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Abstract  5 

Alkali activated cementitious material (AACM) concrete and conventional concrete 6 

specimens of similar strength, developed for structural applications, were exposed to a 5% 7 

NaCl solution. Bound chloride concentrations (water and acid soluble) were determined up to 8 

270 days of chloride exposure. Chloride diffusion profiles with depth and diffusion 9 

parameters C0 and Dc were derived from the data for water soluble, acid soluble and total 10 

bound chloride concentrations in order to develop long term chloride prediction relationships.  11 

The results show that the practice of using acid soluble chloride data for long term chloride 12 

predictions in conventional concrete is not valid for AACMs due to their low chemical 13 

binding capacity. Instead the physically bound chloride (water soluble) is more predominant 14 

in AACMs and is suitable for the chloride prediction models. Therefore, relationships of 15 

chloride diffusion parameters C0 and Dc with time have been derived for water soluble 16 

chloride. These correlate with total bound chlorides and are suitable for long term predictions 17 

of chloride concentrations for the design and maintenance of AACM concrete structures 18 

against corrosion. 19 

 20 

 21 

Keywords: Alkali activated cementitious material AACM; water soluble chloride; acid 22 

soluble chloride; bound chloride; surface chloride concentration; chloride diffusion 23 

coefficients; chloride prediction models. 24 
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Notations: 25 

AACM alkali activated cementitious material 26 

PC  Portland cement 27 

GGBS  ground granulated blast-furnace slag  28 

SRA  shrinkage reducing admixture 29 

R42  retarder 30 

V1  ammonium thiocyanate solution used in the first titration [ml] 31 

V2  ammonium thiocyanate solution used in the second titration [ml] 32 

m  mass of the binder [g] 33 

f  molarity of silver nitrate solution 34 

x  distance from concrete surface (m) 35 

t  time (seconds) 36 

DC  diffusion coefficient (m
2
/s) 37 

(DC)as  acid soluble diffusion coefficient (m
2
/s) 38 

(DC)ws  water soluble diffusion coefficient (m
2
/s) 39 

(DC)tb  total bound diffusion coefficient (m
2
/s) 40 

C0  surface chloride concentration (% wt. of binder) 41 

Cas  acid soluble chlorides (% wt. of binder) 42 

(C0)as  acid soluble surface chlorides (% wt. of binder) 43 

(C0)ws  water soluble surface chlorides  (% wt. of binder) 44 

(C0)tb  total bound surface chlorides  (% wt. of binder) 45 

(C0)as, 180 acid soluble surface chlorides at 180days exposure (% wt. of binder) 46 

(C0)ws, 180 water soluble surface chlorides at 180days exposure (% wt. of binder) 47 

(C0)tb, 180 total bound surface chlorides at 180days exposure (% wt. of binder) 48 

C(x,t)  chloride concentration at distance x and time t .  49 
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(C20)as    acid soluble chloride at 20mm depth (% wt. of binder)  50 

(C20)ws    water soluble chloride at 20mm depth (% wt. of binder)  51 

(C25)as    acid soluble chloride at 25mm depth (% wt. of binder)  52 

(C25)ws    water soluble chloride at 25mm depth (% wt. of binder)  53 

NaOH    sodium hydroxide 54 

NaCl    sodium chloride 55 

NaNO3    sodium nitrate 56 

ISE    ion selective electrode 57 

C3A    tricalcium aluminate 58 

C4AF    tetracalcium aluminate 59 

Ca6Al2O6.CaCl2.10H2O Friedel’s salt  60 

Dref     diffusion coefficient at reference time t 61 

tref     reference age (days) 62 

 m     age factor 63 

Cref     surface chloride concentration corresponding to the time tref  64 

k    constant for surface chloride concentration 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 
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1.0 Introduction   75 

Alkali activated cementitious materials (AACMs) which do not use the traditional Portland 76 

cement (PC) are the basis of alkali activated (AACM) concrete. There is growing interest in 77 

the use of alkali activated concrete as a viable alternative to conventional Portland cement 78 

(PC) concrete due to its superior sustainability credentials and high performance such as fire 79 

resistance [1] and durability properties such as chemical resistance [2]. Considerable 80 

information on the sustainability of AACM concrete is available in literature which shows a 81 

lower CO2 emission  [3] and energy consumption [4] than PC concrete. However, there is 82 

strong resistance to the use of steel reinforced AACM concrete in significant structural 83 

applications until its resistance to chloride and carbonation induced corrosion is proven and 84 

its design procedures for corrosion resistance are established. The lack of standards has also 85 

been a critical limiting factor in the use of AACMs in practice, however, the publication of 86 

PAS 8820:2016 [5] starts to overcome this problem.  87 

Serious chloride-induced corrosion damage is common in conventional (PC) reinforced 88 

concrete structures exposed to the marine environment and to de-icing salts, such as bridge 89 

decks. For example, the annual cost of the maintenance and repair of existing bridges in the 90 

US is estimated to be about $12billion [6]. Chloride ingress in AACM concrete is also a 91 

major durability concern because it will cause corrosion of steel reinforcement embedded in 92 

it [1,7]. The presence of chloride ions in conventional Portland cement (PC) concrete above 93 

the established threshold limits [8] cause corrosion of steel reinforcement, however, these 94 

threshold limits have not yet been determined for AACM concrete to enable its design for 95 

corrosion resistant structures. 96 

The three forms of chloride present in Portland cement (PC) concrete are water soluble, acid 97 

soluble and free chlorides [9,10]. A recent study on AACM concrete suggests a considerable 98 

reduction in the acid soluble (chemically bound) chloride present within its matrix especially 99 
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in low calcium systems [7]. However, these chloride concentration properties need to be 100 

quantified for different precursors such as high calcium systems and for engineering mixes of 101 

AACM concretes to establish threshold levels which initiate reinforcement corrosion. The 102 

balance between the three forms of chlorides present in AACMs and the factors involved 103 

requires further research. The reaction products and hardening process of AACMs are 104 

different from the hydration products of conventional PC concrete [11]. These products play 105 

a decisive role in chloride ingress. The differences in the water and acid soluble chlorides 106 

between AACM and PC concrete need to be quantified to determine their relative chloride 107 

binding properties. Determining the relationship between the bound, free and total chloride in 108 

AACM concrete will provide a clearer understanding of chloride induced corrosion of 109 

reinforcement in AACM concrete. The possibility of a reduction in the bound chlorides in 110 

