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Abstract 

Pressure ulcers are a common occurrence of damage to skin. Severity ranges from slightly 

discoloured skin to full thickness tissue damage which can be fatal in some cases. Engineering effort, 

typically developing computational models had made significant progress in the understanding and 

demonstration of the formation mechanism of pressure ulcers with the aetiology of excessive stress 

however relatively limited attempts had been made to develop relevant models for pressure ulcers 

caused by ischemia. The aim of this paper is to present evidence of a computational model 

developed to simulate ischemic pressure ulcer formation and demonstrate the established 

relationship between the computational data and the acquired clinically relevant experimental data 

by utilising laser Doppler velocimetry. The application of the presented computational model and 

the established relationship allows the evaluation of the effect of a mechanical loading to the 

cutaneous blood flow velocity which is a step closing to understand and evaluate a mechanical load 

to the formation of pressure ulcers caused by ischemia.  

Keywords: Pressure ulcer, finite element method, ischemia, cutaneous blood flow, computational 

model 

Introduction 

Skin is a large and multifunctional organ of human body which acts as a barrier to prevent harmful 

pathogens and chemicals from entering the body, it regulates body temperature, and also absorbs 

shock (1). A pressure ulcer (PU) can be described as localised skin damage which is a significant, 

health risk to patients, in most serious cases can be fatal through complications such as infection due 

to loss of skin integrity as a barrier and in most occurrences reduces the quality of life outcomes for 

patients. There is also a serious financial burden to health care providers and funding bodies. A PU is 

officially defined as: “A PU is localised damage to the skin and/or underlying tissue, usually over a 

bony prominence (or related to a medical or other device), resulting from sustained pressure 

(including pressure associated with shear). The damage can be present as intact skin or an open 

ulcer and may be painful”. (NHSi, 2018). The financial and social burden of pressure ulceration is a 

global challenge, with the Department of Health & Human Services of the United States, stating 

there are 2.5 million patients suffering from PUs and 60,000 patients dead as a direct result of a PU 

with more than 17,000 lawsuits which are PU related each year (2). The prevalence rate of PUs for 

186,000 patients from a range of healthcare settings in one large cohort study was reported as 

4.36% from July 2017 to July 2018 (NHS Safety Thermometer)(3). PUs are categorised into four 

different stages by the wound depth. Category I PUs present as discoloration with intact skin, 

Category II PUs show presence of an open wound where only superficial layers are damaged. 

Category III and IV PUs result in full thickness skin loss and tissue loss respectively including muscle 
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and tendons. There are two additional categories defined by the European Pressure Ulcer Advisory 

Panel and National Pressure Ulcer Advisory Panels from the United States of America (4); 

‘Unstageable’ is an extra stage referring to those PUs which are hard to be evaluated and ‘deep 

tissue injury’ referring to those which are damaged in deep layers with intact superficial layers. The 

National Health Service (NHS) in the UK spends £ 3.8 million everyday on the treatment of PUs (5). It 

was estimated that PUs cost £180-321 million (0.4-0.8% of health spending) in 1993, increasing to 

£1.43-2.14 billion annually (4.1% of the NHS expenditure) in 2000 (6). The time cost for the clinicians 

to treat the PUs accounts for 90% of the costs and 96% of the cost for stage I and II PUs (7). It is 

evident from these statistics, that a reduction in the prevalence of PUs would results in improve 

outcomes for patients, and a decrease in resource burden, both financial and time for the NHS and 

other private providers of care.  

