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Abstract— We present here a learning system using the iCub
humanoid robot and the SpiNNaker neuromorphic chip to
solve the real-world task of object-specific attention. Integrating
spiking neural networks with robots introduces considerable
complexity for questionable benefit if the objective is simply task
performance. But, we suggest, in a cognitive robotics context,
where the goal is understanding how to compute, such an
approach may yield useful insights to neural architecture as
well as learned behavior, especially if dedicated neural hard-
ware is available. Recent advances in cognitive robotics and
neuromorphic processing now make such systems possible. Using
a scalable, structured, modular approach, we build a spiking
neural network where the effects and impact of learning can be
predicted and tested, and the network can be scaled or extended
to new tasks automatically. We introduce several enhancements
to a basic network and show how they can be used to direct
performance toward behaviorally relevant goals. Results show
that using a simple classical spike-timing-dependent plasticity
(STDP) rule on selected connections, we can get the robot (and
network) to progress from poor task-specific performance to good
performance. Behaviorally relevant STDP appears to contribute
strongly to positive learning: ‘“do this” but less to negative
learning: “don’t do that.” In addition, we observe that the effect
of structural enhancements tends to be cumulative. The overall
system suggests that it is by being able to exploit combinations of
effects, rather than any one effect or property in isolation, that
spiking networks can achieve compelling, task-relevant behavior.

Index Terms— Cognitive, learning, multiscale, neuromorphic,
robotics, spike-timing-dependent plasticity (STDP).
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I. INTRODUCTION: WHY TRY SPIKING
NEUROROBOTICS?

OBOTS provide an interesting and particularly vivid

test bed for spiking neural networks. Yet, if the prob-
lem to solve does not involve severe time and power con-
straints, and output fidelity in a fixed task is paramount,
a classical robotic solution or an abstract neural simulation
will usually produce a better performing, more informative
result. But where the seemingly effortless facility of animals
to cope with real-world situations suggests lessons to be
learned from how the brain does it, spiking neurorobots
can be used as a platform for investigating other models of
computation.

In cognitive robotics the robot builds a model of behavior
based on its own interactions with the real world rather
than relying on a priori imperative models [1]. Efforts to
engineer cognitive neural systems have achieved impressive
performance for some real-world tasks [2], and some formal
theory exists [3], [4], but truly dynamic behavior has been
more elusive [5]. Perhaps biology is doing something different
and better, but these models may not be similar enough to the
brain to be able to inform the question.

Meanwhile, simulations of brain activity have thus far been
semiempirical and as elusive to interpret as their biological
prototype [6]. Brain activity is very noisy, depends on probe
recording location, and is not exactly replicable from trial
to trial [7]. This has left experimenters with a mass of
unstructured data by itself revealing few insights into the
underlying mental processes taking place [8].

What is needed is a platform that can in some sense extract
the computational characteristics that matter from biological
neural networks, and be able to apply them in a concrete
context that demonstrates why they matter, and how we might
use them to engineer systems that work with messy real-
world data. In this paper, we demonstrate the integration of
a “neuromorphic” chip: SpiNNaker, and a complex humanoid
robot, the iCub, and show how such a system can learn to
recognize and attend to objects of preference in an unseg-
mented scene, in real time, without relying on off-line training
or imperative direction. We further indicate implications to
both neuroscience and neural engineering of a structured
approach to learning and architectures that might guide design
toward autonomous systems. While our neurorobot cannot yet
be considered autonomous, we suggest that by demonstrating
real-time learning for a simple real-world task, our system
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realizes the basic technology and indicates some of the neural
design principles that can progress neurorobotics toward fully
autonomous behavior.

1I. BACKGROUND: PROGRESS IN NEUROROBOTICS
A. Progress in Spiking Neural Models

Spike-based neurorobots might embody behavioral features
that are difficult or impossible using other methods [9]. At least
in principle, spiking neural networks seem to be able to solve
difficult cognitive problems [10] in possibly nonstationary
environments [11]. This could inform both neuroscience and
robotics [12], however, contrasting priorities between the two
communities have created a lack of clarity over what aspects
of neural modeling are most meaningful, limiting progress in
neurorobotics.

While it is generally agreed that the human brain is divided
into functional areas [13], how (or indeed even if’) populations
of neurons are grouped into functional “microcircuit” units
remains one of the outstanding problems. Visual [14] and
auditory [15] cortex have been well studied, but this is not
general. A few “building blocks” have been postulated, notably
the winner take all (WTA) [16] circuit, the convolutional net-
work [17], and the reservoir computer [18], but considerable
debate exits over their utility or biological plausibility and
there is little formal theory to guide further progress.

A more functional approach to brain modeling is described
by Eliasmith [4]: interconnection between populations of
neurons implement transfer functions and, as such, multiples
of these functions implement brain areas [19]. These models
have been able to achieve good performance in building
working systems with complex behavior, such as Semantic
Pointer Architecture Unified Network (SPAUN) [20]. But it is
generally thought that the resultant circuits are probably not
particularly similar to the brain.