AACM concrete raises potential concerns about its corrosion resistance.  111 

The ingress of chloride in concrete is a complex interaction of both physical and chemical 112 

processes which are predominantly affected by the physical and chemical composition of the 113 

cement gel structure [12]. The chloride concentration profiles with depth of concrete exposed 114 

to a chloride environment, chloride diffusion coefficients Dc, surface chloride concentrations 115 

C0, are the properties and parameters used to assess the resistance of concrete to long term 116 

chloride ingress. These parameters are derived from Fick's second law of diffusion [13] in 117 

conventional PC concrete. However, the chloride diffusion parameters such as Dc, C0 and 118 

chloride concentration profiles for practical AACM concrete mixes need to be established to 119 

realise their field applications. Research has shown that the apparent chloride diffusion 120 

coefficient Dc of PC concrete decreases with time t, indicating a progressive reduction in the 121 

rate of chloride diffusion [14,15]. The chloride diffusion in PC concrete is influenced by its 122 

physical properties and chloride binding capacity and their effect is represented by the age 123 
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factor [14,15]. AACM concrete has the potential to provide greater chloride resistance and a 124 

more durable construction material due to its distinctive refined pore structure [16]. 125 

This paper presents an investigation on the water and acid soluble chlorides which represent 126 

the physically and chemically bound chlorides to the binder gel of high calcium (ggbs based) 127 

AACM concretes. It quantitatively differentiates the water and acid soluble chlorides under 128 

long term chloride exposure of AACM concrete mixes developed for structural applications. 129 

Direct chloride diffusion (bulk diffusion) tests under exposure to a chloride solution have 130 

been carried out to obtain long term data.  Rapid chloride diffusion-cell tests developed for 131 

PC concrete [17] are not directly suitable for continuous long term monitoring plus their 132 

validity has not been proven for AACMs. The differences in the chloride binding properties 133 

and their effect on the chemical concentrations of the pore fluid of PC and AACM concrete 134 

are likely to affect the result of such tests. The analysis of the long term chloride diffusion 135 

test data of this research show that the practice of using acid soluble (chemically bound) 136 

chloride data to determine the diffusion parameters of PC concrete [18,19] for its corrosion 137 

prediction calculations is not valid for AACM concrete. Instead, water soluble (physically 138 

bound) chloride data are shown to be suitable for AACM concrete mixes.  These data have 139 

been used to determine their chloride diffusion parameters (C0 and Dc), including the 140 

relationships of these parameters with the period of chloride exposure. Expressions have been 141 

derived for long term predictions of chloride concentrations for use in the design and 142 

maintenance of AACM concrete structures.  143 

2.0 Experimental programme 144 

2.1 Materials  145 

Ground granulated blast furnace slag (GGBS) and CEM 1 cement of grade 42.5R [8] were 146 

used as binders for AACM and PC concrete mixes respectively. The chemical composition of 147 

GGBS and PC is given in table 1. The AACM binder was activated with a sodium silicate 148 
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solution of molarity 6.5mol/L and modulus 2% together with NaOH of molarity 4.8mol/L. 149 

AACM 1, 2 and 3 mixes were produced by diluting the activator with water at 0%, 3.88% 150 

and 7.76% respectively as shown in Table 2, to optimize workability and determine the effect 151 

of dilution on chloride diffusion. The liquid/binder ratio of 0.47 was used in the AACM and 152 

PC concrete mixes. 153 

10mm uncrushed gravel, 6mm limestone and a medium grade sand of 80% particle size 154 

passing 1mm sieve were used as coarse and fine aggregates in this study. The properties and 155 

oxide compositions of these aggregates conform to BS 882:1992 [20].  156 

Retarder and shrinkage reducing admixtures were introduced in the AACM concrete mixes in 157 

order to improve their workability and setting time (Table 2). The retarder R42 is a blend of 158 

high grade polyhydroxycarboxylic acid derivatives while the shrinkage reducing admixture 159 

(SRA) is made from Alkyl-ether. Each admixture contained less than 0.1% chloride ion and 160 

3.5% sodium oxide. 161 

Table 1: Chemical composition of Portland cement and GGBS binders 162 

Chemical component SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 P2O5 MnO SO3 

PC (mass %) 11.1 8.35 3.16 64.2 2.09 1.19 0.227 1.88 2.01 2.14 3.64 

GGBS (mass %) 28.6 12.4 5.7 42.3 6.1 0.8 0.4 1.78 <0.1 0.3 0.08 

 Table 2: Composition of AACM 1, 2, 3 and control PC concrete mixes 163 

Mix Binder 

Content 

(%) 

Fine 

Agg. 

(%) 

Coarse Agg. (%) Liquid/ 

Binder 

Ratio 

Activator 

Dilution  

(%) 

R42 SRA 

10mm 

Gravel 

6mm 

Limestone 

(% by weight 

of binder) 

AACM 1 

AACM 2 

AACM 3 

Control PC 

25 

25 

25 

20 

18 

18 

18 

26 

29.3 

29.3 

29.3 

28.9 

15.7 

15.7 

15.7 

15.5 

0.47 

0.47 

0.47 

0.47(w/c) 

0 

3.88 

7.76 

- 

0.2 

0.2 

0.2 

- 

0.5 

0.5 

0.5 

- 

*R42 is the retarder; SRA is the shrinkage reducing admixture 164 
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2.2 Specimen preparation 165 

The fresh AACM and PC concrete were mixed in a 150 kg capacity Cretangle mixer in 166 

accordance with BS EN 206:2013+A1:2016 standard [21]. A total of forty concrete slabs 167 

with dimensions of 250 x 250 x 75mm were produced for chloride ingress testing, ten slabs 168 

for each AACM 1, 2, 3 and PC concrete. The chloride ingress specimens were cured in the 169 

laboratory air at 20 ± 2
0
C and 65% R.H, for 24hrs with their top surface covered with 170 

polythene sheets before demoulding. The hardened concrete was then cured in water (20 ± 171 