The factors affecting PU development are well documented. A range of factors can cause formation 

of PUs including friction, shear, pressure and microclimate of the skin surface (8, 9). Both excessive 

distortion and shear within the deep tissue and ischemia at the superficial layers of skin are the 

known causes of the development of PUs (10). Excessive distortion and shear at the deep tissue 

usually cause deep tissue injury (11-13). The superficial layers of skin are usually intact but there is 

discolouration of the surface of the skin, this can result in a category III or IV PU once the superficial 

layers of skin breaks down (10). Ischemia, “an inadequate flow of blood to a part of the body, caused 

by constriction or blockage of blood vessels supplying it”, (14) on the skin is usually caused by 

prolonged application of pressure with or without friction which is often the cases for medical device 

related PUs (MDRPU) (15-17). Although PUs caused by ischemia are usually category I or II, they 

contribute to a significant portion of the total prevalence of PUs. Indeed a study by Black in 2010 

confirmed that over one third of the total prevalence of PUs was related to medical devices and 

among the total incidents of MEDPU, 67% of those are in Category I and II which are superficial (18). 

The nature of PUs caused by medical devices is most likely to be caused by ischemia, this is due to 

the low pressure magnitude coupled with a prolonged contact between the device and skin. 

Different computational models have been developed to understand and demonstrate the internal 

conditions of human bodies when different mechanical loadings are applied to skin including 

pressure, friction and shear. A 3-D finite element model for human buttocks developed by Makhsous 

(13) indicated the internal stress and pressure among different soft tissue validated by utilising 

magnetic resonance (MRI) imaging. A real-time subject-specific finite element (FE) model was 

developed by Linder-Ganz (19) to demonstrate that the average peak gluteal stress was 3 to 5 times 

higher in the subjects with spinal cord injury than healthy control participants. A model of a subject’s 

buttock, foam cushion and air-cell-based (ACB) cushions were used by Levy (20) to demonstrate that 

57% greater immersion and 4 orders-of magnitude lower for stress was gained by sitting on ACB 

cushion. Luboz in 2017 developed a finite element reduced order subject-specific buttock model 

which approximated the internal strain of patient in real time which could be adopted for interactive 

precaution of deep tissue injury or Category III and IV PU warning tool (21). These models were 

capable of demonstrating the formation mechanism of PUs relating to internal stress and strain 

however they are incapable of showing any relationship with restriction of blood flow. A wide study 

in literature was conducted by Savonnet et. al. on different FE models which highlighted the fact that 

most of the FE models focused on contact pressure and internal stress (22). The first attempt of 

understanding the effect of pressure to cutaneous blood vessels was found in Leung’s study which 

highlighted that the interface pressure between the volunteers and the supporting surface was still 

one of the key factors for the input of the finite element (FE) model simulation (23). Even though the 

interface pressure may not be able to reflect the internal stress experienced by the muscle and other 

soft tissue, it is still a good parameter for indicating the pressure experienced by superficial layers of 
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skin. The study concluded that interface pressure affected the cross-sectional area reductions of the 

cutaneous blood vessels.  The study established that the combined effects of pressure and friction 

from volunteers in sitting posture caused the cross-sectional area of blood vessels to reduce by 

15.0% to 19.3% depending on the locations of blood vessels (23).   

The previous model developed by Leung et. al. in 2017 was capable of demonstrating the cross-

sectional area change of the cutaneous blood vessels (23). Though the model was restricted in 

demonstration of single direction friction because of the two mirror boundary conditions applied 

and also, there was still a lack of relationship between the percentage change of the cross-sectional 

area change of the cutaneous blood vessels from the computational simulations and the actual 

clinical-relevant change of skin by applying pressure. This paper presents results in an attempts to 

demonstrate a relationship between the computational model (FE) and clinically relevant 

experimental data which is obtained by utilising Laser Doppler Velocimetry on six healthy volunteers. 

Through this initial sample the primary aim is to prove the feasibility of the method and gather data 

from a pilot study on cutaneous blood flow.  

This seeks to address the gap in knowledge of developing effective computational tools and related 

experimental results on the reduction in area of cutaneous blood vessels and the effect of cutaneous 

blood flow caused by mechanical loads. The presented model serves to evaluate the change in the 

cross-sectional area and the experimental results proves the feasibility of the methods in 

understanding the change in cutaneous blood flow velocity. 