Achieving useful learning with spiking neural networks has
long been challenging, and hampered by a lack of theoreti-
cal development. One underlying phenomenological Hebbian
mechanism: spike-timing-dependent plasticity (STDP) has
been comprehensively studied. STDP has been produced
in several “flavors”: additive [21], multiplicative [22], and
trace based [23], subsequently reviewed and improved by
others [24], and further extended to a calcium-concentration-
based biophysical model [25]. Reasonable network-level mod-
els exist for supervised spiking learning [26], [27], but this
may not be useful for robots acting in dynamic environments
and is not biologically relevant [28]. Fewer models exist
for unsupervised learning. Existing approaches have exploited
polychronization [29] by applying temporal structure [30]
or WTA outputs [28] to solve what are essentially constraint
satisfaction problems. However, the more general cognitive
problem of learning behavior in a dynamic environment
remains.

B. Hardware Progress

A growing number of problems in robotics seem intractably
hard without neural hardware [31]. Seeking a solution to
unattractive power/performance tradeoffs using conventional
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Fig. 1. SpiNNaker chip. Important components are indicated.

computing techniques, cognitive robotics has moved away
from abstract, “box based” architectures implemented in tra-
ditional hardware [32] toward neural implementations, often
integrating ‘“neuromorphic” chips [33] that use specific circuits
and architectures derived from neuroscience [34]. Yet despite
optimistic predictions about the potential of hardware neural
networks applied to robots [35], most implementations of
integrated neuromorphic-robotic systems have been limited to
proof of concept [36]. Historically, this may have been due
to hardware limitations: early chips were probably too small
scale [37] for more than very specialized subfunctions. But,
a new large-scale generation can credibly implement entire
cognitive systems, either in fixed-model analog chips [38] or
programmable architectures that can simulate multiple mod-
els [39], [40]. Both styles of design emphasize significantly
lower power consumption [41], [42] and improved real-time
response [17], and feature a variety of learning implementa-
tions [12] (not necessarily on-line or on-chip [40]).

While much work has been done on robotic attention,
a lot of it concentrates on specific subproblems and few have
addressed the problem of on-line learning [43]. Our approach
addresses on-line learning directly with embedded hardware.
There are advocates both for an “embodied” approach to
cognitive robotics where sensing, processing, and actuation,
indeed the physics of the body itself, are inseparable [44], and
“modular” approaches where a cognitive system functioning
more or less in the abstract is bolted onto a robotic body [45].
We feel that to inform learning decisions, identifying, and
characterizing modular subsystems that can be simulated prior
to physical embodiment, while integrating as much of the
sensorimotor periphery directly into the cognitive robotic
model (see [46]) as possible, is desirable.

II1. EXPERIMENTAL PLATFORM

A. SpiNNaker

The SpiNNaker chip (Fig. 1) is a universal configurable
neural network platform designed for real-time simulation.
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Fig. 2. iCub robot (simulator/actual).

Furber et al. [47] and Painkras et al. [48] give specific
details on the hardware and outline its unique architectural
approach. The design goals of SpiNNaker assume real-time
processing on real-world data. Internal timesteps are purely
local to a given processor, there is no global memory or sup-
port for coherency, and thus there is no “global state” in the
sense of an instantaneous system snapshot. To generate an
on-chip network from an abstract specification, we use the
automated “PACMAN” tool chain that can estimate resource
requirements and configure both the neural network and addi-
tional support processes such as hardware /O, application
monitoring, and visualization based upon a high-level descrip-
tion in an extended form of the PyNN [49] modeling language.

B. EIEIO

Like many neuromorphic devices, communications on and
with SpiNNaker are event based, using a form of address event
representation (AER) [50]. Externally, SpiNNaker uses the
External/Internal Event Input Output (EIEIO) protocol [51].
EIEIO defines a standardized way of communicating AER
data, as well as device-specific or general commands, between
possibly heterogeneous platforms. It is a transport-independent
protocol layer permitting stateless transceivers which can
support any subset of the compete protocol. The current
implementation uses user datagram protocol (UDP) packets
to bundle spikes into a single packet and send them in “fire-
and-forget” manner to a receiving device. Devices identify
themselves by UDP port number (possibly shared).

