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Abstract 

Cardiovascular disease (CVD) accounts for ~17.7 million deaths annually, worldwide. 
Although several key risk factors including smoking, diet and obesity have been 
identified, these account for only 40-50% of all cases. Historically, poor oral hygiene 
and the chronic oral condition, periodontitis, characterised by gum bleeding and tooth 
loss has been implicated in the aggravation of CVD. It has been postulated that in cases 
of periodontitis, oral bacterial pathogens including Porphyromonas gingivalis and 
Tannerella forsythia can access the vascular system during gum bleeding and 
inflammatory responses within the periodontal pocket and subsequently contribute to 
atherosclerosis though interactions with platelets. This study aims to determine how 
periodonto-pathogens interact with platelets and contribute to CVD, specifically 
atherosclerosis.  

Here it is demonstrated that the CHRF-288-11 megakaryocytic-like cells can be utilised 
through a series of methodologies to study the pathogenic effects of periodontal 
pathogens on platelets and megakaryocytic cells. In vitro P. gingivalis, but not T. 
forsythia, is able to interact with platelets by inducing both platelet activation and 
aggregation. P. gingivalis is able to initiate platelet activation though intracellular 
calcium mobilisation that leads to the release of both alpha and dense granules, 
independent of bacterial outer membrane protein OMPA. P. gingivalis NCTC 11834, 
but not ATCC W50, actively associates and interacts with integrin α2β1 inducing strain 
dependant platelet aggregation and could suggest a role for bacterial fimbriae within 
platelet interactions.  

Taken collectively, this data suggests that P. gingivalis could contribute to CVD and 
atherosclerosis through interactions with platelets following invasion of the 
vasculature. Interestingly, direct interactions between bacterial cells and platelets, as 
well as bacterial genetics and virulence, appear key to the extent of platelet response 
and could highlight novel risk factors for future patient treatments. 
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Chapter 1: Introduction  
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1.1 Introduction Part I: Periodontitis and the oral microbiome 

1.1.1 The oral microbiota 

During gestation, a human infant remains essentially sterile but during birth, 

immediately acquires microbial communities from the birth canal and surrounding 

environment (Perez-Muñoz et al., 2017). It is these pioneering bacterial colonies that 

form the human microbiome resulting in symbiotic relationships that inhabit various 

areas of the human body, including the skin, digestive tract and the mouth (Costello et 

al., 2012). The oral cavity, provides distinct microbial habitats including the tongue, 

cheek, lip and oesophagus, as well as specific localised areas such the gingiva and the 

enamel (Xu et al., 2015) (Figure 1.1). 

 

 

Figure 1.1 Tooth, a cross section of an adult human molar. A structural, anatomical depiction of the 
human tooth, showing some areas of biofilm inhabitation such as the enamel and gingiva. 
(Encyclopaedia Britannica, 2013)  
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In healthy individuals, the human oral cavity is heavily colonised by a magnitude of 

microorganisms including bacteria, fungi, viruses and archaea (Winkelhoff et al., 1986; 

Mager et al., 2003; Wade, 2013). To date, around 700 bacterial species are known to 

form the complex structure of the human oral microbiota, although it has been 

hypothesized that a large number are yet to be identified due to lack of successful in 

vitro cultivation (Avila, Ojcius and Yilmaz, 2009). These diverse, polymicrobial, 

communities that inhabit the oral cavity exist predominantly as biofilms and function 

as a co-ordinated, fully metabolic society on every surface of the mouth including the 

teeth, gums, tongue and saliva (Marsh, 2004). 

 

1.1.2 Oral biofilm formation 

Biofilms can be defined as dynamic, complex biological systems that house multiple 

microorganisms providing a protected mode of growth, allowing cells to both survive 

in hostile environments and diverge to inhabiting new niches (Hall-Stoodley, Costerton 

and Stoodley, 2004). The first observation of biofilms was made by van Leeuwenhoek, 

who over 300 years ago described the vast array of 'animalcules' within dental plaques 

using primitive microscopy (Donlan, 2002). A general theory however, was not 

developed until 1978, stating that the majority of bacteria grow in biofilms that are 

adherent to surfaces, enclosed in an extra-cellular polymeric substance matrix and that 

differ profoundly from their planktonic (floating) counterparts (Costerton, Geesey and 

Cheng, 1978). 

