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Abstract

A computational study of a system of ten prey phenotypes and either one or ten predator phenotypes with a range of foraging
behaviours, arranged on two separate one-dimensional lattices, is presented. Mutation between nearest neighbours along the
prey lattice occurs at a constant rate, and mutation may or may not be enabled for the predators. The significance of competition
amongst the prey is investigated by testing a variety of distributions of the relative intraspecific and interspecific competition. We
also study the influence this has on the survival and population size of predator phenotypes with a variety of foraging strategies.
Our results indicate that the distribution of competition amongst prey is of little significance, provided that intraspecific is
stronger than the interspecific, and that it is typically preferable for a predator to adopt a foraging strategy that scales linearly
with prey population sizes if it is alone. In an environment of multiple predator phenotypes, the least or most-focused predators
are most likely to persist, dependent on the feeding parameter.
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1. Introduction

Early studies of population dynamics were limited to analytic investigations of low-dimensional dynamical systems. Large
scale models of food webs are not generally amenable to yielding analytic results, however their study through numerical simu-
lation has become a viable field in recent years with the proliferation of improved computational resources. Some studies have
modelled the coevolution of distinct groups of prey and predator species in the context of evolutionary games and searching for
evolutionary stable strategies (ESS) [1, 2], whilst other authors have focused on the coevolution of mutualistic species [3]. One
avenue from the ecological literature (with input from network and graph theory) has been the development of eco-evolutionary
food web models where all species occupy the same trait space and have the potential to produce mutant offspring that occupy
a different trophic niche than the parent. The Webworld model [4, 5], and the Loeuille-Loreau model [6], have been notably
successful, but others of interest include the Matching model [7, 8], Bastolla and Lassig’s model [9], and models that include
mutualistic interactions - for example Yoshida’s work [10] and Tokita and Yasutomi’s studies [11].

In this study, however, we extend the work of a coupled map lattice (CML) model [12, 13, 14, 15]. In this framework, the
species are predefined and separated into two one-dimensional trait spaces: a prey lattice and a predator lattice. Positions on
each lattice represent different prey and predator phenotypes, with the prey’s reproductive parameter and the predator’s degree
to which it focuses its feeding efforts on the most populous prey phenotypes dependent on their positions on their respective
lattices. All phenotypes are assumed to exist in a single, well-mixed environment. Individuals of a given phenotype have the
option to mutate to a neighbouring position along the lattice, but may not jump to the other lattice (i.e. a prey cannot become
a predator and vice versa). This approach, unlike the evolutionary food web models cited above, is less suited to exploring the
construction and maintenance of ecosystems from a “first species” scenario, but at low mutation rates may provide a suitable
model for investigating the coevolution of phenotypes of a given prey and predator in an environment. Previous work on this
model demonstrated evidence of dynamic behaviour including chaotic orbits [14], and a variety of predator strategies were
compared [13]. Subsequent work was restricted to the most intuitive of these foraging strategies - weighting hunting efforts
according to the size of the prey subpopulation. This is the form of predator strategy implemented in this work also, and predator
phenotypes are differentiated by the degree to which they adopt this strategy.
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For larger rates of mutation, an alternative interpretation of CML-based approaches is as a spatial model [16, 17, 18]. In
this case, there is precisely one prey and one predator phenotype. For the prey, the positions on the lattice represent distinct
geographic regions (with differing growth rates between sub-populations representing the degree to which the characteristics of
that environment support the prey), between which they can migrate. The “interspecific” competition between neighbouring
phenotypes in this scenario represents the inhibiting effects of fellow prey in neighbouring regions. The distinctions in predator
strategy along their lattice indicate how that predator subgroup allocate their hunting efforts across the geographic regions
- whether they spread evenly across all the areas, or move to and reside only in the subregion which hosts the greatest prey
subpopulation. In this way, we represent the degree to which a predator may actively hunt, rather than simply disperse. “Mu-
tation” of the predators in this case indicates the tendency of the predators to alter their foraging strategies by diffusion along
the lattice to become slightly more or less focused than before. However, we emphasise that our model is primarily designed to
study the mutation of phenotypes in a single environment and that the spatial interpretation is an alternative understanding of
the model that can be applied when the rate of “mutation” is too high to represent biological mutation.

This research considers an altered version of the previous model, and investigates two primary aspects: predator strategy,
and the distribution of competition between the prey phenotypes. Much effort in behavioural ecology has been devoted to
measuring foraging strategies and in particular the development of Optimal Foraging Theory [19]. In the context of dynamic
food web models, adaptive foraging has been found to positively impact stability of various types [20, 21, 22].

