, the illumination in the adjustable window appears lower (right 
column) while the lightness of the gray area is higher (left column). 

 

This leads us to suggest the following:  
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HL + Area Hypothesis: The perceived illumination in the two 

windows will appear equal when the illumination in the large-gray 

window is equal to that of the small-gray window plus the amount by 

which the large gray appears lighter than the small gray. 

Specifically, the expected luminance of the white - according to the HL + 

Area rule - in the adjustable chamber is calculated as follows:  

9.5 4.5( arg ) 4.5( )
[ ]

R s R l e R smallHL A HL PR PR= + −+  

Equation 2 

Where: 
 
HL+AR9.5  = Luminance of Munsell 9.5 in the adjustable window according to HL+ Area rule. 
𝐻𝐿𝑠  = Highest Luminance in the standard window. 
PRR4.5(large) = Perceived Reflectance, in log units, of the Munsell 4.5 with large area.  
PR4.5(small) = Perceived Reflectance, in log units, of the Munsell 4.5 with small area. 

 

Figure 7 shows the illumination matching results compared to three 

hypothetical rules. Clearly the windows were not matched for highest 

luminance. The highest luminance in the adjustable window, following the 

illumination match, was 2.16, not significantly different from the value of 2.15 

predicted by the HL rule + an area effect (p. = 0.65; Bayes Factor BF01 = 3.47), 

calculated by adding to the value expected according to the HL rule, the 

perceived reflectance increase of the gray when its size is increased. However, 
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neither was the value of 2.16 significantly different from the value of 2.17 

predicted by the AL rule (p = 0.45; Bayes Factor BF01 = 2.92) calculated as per 

equation 1.  

There is no obvious reason why average luminance would apply in this 

case when it so clearly failed in the first four experiments. Nevertheless, we 

conducted Experiments 6 and 7 to tease apart the predictions of average-

luminance and highest-luminance-plus-area.  

  

Figure 7. Stimuli and results for Experiment 5. Log highest luminance (in cd/m-2) in the adjustable window 

predicted by three rules and the obtained luminance. 

In Experiment 6, we took a closer look at the area effect. Changes in 

relative area do not always produce a change in lightness. Li and Gilchrist 

(1999) surveyed approximately 16 published experiments in which lightness 

was measured as a function of relative area (see also Gilchrist & Radonjić, 
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2009; and Gilchrist, 2006, p. 241). They found that the results in, all of these 

experiments, were consistent with a very specific rule, which they called the 

Area rule. In a framework consisting to two regions, one darker and one 

lighter, when the darker region occupies greater than half of the total 

area, as the darker region becomes larger, its lightness becomes higher. 

(As the darker region approaches 100% of the area, its lightness approaches 

white, and the lighter region comes to appear self-luminous.) When the darker 

region is less than half of the total area, changes in its relative area have little 

or no effect on lightness. 

A convenient way to understand this rule is to assume a pair of twin 

tendencies: one a tendency for the highest luminance to appear white and the 

other a tendency for the largest area to appear white. When the darker region 

is less than half the total area, the two tendencies coincide and lightness is 

strongly anchored. 

However, when the darker region covers more than half of total area, 

conditions we will call the conflict zone, the two tendencies collide. In terms of 

relative luminance, the smaller and brighter region should appear white, but 

in terms of relative area, the larger, darker region should appear white. In 

addition to (1) the effect of area on lightness, many strange effects have been 
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reported only under these conflict zone conditions, including: (2) the range of 

perceived gray levels is compressed relative to the range of actual gray levels 

(Li & Gilchrist, 1999; Gilchrist & Radonjić, 2009), (3) self-luminosity emerges 

(Bonato & Gilchrist, 1999), (4) Heinemann's (1955) enhancement effect 

occurs, (5) the fluorence phenomenon of Evans (1974, p. 100) occurs, and (6) 

Schouten and Blommaert's (1995) brightness indention effect occurs. All of 

these phenomena are logical consequences of the need to satisfy the 

principles of both highest luminance and largest area. 