C. iCub

iCub (Fig. 2) is a cognitive developmental robotics platform
[52] (http://www.icub.org/) based on a 53 degree-of-freedom
humanoid with three-modality (vision/audition/tactile) inte-
grated sensory periphery. Our learning experiments used
the iCub platform’s included physical simulator, while the
other experiments were tested on the real iCub. We use
the iCub’s standard Yet Another Robot Platform (YARP)
protocol (http://wiki.icub.org/yarpdoc/index.html), to transfer
information between the iCub and its host PC. Communica-
tions between the iCub and SpiNNaker are converted between
YARP and EIEIO using a host-based module which acts
as a virtual EIEIO device. It maps iCub camera input to
the two input layers by generating spikes for each “ON”
(white) pixel and receives spikes back from the output layer,
representing the fixation location, translating the coordinates
of the maximally active neuron in the output layer into iCub
view x- and y-coordinates (Fig. 3).
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We have also made use of two public external iCub
libraries: OpenCV for some basic image processing functions
and Aquila—an easy-to-use, high-performance, modular and
scalable software architecture for cognitive robotics [53].
In particular, we have used the Aquila modules tracker for
extraction of objects from the scene [Fig. 4(c)] and iCubMotor
to enable iCub to look and point at salient objects (Fig. 4).

IV. SCALABLE MODEL FOR OBJECT-SPECIFIC ATTENTION
A. Biologically Inspired Visual Attention Model

The basis for the model used in this paper was originally
described in [54]. This network was subsequently reformulated
as a spiking neural network and adapted to run on the SpiN-
Naker platform [55]. Input came from a spike-based Dynamic
Vision Sensor (DVS) camera subsampled to a 16 x 16 grid
but output was virtual: SpiNNaker provided an output signal
indicating the preferred position on a 5 x 5 grid. While the
model was functional, it could only handle a single object in
the scene (at coarse resolution) and lacked the reinforcement
learning system of the original.

In [56], the network was adapted to generate visual attention
behavior for the iCub robot. This paper solved the prob-
lem of multiple objects, initially using frame-based cameras
with frame-to-spike preprocessing over an EIEIO progenitor,
AEtheRnet [57], later using DVS input using the “neuro-
morphic iCub” with EIEIO. Output resolution was improved
to 20 x 20 so that the robot could be made to attend to
a live scene, although we observed fairly high sensitivity
to lighting and background and jittery response to real-time
moving objects. Learning remained disabled.

B. Model Motivation

In this paper, we present an enhanced version of the
network, with learning enabled. The model is broadly based
on biology but does not attempt an exact replication of still
only partially understood brain regions. We have generated
a system which includes a bottom-up visual pathway from
sensory input to action selection, and a top-down pathway
from pre-existing goals to action biassing (Fig. 5). The
bottom-up pathway has an input layer representing retinal
neurons, coming from hardware or simulated DVS retinas
which respond to changes in light level (thus readily detecting,
e.g., moving edges). Two different polarities in DVS retinas
indicate increasing or decreasing light levels, respectively
(onset/offset). When we were simulating DVS we used an
onset/offset detector to simulate the separate polarities. Three
layers: V1, V2, and V4 represent successive regions in the
visual cortex. The top-down pathway has two layers: PFC and
frontal eye fields (FEF) representing regions in frontal cortex.
Both pathways converge on an output layer: LIP representing
a region in parietal cortex. All layers are topographically
mapped to the input space so that a neuron represents a fixed
visual position in the input image. Layers V1, V2, and V4 are
split into a selectable number of orientation-specific sublayers
(we used four orientations).

From extensive studies [58], the bottom-up pathway is
relatively well understood in terms of functionality as well as
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Combined iCub-SpiNNaker system. Raw I/O from the robot is converted into YARP bottles and processed by a host-based EIEIO transceiver. The

transceiver converts the messages into spikes and vice versa, transmitting and receiving them directly to/from SpiNNaker.

connectivity. V1 neurons are considered to be topographically
mapped feature detectors, with tuned receptive fields that
capture certain basic input features. V2 neurons group local
features into larger features such as corners and lines by simple
merging of smaller subfeatures from V1, and V4 neurons
assemble features into ‘“shapes”: complete objects (usually
with a closed contour) that can be segmented from a scene
(or retinal field). Thus, the feedforward pathway may be seen
as a hierarchical object assembly mechanism which identifies
(or segments) a scene into objects based upon the features
present.

Top-down mechanisms are less completely understood, but
in general it is thought that PFC is a center of motivation
that directs visual (and other sensory) systems toward goals
determined a priori, possibly modified by events as they occur.
FEF is uniquely involved with visual cortex and is thought to
compute a local saliency map and use it to drive attentional
output by biassing V4 toward more salient (locally anomalous)
objects. The FEF receives projections from V2, and, it is
thought, determines saliency using a running spatiotemporal
average of local activations. PFC further biases FEF toward
goal-relevant stimuli.

LIP is thought to control attention and action selection
by targeting basal ganglion (BG) neurons that selectively
deinhibit competing action strategies [59]. We have not mod-
eled the BG/striatal system directly (because low-level motor
planning is out of scope for the project) but rather use output
from LIP to drive the robot’s gaze fixation directly toward the
active LIP location. One further simplification is that while
it is known that FEF directly stimulates LIP as well as V4
(see [60]) we did not implement the FEF-LIP pathway to limit
the influence of top-down bias on target selection.