2
0
C) for 27days after demoulding. The chloride ingress specimens were taken out of water 172 

and surface dried after the 28days' curing period. Two coats of bituminous paint were applied 173 

to five faces of the slabs except the bottom cast faces (250mm x 250mm) and allowed to dry 174 

for 24hrs. The slabs were then immersed in a 5% by weight NaCl solution to expose the 175 

uncoated face to chloride diffusion. The higher limit of 5% chloride concentration specified 176 

by the standards [22,23] was used to promote accelerated chloride ingress through the 177 

exposed uncoated surfaces. The NaCl solution was stirred frequently and replaced every 90 178 

days to maintain uniform concentration. Two slab specimens for each concrete mix were 179 

removed from the chloride solution at exposure periods of 55, 90, 120, 180 and 270 days to 180 

determine the water and acid soluble chloride concentrations at increments of depth from the 181 

face exposed to chloride diffusion.   182 

Twenty four concrete cubes of dimensions 75mm X 75mm X 75mm were produced for 183 

compressive strength testing, 12 cubes were cured in water (20 ± 2
0
C) and 12 cubes cured in 184 

laboratory air (20 ± 2
0
C, 65% R.H). 185 

2.3 Test Procedures 186 

2.3.1 Workability and compressive strength 187 

Slump test was performed in accordance with BS EN 12350-2:2009 [24] to determine the 188 

workability of fresh AACM and PC concrete. The compressive strength was determined on 189 
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75mm
 
concrete cubes at 28days under wet and dry curing regimes. The compressive strength 190 

test was performed in accordance with BS EN 12390-3:2009
 
[25]. The compressive test 191 

results reported in Figure 2 are an average value from three cubes. 192 

2.3.2 Chloride diffusion testing 193 

The collection of dry powder samples from the concrete specimens was carried out in 194 

accordance with NordTest 443 [22] and DD CEN/TS 12390-11 [23]. At each test age, two 195 

250 x 250 x 75mm concrete specimens were sawn into two equal halves along the 196 

longitudinal plane perpendicular to the chloride exposed uncoated face (Fig. 1). Dry powder 197 

samples were collected from seven parallel layers at 8, 15, 25, 35, 50 and 65mm depths from 198 

the uncoated surface. A minimum of six holes were drilled per each profile depth by means 199 

of a hammer drill using 4mm diameter SDS drill bits. The powder samples from each hole 200 

were combined to provide approximately 15grams of powder samples per each profile depth 201 

for the two specimens of each concrete mix. The powder samples for each depth were sieved 202 

and the fine powder passing through the 150µm sieve as shown in Fig. 1 was carefully stored 203 

in a self-sealing plastic bag and labelled accordingly. The retained coarse material was 204 

discarded while the fine powder samples were subjected to chloride analysis.  205 

 
a 

 
b 

Retained on 125μm 

Passing on 125μm 



 10 

 

Fig. 1: (a) Location of drilled holes perpendicular to the chloride exposed uncoated face. (b) 206 

Concrete powder passing and retained on 150µm sieve. 207 

2.3.3 Chloride analysis 208 

A chloride ion selective electrode (ISE) was used to measure the water-soluble chloride 209 

concentrations. Five grams of the concrete powder passing through the 150µm sieve was 210 

dissolved in 50ml of distilled water. The effective ionic concentration, otherwise known as 211 

the chloride ion activity within the concrete powder solution, was buffered with NaNO3 to 212 

avoid possible interference by other ions like iodine, bromide, cyanide and sulphide [26]. The 213 

procedure was done three times for each powder sample and the coefficient of variance of 214 

repeatability was less than 5%. Calibration of the chloride ISE was done by using a pre-215 

prepared 1000 mg/l and 10 mg/l standard NaCl solution before each test. 216 

The acid soluble chloride concentrations in hardened AACM and PC concrete were 217 

determined in accordance with BS EN 14629 [18]. Volhard’s titration method was used to 218 

determine the chloride concentration on the second part of the concrete powder sample 219 

obtained at each profile depth from the exposed surface. The acid soluble chloride content, 220 

Cas was calculated as a percentage of chloride ions by weight of the binder using equation 1. 221 

 
C as =  3.545 ∗ f ∗

(V2 − V1)

m
 

 (1) 

Where V1 is the volume of the ammonium thiocyanate solution used in the first titration [ml]; 222 

V2 is the volume of the ammonium thiocyanate solution used in the second titration [ml]; m 223 

is the mass of binder fraction in the concrete powder sample [g]; and f is the molarity of 224 

silver nitrate solution [18]. 225 

2.3.4 Chloride diffusion parameters  226 
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Fick's second law of diffusion was suggested as a suitable model for chloride diffusion in 227 

concrete by Collepardi et al. [13], which gives the following equation; 228 

 
𝐶(𝑥,𝑡)  =  ∁0  (1 − 𝑒𝑟𝑓 [

x

2√𝐷𝐶  𝑡 
]) 

 (2) 

Where: x is the distance from concrete surface (m); t is the time (seconds); Dc is the diffusion 229 

coefficient (m
2
/s); C0 is the chloride concentration on the concrete surface; C(x,t) is the 230 

chloride concentration at distance x and time t .  231 

The experimental data of acid and water-soluble chloride concentrations with depth were 232 

plotted at every test age. An error function analysis using Fick's second law of diffusion 233 

equation 2 was performed on the chloride profiles to determine the constant values of the 234 

diffusion parameters C0 and Dc at each test age. These values were used to determine the age 235 

factor which accounts for the change in diffusion coefficients with time [27,28] and can 236 

ultimately enable long-term predictions of chloride diffusion in AACM concrete.  237 

3.0 Results and Discussion 238 

3.1 Workability and Compressive strength 239 

The slump of fresh AACM 1, 2, 3 and PC concrete was 30, 45, 70 and 75mm respectively. 240 

The workability (slump) of AACMs is lower than the PC concrete due to the sticky 241 

characteristics of silicate present in AACMs. However, AACM 3 and PC concrete gave fairly 242 

similar workability due to the lower silicate content in the activator used for AACM 3 243 

concrete (7.76% activator dilution). 244 

The 28day compressive strengths of AACM 1, 2, 3 and PC concrete cured in water (20 ± 245 

2
0
C) and under dry curing in the laboratory air (20 ± 2

0
C, 65% R.H) are shown in Fig. 2. 246 
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 247 

Fig. 2: 28day compressive strength of AACM and PC concrete cured in water (20 ± 2
0
C) and 248 

laboratory air (20 ± 2
0
C, 65% R.H). 249 

AACM concrete mixes had greater strength than PC concrete under wet and especially dry 250 

curing. AACM 3 has a similar workability as the PC concrete and their strength difference 251 

under wet curing is within 10%. The two mixes have the same liquid/binder and 252 

water/cement ratios of 0.47 respectively. The PC concrete provides the control specimen for 253 