Experiment 6: Conflict and no-conflict zones compared 

This experiment was designed to determine something that cannot be 

derived from Experiment 5: whether the effect of area on perceived 

illumination is primarily restricted to the conflict zone (when the darker 

region covers more than half of the total area), just as is the effect of area on 

lightness. If so, this would demonstrate a further Koffka-type 

complementarity between lightness and perceived illumination, even when 

the highest luminance rule does not rule. It would also suggest that the 

perceived illumination levels we found in Experiment 5 were based on 

matching for highest luminance plus an area effect rather than on matching 

for average luminance. If those matches were based on average luminance, we 
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should find that perceived illumination depends on relative area even in the 

no-conflict zone, when the darker region covers less than half of the total area. 

Stimuli 

The stimuli used in Experiment 6 are shown in Figure 8. In the first 

condition (no-Conflict zone) the stimulus from the standard window in 

Experiment 5 was paired with a stimulus in which the same two shades of 

gray had equal areas. In the second condition (Conflict zone) the stimulus 

from the adjustable window in Experiment 5 was paired with the equal area 

stimulus. 

Results 

No-conflict zone condition 

Illumination matches: As seen in Figure 8 (top), the windows were 

matched for highest luminance, indicating that the illumination level in the 

two windows appeared equal to the observers when it was actually equal, 

with no effect of relative area on perceived illumination. The observed 

illumination matches differed significantly from the expectations based on 

average luminance (t(14)= 7.18; p. < 0.01) but not from expectations based on 

highest luminance (t(14)= 0.02; p = 0.99). The Bayes Factor BF01 of 3.81 
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indicates that the relative odds of the HL rule are 3.81 higher relative to the 

alternative hypothesis that the data are different from the HL rule. 

Lightness matches: The white in the adjustable window was seen as a 

Munsell 9.2 (log reflectance 1.92), the same as the white in the standard 

window (t(14) = 0.49; p = 0.63; Bayes Factor BF01 = 3.42). The gray in the 

adjustable window was seen as a Munsell 5.4 (log reflectance 1.35), 

significantly lower (t(14)= 2.66; p. < 0.05) than the gray in the standard 

window, which was seen as Munsell 6.1 (log reflectance 1.47). This is a rather 

modest effect given the relatively large change in the relative area of the gray 

region. 

Thus, these results show little effect of relative area on lightness 

(similar to earlier reports) and no effect on illumination.  

Conflict zone condition 

Illumination matches: The observers set the illumination level in the 

adjustable window significantly higher than predictions based on highest 

luminance (t(14)= 2.15; p. <0.05). This implies that when objectively equal, the 

illumination in the adjustable window (large gray region) appeared lower 

than in the standard window (equal gray and white). The match was not 

significantly different from predictions based on highest luminance plus an 
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effect of area (t(14) = 0.33; p = 0.75; Bayesian Factor BF01 = 3.64) or from 

predictions based on average luminance (t(14)= 0.39; p. = 0.71; Bayesian Factor 

BF01 = 3.57).  

The failure to distinguish these predictions stems in part from the 

relatively high variability in the data. Nevertheless, Experiment 6, taken as a 

whole, suggests that the matches were not based on average luminance 

because the matches deviated strongly from average luminance in the non-

conflict zone.  

Lightness matches: The white in the adjustable window was seen as a 

Munsell 9.3 (log reflectance 1.93), the same as the white in the standard 

window (t(14) = 0.76; p =0.46; Bayesian Factor BF01 = 2.97). The gray in the 

adjustable window was seen as a Munsell 7.7 (log reflectance 1.73), 

significantly higher (t(14)= 4.97; p. < 0.01) than the gray in the standard 

window, which was seen as Munsell 6.5 (log reflectance 1.55), consistent with 

the area rule. 
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Figure 8. Top: No-conflict zone stimuli and results. Bottom: Conflict zone stimuli and results, showing predicted 

(light gray) and obtained (dark gray) highest luminance in the adjustable window. 