 

Method 

The previous model (23) demonstrated the effect of the mechanical loading (pressure and friction) 

to the cutaneous blood vessels at the centre of the loading area of a volunteer sitting on a foam 

supporting surface. For the majority of the cutaneous blood vessels, it would not be located at the 

exact centre of the loading area and friction would be in single direction as the friction was in 

radially outward direction illustrated in the model developed in 2017. However, single direction 

friction was not able to be applied in the model presented in 2017 because of the two applied mirror 

boundary conditions. The model presented in this study, hence, has been developed to allow the 

application of single direction of friction and the relationship between the computational data from 

the FEA simulation and the acquired clinically related data has been established. Abaqus CAE 6.14 

was used for development of the proposed model.  

 

Feature of the Model 

The current model was developed in micrometre scale as this gives the appropriate dimensions to 

represent the key interest of the model (cutaneous blood vessels). The model was a halved circle 

with the diameter of 41,200μm. The model consisted of four layers in vertical direction representing 

three cutaneous layers including the epidermis, dermis and hypodermis. The extra layer for the 

current model was the stratum corneum which is part of the epidermis as shown in Figure 1 (a). In 

this model it was a separate layer because of its significant difference in mechanical properties 

compared to the rest of the epidermis layer. The presented model consisted of 10 radial sections 

which were developed to ensure different mesh sizes could be adopted for different sections as 

shown in Figure 1 (b). The model aims to relate the computational model to a set of acquire 

experimental data to establish a relationship between the cutaneous blood flow velocity and the 
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reduction in the cross-sectional area of cutaneous blood vessels. Hence, the study has been 

restricted to the cutaneous layers. The computational model would not be directly comparable to 

the anatomical location where the laser Doppler measurement is conducted if the deeper tissues i.e. 

muscles are involved, this is due to the limitations of flow measurement with the laser doppler 

method. 

 

 

(a) (b) 
 

Figure 1 (a) Vertical Layers of the Model (b) Radial Sections 

Internal Features of the Model 

The primary interest of the model was the cutaneous blood vessels located at the first radial section 

at the dermis and hypodermis layers. These cutaneous blood vessels were represented by hollow 

circular tubes at the respective vertical layers as shown in Figure 2 (a). The deformation of the 

cutaneous layers resulting in the change in the cross-sectional area was the main interest of the 

study. There were nine horizontal cutaneous blood vessels and six sections of interest were located 

on each of the horizontal cutaneous blood vessels as shown in Figure 2 (b). The change in the cross-

sectional area of the cutaneous blood vessels were calculated by analysing the deformation of the 

nodes on these sections of interest. All the cutaneous blood vessels with 15μm diameters 

represented the blood vessels that were slightly larger than capillaries. Two of the nine horizontal 

blood vessels were located at the dermis layers including one near the epidermis-dermis 

intersections and another one near the dermis-hypodermis intersections this was in agreement with 

the work by Démarchez (24). The remaining seven horizontal cutaneous blood vessels were located 

at the hypodermis layer as the hypodermis layers is known to be highly vascularised (25) but exact 

vertical locations were yet to be determined.  

  
(a) (b) 

Figure 2 Cutaneous Blood Vessels and Points of Interest 

Boundary Conditions 
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PUs often occur on soft tissue which has little muscle tissue therefore the cutaneous layers were 

assumed to be immovable in vertical direction and limited movement sideway when only pressure 

was applied. This assumption allowed the application of rigid boundary condition at the bottom face 

of the model as shown in Figure 3 to restrict any of the translational and rotational movement. This 

was indicative of PUs being most prevalent over bony prominences.  

The other boundary condition was symmetric which was applied at the Z-Y plane of the model as 

shown in Figure 3. The applied symmetrical boundary condition reduced the computational 

simulation time but did not compromise the results.  

The missing boundary condition was related to the circumference of the model. Any part of the 

human skin is surrounded by other similar mechanical property of materials. This poses some degree 

of restriction to the deformation of the skin at the centre.  However, this incomplete restriction 

poses a difficulty to the computational modelling of the human skin. The deformation of the area of 

interest of the model (centre part of the model) would be affected significantly by the application of 

the boundary condition on the circumference.  The method used to counter the difficulty posed by 

the accurate boundary conditions on the circumference was to enlarge the model which kept the 

circumference further away from the area of interest located at the centre of the model. 