The study of competition has been a significant topic in mathematical ecology and a number of effects have been observed, de-
pending on the strength of the competition and the precise nature of the model. Some studies have found very strong competition
to be destabilising [23, 24], whilst a moderate amount promotes survival and helps to blur trophic levels so that a more complex,
realistic network structure can be obtained. For example, in the Loeuille-Loreau model, if interspecific competition is wholly
absent this can lead to plain food chains as species evolve towards maximum efficiency at a given body size, as there is no benefit
to being anywhere else to avoid competition. In other words, mild interspecific competition provides an incentive for species
to occupy new niches/trophic positions that would otherwise be non-optimal. Thus, one principle would seem to be that some
moderate degree of competition is necessary for survival and the production of complex food webs that bear the characteristics
of real ecosystems, by promoting speciation [6, 25]. Recent studies from a graph-theoretic approach (considering food webs as
a transportation network) have suggested that this trade-off between the efficiency of a star-shaped network structure and the
avoidance of competition in a chain-shaped network could be the fundamental principle underlying and uniting all food webs.
The authors of these works [26, 27] therefore propose a possibly universal property that describes the scaling of transportation
cost with the size of subtrees of the spanning tree. Furthermore, a study that considered the effects of intraspecific competition
in a selection of empirical soil webs [28] found that whilst patterns of the distribution of the strength of self-regulation across
the system (e.g. uniform, biomass-dependent, trophic level-dependent) lacked any strong correlation with its linear stability, it
could strongly impact the response of the web to variation in the density-dependence of a given species. Furthermore, for the
Webworld model [5], it was found to be necessary for interspecific competition to be weaker than intraspecific competition in
order to allow coexistence of multiple species.

In what follows, we use numerical simulations to examine the effects of changing the distribution of competition between
neighbouring prey phenotypes, and varying the degree to which predators focus their efforts on the most populated prey pheno-
types, in a discrete model that consists of a one-dimensional prey phenotype lattice and a one-dimensional predator phenotype
lattice, providing a simple model of coevolution of a pair of species in an ecosystem. We now describe the model and methods
in detail.

2. Multiple Species Predator-Prey Model

Consider a system of n prey phenotypes arranged along a one-dimensional lattice, and m predator phenotypes arranged
likewise. Prey phenotype j at time-step ¢ is denoted by N7, and predator phenotype i is denoted by Py.

2.1. Scenarios

We study five scenarios separately. In all cases there are precisely ten prey phenotypes (that is, n = 10) with mutation
enabled between them.
i) A single, non-mutating predator is introduced to the system.
ii) A single, mutating predator (the least focused) is introduced to the system.
iii) The same as (ii), but the predator introduced is the most, rather than the least, focused.
iv) 10 non-mutating predators are introduced to the system.
v) 10 mutating predators are introduced to the system.
Therefore, for scenario (i) we have m = 1, and in all other scenarios m = 10. For each situation, we consider the average total
prey and predator populations sizes and numbers of surviving phenotypes, given a variety of initial predator population sizes,
distributions of prey competition, and, in the case (i) of a single non-predator, the degree to which it focuses on hunting prey
phenotypes that have larger populations. In the cases where 10 predators are introduced, their individual initial populations



will be scaled by 0.1 so that the combined initial population is comparable to scenarios where only one predator initially enters
the system.

2.2. Before Mutation

Consider first the prey species. We model a regime whereby each of the prey phenotypes (in competition with itself and its
nearest neighbouring phenotype) reproduces by logistic growth, laying eggs and then that generation dies out. Following this,
predation on the next generation (that is, the young) then occurs.

2.2.1. Assignment of Control Parameters

The prey phenotypes reproduce according to a logistic map, and they are differentiated according to their reproductive
(growth) parameter r;, which increases linearly with phenotype number according to r; = 1 + ry,425/n, where j € {1,...,n}.
In the cases presented here we take 7,4, = 3, so that r; varies uniformly in the range [1.3,4].

Predator phenotypes are differentiated according to hunting strategy. Each is assigned a value a; which governs the de-
gree to which they focus on the prey phenotype or local population which is most numerous (the effects of choosing alternative
predation strategies in the precursor to this model were investigated in [13]). The effort that predator i expends on prey j at
timestep t is then calculated in the following manner:

ft’L,J _ (th)aL

- Sp_y (Nf) W

Thus it is ensured that, for each predator 7, the natural constraint ¥7_,; ff J = 1 is satisfied. In our model, the effort ftZ 7 that
predator i devotes to prey j at iteration ¢ can be treated equivalently with the fraction of the population of predator phenotype
i that is actively hunting prey phenotype j at that time. For the case of ten predators, the parameter « is simply scaled linearly
in0,1,...,9. That is, for predator i, a; = i — 1. However, for the scenario featuring only one predator (with predator mutation
switched off), we investigate the cases of oy = a € {0,1,2,4,7,10, 15, 20, 30, 50,100, 0o} where @ = oo indicates that at any
given time step the predator feeds only upon the most populous prey phenotype. Since the prey are governed by a logistic map,
any given prey phenotype has a maximum population determined by the competition parameters. Hence, a maximally-focused
predator (aw = 0o) may be able to eat with more efficiency (in the event of any prey phenotype having a low population), as it
does not waste any proportion of its effort on prey phenotypes that are poorly populated, but it is limited in its reproduction as
it can only consume a prey population of one phenotype per iteration. A less focused predator is less efficient in this sense, but
can potentially consume all ten prey populations simultaneously.