Contrary to initial thoughts, oral biofilm formation is not a simple, uniform process but 

rather a sequence of complex developmental phases consisting of five stages (Hall-

Stoodley, Costerton and Stoodley, 2004). Stages one and two are generally termed as 
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the association of transient bacteria which is followed by adhesion. Stages three and 

four are identified as the aggregation of cells into micro-colonies followed by their 

subsequent growth and maturation. The fifth stage describes a return to the mobile, 

transient phase following significant bacterial disturbance (Hall-Stoodley, Costerton 

and Stoodley, 2004). Within the mouth the initial stage which consists of transient 

bacteria, termed 'early colonisers', pioneer the colonisation process, in hopes of 

altering the habitat so that it is suitable for other species to populate (Socransky and 

Haffajee, 2005). These specific early colonisers have the unique ability to adhere to 

oral surfaces such as the host epithelial cells of the cheeks and gums, other established 

bacterium or bacterial fragments as well as the salivary pellicle; the latter being a 

selective, protective barrier between the tooth surface and the oral environment, 

consisting of host proteins, peptides and other organic molecules (Kolenbrander et al., 

1993; Li et al., 2003; Black et al., 2004). A selection of early colonising bacteria (Figure 

1.2), depicts the interactions between bacteria and specific adhesion receptors within 

the salivary pellicle including agglutinins, mucins, phospho-proteins, proline-rich 

proteins and specific enzymes such as alpha-amylase, known bacterial interactions 

within the biofilm are also highlighted (Kolenbrander, Andersen, David, et al., 2002). Of 

the early colonisers, between 47-90% of the cultivatable species consist of Streptococci 

with the remainder population constituting of other genera including Actinomyces, 

Veillonella and Neisseria (Palmer et al., 2003; Li et al., 2004).  
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Figure 1.2 Model of biofilm formation on the tooth surface. Early colonisers are shown to interact with 
receptors on the salivary pellicle. Co-aggregation between the early colonisers, Fusobacterium 
nucleatum as well as later colonisers such as Porphyromonas gingivalis and Treponema denticola are 
also illustrated. (Kolenbrander, Andersen, David, et al., 2002) 

 

After initial colonisation, further bacterial species can become established within the 

biofilm through coaggregation; a process which allows cell-to-cell recognition and 

adhesion between genetically different bacteria, through facilitating mediators called 

adhesins (Figure 1.2) (Kolenbrander et al., 2006). One such example is the late 

coloniser Fusobacterium nucleatum which is able to coaggregate intergenetically with 

all known types of oral bacterial species(Gibbons and Nygaard, 1970; Kolenbrander et 

al., 2010). 
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1.1.3 Subgingival biofilm and periodontal disease 

In healthy individuals, the oral microbiota generally consists predominantly of 

commensals or non-pathogenic bacteria such as Streptococci , Actinomyces and 

Veilonella (Jenkinson and Lamont, 2005). However, within a diseased state, the 

formation of a dysbiotic biofilm together with an increase in the pathogenic bacterial 

load leads to periodontal diseases, which encompasses any disorder of the tissues 

surrounding and supporting the teeth (the periodontium) and can affect up to 90% of 

the global population (Pihlstrom, Michalowicz and Johnson, 2005). Currently, whilst it 

is well-established that pathogenic bacteria are prevalent within periodontal diseases, 

the initial trigger or underlying cause which initiates this increase in pathogenic load 

and results in a diseased state remains to be elucidated. It is currently unclear whether 

this is a consequence of changes in one or more bacterial species, or whether it is 

initiated by the host, locally or systemically (Socransky and Haffajee, 2005). 

Periodontal disease usually refers to the common inflammatory conditions of gingivitis 

and periodontitis. Gingivitis, the mildest form, is highly prevalent, effecting between 

50-90% of the global population and is easily reversible through routine oral care 

(Albandar and Rams, 2002). Periodontitis, the chronic inflammatory form of the 

disease, is characterised by the destruction of the periodontium and surrounding 

connective tissues, with severe cases resulting in alveolar bone loss and loss of teeth 

(Lamont et al., 1995; Pihlstrom, Michalowicz and Johnson, 2005). The progression of 

gingivitis to advanced periodontitis is shown in Figure 1.3. 
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Figure 1.3 Periodontal disease progression. Progression of periodontal disease is measured by the level 
of inflammation, gum recedence and the progressive loss of both connective and bone tissue. The 
disease has two main classifications: the acute condition, gingivitis and the chronic condition, 
periodontitis (Hajishengallis, 2015). 