 
Figure 3 Application of Boundary Conditions 

 

Mechanical Properties and Dimensions of the Cutaneous Layers 

The respective mechanical properties were applied to the cutaneous layers in order to analyse the 

deformation of each of the cutaneous layers shown Table 1. These mechanical properties were 

usually acquired by means of in vivo suction or in vitro tensile test. Mechanical properties were 

selected from literature; the models' accuracy relies on the relative confidence in the mechanical 

properties presented. The distinct mechanical property of the wall of the blood vessels was assumed 

to be insignificant because of the relative negligible thickness compared to the rest of the cutaneous 

layers. In addition, the mechanical properties, acquired below included the influence of the presence 

of the cutaneous blood vessels. Hence, it is reasonable to assume that the mechanical properties of 

the wall of the cutaneous blood vessels could be neglected at this instance.  

Table 1 Mechanical Properties and Dimensions of the Cutaneous Layers 

  Values References 

Thickness of Stratum Corneum  10 μm (26, 27) 

Epidermis 42 μm 

Dermis 1,285 μm 

Hypodermis 1,913 μm 

Young’s Modulus of  Stratum Corneum  1 MPa (26) 

Epidermis 0.05 MPa 
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Dermis 0.6 MPa 

Hypodermis 0.11 MPa 

Poisson’s ratio of skin  0.5 (28) 

 

Loading of the Model 

The mechanical loading, pressure, was applied at the top surface of the model as indicated on Figure 

1. The area of loading affects the deformation of the area of interest which is the middle radial 

section of the model. The deformation of the middle section was the key interest of the study. 

However, the deformation of the middle section increases with an increase of the loading area 

surrounding the middle section. Simulation test runs ensured that the deformation of the area of 

interest had minimum effect of the loading area by conducting the convergence test of the loading 

area against the reduction in the cross-sectional area of the cutaneous blood vessels. Only the 

middle radial section (radial section 1) was loaded in the first simulation test run and radial section 1 

and 2 were loaded for the second simulation test run and so forth to the 8th simulation test run 

where radial section 1-8 were loaded. The effect area of loading was demonstrated by the 

convergence test. 

In order to relate the computational data to a set of experimental data, the range of applied loading 

of the computational model was comparable to that used in the laser Doppler measurement. The 

loading to the computational model was in the range of 23.00 mmHg to 137.94 mmHg. 

Acquisition of the Clinically Relevant Experimental Data 

Clinically relevant data was an essential part of the study. This served as a tool for establishing the 

relationship between the computational model and the reality. It ensured the computational model 

was clinically relevant and fit to become a tool for medical device development as well as device 

performance prediction.  

Laser Doppler Velocimetry PF5010- LDPM (Perimed) was utilised to measure the velocity of 

particulate red blood cells, within cutaneous blood flow velocity of the six volunteers. This was 

assumed to be an indicator of the cutaneous blood flow velocity. Different loads were applied to the 

probe of the laser Doppler velocimetry resulting in application of pressure to the back of the hands 

of the volunteers. The magnitudes of the loading were from 23.08 mmHg to 115.44 mmHg, 

comparable to that used in the computational model as 45mmhg was found to be sufficient to cause 

PUs in specific condition and 12 to 32mmHg were found to be the capillary pressure by Landis (29, 

30) and further increase in load resulting in discomfort to the participants. Throughout the loading 

time, all six of the volunteers found the loadings to be acceptable with little discomfort experienced, 

the particular situation could be analogous to a cannular tube applying pressure to the back of a 

hand in a clinical situation or an oxygen mask being securely attached to the face.  

The setup of the laser Doppler measurement is illustrated in Figure 4. The hand of a volunteer, 

pressure mapping sensor I-scan 5051 (Tekscan) and the probe of the laser Doppler were put in the 

fixture. The loads were applied by restricting the space inside the fixture and using the pressure 

sensor as an indicator of applied pressure. The cutaneous blood flow was monitored using the laser 

Doppler.  