The impact of a predator i on prey j is then largely determined by the control parameter ¢/, which controls the number
of individuals of prey j killed per individual of predator ¢ that is actively hunting it per unit time, where the encounter rate
between the species is determined by N7 f;” P}. That is, ¢/ gives the ratio between the number of kills and the product of the
prey population and the predator population actively hunting it. As we shall see later, in order to reduce the number of free
parameters in the model, we choose a model such that ¢/ equates biologically to both the predator i’s kill rate of prey j and the
reproductive efficiency i gains from the kill. We then choose a uniform rate of consumption, so ¢/ = ¢ for all predators i and

prey j.

2.2.2. Dividing the Prey amongst Predators

Initially, based on our definitions the number of prey j killed by predation at a given time step will be 7" | chi ftZ J PtiNg .
However, this leads to a problem: because the predator phenotypes choose how to allocate their efforts independently of each
other, there could be a situation where this sum is greater than the total population of that prey phenotype. To preclude this,
after efforts are determined but before feeding occurs we divide the prey phenotype amongst its potential predators according
to the predator’s population and the fraction of effort that it is devoting to hunting that particular prey. This ensures that each
predator only gains access to a proportionate fraction of the prey. The number of prey killed then becomes:

o i,j ¢hd pi . fiajpi 1 m i i . )
izzlc ]ftJPt(thm):<¢t(]);c J<ftj)2(Pt)2)Ni], (2)

where
D (J) = Z 7 PE (3)
k=1

represents the total number of predator individuals of all phenotypes hunting prey j. Then,

0 if ¢ () = 0;
4(j) = N
ﬁ(j) S eI (fPEH? otherwise,

so that ®.(j) gives the final impact of predation on prey j, per prey individual, at time ¢.



2.2.8. The Model without Mutation

Then if the prey reproduce by a logistic model in the order described above (predation follows reproduction and the prey
generational life-span is identified with a single iteration), and experience intraspecific competition of strength a and interspecific
competition of strength b with nearest neighbours only, we arrive at the following set of equations:

Nl = rmiN/(1—aN} —bNP)(1— ®(1)), (4)
Nl = riN/(1=bN{"" —aN{} —bN{ (1 — @,(j)) for j = 2,...,9, (5)
N = rioN/2(1 = bN) — aN/P)(1 — @,(10)) (6)

Note that phenotypes at the ends of the lattice (j = 1 or j = 10) will in general have a reduced amount of interspecific competi-
tion.

For the predator phenotypes, we consider a “pure predator” with no other means of obtaining resources, and so we assume
a general form:

L= PG (B ¢ £ P, (7)

j=1

where Gi’j is the per capita production and 3% the reproductive parameter of predator i when it consumes prey j. Now, as
it is a pure predator, Pf must feed with a carrying capacity equivalent to the situation where every prey individual is consumed.
Since f, P{Nj is the number of encounters between predator i and prey j per iteration, and c” gives the fraction of these that
result in a successful kill, the carrying capacity of predator i for prey j will be reached when ¢/ fY P/ N} = N} and all prey j are
killed. Therefore, for the predators to also follow a logistic-like model, we take Gy’ = %I N/ (1 — ¢ f; P}). In order to keep
the number of free parameters to a minimum, we choose 87 = ¢*J = ¢. Therefore, ¢ controls both the killing efficiency and the
growth rate of the predator, which seems reasonable as the more efficient it is in slaying its prey, the faster the population will
grow. Moreover, if the term (1 — cf;*” P}) which governs carrying capacity were the only explicit occurrence of ¢ in the model
then an increased kill rate would be detrimental to the predator population. Therefore, by introducing the second dependence
on ¢ we minimise the model’s parameters, and determine the following three effects of increasing ¢: 1) a predator-prey encounter
is more likely to result in a successful kill; 2) the reproductive efficiency of predator ¢ when feeding on prey j is increased; 3)
predator 7 requires a greater prey population in order to ensure its own survival.

Finally, we must take into account the division of possible prey amongst the predators by introducing a factor of ftZ J Pi /o ()
into the sum. This brings us to the following general equation for the predators:

n

i = (P2 S ¢ij) (Fi7)2eNE (1 = cf7 Py (8)

Jj=1

2.8. Mutation

Throughout, we will employ a Nearest-Neighbour mutation scheme for the prey and for the predators when their mutation
is enabled. For either the predators or the prey, let K denote the number of possible phenotype (that is, the number of positions
on the lattice), and for a given 1 < 4,j < K let p; ; denote the fraction of phenotype i that mutates to phenotype j after
reproduction at each time step. Then clearly,

> pkj =1,k (9)
j=1

As we are using a nearest-neighbour scheme, the probability of mutating to a specified adjacent phenotype is p which is
constant throughout a given simulation. There is no possibility of mutating directly to a phenotype more than one position
away on the lattice. Thus,

p, ‘J_k|:]-
1-2p, j=k#lorK
1—p, j=k=1lorK

0, otherwise.