Figure 9 shows both lightness and illumination matches in both conflict and no-

conflict zones. 
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Figure 9. Results from Experiment 6. Lightness matches: Solid line; right-hand Y-axis (log perceived reflectance of 

darker region). Illumination matches: Dashed line; left-hand Y-axis (log luminance of highest luminance). NOTE: 

these data points were derived by transforming the matching data to represent perceived illumination levels 

given equal actual illumination in the two windows. Conflict zone shown in gray. 

The results are consistent with our predictions. First, consider the 

results for lightness of the darker region (solid line, Figure 9). The slope of the 

line representing the increase in lightness relative to the increase in area was 

significantly steeper (t(28) = 3.61; p. < 0.01) in the conflict zone than in the no-

conflict zone. This is just the pattern of results previously reported in earlier 

experiments testing the Area rule (Li & Gilchrist, 1999; Gilchrist & Radonjić, 

2009), a pattern that is consistent with the dozen reports cited above. That is, 
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when entering the conflict zone the lightness of the darker region increases 

with an increase in its area more than when the increase in area occurs 

outside the conflict zone. 

Now consider the results for perceived illumination. The left region of 

Figure 9 and the top of Figure 8 show the results for the non-conflict zone, 

where, as in our first 4 experiments, the windows were matched, almost 

exactly, for highest luminance, implying no effect of relative area on perceived 

illumination. The results in the conflict zone, shown at the right region of 

Figure 9 and in the bottom of Figure 8, on the other hand, show a different 

pattern. There the highest luminance in the adjustable window was 

significantly higher than that of the standard window, as would be expected if 

an area effect were at play.  

Experiment 7: Conflict zone with black and white 

Although our results so far support our proposed area effect on 

perceived illumination, as opposed to matching for average luminance, we 

conducted an additional experiment designed to tease apart predictions based 

on highest luminance plus an area effect from predictions based on average 

luminance. This experiment was identical to the conflict condition of 

Experiment 6, except that the middle gray regions were replaced by black. 
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This allowed a greater divergence between the results predicted by the 

average luminance hypothesis and the highest luminance plus area 

hypothesis. It is easy to show that, as the darker region is made lighter, and 

approaches white, the difference between the predictions based on average 

luminance versus highest luminance plus area approaches zero. Likewise, as 

the gray region is made darker the difference between the predictions 

becomes greater. 

Both windows contained white (Munsell 9.5; 35.2 cd/m-2) and black 

(Munsell 2.; 2.41 cd/m2), though in different proportions. The luminance of 

the wall surrounding the windows was approximately 0.34 cd/m-2. 

Results 

Illumination matches: Figure 10 shows the stimuli in the two windows 

and the average illumination matches compared with predictions. The highest 

luminance in the adjustable window was set to an average of 1.63 cd/m-2 

(figure 10, right panel), significantly lower than the prediction of 2.09 based 

on the Average Luminance (t(14)= -4.71 p. < 0.01). The obtained mean value of 

1.63 was not significantly different from the value of 1.59 predicted by the HL 

rule (p = 0.67; Bayesian Factor BF01 = 3.5), calculated as per equation 1 and 

not significantly different from the value of 1.71 predicted by the HL+ Area 



46 
 

rule (t(14)= 0.8; p = 0.44; Bayesian Factor BF01 = 2. 9) calculated as per 

equation 2.  

Lightness matches: As expected, no significant difference was found 

between the lightness values of the white in the standard (Munsell 8.9) and 

adjustable (Munsell 8.7) windows (t(14)= 1.25; p = 0.23; Bayesian Factor 

BF01 = 2). Also as expected, the lightness of the darker region in the 

adjustable window (Munsell 3.6) was significantly higher than that of the 

standard (Munsell 3.1) window (t(14)= 2.35; p. < 0.05). 