The pressure exerted was measured by the pressure mapping sensor while the laser Doppler 

provided arbitrary values of the blood flow velocity. An initial reading was acquired before exerting 

any pressure on the probe of the laser Doppler. Consequently, the change in the values provided by 
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the laser Doppler were calculated. The readings were taken at intervals of fifteen seconds for a 

duration of two-minutes. This was repeated for each magnitude of pressure applied to the hands of 

the volunteers. After each loading cycle, a two-minute settling period was provided in order to 

ensure the effect of the loadings was captured by the laser Doppler. The maximum and minimum 

values in each of the two-minute measuring period were discarded and the average of the remaining 

values were used to calculate the percentage change in the blood flow velocity.  

 
Figure 4 Setup of the Laser Doppler Measurement 

 

Result 

Loading Area Simulation Test Runs  

The results of the simulation test runs are presented in Figure 5. There were eight simulation test 

runs in total and the loading areas were increased in each of the test runs. Only radial section 1 was 

loaded for the first test run, radial sections 1 and 2 were loaded for the second test run and until the 

last test run in which radial sections 1 to 8 were loaded. The data points on Figure 5 present the 

average percentage changes of the cross-sectional area of the sections of interest on the cutaneous 

blood vessels of the current model. 

 

Figure 5 Percentage change of the cross-sectional area of blood vessels for 1st to 8th simulation test run 
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Figure 5 demonstrated the convergent trend of the data points where all the points converged to 

two values including approximately -6% and -30%. It was noticeable that less reductions were 

caused by the applied pressure for the cutaneous blood vessels located at the dermis layers as 

compared to those located at the hypodermis layer. All the points converged to -6% were located at 

dermis layers and the remaining points were located at hypodermis layers. Figure 5 also 

demonstrates that the data points started to be converged at the 7th simulation test run. 

Change in the Cross-sectional Area by the Computational Model 

The reduction in cross-sectional area on cutaneous blood vessels were calculated by the change in 

three-dimensional coordinates of the nodes on the cutaneous blood vessels of the developed model. 

The percentage changes of the cross-sectional area are shown in Figure 6. The grey-coloured points 

were the average all the 6 sections of interest in each of the 2 and 7 cutaneous blood vessels located 

at dermis and hypodermis respectively.  

 

Figure 6 Percentage Change of the Cross-sectional Area of the Cutaneous Blood Vessels 

Change in the Laser Doppler Readings  

Six volunteers participated in the study aged between 24 years to 50 years. The average percentage 

change of the blood flow velocity of the six volunteers is shown in Figure 7. The data on the graph 

fitted a logarithmic curve. 
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Figure 7 Percentage Change of the velocity of blood flow captured by Laser Doppler Velocimetry  

 

Discussion 

The percentage difference of the percentage change for the 7th and 8th simulation test runs was 

0.38% in Figure 5. Therefore, section 1-7 were loaded for the model which minimise the effect of 

loading area of the magnitude of the deformation of the cutaneous blood vessels. 

The percentage changes in the cross-sectional area of the sections of interest on the cutaneous 

blood vessels by the presented model were demonstrated by Figure 6. There were three sets of data 

including the dermis set, hypodermis set and the averaged set. The averaged set is utilised in later 

stage to compare with the experimental results of the clinically relevant experimental data. It 

showed that the cross-sectional area of the cutaneous blood vessels decreased linearly with the 

increase of the magnitudes of the applied pressure.  

The percentage changes in the blood flow velocity measured by the laser Doppler were 

demonstrated by Figure 7. The backs of the volunteers’ hands were loaded with 23.08 mmHg to 

115.44 mmHg. Higher magnitudes of pressure were not applied to the volunteers as discomfort was 

caused. Although higher magnitudes of pressure could not be applied, the existing range of applied 

pressure covers a wide range of magnitudes of pressure commonly perceived in clinical practices. 