C. Basic Network Model

Neurons in all layers consist of leaky integrate-and-fire
(LIF) neurons with current-based exponentially decaying
synapses (1). Where synapses are plastic, we use the two-
branch exponential STDP additive spike-pair rule modeled
after Bi and Poo [21] (2)

=y, vy o o)

dt Cn

dl.
fV>V,V= Vsrsyn% =

LIF equations
=1 syn

ey

Symbol Meaning Value
1% Membrane Voltage (variable)
Vi Rest Voltage -65mV
Vs Reset Voltage -65mV
Vi Threshold Voltage -45mV
Isyn Total Synaptic Current (variable)
Ios Bias Current (fixed) OpA
Cm Membrane Capacitance 1nF
Tm Membrane Time Constant 24ms
Tsyn Synapse Time Constant 3ms
 tps—tpr
Aje ™ if tps > tpr
_ Ipr—Ips
Ae = ity <ty
ow =19 i fps = tor OF [tps — fpr| >ty ()
0 if W = wmax and tps > fpr
0 if w = wmin and fps < fpr.
Symbol Meaning Value
ow Weight Change (variable)
Aq Potentiating Increment 0.01pA
A_ Depressing Increment 0.012pA
tor Presynaptic Spike Time (variable)
tps Postsynaptic Spike Time | (variable)
T4 Potentiating Time Factor 30ms
T_ Depressing Time Factor 30ms
tw STDP Time Window 24ms
Wmaz Maximum Weight 20 pA
Winin Minimum Weight 0 pA

A time window is used to avoid having to keep an
unbounded spike record in memory and stipulates that beyond
a certain difference in time between spike pairs, the con-
tribution to the weight change is negligible. Maximum and
minimum weights prevent unbounded weight change under
the additive rule, and the minimum also prevents synapses
(biologically unrealistically) “flipping” between excitatory and
inhibitory.

Layers produce a progressive user-selectable subsampling
of the input. In our experiments V1 and V2 layers were
notionally subsampled at 1/1.6 input width in either X- or
Y-dimensions, PFC, V4, and LIP at 1/2 the V2 width.
As noted, each major layer except LIP is subdivided
into four orientated sublayers, representing orientations
{0, (z/4), (7 /2), (37 /4)}, respectively.

Each V1 sublayer receives input from a neighborhood of
input neurons around its topographic position using a series of
tuned orientation filters that provide a receptive field. These
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/view/mono

©

Fig. 4. Stages of preprocessing in the iCub input chain for presentation to the network used in tests. (a) Raw image is transformed first to a (b) “saturation”
view, then tracked to a (c) minimal bounding region. This bounding region is (d) subsampled to a final input matrix, each location representing a coordinate

neuron in the inputs to V1.

filters use a module that can generate Gaussian, Gabor, or
normal/inverted Mexican-hat receptive fields in a variety of
scales, eccentricities, and orientations. Weights implement the
receptive field strength based on the distance of the neigh-
boring input neuron from its V1 target. Thus neurons near
the target will have high connection weights (or low ones in
the case of the inverted Mexican-hat filter) and more distant
ones will have correspondingly lower weight, further biased
by orientation. In our experiments, we used 2-D Gaussian
receptive fields with an eccentricity (ratio of major to minor
axis) of 5.5 in two different scales with a base tile size of 5,
to simulate orientated line detectors. Each scale is a multiple
of the tile size so that the filters are in 5 x 5 and 10 x 10
input neurons, overlapping across the visual field. Each tile
projects to a single neuron in the V1 layer at the corresponding
position, taking the 32 x 32 input and subsampling at a ratio
of 1/1.6 to get 20 x 20 of each scale of tile.

V2 neurons receive input from a neighborhood of V1 neu-
rons using a simple pooling model that establishes a region,
with tunable size and weight value, around the V2 target from
which V1 neurons will project with identical weights. In our
experiments, since V2 had the same number of neurons as
V1 we set the region to be a single neuron, i.e., a V2 neuron
receives input from one 5 x 5 V1 tile and one 10 x 10 tile.
Each V2 sublayer has internal lateral inhibition in a tunable
local radius around each neuron providing a form of soft WTA
competition. We set this radius to 2, i.e., the size of the WTA
pooling in V2 is 5 x 5. An optional global WTA filter in
the V2 layer, which we enabled in our experiments, permits
additional competition between sublayers (i.e., between orien-
tations as well as within pools in a given orientation).

V4 neurons receive input from each of the V2 neurons in
a locally subsampled region of V2. Thus if the subsampling
is 1/2, the V4 neuron will process a subsampled 2 x 2
patch of the V2 space. In the initial version of the network,
with hardwired PFC bias, each V4 neuron in each sublayer
received bias input from all PFC neurons in the same sub-
layer. In later tests, as will be seen, the PFC includes addi-
tional mapping, each PFC neuron biasing its corresponding
V4 neuron(s) by both position and orientation (with possible
subsampling/oversampling).