 

Figure 10. Left: white and black conflict zone stimuli used in Experiment 7. Note that the luminance of the wall 

was lower than that of the black region in the stimuli, although this cannot be represented on paper. Right: 

results obtained for highest luminance in the adjustable window compared to results predicted by three rules. 
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Discussion 

In this work, we sought to answer two questions. First, what is the basis 

for perceived illumination? Second, how is perceived illumination related to 

lightness?  

1. This work shows clearly that perceived illumination is not based on 

average luminance, as proposed by Helmholtz (1866) and Katz (1935). Except 

under the rather rare conditions when effects of area or mutual illumination 

are at work, perceived illumination is based on highest luminance, consistent 

with empirical findings by Oyama (1968), Noguchi & Masuda (1971), and 

Kozaki (1973). Once subjects in our experiments had matched illumination 

levels in the two windows, we found that the windows had almost the same 

highest luminance but very different average luminances. We found this same 

pattern of results for both Mondrian patterns and checkerboard patterns, for 

both higher and lower spatial frequency checkerboards, and for windows with 

both higher and lower illumination than that of the surrounding wall. The lack 

of effect of spatial frequency fails to support our suspicion that the basis of 

perceived illumination might shift from highest luminance to average 

luminance as spatial frequency increases. 
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2. The fact that highest luminance has been shown to anchor both 

lightness values and perceived illumination level provides the key to the 

relationship between lightness and perceived illumination. It suggests that, for 

a target of constant luminance, an increase (or decrease) in perceived 

illumination level will be accompanied by an equal and opposite decrease (or 

increase) in its perceived lightness value, just as Koffka claimed. To be more 

concrete, if a higher luminance is added to a window, the lightness of a fixed 

luminance target will go down, proportionate to the increase in highest 

luminance, while the perceived illumination in the window will go up by the 

same amount. 

Exceptional conditions 

Under certain conditions involving scaling effects, Koffka’s principle 

cannot apply directly. The scaling problem is a twin of the anchoring problem. 

While anchoring requires a point of contact between relative luminance and 

absolute lightness, scaling involves the way luminance differences are 

translated into lightness differences. The simplest scaling rule is the 1:1 rule 

implicit in Wallach’s ratio principle. If, for example, the luminance ratio 

between two adjacent patches is 5:1, then the ratio between their perceived 
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reflectance values will also be 5:1. Under such Wallach scaling conditions, 

Koffka’s invariance theorem appears to be valid.  

Koffka’s principle cannot apply (at least not in such a simple way) when 

scaling is distorted by special circumstances, such as when area effects, gamut 

compression, or scale normalization effects are at work. Under these 

conditions, the perceived range of grays is either expanded or compressed, 

relative to the actual range. Consequently, changes in perceived illumination 

could in principle be equal and opposite to one of the gray shades, but not to 

the others. 

Area effects. As noted earlier, area effects on lightness take the 

following form. In a framework composed of two regions, when the darker 

region covers more than half of the total area, increases in its area cause it to 

become lighter. Thus, the lightness difference between the darker and lighter 

regions becomes increasingly compressed relative to their luminance 

difference. For this reason, we have referred to these conditions as the conflict 

zone. We see that in Experiments 6 and 7. In Experiment 6, condition A the 

relative area of the darker region varies, but the conditions do not fall within 

the conflict zone, because the darker region never occupies more than 50% of 

total area. Thus, the lightness of the darker region was seen as modestly lower 



50 
 

(0.7 Munsell steps) in the adjustable window, despite an extensive change in 

its area. Under these conditions the two windows were matched for highest 

luminance. Overall, this implies that Wallach (1:1) scaling (i.e., no 

compression) applies to these conditions, as does the Koffka principle. 

In Experiment 6, Condition B, the change in relative area of the darker 

region did fall within the conflict zone and we observe a significant change in 

its lightness, despite a much smaller change in area of the gray region, 

compared to Condition A. This is shown by the solid line of Figure 8, in which 

lightness (that is, log perceived reflectance) is plotted against log area of gray. 