AACM 3 since wet curing is the standard quality control criteria for concrete. The 28day 254 

strength of AACM 3 concrete under dry curing is 18% higher than PC concrete. 255 

AACM 1 concrete with the highest activator concentration resulted in the highest strength 256 

due to higher reaction rate and the formation of a less porous matrix [16]. For example, the 257 

28-day compressive strength of AACM 1 (0% activator dilution) and AACM 3 (7.76% 258 

activator dilution) was 62MPa and 52MPa respectively, under dry curing (Fig. 2).  259 

3.2 Chloride diffusion profiles 260 

3.2.1 Water soluble chloride 261 

The profiles in Fig. 3 represent the water soluble chloride concentrations (% weight of 262 

binder) along the depth (0-75mm) of the specimens. A non-linear regression analysis was 263 
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performed on the experimental data plotted in Figures 3 and 4 using Fick’s second law of 264 

diffusion equation 2 and the best-fit lines are plotted using excel software. The regression 265 

analysis also provided the values of the diffusion coefficient Dc and surface chloride 266 

concentration C0 at each exposure age. Discussion on the diffusion coefficient Dc and surface 267 

chloride concentration C0 will follow in section 3.4. 268 

The chloride profiles of AACM 1, 2, 3 and the control PC concrete at 55 and 180days 269 

exposure periods are shown in Fig. 3 while Fig. 4 shows chloride concentrations in the 270 

concrete cover zones (20 and 25mm depths) for exposure periods of 55, 90, 120 and 180days. 271 

The 20 and 25mm depths represent the concrete cover zone which could be higher (up to 272 

50mm) in marine structures. However, the exposure period represented in Figures 3 and 4 is 273 

not sufficiently long-term to provide detectable differences at higher depths. Figure 4 shows a 274 

linear increase in water-soluble chloride concentrations with longer chloride exposure. The 275 

coefficient of correlation for the best-fit lines in Figures 3 and 4 ranged between 0.81 and 276 

0.99. 277 

 278 

Fig. 3: Water soluble chloride profiles of AACM 1, 2, 3 and control PC concrete at 55 and 279 

180 days of chloride exposure. 280 
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 281 

Fig. 4: Relationship between water soluble chlorides (20 and 25mm depth) and exposure 282 

period of AACM 1, 3 and control PC concrete 283 

A lower water-soluble chloride profile is exhibited by AACM 1, 2 and 3 concrete than the 284 

control PC concrete at 55 and 180 days of chloride exposure (Fig. 3). For example, at 25mm 285 

depth, the chloride concentration of AACM 3 concrete at 180days exposure is 1.05% by 286 

weight of binder compared with 1.55% by weight of binder in PC concrete. Both of these 287 

values are significantly greater than the corrosion threshold chloride concentrations given in 288 

standards [8], which are 0.4% and 1.0% by weight of binder for concrete with and without 289 

steel reinforcement respectively. This is due to the accelerated chloride diffusion test 290 

providing continuous immersion in a 5% NaCl solution [23]. The high concentration of NaCl 291 

is recommended in international standards [22,23] for comparative evaluation of mixes and 292 

for determining diffusion coefficients C0 and Dc. 293 

The water soluble chloride concentration is lower in AACM 3 compared with its control PC 294 

concrete, which becomes more significant with longer exposure (Fig 4) due to greater 295 

physical binding of chloride occurring in PC concrete with time.  296 

3.2.2 Acid soluble chloride 297 
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Figure 5 shows the experimental data points and the acid soluble chloride profiles of AACM 298 

1, 2, 3 and the control PC concrete at 55 and 270days exposure. Non-linear regression 299 

analysis of the experimental data against Fick's 2
nd

 law of diffusion equation 2 gave the 300 

chloride profiles plotted in Fig. 5. The coefficients of correlation range between 0.80 and 301 

0.94. 302 

 303 

Fig. 5: Acid soluble chloride profiles of AACM 1, 2, 3 and control PC concrete at 55 and 270 304 

days of chloride exposure. 305 

Acid soluble chloride profiles of AACM 1, 2, 3 and the control PC concrete show an increase 306 

of chloride concentrations with exposure time, both on the concrete surface and at all depths 307 

within the concrete matrix. The profiles of the control PC concrete show much higher 308 

chloride concentrations than the AACM 1, 2 and 3 concrete at 55 and 270days exposures 309 

(Fig. 5).  310 
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 311 

Fig. 6: Relationship between acid soluble chlorides (20 and 25mm depth) and exposure 312 

period of AACM 1, 3 and control PC concrete 313 

Figure 6 shows the acid soluble chloride concentrations at 20 and 25mm depths in AACM 1, 314 

3 and control PC concrete at exposure periods of 55, 90, 120, 180 and 270days. The acid 315 

soluble chloride concentrations of AACM 1 and 3 concrete are much lower than the control 316 

PC concrete at different chloride exposure periods with the difference getting bigger with 317 

increasing exposure period thereby indicating much higher chemical binding of chloride 318 

occurring with time in PC concrete. For example, at 25mm depth, the chloride concentration 319 

of AACM 3 concrete at 270days exposure is 0.56% by weight of binder compared with 320 

2.56% in the control PC concrete (Fig. 6). The PC concrete has significantly greater value 321 

than the corrosion threshold chloride concentrations given in standards [8] which are 0.4% 322 

and 1.0% by weight of binder for concrete with and without steel reinforcement. The chloride 323 

threshold values for initiating corrosion given in the standard [8] relate to the total bound and 324 

acid soluble chloride in PC concrete. However, neither of these bound chlorides (acid and 325 

water soluble) are the direct initiators of corrosion, the free chloride (pore fluid) being the 326 

electrolyte which supports corrosion.  327 

3.3 Bound chlorides in AACM and PC concrete  328 

R² = 0.8635 

R² = 0.451 

R² = 0.9506 

R² = 0.9417 

R² = 0.9915 

R² = 0.9926 

0

0.5

1

1.5

2

2.5

3

3.5

40 60 80 100 120 140 160 180 200 220 240 260 280 300

A
ci

d
 s

o
lu

b
le

 C
l 

(%
w

t.
 o

f 
b
in

d
er

) 

Exposure period (days) 

20mm Depth (AACM 1)