LIP neurons merge input from V4 neurons for each orien-
tation in a one-to-one correspondence, where each sublayer

-
I
' n
< i
S [l
I
| i ' n
I
' n
LIP Attention
Topographic
Location
...... 1 , . .
P ’
2
-
- PFC Preference
- Hardwired
Reinforcement
Retina Input V1 Features V2 Groups FEF Locations V4 Objects
32*32 ON/OFF Multiscale Competitive Salient Topographic
Polarities Convolutional Filters Neuron Pools Regions Object Map
Fig. 5. Enhanced network. This shows the network as it is with all

enhancements turned ON. The input retina layer is a real or simulated visual
field taken either from the preprocessed robot imaging system or from a
software image generator. Each of layers V1, V2, V4, and prefrontal cortex
(PFC) are separated into four orientations per layer. Layer lateral intraparietal
cortex (LIP) merges orientations via a WTA. Except for the input retinal
layer, the PFC layer and the output LIP layer, the diagram shows one “tile”
representing a particular topographic location from the retinal field; tiles
extend over the entire visual field. Each of the large and small boxes in
V1 represents a different scale of convolutional filter. In V2, the internal black
and gray boxes represent a mapping from one of the smaller V1 filters. The
black one represents the filter shown in the diagram, while gray represents
another filter (not shown). Open “wide” arrows represent connections that are
understood to extend over all tiles in a layer but to connect pairs of tiles at the
same topographic position in each layer. Closed “narrow” arrows represent
one-to-one connections between specific neurons in their associated layers
with strength given by linewidth. Feedback connections project in each case
so that each actual synaptic link established is bidirectional.

in V4 maps by position to the corresponding LIP neuron.
The LIP also includes an internal hard WTA to select a
single attentional position at each moment, each neuron
inhibiting all neurons in the population, including itself,
but with higher weight for nonself-connections than for the
self-connection.
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How this network is intended to work in principle is like
this: the V1-V2-V4 pathway selects progressively sharpened
locations of visual interest. If the V2 WTA is enabled then
the network is encouraged to select a single most-salient
location. PFC then biases the V4 layer to prefer objects
lying in one orientation and respond aversively toward objects
in another orientation. The biasing effect should produce a
stronger input to the LIP neurons in the preferred location of
visual interest in V4 and the LIP WTA should then select the
appropriately preferred location. Overall behavior is a “goal-
directed object selector”: a system that recognizes objects in
an initially undifferentiated input scene and directs attention
toward objects of interest.

D. Enhanced Visual Attention Model

In an effort to solidify behavioral reliability, before moving
to learning experiments, we made a series of architectural
enhancements to the network. Each enhancement is an optional
parameter that can be added incrementally to observe the
isolated effect of each as well as the cumulative effect of
them. For complete detail, we refer readers to the original
PyNN source in the Appendix and here describe the features
of interest.

Upscaled Resolution and Size The original model subsam-
pled the native DVS 128 x 128 resolution to 32 x 32. With
larger SpiNNaker systems and enhanced interfaces available,
we added a scaling module which permits various input sizes.
We have tested this at 32 x 32, 64 x 64, and 128 x 128
resolutions (using both frame-based and DVS cameras).

Interlayer Feedback Experiments on convolutional net-
works similar to the input stages (V1, V2, V4) suggest that
a more biologically realistic recurrent topology with feedback
between layers should enhance contrast and enable attention to
be maintained during periods of object overlap. We therefore
added feedback with tunable strength, typically set to 0.8 of the
feedforward weight (later marginally tuned to 0.81), between
V4 and V2, and between V2 and V1. Feedback paths project in
an inverse pattern of the forward projections. With a subsample
ratio of 1/2 each V4 neuron thus projects to four V2 neurons,
while since the ratio of V1-V2 neurons is 1:1, each V2 neuron
projects back to a single V1 neuron.

FEF-Like Layer To improve bias specificity so as to
target neurons in the visual field where stimulus is present,
we replaced the hardwired PFC with a more biologically
realistic topographically mapped FEF layer that computes
a top-down attentional bias based on the expected input.
Following [60], we connected V2 to FEF using orientated 2-D
Gaussian filters with a subsample ratio of 1/2, similar to the
filter connections used between the input and V1. The FEF
projects to V4 using one-to-one connectors which map each
FEF output to its corresponding neuron in each V4 orientation.
This input represents a dynamic prediction of the subregions in
the visual field where V4 should expect “interesting” (strongly
orientated) input, based on recent activity. The PFC projects
to FEF in topographically mapped one-to-one connections
using N-methyl-D-aspartate (NMDA)-like synapses with long
time constants to provide a source of quasi-persistent bias.
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These connections selectively gate the input from the bias
source so that bias can be “switched out” when the network has
learned the orientation preference. To enhance bias contrast,
we replaced the excitatory-only PFC output with bipolar
output using a relay layer of inhibitory neurons to convert
FEF output in the aversive orientation to inhibitory V4 input.