The slope of the change in lightness is significantly steeper in the conflict zone 

than outside that zone. This agrees with previous empirical work on the 

influence of relative area on lightness, described by the Area rule given above 

(Li & Gilchrist, 1999; Gilchrist & Radonjić, 2009; Diamond, 1955; Stevens, 

1967; Newson, 1958, and many others). The Koffka principle, in its simple 

form, does not apply in the conflict zone and, correspondingly the windows 

are not matched for highest luminance. 

Other re-scaling effects involve gamut compression and scale 

normalization. The applicability of Koffka’s theorem in these cases has not yet 

been explored empirically. 
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Area effects and Koffka’s theorem 

It should be noted that conditions that satisfy the conflict zone are quite 

rare in the real world, especially as Radonjić and Gilchrist (2014) have shown 

that the darker region filling more than half of total area must be a single 

homogeneous region; it cannot be the aggregate of multiple regions, even if 

those regions are equal in luminance. 

However, even under these rare conditions, our results have revealed 

that a variant of Koffka’s rule applies. Figure 9 shows the matches for both 

lightness and perceived illumination in both the conflict and non-conflict 

zones. Two things are obvious in this plot. First, both lightness and perceived 

illumination change mainly in the conflict zone, with little or no change in the 

non-conflict zone. Second, the change in perceived illumination is 

approximately equal and opposite to the change in lightness, consistent with 

the Koffka principle. But note the Y-axis. It represents the lightness of the 

darker region, not the lighter region. Enlarging the darker region makes it 

appear lighter and makes the illumination appear darker (by the same 

amount). But the lighter region, being anchored at white, does not change. 

Why area effects occur at all remains a mystery. The fact that, within the 

conflict zone, enlarging the dark region makes it appear lighter is not 
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consistent with inverse optics. Using a lower luminance to anchor lightness 

values in a shadow is adaptive, given that the shadow reduces the luminance 

of every surface within it. But the by-now well-established effect of relative 

area on lightness is not obviously adaptive, given that it does not function to 

correct a distortion in the retinal image introduced by an environmental 

factor. That is, the reflectance of a real-world paper does not change as a 

function of the size of the paper, so why should a change in size cause a 

change in perceived lightness? 

Implications for anchoring theory 

Until now anchoring theory was solely a theory of surface lightness and 

no reference was made to perceived illumination level. Our findings have 

clarified the relationship between lightness and perceived illumination level 

and have allowed us to accommodate perceived illumination level within 

anchoring theory. 

Under standard scaling conditions (Wallach’s 1:1 rule), the highest 

luminance determines both lightness values and perceived illumination level. 

And the relationship between lightness and perceived illumination within a 

framework is described by Koffka’s invariance theorem. The perceived 

difference in illumination level between two frameworks of illumination 
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depends simply on the luminance ratio between the highest luminance values 

in the two frameworks. And the lightness of a given luminance value differs 

between these frameworks in an inverse way. We have also found a symmetry 

between lightness and perceived illumination, even when scaling is distorted 

by area effects. Under conditions that produce area effects (i.e., when the 

darker of two regions within a window occupies at least half of the total area) 

any increase in the darker area causes its lightness to increase by the same 

amount that the perceived illumination in the window decreases. 

Conclusions 

1. The perceived level of illumination within a field of illumination is 

associated with the highest luminance within that field, not with the 

average luminance. 

2. Except when the relationship between luminance differences and 

lightness differences is distorted (i.e., scaling effects), the fact that 

both lightness and perceived illumination are anchored by highest 

luminance directly implies Koffka’s invariance theorem. When the 

highest luminance within a framework changes, the perceived 

illumination level and the perceived lightness associated with a given 

luminance change by the same amount, but in opposite ways. This 
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contradicts suggestions by Wallach (1948) and Beck (1972) that 

lightness and perceived illumination are not related in a systematic 

way. 

3. Under conditions subject to area effects, Koffka’s principle applies to 

the darker region, but not the lighter region, which is anchored at 

white.  

4. Perceived illumination level can now be incorporated systematically 

into anchoring theory. 
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