Pk,j =



2.4. Final Model with Mutation

Therefore, incorporating mutation, we have:

n
Nl = > pimNH(1—bN/" —aN} — bN/T)(1 = @4 (1)) (11)
=1
= prjo N} A = BN} T2 —aN]TH — BN ) (1= @y (j — 1))
+ (1=2p)r N/ (1= bN] ™' = aN] — bNY ™) (1 — @4(j))
+ prja NN = BN —aNITT BN (1 - @,(j + 1)),  ifje{2,...,9}. (12)
and
Py = Zplz QZ@ f17)%eN] (1 cf{7 P}) (13)
— j:1
"1 ) L
= p(P7)?>] (f7H)2eNI (1 = eff " PiY
=1 ¢t(]
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2.5. Forms of Competition

In this paper, we investigate the significance of the distribution of competition strength between the prey phenotypes, in
particular, varying the relative strength of intraspecific competition against interspecific competition with nearest neighbours.
We will consider the case where prey phenotypes which are sufficiently biologically similar such that they can mutate to each
other, are also sufficiently similar in ecological niche such that they share resources and are in competition. This shall take the
general form: 1 — bth — ath — bth 1 for prey phenotype 7, as seen in the model equations in previous sections. Thus, b
controls the strength of interspecific competition, and a controls the intraspecific competition. These quantities must always
satisfy a 4+ 2b = 1, so that the effect observed is of the distribution of competition - that is, the relative strengths of intraspecific
to interspecific - rather than being influenced by the total combined strength of competition experienced, which is controlled to
be always equal to 1.

The situations studied are as follows:

Competition 0: a=1, b=0 Competition 4: a = %, b= % Competition 8: a = %, b= %
Competition 1:  a = %7 b % Competition 5: a = %, b= % Competition 9: a = %, b= %
Competition 2: a = %, b % Competition 6: a = %, b % Competition 10: a = %, b= %
Competition 3: a = %, b= % Competition 7: a = %, b %

2.6. Numerical Methods

In all cases, the system is initialised with only the first prey phenotype (with r = 1.3) populated, with N} = 0.5, Ng =0 for
j €{2,3,...10}, and no predators present. The model is iterated for 10,000 time steps, and predator species with population
P, are introduced at the beginning of the 10,001st step. The introduction of predators at this step is governed by which of the
five scenarios described in Section 3.1 is being investigated, and for each case and set of parameters (e.g. competition type) we
test each of Py € {0.1,0.2,0.3,0.4,0.5}.

: 1 — J _ : ; 10 - _ J —
Therefore, for scenarios one and two Pyg9; = P1, Pjyoo1 = O for j # 1. For scenario three, Py, = P1, P{ypo; = O for

4 # 10. And for scenarios four and five, where all ten predators are initially introduced, Plj0001 =P /10forj =1,...,10.



There are a maximum of ten possible prey and predator phenotype positions on their respective one-dimensional lattices.
Following the introduction of the predator(s), we run the simulation for a further 90,000 iterations and then the data is collected
by averaging the number of surviving prey and predator species over iterations 100,001-110,000. All phenotypes are considered
to have a minimum population size of 1079, and if a phenotype falls below this size at any time-step, it is set to zero.

The initial data is generated by performing this procedure over the (c,p) parameter space, for 240 values of ¢ in (0, 6] and
200 values of p across the range (0,0.5]. If predator mutation is switched on, it is given the same value of p as for the
prey lattice. For each scenario (one or ten initial predators, mutation amongst predators enabled or disabled, initial predator
population P; ) we examine a number of properties of both the prey and predators. The most important of which are the following:

i) Phenotype Survival: the average number (between 0 and 10) of prey/predator phenotypes that are alive (population greater
than 107%) over the final 10,000 iterations.
ii) Total Population Size: the average sum of the populations of all ten phenotypes over the final 10,000 iterations.

A number of other derived quantities are calculated, but for the constraints of time and space, they are presented only in
the supplementary material, and are described there. The only one we shall refer to within the main text is Expectation. That
is, the expected value of the prey and predators, averaged over the final 10,000 iterations. At a given iteration, the expected
value of phenotype ¢ = 1, ..., 10 with populations {z1,...,x10} is given by:

10 .
p = =l (15)
10
Zj:l Ty

We also consider plots of averaged species survival and population size against competition type. To produce these images,
the data for average species survival S and population size P over iterations 100,001-110,000 are averaged across the (c,p)
parameter space. For a given scenario and species, we then plot the maximum, minimum and average of this data across the
five-possible predator initial conditions as a function of competition type. As per the ordering of the competition types described
above, the z-axis is therefore a measure of the degree of diffusion of competition strength across nearest neighbours, being fully
concentrated on intraspecific competition at Type 0 and spread equally between a phenotype and each of its neighbours at Type
10.