 

Studies conducted by Socransky and collagues (1998) have shown that several 

bacterial complexes are associated with either periodontal health or disease. With 

regard to periodontitis, three bacterial species have been termed the 'red-complex' of 

perio-pathogens due to their involvement with the disease (Figure 1.4). These gram 

negative, anaerobic, red complex pathogens; Porphyromonas gingivalis, Tannerella 

forsythia and Treponema denticola have been associated with periodontal disease with 

P. gingivalis being reported as the keystone pathogen in periodontitis (Lamont et al., 

1995; Socransky et al., 1998; Darveau, 2010).  
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Figure 1.4 Bacterial complexes of the oral microbiome. Microbial complexes of the subgingivial biofilm 
including P. gingivalis, T. forsythia and T. denticola termed as the 'red complex'. Bacterial species are 
colour coded into groups that represent the microbial complexes that exist in clusters within the 
subgingivial plaque. Adapted from Socransky et al., (1998). 

 

Regardless of the initial trigger, 'red complex' pathogens such as P. gingivalis are able 

to integrate within developing biofilms by utilizing certain levels of metabolic 

cooperation and compatible adhesins provided by early colonizing bacteria (Holt and 

Ebersole, 2005). It is the growing availability of these factors provided by localised 

tissue degradation and further bacterial colonisation that drives the increasing 

population and complexity of the gram-negative, anaerobic bacterial populations 

resulting in the bacterial community moving from a commensal environment and 

producing a phenotypical shift to a diseased state (Ruby and Barbeau, 2002; Jenkinson 

and Lamont, 2005). The progression of periodontal disease from a mild gingivitis state 

to the chronic, inflammatory state of periodontitis is the consequence of several cycles 

of tissue destruction caused by the combined impact of the now substantial 

pathogenic bacterial challenge and subsequent localised inflammatory response by the 
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host; with the bacterial challenge being supressed by the host immune response 

before the cycle repeating itself  (Wilson and Henderson, 1995). 

1.1.4 Pathogenic bacterial species 

It is clear that the development of periodontal disease is reliant on a series of complex 

host/bacterial interactions with specific keystone pathogens implicated throughout the 

progression of the disease (Socransky et al., 1998; Holt and Ebersole, 2005). Of these 

fundamental pathogens, both P. gingivalis and T. forsythia have been reproducibly 

found in elevated numbers in patients with periodontitis (Byrne et al., 2009; Zhu et al., 

2013) and although the pathological mechanisms of these bacteria are still under 

scrutiny, it is their unique virulence qualities that allows them to evade the host 

immune system and produce the destructive characteristics of the disease (Hernandez 

et al., 2011). 

1.1.4.1 Porphyromonas gingivalis  

Porphyromonas gingivalis is a rod shaped, Gram-negative, non-motile, asaccharolytic, 

black pigmented, anaerobic bacteria that can exist with or without fimbriae (Mayrand 

and Holt, 1988). Within the healthy oral flora, P. gingivalis can be found in low 

abundance contributing <5% of the total bacterial population (Forng et al., 2000), with 

this number increasing during the conversion from a symbiotic to a dysbiotic 

microbiota, through accumulation and proliferation of the bacterium within the dental 

plaque (Haffajee et al., 1998). Despite the aetiology of periodontitis remaining 

inconclusive, the underlying presence of P. gingivalis within periodontitis, coupled with 

the pathogen's ability to manipulate the oral bacterial community, has led to the 

classification of P. gingivalis as a 'keystone' pathogen within periodontal disease 

(Hajishengallis, Darveau and Curtis, 2012). As a survival strategy, P. gingivalis is known 
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to adhere to and invade host cells as well as produce a variety of virulence factors in 

order to acquire nutrients, proliferate and evade the active surveillance of the immune 

system (Papapanou et al., 1994; Holt et al., 1999). An overview of these bacterial 

virulence factors are detailed below. 