Learning By design, the network has been constructed
so that the relative timing between firings in V2 and V4,
and hence the weights between these layers, has the greatest
impact on task performance. We enabled STDP between
V2 and V4 using PyNN’s SpikePairRule with AdditiveWeight-
Dependence (for simplicity of analysis) in a time window of
430 ms. The additive terms are slightly asymmetric, poten-
tiative increment being set to 0.01 nA, depressive decrement
to —0.012 nA, from a weight range of [0, 20] nA. Output
from FEF was tuned to provide subthreshold stimulation to
V4: sufficient to drive V4 neurons in the preferred orientation
to a regime just below spiking, but not to cause spontaneous
spikes. Likewise the FEF inhibits V4 neurons in the aversive
orientation sufficiently to prevent spiking on a single spike
from V2, but not so much as to suppress spiking altogether.
Thus, we expect V2 neuron firings to be strongly causal with
respect to V4 firings in the preferred orientation and only
weakly causal in the aversive orientation. In such a system
STDP should enhance contrast and bias the network toward
the preferred orientation.

V. RESULTS
A. Feedback in a Convolutional Network

In Section IV-D, we mentioned the enhancement of the
original network by enabling feedback between layers. To test
the effect of feedback, we ran simulations using three different
stimuli (Fig. 6) with feedback enabled and with feedback
disabled, at 32 x 32 input resolution with no other enhance-
ments. With feedback disabled the optimal weight value from
V2 — V4 was 5.5 nA, whereas with feedback on the optimal
value was 4.5 nA, as expected since feedback causes slightly
higher activation in each of its affected layers.

Fig. 7 shows the difference in behavior with feedback
on and feedback off. Each box represents a spike in the
output neuron at the corresponding position in the LIP output
map. Boxes nest in increasing time with a resolution of 1
ms and a maximum spike frequency of 333.3 Hz. Larger
boxes represent earlier times in the simulation. The largest
possible box would be the size of an entire LIP output tile
and indicate a spike at O ms, the smallest a dot and represent
a spike at the end of simulation time, e.g., 100 ms in a
100 ms simulation. A leaky integrator colors the boxes so
that white represents low levels of recent prior spiking and
purple high levels. Thus, these figures [Figs. 7(a), (c), and
(e), 8(a), (c), and (e), 9(a), (c), and (e), 11(a) and (c), and
12(a) and (c)] represent a mapped record of actual stimulus to
eye-motion activators. For each of three different inputs,
enabling feedback enhances contrast and greatly increases the
activation in the preferred direction (sometimes with a slight
increase in the aversive direction). In the case of Stimulus 2,
indeed, it eliminated a consistent pattern-sensitive error in the
case of horizontal preference.
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Fig. 6. Stimuli used for testing the effects of various network enhancements. These views show the subsampled inputs as seen after preprocessing following
the chain shown in Fig. 4. Each stimulus has an horizontal and a vertical object. The third stimulus also has a “distractor” ball object with no clear orientation.
The positions of these objects correspond to the same positions in the topographic output spike plots in Figs. 7 and 8. (a) Stimulus 1. (b) Stimulus 2.

(c) Stimulus 3.

(b)

Fig. 7.
and enabled, respectively. (a) Stimulus 1, feedback off, vertical preferred.
(b) Stimulus 1, feedback on, vertical preferred. (c) Stimulus 2, feedback
off, horizontal preferred. (d) Stimulus 2, feedback on, horizontal preferred.
(e) Stimulus 3, feedback off, vertical preferred. (f) Stimulus 3, feedback on,
vertical preferred.

Comparison between network activations with feedback disabled

B. Targeted Bias Using a FEF-Like Layer

We next investigated the effect of creating targeted bias
from a FEF-like layer rather than overall global bias per

(b)

(@)

Fig. 8.
layer alone and in combination with feedback. (a) Stimulus 1, FEF on,
vertical preferred. (b) Stimulus 1, FEF and feedback on, vertical preferred.
(c) Stimulus 2, FEF on, horizontal preferred. (d) Stimulus 2, FEF and
feedback on, horizontal preferred. (e) Stimulus 3, FEF on, vertical preferred.
(f) Stimulus 3, FEF and feedback on, vertical preferred.

Network performance with targeted bias using the FEF-like

orientation. With feedback disabled (Fig. 8), as predicted in
Section IV-D, the network now has a sharpened pattern of
fixations, with fewer locations going active. Notably, like the
feedback enhancement, with this one feature (FEF) enabled,
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Fig. 9. Results for learning on the iCub with a two-stimulus scene. PFC is
enabled, vertical objects set to preferred. The box-plot diagrams have the same
interpretation as shown in Fig. 7. The salient location shows each position’s
integrated spike count. (a) 50-ms run, mapped spike output. (b) 50-ms run,
salient location. (c) 200-ms run, mapped spike output. (d) 200-ms run, salient
location. (e) 1000-ms run, mapped spike output. (f) 1000-ms run, salient
location.

the network did not exhibit erroneous fixations on the aversive
object or away from objects.