Therefore, we are plotting the maximum, minimum and average of the following quantities separately for predators and
prey with respect to P; as a function of competition type:

1 Prnum Cnum tmax

§=—>" > ] (16)

c t
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where S denotes phenotype survival and P denotes the total population across all phenotypes of the species. cpym = 240
and ppyum = 200 are the number of gradations of the (¢, p) parameter space as above. ¢4, = 110,000 is the maximum number
of iterations, and t,,. = 10,000 is the number of iterations over which the average properties are calculated.

All numerical simulations are performed with double precision variables using the Fortran 90 programming language. Each
individual run (240x200 values of ¢, p for a given predator scenario, Competition Type and P ) took 2.5-3 hours on a single core
of a Skylake i7 6700k processor, using the Intel Fortran compiler (ifort). The main body of data, that is excluding at least 400
hours of processor time producing the material of the appendices, is the product of 830 such runs and therefore at least 2200
hours of processor time (in actual fact much more, as often less capable processors had to be employed).

2.7. Outline of Contents

We begin in Section 3 with a broad illustration of the role of competition in the system, given by the averaging plots described
above.

In Section 4, we present a selection of Feigenbaum diagrams gathered by variation of a single parameter (both p and c are
tested). This begins with an investigation of the effects of varying p in a scenario where no predators are ever introduced.

Next in Section 5 we discuss the main body of work, where the primary results of variation across the parameter space of



c and p are presented for the cases of P, = 0.1 (as final results do not appear to depend strongly on this choice).
The Discussion and Conclusions follow in Sections 6 and 7.

2.7.1. Contents of Supplementary Material

Properties (i)-(ii), together with a number of other properties, for P, = 0.1, all scenarios, all values of a (where relevant)
and a selection of Competition Types (0,1,2,4,6,8,9,10) are all collected and presented in the supplementary material that
accompanies this manuscript. Selected plots are reproduced in the main text below. Furthermore, the supplementary document
features an appendix containing additional data that was produced in response to some observations from the initial material.
These include some results for P; = 0.3, and for the scenario of Ten Non-Mutating Predators with a variety of different initial
conditions of both predators and prey, in order to illustrate the aspects of the survival plots that are sensitive to such variation
and those that are robust.

A further appendix shows a selection of material showing the full range of 0 < p < 1 and 0 < ¢ < 10. The takeaway
from these results is the discontinuity of the plot at p = 0.5, and that the area of predator survival tends to be reflected in this line
and then compressed - regions of particularly high ¢ and p are suppressed compared to an exact symmetry - however, predator
populations are always substantially larger for 0.5 < p. Unsurprisingly, therefore, for all competition types there exists a thresh-
old of p above which prey populations are substantially reduced. However, the average number of surviving prey phenotypes is
also reduced beyond this threshold, and we observe that this threshold in p decreases monotonically with increasing competition
type until it reaches p < 0.5 for Competition Type 10. This trend occurs in all the scenarios tested: One Non-Mutating Predator
with a = oo; One Mutating Predator with a = 0; One Mutating Predator with @ = 9; Ten Non-Mutating Predators; and Ten
Mutating Predators. Prey survival is inhibited for these impossibly high rates of mutation even when the predators are extinct,
but as can be seen in the case of Ten Non-Mutating Predators, when the predators are present and p > 0.5 the effect on prey
survival is even more pronounced, matching the region of predator survival, and disappearing as soon as the p-threshold is reached.

Finally, Appendix 4 of the supplement contains plots relating to the scenario of One Mutating Predator, but where it is
instead predator #2,3,... or 9 that is initially populated with size P; at the 10,001%* time step. This choice, surprisingly, has
significant and persistent effects on the system and on predator survival at intermediate p in particular.