25 mm Depth (AACM 1)

20 mm Depth (AACM 3)

25mm Depth (AACM 3)

20 mm Depth (Control PC)

25 mm Depth (Control PC)



 17 

 

The water soluble, acid soluble and total bound chlorides in AACM 1, 3 and PC concrete at 329 

20mm depth for 55 and 180days exposure are shown in Fig. 7. The corresponding results for 330 

25mm depth are shown in Fig. 8. The total bound chlorides are represented as the sum of 331 

water soluble and acid soluble chlorides for the AACM concretes. For PC concrete, the total 332 

bound and acid soluble chlorides are taken to be equal as it is generally assumed in literature 333 

and testing standards [18,19]. 334 

 335 

Fig. 7: Water, acid soluble and total bound chlorides at 20mm depth in AACM 1, 3 and 336 

control PC concrete at 55 and 180days exposure. 337 
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 338 

Fig. 8: Water, acid soluble and total bound chlorides at 25mm depth in AACM 1, 3 and 339 

control PC concrete at 55 and 180 days exposure. 340 

The acid-soluble chlorides in AACM 1 and 3 concrete are considerably lower than the water-341 

soluble chlorides at both 55 and 180days exposure whereas the reverse is true for the control 342 

PC concrete (Figures 7 and 8). For example, the water soluble chlorides of AACM 1 and 3 343 

concrete at 180days exposure are 1.05% and 1.26% compared with 0.24% and 0.39% for acid 344 

soluble chlorides at 20mm depth (Fig. 7). The corresponding values for PC concrete are 345 

2.13% for water soluble chloride compared with 3.2% for acid soluble chloride at 20mm 346 

depth. A similar trend is shown at 25mm depth which is presented in Fig. 8. The significant 347 

observations from Figures 7 and 8 show that both water soluble and acid soluble chloride 348 

contents in AACM concrete are less than the PC concrete. However, the reduction is much 349 

greater in acid soluble chloride. The acid soluble chloride content in AACM concrete is much 350 

lower than its water soluble chloride content, whereas it is the opposite in PC concrete.  351 

The above observations indicate that the balance between chemical and physical binding of 352 

chlorides in the matrix is different in PC and AACM concretes. The total bound chloride 353 

content in Figures 7 and 8 comprises of the physically bound (water soluble) and chemically 354 
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bound (acid soluble) chlorides. Conventional PC concrete shows higher chemical binding 355 

than physical binding due to the C3A and C4AF in its PC binder. The unhydrated portion of 356 

aluminate (C3A) and aluminoferrite (C4AF) of PC binders reacts with the chloride ions in the 357 

pore solution during the exposure period, transforming it to Friedel’s salt 358 

(Ca6Al2O6.CaCl2.10H2O) and calcium chloroferrite [29]. This is responsible for the increase 359 

in acid soluble chloride concentration in PC concrete with longer exposure period. The 360 

hydration reaction of aluminate (C3A) and aluminoferrite (C4AF) that takes place before the 361 

exposure of PC concrete to NaCl solution does not contribute to its acid soluble chlorides 362 

[29]. The lack of aluminate (C3A) and aluminoferrite (C4AF) in the AACM compositions of 363 

Table 1 results in low chemically bound chlorides (acid soluble) in the AACM matrix.  364 

Therefore, unlike PC concrete, AACM concrete has higher physical binding capacity than its 365 

chemical binding capacity. The chloride binding capacity of concrete is an important property 366 

that regulates the amount of free chlorides in the concrete matrix, which initiate corrosion 367 

when their permissible limits are exceeded. 368 

3.4 Chloride diffusion parameters (C0 and Dc)  369 

3.4.1 Long term C0 and Dc models 370 

The solution of Fick's 2
nd

 law of diffusion, δC/δt = D δ
2
C/δx

2
, which is given in equation 2 371 

assumes a constant value for the chloride diffusion parameters (C0 and Dc). However, 372 

research has shown that these coefficients vary with time [14,15,27,28] due to changes in the 373 

properties of concrete with time, such as porosity and chloride binding in concrete. These 374 

effects are represented by the age factor, m, of concrete [30]. Research on the long-term 375 

diffusion coefficient of concrete, DC, has derived an empirical relationship in the form of a 376 

power function given in equation 3 [15,28]. 377 

 𝐷 𝐶 = 𝐷𝑟𝑒𝑓 𝑡
−𝑚  3 
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where: Dc is the apparent diffusion coefficient at time t, Dref is diffusion coefficient at 378 

reference time t and m is the age factor. 379 

A theoretical solution based on Fick's second law of diffusion which takes account of the 380 

time variation of the diffusion coefficient by introducing the age factor, m, from equation 3 381 

has been derived elsewhere [15,28] and given in equation 4. 382 

𝐶(𝑥,𝑡)  =  ∁(0)  

(

 
 
 
 

1 − 𝑒𝑟𝑓

[
 
 
 
 
 
 

x

2
√𝐷𝑟𝑒𝑓 𝑡 (1−𝑚)

√1 − 𝑚 ]
 
 
 
 
 
 

)

 
 
 
 

 

 4 

Similarly, the time dependent C0 has been shown to be proportional to the square root of 383 

chloride exposure period  [31,32], and the relationship is given in (Eqn. 5) 384 

 𝐶0 = 𝐶𝑟𝑒𝑓 +  𝑘 √𝑡 − 𝑡𝑟𝑒𝑓           5 

Where Cref and tref are reference surface chloride and the reference time (=55days) 385 

respectively, k and m are the age factors influencing the long-term surface chloride 386 

concentrations and diffusion coefficients respectively, C0 is the chloride concentration on the 387 

concrete surface, C(x,t) is the chloride concentration at distance x and time t. 388 

The following analysis given in the paper uses the chloride diffusion data at each test age (55, 389 

90, 120, 180 and 270days) to determine C0 and Dc values using equation 2. The values of 390 

coefficient m and k have been determined by regression analysis of the plots of C0 and Dc 391 

against exposure time. 392 

3.4.2 Surface chloride concentration C0 393 

The surface chloride concentrations, C0, were calculated at each age by applying the Fick's 394 

2
nd

 law of diffusion (equation 2) to all the chloride diffusion data obtained at 55, 90, 120 and 395 