1.1.4.1.1 Lipopolysaccharide 

Lipopolysaccharide (LPS) is a major component of Gram-negative bacterial cell walls 

which provides membrane stability and structural integrity to the bacteria (Ulevitch 

and Tobias, 1999). LPS is also able to stimulate host immune response through 

interactions with various receptors on the host's cells, initiating host cell activation and 

the production of innate host defence mediators such as proinflammatory cytokines, 

adhesion molecules and apoptosis (Caroff and Karibian, 2003; Dauphinee and Karsan, 

2006). Bacterial LPS consists of three domains; a hydrophobic domain known as lipid A 

(or endotoxin), a non-repeating 'core' oligosaccharide and a distal polysaccharide O-

antigen that interacts with the external environment (Ogawa and Yagi, 2010). The 

structural composition of LPS can however vary between bacterial species, for example 

changes within the fatty acid chain composition and charge, which can significantly 

vary the stimulation of host response. In the case of P. gingivalis, LPS released within 

outer membrane vesicles (Grenier and Mayrand, 1987) can penetrate periodontal 

tissues and stimulate innate immunity, thus contributing to the progression of 

periodontal disease (Moore, Wilson and Kieser, 1986; McCoy et al., 1987). Specifically 

P. gingivalis derived LPS has been shown to interact with various mammalian receptors 

including; toll-like receptor 2 and 4 within endothelial cells (Darveau et al., 2004), 

activation of monocytes through interactions with CD14 (Shapira et al., 1994) as well 

as acting as an antagonist for E-selectin supressing endothelial cell adhesiveness and 

promoting bacterial colonisation (Darveau et al., 1995). In addition, LPS derived from 
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P. gingivalis have been shown to vary in profile according to clinical isolates and can 

affect antibiotic resistance to polymyxin B and colony morphology (Díaz et al., 2015). 

However, despite the plethora of research focussing on P. gingivalis LPS, the 

underlying roles of LPS as well as the basis of inter-stain LPS variation are yet to be 

fully established. 

1.1.4.1.2 Gingipains 

One of the most studied aspects of P. gingivalis virulence are a group of cysteine 

proteases belonging to the peptidase C25 family, termed gingipains (Eichinger et al., 

1999). P. gingivalis actively expresses three types of gingipain; the arginine specific 

gingipain A (RgpA), arginine specific gingipain B (RgpB) and a lysine specific gingipain 

(Kgp) (Curtis et al., 1999). These 'trypsin like' enzymes are known to cleave 

polypeptides at the C-terminal of the respective arginine and lysine residues (Li and 

Collyer, 2011) and accounts for ~85% of the proteolytic activity of P. gingivalis 

(Potempa, Pike and Travis, 1997). 

Functionally, the gingipains expressed by P. gingivalis have been implicated in a 

number of bacterial and eukaryotic cell interactions. For example, gingipain activity has 

been shown to facilitate binding of P. gingivalis to extracellular matrix proteins such as 

fibronectin and collagen (O’Brien-Simpson et al., 2005) as well as bacterial adherence 

to both epithelial and endothelial cells (Pathirana et al., 2007). All three gingipains 

have also been shown to be involved in nutrient acquisition through haemolysis 

(Smalley et al., 2008; N. Li et al., 2010), in haem uptake (Simpson, Olczak and Genco, 

2004) and in the disruption of the coagulation system via the degradation of fibrinogen 

(McAlister et al., 2009) and activation of thrombin and factor IX (Imamura et al., 2001). 
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Previous work by several groups have also linked gingipain protease activity to the 

disruption of innate immune response through the degradation of multiple signalling 

peptides including complement proteins (Popadiak et al., 2007), cell surface receptors 

CD4 (Kitamura et al., 2002) and CD8 (Kitamura et al., 2002), intracellular adhesion 

molecule 1 (ICAM-1; Tada et al., 2003), as well as several cytokines including IL-1β 

(Stathopoulou et al., 2009), IL-6 (Banbula et al., 1999), IL-8 (Uehara et al., 2008) and 

TNF-α (Calkins et al., 1998). 