3. Results - Integral of Species Survival and Population against Competition Type

3.1. One Non-Mutating Predator
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Figure 1: One Non-Mutating Predator
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Fig. 1 shows the prey and predator phenotype survival and total population, averaged across the (¢, p)-space and then
again over P; € {0.1,0.2,0.3,0.4,0.5}, as a function of Competition Type for a selection of values of «. In all cases, the total
prey populations (summed across all 10 phenotypes) always benefit from increasing the spread of competition within the range
considered, with the greatest increases between Competition Types 9 and 10. The average survival of the prey is almost total
for all competition types except Types 9 and 10. This is potentially in line with the results for the Webworld model [5], that
intraspecific effects should be stronger, however the axes scales on the plots must be emphasised - the decrease in average prey
survival at this point is an extremely weak effect. In fact, overall, the nature of the competition distribution appears to have very
little impact on the number of surviving prey phenotypes. Between Types 8 and 9 the decrease is negligible, and between Types
9 and 10 the decrease is much greater in each case (such that the new maximum is less than the previous minimum) but still
relatively minor overall. Indeed, the average falls by just 0.6% between Types 8 and 10. The prey behaviours do not change much
as « increases, indicating that predation is (in this model) a less important consideration than the prey’s own internal dynamics.
The only significant change is that the prey population plot shifts upward by 20% between o = 0 and o = 4, in correspondence
with the drop in predator populations. Thereafter, prey populations show minor uniform increases as « increases further.

Predator phenotype “survival” (in this scenario, more accurately described as the probability of the single predator species
surviving across the parameter space) and population size both follow much more interesting trends that are dependent on
the degree of adaptive foraging utilised. When there is no adaptive foraging (o = 0), the shape of both the predator survival
and population graphs are almost identical to each other and that of the total prey populations. Both increase monotonically
with competition type and the increase is greatest at the final step where competition spread is greatest. However, for low
levels of adaptive foraging (« € {1,2}, shown in the supplementary material: Fig. 1), the increase is still typically monotonic
until Competition Type 8 where it rapidly begins to drop. For larger «, there is relatively little correlation between predator
properties and prey competition distribution. For all finite «, these properties also show little variation with P;. However at
« = 00, where the predator only consumes the prey that is most populous at that time step, there is significant variation with
initial condition - the greatest range of values being obtained when competition is solely within the phenotype (Competition
Type 0). Overall the relationship between both predator properties and the degree of prey competition dispersal changes
from positive at & = 0 to negative at & = oo, with regard to the shape of the graph. Considering the values themselves, the
predator properties display the following trends: both probability of survival and population size increase slightly between
a = 0 and a = 1, and then decrease monotonically in maximum, minimum and average as « increases from 1 to 10. For
predator survival, between @ = 10 and o = 15 the pattern reverses for the maximum trendline, which increases thereafter.
The minimum values fluctuate, showing no clear pattern, however the disparity between values (that is, the influence of initial
predator population size) increases with further increasing «. For the predator population, the decrease across competition
types slows between o« = 15 and o = 20, and similarly the discrepancy between minimum and maximum values grows from there.

Next we take the average values (the red middle lines) and superimpose them at a@ = 0,4,7,20,00. This is shown in Fig.
2.
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Figure 2: Variation of properties for o = 0,4, 7,20, co with Competition Type

From Fig. 2, it appears that out of @ € {0,4, 7,20, 00}, choosing o = 0 is by far the best predator strategy no matter what
kind of competition the prey phenotypes are experiencing. When put in perspective, variation in competition type has relatively
little effect when averaged across the (¢, p)-space and initial conditions, with the exception of Types 9 and 10 impacting prey
survival negatively and prey population positively, both to a very small degree. Therefore, for each value of a we can justifiably
average these averages again - this time across all 11 Competition Types - and then plot them as a function of increasing . The
results of this procedure are displayed in Fig. 3.
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Figure 3: Variation of average properties (across Competition Types) with o for One Non-Mutating Predator

From these plots we can see the following effects of a: as « increases prey species survival is barely affected, however the
prey population moderately increases (by approximately 25%) and quickly plateaus, in correspondence to the inverse trend
suffered by the probability of predator survival which greatly and swiftly decreases from approximately 0.7 to 0.2. The predator
population also mirrors the prey population’s increase in its significant decline between a@ = 1 and @ = 7. The main outcome of
increasing a beyond 10 is to slightly improve the predator’s survival chance, but this does not appear to influence the predator’s
population. Although o = 0 is still a very good strategy, it is & = 1 (a linear degree of adaptive foraging) that permits both the
greatest average population and probability of survival out of the full range considered ({0, 1,2,4,7, 10, 15, 20, 30, 50, 100, cc})
when it is the only predator phenotype present in the environment.

3.2. One Mutating Predator: o =0
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Figure 4: One Mutating Predator, o = 0

Consider now the scenarios introducing one mutating predator with a = 0. In this case, total prey and predator populations
are monotonically increasing functions of the degree to which prey competition intensity is spread amongst neighbouring
phenotypes. The same is true of the average number of surviving predator phenotypes. Similar to all of the previous cases, the
average prey survival follows a very different trend, remaining near constant (and maximal) throughout until close to the point
at which intraspecific competition is equal in strength with interspecific competition between nearest neighbours, at which point
there is a drop.
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If instead it is the tenth predator that is initially introduced at the 10,001st time step, there are unexpected consequences.
Although the maximum trendlines for predator survival and population are similar in shape to those where it is the first
predator (o = 0) that is introduced (Fig. 4), the survival line has been translated to higher values whilst the population
line has significantly reduced values. Furthermore, the average trendlines are no longer monotonic and diverge significantly
from the maximum. The minimum trendlines for both properties reach a minimum at Competition Type 7, showing very
different patterns to the monotonic increase seen for the previous scenario. Simulation results for different initial populations
show that when the first predator is the one initially introduced, the population size with which it is introduced is relatively
inconsequential. However, when the tenth predator is instead the invader, the simulation’s final state is in fact very sensitive to
its initial population size - and this dependence appears to generally increase with competition type (the trendlines diverge).
We also note that the total predator population is reduced by approximately 30% for every competition type, compared to
introducing the first predator.