The blood flow velocity decreased with the increase with the magnitude of the applied pressure. A 

logarithm curve fitted through the data points acquired from the laser Doppler measurement. It was 

exceptionally hard to acquire steady data from the measurement. All the volunteers were required 

to remain still throughout the measurement period as any slight movement could cause abnormal 

peaks in the measured readings. The relationship between the changes in the blood flow velocity 

caused by the applied pressure was demonstrated Figure 7. 

The relationship between the computational data and the clinically relevant experimental data is 

presented in Figure 8. The graph indicates that the cutaneous blood flow velocity decreases with the 

cross-sectional area of the cutaneous blood vessels. The FEA data represented the percentage 

change of the cross-sectional area of the blood flow domain, cutaneous blood vessel, while the 

experimental data represented the percentage change in the flow velocity.  
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According to fluid mechanics theory, Bernoulli's equation, for incompressible steady state flow, a 

reduction in flow area should result in an increase in flow velocity; this is not the case for the present 

example as demonstrated in figure 8. This is due to the complexities of the vascular system. Blood 

itself is a multiphase liquid and not expected to behave like a Newtonian fluid due to the complex 

physiology and pathology blood cells in which the red blood cells and blood plasma contribute to 45 

and 55 percent of the whole blood respectively (31).   

In addition to this, the vascular system would potentially allow for flow to be restricted and 

decreased in velocity in one area due to other areas of the vascular system - particularly where the 

focus of this study was cutaneous blood flow through smaller capillaries rather than arterial flow.    

The Laser Doppler specifically measures flow of red blood cells, there is a possibility that because of 

the deformation of the cutaneous blood vessels, as demonstrated by the FEA model to be an 

average of 25% reduction, red blood cells are not able to pass through the restricted pathway 

therefore leading to ischemia. 

Medical device developers or clinicians could utilise the presented computational model to 

determine the percentage change of the cross-sectional area of the cutaneous blood vessels and 

deducing the equivalent percentage change in the flow velocities by referring to Figure 8. The 

developed computational model and the established relationship could be used to evaluate the 

influence of mechanical loads on percentage change of the cutaneous blood flow velocity. This is 

typically useful for the case of understanding the effects of medical devices. This paper presents a 

method to convert an external parameter, interface pressure, to a physiological parameter, 

percentage change in cutaneous blood flow velocity. It allows a better understanding in clinical 

practice for the physical effects of medical devices to the likelihood of the formation of superficial 

pressure ulcers. 

 

Figure 8 Relationship between Computational Data and Clinically Relevant Experimental Data 
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the change in blood flow caused by mechanical loads. The study presents the data and demonstrates 

the feasibility of such method as a pilot study. The computational model is useful in determining the 

behaviours of cutaneous layers and the change in the cross-sectional area of the cutaneous blood 

vessels. The computational model can approximate the change in the cross-sectional area of skin 

with different conditions for instance, different skin mechanical properties due to ageing and 

condition could be evaluated. A larger experimental study could seek to correlate this with further 

experimental data. The developed model and the established relationship could reduce further 

involvement in human participants for specific skin conditions by conducting computational 

simulations with different input, mechanical properties. This paper fills the gap which exists in 

provision of effective tools and experimental results to evaluate the cross-sectional area change and 

the blood flow velocity by developing a computational model and a feasible experimental 

methodology.  

Conclusion 

A three-dimensional computational model capable of demonstrating change in the cross-sectional 

area of the cutaneous blood vessels was developed. This can be a robust tool for medical device 

developers as well as an effective indicator for clinicians. A linear relationship of decrease 

percentage change of the cross-sectional area of the cutaneous blood vessels with the increase in 

the magnitude of the applied pressure was found. The logarithm relationship of decrease in the 

blood flow velocity with the increase in the applied pressure was also discovered by conducting laser 

Doppler measurement. A relationship was established between the computational data and the 

clinically relevant experimental data to ensure the developed model will be clinically relevant. 
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