180days exposure to the chloride solution. The C0 values are plotted in Figure 9 and a 396 

regression analysis by applying equation 5 have been carried out to determine relationships 397 
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for long term predictions of C0 for each concrete mix.  Fig. 9 shows the relationship between 398 

the chloride exposure period term (t-tref)
0.5 

and water soluble (C0)ws, acid soluble (C0)as, total 399 

bound (C0)tb surface chlorides. Similar relationships exist for the data of AACM 1 and 2. 400 

 401 

Fig. 9: Relationship between (C0)ws, (C0)as, (C0)tb and chloride exposure period for AACM 3 402 

and PC concrete. 403 

The linear equations between C0 and (t - tref)
0.5

 for AACM 1, 2, 3 and PC concrete and their 404 

level of correlation are presented in Table 3. The surface chloride concentration at 180days 405 

exposure, (C0)180, obtained from each equation is also listed in Table 3. 406 

Table 3: Relationships of (C0)ws, (C0)as, (C0)tb with chloride exposure period (t - tref)
0.5

 407 

Mix Surface 

Cl
- 
(C0) 

Linear equation R
2
 (C0)180 

 (%wt. of binder) 

AACM 1 tb (C0)tb = 0.134(t-tref)
0.5

 + 0.24 0.97 1.74 

 as (C0)as = 0.034(t-tref)
0.5

 + 0.028 0.98 0.41 

 ws (C0)ws = 0.13(t-tref)
0.5

 + 0.12 0.95 1.57 

AACM 2 tb (C0)tb = 0.139(t-tref)
0.5

 + 0.52 0.97 2.07 

 as (C0)as = 0.039(t-tref)
0.5

 + 0.06 0.99 0.50 

 ws (C0)ws = 0.134(t-tref)
0.5

 + 0.25 0.96 1.75 
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AACM 3 tb (C0)tb = 0.16(t-tref)
0.5

 + 0.60 0.90 2.39 

 as (C0)as = 0.046(t-tref)
0.5

 + 0.08 0.99 0.60 

 ws (C0)ws = 0.157(t-tref)
0.5

 + 0.36 0.94 2.11 

PC tb and as (C0)tb and (C0)as = 0.262(t-tref)
0.5

 + 1.71 0.96 4.64 

 ws (C0)ws = 0.197(t-tref)
0.5

 + 0.98 0.98 3.18 

Where: (C0)tb, (C0)as and (C0)ws are total bound, acid soluble and water soluble chlorides 408 

respectively, t is the exposure time (days) and tref is the reference exposure time (55days). 409 

The values of (C0)180 in Table 3 show that for PC concrete, the (C0)tb,180 and (C0)as,180 are both 410 

equal to 4.64% wt. of binder. The corresponding (C0)ws,180 is much lower at 3.18% wt. of 411 

binder. Therefore, both total bound and acid soluble chloride data are suitable for long term 412 

chloride prediction for PC concrete. This conforms with current practice where test 413 

procedures used for chloride ingress in PC concrete determine acid soluble chlorides only 414 

[18,19] and these values are used in long term prediction models [14,15,27,28]. 415 

However, the data in Table 3 show that the (C0)tb,180 and (C0)as,180 for AACM 3 concrete are 416 

very different at 2.39% and 0.60% wt. of binder respectively. The acid soluble chloride 417 

values are too low to be suitable for long term chloride predictions and, therefore, the acid 418 

soluble chloride test procedure is not valid for AACMs. 419 

The water soluble surface chloride (C0)ws,180 of the AACM 3 mix in Table 3 is 2.11% wt. of 420 

binder compared to 2.39% wt. of binder for (C0)tb,180. Their difference is within 15% and 421 

potentially the (C0)ws,180 values could be used for long term predictions of chlorides in 422 

AACM concrete. The accuracy of this approach will be determined in section 3.4.4. 423 

The (C0)as,180 and (C0)ws,180 values are 0.60% and 2.11% wt. of binder respectively for AACM 424 

3 (Table 3). The very low acid soluble chloride shows that a higher proportion of the chloride 425 

is being physically bound to the walls of the binder gel in AACMs than forming chemically 426 

bound chloride compounds during geopolymerisation. 427 
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Higher (C0)ws, (C0)as and (C0)tb are observed in PC concrete than AACM 3 concrete. For 428 

example, the (C0)ws, (C0)as and (C0)tb at 180days exposure are 3.18%, 4.64% and 4.64% by 429 

weight of binder respectively for PC concrete while it is  2.11%, 0.60% and 2.39% for 430 

AACM 3 concrete. Both the (C0)ws and (C0)as of the control PC concrete are significantly 431 

higher than AACM 3 concrete, which represents higher physical and chemically bound 432 

chlorides in PC concrete. These (C0)as values of PC concrete are in a similar range of 1.1% to 433 

7.2% by binder weight given in literature from other research [33–36].  However, existing 434 

literature lacks comparative data for AACM concrete. 435 

3.4.3 Chloride diffusion coefficient Dc 436 

Equation 2 has been applied to all the chloride diffusion data to determine the chloride 437 

diffusion coefficients at each test age by a non-linear regression analysis. The regression 438 

equations and their coefficients of correlation are given in Figures 10 and 11. Figure 10 439 

shows the relationship between acid soluble chloride (Dc)as and chloride exposure period for 440 

AACM 1, 2, 3 concrete, whereas the graph for PC concrete in Fig 10 represents  (Dc)ws 441 

instead of (Dc)as. Fig. 11 shows the the relationship of both total bound chloride (Dc)tb and 442 

water soluble chloride (Dc)ws against chloride exposure period for AACMs. However, the 443 

graph for PC concrete in Fig. 11 represents the (Dc)as instead of (Dc)ws. 444 

 445 

Fig. 10: Relationship of (Dc)as for AACMs and (Dc)ws for PC versus Cl
-
 exposure period 446 

(Dc)as = 77.71(t)-0.49; R² = 0.79 

(Dc)as = 141.8(t)-0.55 ;R² = 0.94 

(Dc)as = 409.87(t)-0.73; R² = 0.99 

(Dc)ws = 213.81(t)-0.60;R² = 0.93 
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 447 

Fig. 11: Relationship of (Dc)tb, (Dc)ws for AACMs and (Dc)tb, (Dc)as for PC concrete versus Cl
-
 448 

exposure period 449 

Chloride diffusion coefficient, Dc, values for AACMs given in literature are mainly based on 450 

rapid chloride penetration test RCPT. Since the pore fluid and bound chloride properties of 451 