3.4. Ten Non-Mutating Predators
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Figure 6: Ten Non-Mutating Predators

The results for Ten Non-Mutating Predators (Fig. 6) follow broadly similar trends, with the average number of surviving
predator phenotypes, total prey population and total predator population all generally increasing as the prey competition
strength becomes more evenly distributed. However there is now substantially greater variation resulting from the initial
predator population sizes - at least, there is greater variation than the case of Ten Mutating Predators (not shown) or of starting
with only predator #1 (Fig. 4). This is to be expected, as the inability of the predators to mutate will prevent the system from
recovering from the effects of major perturbations that cause extinctions which, if the predators could mutate, would be merely
transient phenomena. This constrains the overall predator populations and their preferred final distributions, which then affects
final prey populations. Similarly, although the predator survival graph is of similar shape to that of previous scenarios, it is
shifted down to substantially lower values. Intuitively, we would expect enabling mutation to improve the possibility of survival,
for the reasoning outlined above, and this appears to be validated on average.
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Figure 7: Ten Mutating Predators

Finally, let us consider the case of Ten Mutating Predators (Fig. 7). As we can see, the shape of the plots are similar to
those given by previous scenarios, and we note that out of the other scenarios considered, the values assumed by these plots
match closest to the maximal lines for One Mutating Predator (#10). The dependence on P; that existed in that case (i.e. the
divergence of the three plot lines in Fig. 5) is not strongly present here.

4. Results - Feigenbaum Diagrams

We present Feigenbaum diagrams from a selection of eight different competition types: 0,1,2,4,6,8,9,10. These are pro-
duced by considering 10,000 increments of p in (0, 0.5] or ¢ in (0, 6]. For each value, the simulation is run for 1,200,000 iterations,
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with predators introduced at the 10,001st time step when applicable, and the bifurcation diagrams show the final 100 iterations
- that is, time steps 1,190,901-1,200,000. Furthermore, in the case of 10-prey and no predators, we calculate the characteristic
Lyapunov exponent of the system. This is determined over 1,000,000 iterations following 100,000 transients, using a version of
the Householder QR-decomposition method [29].

First, the legends (Fig. 8). These are divided according to (a) the case of only prey being considered, and (b) all other
cases, where predators are also featured:

>

Predator

Prey #

Prey #, then Predator #
O

Prey 1

(a) Only Prey (b) Both Prey and Predators

Figure 8: Feigenbaum Diagram Legend
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4.1. Varying p, fix c = 2.0
4.1.1. No Predators
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Figure 9: No Predators, varying p.

As competition type increases, the range of population sizes achieved (most notably at p = 0) increases monotonically (Fig.
9). This makes sense, as intraspecific competition is monotonically decreasing - allowing larger populations to be reached when
neighbours are not present. Phenotypes #8 and #10 reach the highest population sizes, suppressing phenotype #9 between
them, achieving these values for p < 0.1. In this range of p, this suppression of alternate phenotypes occurs more generally -
for example, at Competition Type 10 there is a clear separation of behaviours in this region, with phenotypes 2, 4, 6, 8 and 10
tending to higher values than the oddly-numbered species whose populations tend to zero as p — 0. Within these groups, the
maximum values are ordered by r-value. However, note that there could theoretically be situations of neighbouring phenotypes
both achieving very large values on a bifurcation diagram provided they were alternating each iteration.

In the range considered, inverse period doubling is observed as p increases, until a critical value is reached where forward

period doubling begins again. This critical value of p is beyond the observed range for Competition Type 0-6, becoming visible
and with value decreasing with Competition Type for Competition Type 8-10. For Competition Type 1, in the two bifurcation
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windows in close proximity to p = 0.25, there is an example of bifurcation phenomena for prey phenotype #10. Namely, period
doubling in one window followed immediately by inverse period doubling in the subsequent window - together, this is known as
period-bubbling. It is clear from a closer inspection that at least phenotypes #8 and #9 are also doing this in the same space.
This is also well-demonstrated in Competition Type 6 (Fig. 9(i)).