Although the fixation patterns obtained using the FEF were
encouraging, they are still fairly sparse and would cause
relatively feeble drive to robot actuators, thus small, slow
movements. But with feedback as well as the FEF enabled, the
results (Fig. 8) were dramatic. Fixation rate and robustness of
spiking is improved significantly; typically one neuron directly
on the preferred object fires in overwhelming preference to
other locations, resulting in stable and rapid fixation. This
would allow the robot to be capable of saccade-like shifts
of attention to the target object, and even the presence of
distractors (see the results for Stimulus 3) does not signifi-
cantly affect fixation performance. With this set of enhance-
ments the robot has been taken from an ability to fixate on
a general region with some attentional wandering to immediate
focus on a target object.

C. Learning Results

We ran a series of trials with the simulated iCub using two
stimuli, one horizontal and one vertical, as seen from Fig. 4.
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Fig. 10. Salient location for the postlearning trial [for the prelearning trial
refer to Fig. 9(b)]. PFC and learning disabled.
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We set PFC bias on throughout the trials and ran this network
progressively for 50, 100, 200, 500, and 1000 ms, respectively
(Fig. 9). Fixation performance increases throughout the trials
so that for longer run lengths the robot strongly prefers the
“preferred” stimulus (vertical for the figures shown). We then
ran the same tests for a 50 ms run with PFC biasing disabled
(and with plasticity off) and observed as seen from Fig. 10
that the network attends immediately to the preferred stimulus,
in contrast to the 50-ms case before learning, where even with
PFC bias on, fixation performance is poor.

We next considered the impact of a distractor object.
We used a scene [as seen schematically in Fig. 6(c)] with
both target objects and a “neutral” distractor: a round ball with
no definite orientation. We then ran learning trials for both
orientations for 1000 ms, and tested the recall of the learned
orientation with the distractor present. Figs. 11 and 12 show
the results. As can be seen, the correct target object remains
the focus of attention despite the presence of distractors.

VI. DISCUSSION

An examination of the weight results after learning is
instructive. We generated topographic plots of the weight
changes after learning for each of the trials for both positive
(potentiating) and negative (depressing) changes (Fig. 13).
As expected, positive changes dominate and affect only the
preferred orientation (with no weight changes in the aversive
direction). By design, the topographic pattern of V2 pro-
jections to V4 makes a V2 spike much more likely to be
causal than anticausal with respect to its associated V4 neu-
ron firings, making potentiation more likely than depression.
Meanwhile, bipolar biasing from the PFC/FEF loop activates
the V4 spikes necessary to trigger STDP in the preferred
direction while suppressing those in the aversive direction.
However, connections related to all the objects in the scene
get strengthened, not just those associated with the preferred
stimulus. One possible explanation is that because objects
have finite size in both dimensions, they trigger some level of
activation in all other orientations. Finally, we observed that
the horizontal preference generated stronger overall patterns of
weight modification than the vertical direction. This may be
due to the distortion by perspective of 3-D objects projected
onto the 2-D retinal field, which causes the vertical edges to
be somewhat diagonal and hence triggering mixed activations.
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Fig. 11. Results for learning on the iCub with a two-stimulus scene in the
presence of a distractor. STDP was enabled and the PFC provides a source
of bias via LIP as indicated by the directional preference. The network is
configured as for the tests in 9 and output results are in the same pair
of formats. (a) Learning trial, vertical object preferred, output spikes. (b)
Learning trial, vertical object preferred, salient location. (c) Learning trial,
horizontal object preferred, output spikes. (d) Learning trial, horizontal object
preferred, salient location.

All these effects come from the same common root cause:
the need for pre-post spike pairings in order to trigger any
sort of weight update. One might expect that a learning
rule triggered on either pre- or postsynaptic spike without
the need for pairing (as in classical STDP) might enhance
results further and produce still better contrast—and indeed
preliminary modeling experiments (not reported here) have
shown results that are encouraging.

When we turn to network structure and look at the effect of
successive enhancements, we find a striking additive character-
istic. Each change, taken in isolation, tends to result in modest
improvements in performance, in some cases transforming
a nonfunctional network into one that could successfully
perform the task. But the impact on behavior could be subtle
and open to question. By contrast when all the enhancements
were switched on the behavior improved to the point that
it is convincing (Fig. 14). This is consonant with biology,
suggesting a series of point mutations produces a modular
network robust against component failure rather than an
undifferentiated pool of neurons for the most part lacking
meaningful structure. While it is at this point too early to
make any definite conclusions, it is possible that one reason
neurorobotics has had difficulty in matching more conventional
imperative methods is simply that previous networks have
had architectures that try to isolate the impact of a particular
network feature.