AACMs and PC are different, this affects the migration of chlorides. The validity of these 452 

tests to AACMs needs to be verified. The Dc values given in literature for AACMs usually 453 

relate to the acid soluble (Dc)as which are assumed to represent total bound (Dc)tb [18,19]. 454 

This results in an under estimation of the total bound (Dc)tb in AACMs. The graphs in Figures 455 

10 and 11 show that the acid soluble chloride (Dc)as values of AACM concretes (Fig. 10) are 456 

orders of magnitude lower (10
-18

 against 10
-12

) than their total bound chloride (Dc)tb values 457 

(Fig. 11) unlike PC concrete which has the same (Dc)as and (Dc)tb values of 4.5 x 10
-12

m
2
/s at 458 

180days exposure (Fig. 11). Therefore, the procedures and test standards adopted for PC 459 

concrete using acid soluble chlorides  [18,19]
 
are not valid for AACMs.  460 

On the other hand, the water soluble chloride (Dc)ws values of AACMs are the same as their 461 

total bound chloride (Dc)tb as shown in Fig. 11. For example, both the water soluble (Dc)ws 462 

and total bound (Dc)tb for AACM 1, 2 and 3 are 2.3 x 10
-12

m
2
/s, 3.2 x 10

-12
m

2
/s and 3.5 x 10

-
463 
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12
m

2
/s respectively at 180days chloride exposure. Therefore, the water soluble (Dc)ws in 464 

AACMs instead of (Dc)as are representative of the diffusion coefficient of AACMs as they 465 

equal the total bound (Dc)tb.  466 

The chloride induced corrosion prediction of AACM concrete structures requires reliable 467 

chloride diffusion parameters (Dc and C0). The values based on total bound chlorides or 468 

equivalents should be used to determine the diffusion coefficients. Diffusion coefficients in 469 

literature (and in practice) are usually determined from acid soluble chloride data without 470 

considering the water soluble chlorides. This approach gives an incorrect assessment for 471 

AACM concrete because, as shown in Figures 9-11, the greater amount of chloride 472 

concentration is neglected when using (Dc)as.  Therefore, the test standards [18,19] for 473 

conventional PC concrete, which are based on acid soluble chloride measurements, are not 474 

suitable for AACMs. They need to be revised, focusing on water soluble chlorides. 475 

3.4.4 Long term prediction of Dc, C0 and Cl
-
 content 476 

3.4.4.1  Chloride diffusion coefficients Dc 477 

Time dependent models for Dc and C0, based on equations 3 and 5 [31,32], were used to 478 

predict long-term (20years) chloride diffusion parameters and chloride concentrations to 479 

determine the relative accuracy of predictions for AACM concrete using water soluble and 480 

total bound chloride data. Figure 12 shows the experimental data of (Dc) up to 270days 481 

exposure and predicted values beyond this age. The age factor m in equation 3 was derived 482 

by a regression analysis of the experimental data in Figure 10 and 11 for each AACM 483 

concrete. These values are used to predict the long-term total bound (Dc)tb, acid soluble (Dc)as 484 

and water soluble (Dc)ws for 20years chloride exposure period as shown in Figure 12 and 485 

Table 4. The chloride concentrations at 20mm depth after 20years chloride exposure are 486 

calculated from equation 2 using the diffusion parameters Dc and C0 which are calculated 487 

from equations 3 and 5. 488 
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 𝐷 𝐶 = 𝐷𝑟𝑒𝑓 𝑡
−𝑚  3 

 𝐶0 = 𝐶𝑟𝑒𝑓 +  𝑘 √𝑡 − 𝑡𝑟𝑒𝑓          5 

 489 

Fig. 12: Chloride diffusion coefficient prediction of AACM and PC concrete up to 20years of 490 

Cl
-
 exposure  491 

All the calculated values at 20years exposure are given in Table 4. 492 

Table 4: Predicted chloride diffusion parameters at 20years exposure 493 

Mix (Dc)ws (Dc)as (Dc)tb (C0)ws (C0)as (C0)tb (Cl20)ws (Cl20)as (Cl20)tb 

 (m
2
/s) (%wt. of binder) (%wt. of binder) 

AACM 1 2.89 x 10
-13

 3.67 x 10
-19

 2.89 x 10
-13

 11.19 2.92 11.65 4.08 0 4.20 

AACM 2 3.2 x 10
-13

 7.48 x 10
-19

 3.2 x 10
-13

 11.66 3.38 12.35 4.46 0 4.66 

AACM 3 4.0 x 10
-13

 9.11 x 10
-19

 4.0 x 10
-13

 13.72 3.99 14.22 5.26 0 5.54 

PC 8.2 x 10
-19

 5.36 x 10
-13

 5.36 x 10
-13

 17.75 24.01 24.01 0 10.68 10.85 

3.4.4.2  Surface chloride  C0 and Cl
-
 content 494 

The equations for C0 given in Table 3 together with C0 values based on the experimental data 495 

up to 270days exposure are used to plot Fig. 13 to enable long-term predictions of chloride 496 

concentrations. The C0 values at 20years exposure are given in Table 4.  497 
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The chloride concentrations at 20mm depth after 20years chloride exposure which are given 498 

in Table 4 have been calculated from equation 2 using the diffusion parameters C0 and Dc 499 

given in Table 4. 500 

 501 

Fig. 13: (C0)as,  (C0)ws and (C0)tb prediction for AACM 3 and PC concrete up to 20yrs of Cl
-
 502 

exposure  503 

The results in Table 4 show that the chloride predictions of AACM 1 concrete after 20years 504 

chloride exposure gave similar values of 4.08% and 4.20% wt. of binder when C0 and Dc 505 

based on water soluble and total bound chlorides respectively are used in the calculation. The 506 

Cl20 for AACM 2 and 3 are also similar when water soluble and total bound chloride based C0 507 

and Dc are used for their calculations. However, the (Cl20)as values for the AACM concretes 508 

are 0% wt. of binder. Therefore, in practice the data of water soluble chlorides in AACMs 509 

can be used to determine their diffusion coefficients for long term chloride predictions. The 510 

use of acid soluble chloride data is unsuitable for AACM concretes. These results are 511 

contrary to PC concrete for which chloride predictions based on acid soluble chloride data 512 