These Feigenbaum diagrams show that changing the Competition Type in the range 0-6 is having a substantial effect on
the prey dynamics, despite the survival and total population plots showing relatively little change in global behaviour. Note that
it appears as though increasing Competition Type is pulling the diagram to the left in a sense - as Competition Type increases,
regions of behaviour enter from high ¢ and move to progressively lower values. We also clearly observe that the ten phenotypes
experience chaotic synchronisation, despite each possessing a unique r-value, due to their coupling interactions.

4.1.2. Ten Non-Mutating Predators
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Figure 10: Ten Non-Mutating Predators, varying p, ¢ = 2.0 fixed.

The introduction of predators induces a number of changes to the bifurcations structure (Fig.10). At ¢ = 2, only the most
focused predator (#10) is surviving, but it is enough to alter the prey dynamics from chaotic (and covering a wide range)
to periodic and within a much narrower range for some values of p - for example, p < 0.05 for Competition Type 6 and
0.13 < p < 0.19 for Competition Type 10. This predator also synchronises with the prey phenotypes - its bifurcation structure
seems to mirror that of the multiple prey phenotypes - despite being only indirectly governed by the logistic map and being
coupled in a qualitatively distinct manner to the rest of the maps.
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4.1.8. Ten Mutating Predators
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Figure 11: Ten Mutating Predators, varying p, ¢ = 2.0 fixed.

Enabling mutation between predators (using the same scheme as the prey) causes further changes (Fig. 11). At ¢ = 2,
only the top three predators are surviving, and even then only when the rate of mutation is sufficiently low (or, in the case of
Competition Type 10, sufficiently high) and #8 has an extremely low population. When there was only one possible predator,
it flourished most when it had oo = 0, so it is interesting that for this choice of ¢ (and thus, one suspects, for all of the transition
regions from no predator survival) in a competitive environment with multiple predators it is the phenotypes of highest « that
are most successful. Again, for some ranges of p the dynamics have changed from chaotic to periodic and vice versa, compared
to the case of Ten Non-Mutating Predators.

For Competition Type 9 (Fig. 11(g)), it appears from the bifurcation diagram that at p = 0.25 the number of predators
surviving falls from three to zero. However, the survival images indicate that there is some survival beyond that point during
the last 10,000 iterations. Inspecting the data reveals that at Competition Type 9, the top predator survives throughout to
p = 0.353 - where the situation alternates every iteration between predators #9 and #10, and #10 only, being alive - albeit
with extremely low populations. At p = 0.354 the top predator is struggling so much that it cannot succeed in generating the
#9 predator every iteration, and by p = 0.355 all predators are extinct by the final 100 iterations, and do not survive again until

p = 0.449.

The bifurcation diagrams of varying ¢ indicate that for larger ¢ the top three predators (#8-10) survive permanently to
settled periodic orbits. In this particular instance, phenotypic population sizes in the periodic orbits increase with ae. Combined
with these observations, it seems that at least in the case of mutation, for all varieties of competition amongst the prey, having

a larger « is preferable to ensure survival of the predator.

15



4.2. Varying c, fix p=0.25
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Figure 12: Ten Non-Mutating Predators, varying ¢, p = 0.25 fixed.
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Figure 13: Ten Mutating Predators, varying ¢, p = 0.25 fixed.

Fixing p = 0.25 and varying c as the bifurcation parameter, we see that again with mutation enabled we have the possibility of
predator phenotype #9 surviving in addition to #10. The synchronisation of the predators with the preys’ bifurcation structure
in ¢, just as it was previously with variation of p, is apparent. Comparing Fig. 12 and 13, we see something of the impact of
enabling mutation amongst the predators: the range of values attained by the two surviving predators is constrained to lower
populations, but the possibility of mutation also enables them to persist in much greater ranges of the parameter than when
mutation is disabled. In particular, the predators are able to survive for much larger values of ¢ in this range, and the minimum
c that permits survival is also increased. This suggests the following effects of predator mutation: increased number of surviving
phenotypes, increased parameter range permitting survival, and decreased individual phenotype subpopulations (likely due to
resource competition). This is consistent with the expected effects of mutation described in Section 3. The prey bifurcation
structure is also altered, primarily due to how mutation is changing the range of ¢ where the predators are surviving.

5. Results - (¢, p)-space of Individual Scenarios, P; = 0.1

5.1. One Non-Mutating Predator

For Competition Types 0-9, we find that for all values of « all ten prey phenotypes are surviving on average, throughout the
(¢, p)-space. These results are therefore not shown.
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Figure 14: One Non-Mutating Predator: Prey Survival
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Considering Competition Type 10 then, these results are given in Fig. 14. For regions within the range 0.47 < p < 0.50 on
average one of the ten prey phenotypes is not surviving, although a closer inspection reveals that within these ranges three of
the phenotypes are typically extinct at the edge of the space (0.495 < p), and there is the possibility of total extinction at high ¢
for a = 0. In the corresponding prey-only bifurcati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>