The results that we have obtained demonstrate that a
systematic program of enhancements on a well-characterized
network can result in dramatic improvements in behavioral
performance. We were able to achieve this with an approach
that leverages the nature of STDP: a causality-based learning
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Fig. 12. Results for recall on the iCub with a two-stimulus scene in the
presence of a distractor. STDP was off and the PFC did not provide any top-
down attentional bias. Otherwise, the network is configured as for the tests
in 11. (a) Recall trial, vertical object preferred, output spikes. (b) Recall trial,
vertical object preferred, salient location. (c) Recall trial, horizontal object
preferred, output spikes. (d) Recall trial, horizontal object preferred, salient
location.
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Fig. 13.  Weight changes for the learning experiments conducted in 11, for
the sublayer indicated by the orientation preference. There were no weight
changes in the other (nonpreferred) sublayers in either case. (a) Positive
weight changes, horizontal preference. (b) Positive weight changes, vertical
preference. (c) Negative weight changes, horizontal preference. (d) Negative
weight changes, vertical preference.

rule. By ensuring that PFC/FEF input into V4 makes it
more probable that the correct V4 neurons will spike upon
input from V2, we can reduce the sensitive pathway to the
V2 — V4 connection and hence reliably instantiate learning
on that layer with expected improvement in performance.
Unexceptional performance can lead to an overly gloomy
assessment of the potential of neural networks to solve
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Fig. 14. Effects of adding various enhancements to the model. Each data bubble reflects the object fixations for 10 separate trials with the same stimulus and
the same direction chosen as preferred. Cyan bubbles represent horizontal preferred, green vertical preferred. The dark bubbles represent the object fixations
on the aversive object. Each row represents one stimulus, each columnar region one network configuration as shown. Numbers beside the bubbles, color
matched to their associated point, represent the absolute fixation counts, normalized to the size of the object.

real-world problems [61], [62], but is itself complicated by
the difficulty in establishing good metrics. Most approaches
to date rely to some extent on ad hoc techniques. Indeed,
the methods we used in deriving Fig. 14, although following
techniques well-established from eye fixation studies [63]
require an ad hoc determination of whether a given fixation
point is within the target object or outside it. We experimented
with an approach based on mutual information but this breaks
down due to the presence of too many zeroes in the input
distributions. DeGroot [64] has suggested a method based on
increase in utility but this still leaves the question of deciding
the utility function itself. We would like to use the experimen-
tal results reported here as a stimulus for more mathematically
rigorous formal theoretical models able to characterize
quantitatively the properties needed to build biologically
realistic networks whose performance can be specified directly.

VII. CONCLUSION

In the final analysis, what is being researched? Is it the
neuroscience of the brain, or is it the engineering of functional
robots? The cognitive neurorobotics approach allows both to
be pursued in the same context. As we have done here it can be
used as a tool to uncover the model of computation, and then
in a recursive process take the insights thus gained to refine
the model systematically and produce systems that function
in the real world. We find several features. First, it appears
that contrast enhancement is one of the most important func-
tions of recurrent feedback. The effects of recurrent con-
nections in the signal-processing V1-V2-V4 pathway, in the
PFC-V2-V4 pathway, and indeed in WTA structures in both

V2 and LIP, all acted to enhance contrast. Second, in contrast
to the largely “selective,” fixed-function nature of conventional
digital processing, neural structures appear to operate in a
“cumulative” fashion where additional modules or connections
can be recruited to enhance performance of a specific function,
without any one being critical. Third, neural networks appear
to function best when the quiescent input for most neurons
in a layer puts them just below the spiking threshold. It was
notable that PFC biasing in V2 and V4 “primes” the neurons
for firing when a spike arrives and makes it more probable
that learning will be triggered. Finally, classical STDP is an
important mechanism for learning positive causation but is
almost certainly less important in learning anticausation. Other
learning mechanisms are probably responsible for anticausal
learning and this may explain why learning experiments using
STDP alone have been notoriously challenging to make func-
tional. However, in a larger sense this might summarize our
overall conclusion: spiking neural networks that rely on a
single structure or effect to produce results will probably
perform unspectacularly; spiking networks that employ a
combination of effects can probably be made to perform
convincingly. It remains for the future to be seen how this
combination of effects can be synthesized into an overall
model of computation for the brain.

APPENDIX
PYNN CODE FOR THE NETWORKS USED IN THIS PAPER

The complete PyNN scripts for the networks used
are available at the following: https://github.com/SpiNNaker
Manchester/BehaviouralLearning/. A readme file describes
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how to use the files. These scripts may be run using
SpiNNaker from the human brain project portal site at:
http://collaboration.humanbrainproject.eu.

The source data for the simulations run in the tests is also
available on the same site. These are grouped into /enhance-
ments, /scaling, and /learning folders for easy reference. Using

the

utility package spike_file_to_spike_array users can run

sample inputs as generated by the iCub. Each of the source
data folders includes the original graphics for the box plots
shown in this paper, for ease of on-screen readability.
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