(Table 4) are valid. 513 

3.5 Chloride diffusion parameters and Porosity relationship  514 
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The relationships between chloride diffusion parameters (Dc and C0) and porosity of AACM 515 

concrete are shown in Fig. 14. The porosity data at the core of 75mm cube specimens of 516 

AACM mortar mixes corresponding to the concrete mixes of this study, with the same binder 517 

and activator content (liquid/binder ratio of 0.47) have been reported by the authors 518 

previously [16]. The pore properties were determined by mercury intrusion porosimetry.  519 

 520 

Fig. 14: Relationship between (Dc)tb, (C0)tb and porosity of AACM concrete at 28days. 521 

The relationships between porosity and diffusion parameters of AACM concrete are as 522 

follows:  523 

(C0)tb = 0.0664e
0.31(p)

 with R
2
 = 0.98.  524 

(Dc)tb  = 5 x 10
-13

 e
0.25(p)

 with R
2
 = 0.92. 525 

Where; (C0)tb and (Dc)tb are the total surface chloride (% wt. of binder) and diffusion 526 

coefficient (m
2
/s) respectively and p is the porosity (%). 527 

The chloride diffusion parameters C0 and Dc depend on a number of factors such as the 528 

chloride concentration of the exposure solution, porosity and pore size distribution. These 529 

factors differ between AACM and PC concrete which affects the adsorption and absorption 530 

of chlorides to the binder gel. The porosity of AACMs is lower than the control PC concrete 531 
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[16] and the pore structure is more restricted to chloride diffusion. The relationships of C0 532 

and Dc with porosity are different for AACMs and PC concrete. The porosity of the control 533 

PC mortar mix was 10% with (Dc)tb and (C0)tb of 4.5 x 10
-11

m
2
/s and 5.2% weight of binder 534 

respectively, which fall outside the graphs for AACMs in Figure 14. 535 

CONCLUSIONS  536 

This paper investigates chloride ingress in structural grade AACM concretes and a control PC 537 

concrete. The concrete mixes were exposed to 5% NaCl solution up to 270 days. The water 538 

and acid soluble chlorides in AACM and PC concrete were determined at 55, 90, 120, 180 539 

and 270days exposure. Chloride concentration profiles with depth were determined and 540 

chloride diffusion parameters such as surface chloride concentration and chloride diffusion 541 

coefficient were calculated to enable long term chloride predictions. The following 542 

conclusions can be drawn from the study. 543 

1. The water and acid soluble chloride concentrations in AACM concrete increase with 544 

exposure period. Both chloride concentration profiles with depth show good correlation with 545 

Fick's second law of diffusion. 546 

2. AACM concrete shows a greater increase with time in water-soluble chloride 547 

(physically bound chloride) than the acid soluble chloride (chemically bound chloride) while 548 

the control PC concrete shows more acid soluble chloride than water-soluble chloride. 549 

However, the total bound chloride is greater in PC concrete. For example, the water and acid 550 

soluble chlorides at 20mm depth for AACM 3 concrete are 1.26% and 0.39% respectively 551 

while they are 2.13% and 3.20% for the control PC concrete at 180days chloride exposure. 552 

The total bound chlorides for AACM 3 and PC concretes of similar strength are 1.65% and 553 

3.2% by weight of binder respectively. 554 

3. The chloride diffusion parameters C0 and Dc of AACM concrete based on the water 555 

soluble (ws) and total bound (tb) chlorides give similar values. For example, the (C0)ws and 556 
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(C0)tb values of AACM 3 are 2.11% and 2.39%wt. of binder respectively at 180days chloride 557 

exposure. The corresponding (Dc)ws and (Dc)tb values are equal at all exposure periods. Hence 558 

water soluble (physically bound) chloride data is suitable for characterizing chloride diffusion 559 

of AACM concrete. This is contrary to the practice (and test standards) for conventional PC 560 

concrete where acid soluble (chemically bound) chloride data are used for characterizing C0 561 

and Dc. The test data on PC concrete in the paper also validate this practice. 562 

4. The C0 values of AACM concrete relating to both physically and chemically bound 563 

chlorides increase with chloride exposure period in a relationship of the form:   564 

𝐶0 = 𝐶𝑟𝑒𝑓 +  𝑘 √𝑡 − 𝑡𝑟𝑒𝑓 

Where C0 is the surface chloride concentration at time t. Cref is the surface chloride 565 

concentration corresponding to the reference time tref  and k is constant.  566 

The corresponding Dc values of AACM concrete decrease with longer chloride exposure 567 

period following the relationship:  568 

𝐷 𝐶 = 𝐷𝑟𝑒𝑓 𝑡
−𝑚 

where: Dc is the apparent diffusion coefficient at time t, Dref is diffusion coefficient at 569 

reference time tref, and m is the age factor ranging between 0.512 and 0.574 for the AACM 570 

concrete. The value of m decreases with decreasing molarity of the alkaline activator which 571 

reflects greater chloride diffusion with decreasing molarity of activator. 572 

5. The long-term prediction model for Dc and C0 (conclusion 4) can be used to predict long 573 

term chloride concentration in AACM concrete using either water soluble or total bound 574 

chloride data obtained at an early age. For example, the predicted water soluble and total 575 

bound chloride concentrations at 20years are 11.19% and 11.65% by weight of binder 576 

respectively in AACM 1 concrete. 577 

6. The difference in chloride diffusion coefficient Dc of AACM and PC concrete of 578 

similar strength is greater at early age and reduces with age. This is reflected in the long term 579 
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predicted values of chloride concentrations. For example, the (Dc)tb  at 55days chloride 580 

exposure are 6.5 x 10
-12

m
2
/s and 8.7 x 10

-12
m

2
/s for AACM 3 and PC concrete respectively 581 

and their corresponding values after 20years exposure period are 4.0 x 10
-13

m
2
/s and 5.36 x 582 

10
-13

m
2
/s. 583 

7. The chloride diffusion in AACM concrete is controlled by its porosity. The pore 584 

refinement in AACM concrete aids lower diffusion of chloride. The chloride diffusion 585 

parameters C0 and Dc are related to porosity as follows:   586 

(C0)tb = 0.0664e
0.31(p)

 with R
2
 = 0.98 587 

(Dc)tb  = 5 x 10
-13

e
0.25(p)

 with R
2
 = 0.92. 588 

Where; (C0)tb and (Dc)tb are the total surface chloride (% wt. of binder) and diffusion 589 

coefficient (m
2
/s) respectively and p is the porosity (%). 590 
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