1.1.4.1.3 Hemagglutinins 

Hemagglutinins are a large class of virulence factors that are highly implicated with 

bacterial adhesion and nutrient acquisition (Han, Whitlock and Progulske-Fox, 1996; 

Lee, Hillman and Progulske-Fox, 1996; Shi et al., 1999). P. gingivalis is known to 

express at least eight hemagglutinins, of which a subset has been characterised and 

are known to be encoded by the group of hag genes, hagA-hagE (Connolly et al., 

2017). Hemagglutinins are known to play key role in the absorption of heme, through 

erythrocyte binding, the facilitation of gingipain activity and agglutination (Lewis et al., 

2006; Olczak et al., 2008), as well as been shown to mediate the adherence to both 

epithelial (Connolly et al., 2017) and endothelial (Song et al., 2005) cells. Further to 

this, work by Ito and colleagues (2010) identified that the hagA gene mediates co-

aggregation between P. gingivalis and Treponema denticola, suggesting a role for 

hemagglutinin domains within biofilm formation as well as mammalian cell adhesion. 

1.1.4.1.4 Fimbriae 

Fimbriae are  thin, proteinaceous filaments that protrude from the outer membrane of 

bacterial cells (Jonson, Normark and Rhen, 2004) and were first identified on P. 

gingivalis by Yoshimura and colleagues (1984). P. gingivalis is known to express two 
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distinct types of fimbriae encoded by the fimA gene, termed long/major fimbriae and 

the mfa1 gene, termed short/minor fimbriae (Enersen, Nakano and Amano, 2013). 

Major fimbriae of P. gingivalis can be classified into six types; types I-V and Ib which 

are dependent on amino terminals and DNA sequences (Nakagawa et al., 2000, 2002). 

Interestingly the presentation of major fimbriae varies between strains of P. gingivalis. 

Strains such as ATCC 381 and NCTC 11834 are highly fimbriated type I strains whereas 

strains such as ATCC W50 and W83 have much shorter, sparsely populated, type IV 

fimbriae (Sojar, Hamada and Genco, 1997).Despite the limited characterisation of 

mfa1 expression, both major and minor fimbriae are thought to contribute to both 

bacterial virulence and the progression of periodontal disease (Nakagawa et al., 2002). 

The primary role of fimA is to promote bacterial adherence to oral surfaces with fimA 

deficient strains presenting a reduced capacity for both adherence (Hamada et al., 

1994) and invasion (Njoroge et al., 1997; Weinberg et al., 1997) of oral epithelial cells. 

It is also thought that minor fimbriae contribute to the adhesive properties of P. 

gingivalis through the coaggregation of bacterial species, the formation of micro-

colonies and resistance to sheer forces (Lamont et al., 2002; Lin, Wu and Xie, 2006). 

Further to this, both the major (Ogawa, Uchida and Hamada, 1994) and minor (Amano 

et al., 2004) fimbriae have been shown to initiate immune response through the 

stimulation of inflammatory cytokine production by both monocytes and macrophages 

including interleukin 1β, interleukin 6, interleukin 8 and tumour necrosis factor α 

(Ogawa, Uchida and Hamada, 1994; Amano et al., 2004).  
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1.1.4.1.5 Outer membrane A-like proteins 

Within Escherichia coli and other Enterobacter species, the outer membrane protein, 

OmpA, is a highly abundant protein responsible for several functions including acting 

as an adhesin, an invasin, an evasin as well as forming an immune target and 

contributing to biofilm formation (Smith et al., 2007). The two major outer membrane 

subunits which form the OmpA-like protein within P. gingivalis have been shown to 

share a high degree of similarity to that of the OmpA of E. coli and have been proposed 

to hold similar cellular functions (Nagano et al., 2005). Previous research by Iwami and 

colleagues (2007) identified that OmpA is crucial for l membrane stability of P. 

gingivalis with further work by Murakami and colleagues (2014) suggesting that the 

individual subunits of OmpA could be responsible for glycoprotein interaction. 

Recently, the OmpA protein, specifically the A2 subunit, has been shown to contribute 

to both biofilm formation and host-cell interactions with epithelial cells (Naylor et al., 

2016), with the ompA genes being upregulated in highly invasive populations of P. 

gingivalis (Suwannakul et al., 2010). 

1.1.4.1.6 Adherence and invasion 

As well as virulence factors, P. gingivalis, like any bacterial species, possess the ability 

to interact with cellular surfaces of the host cells to acquire necessary growth factors 

and ultimately to survive the harsh counter measures produced by the host (Stafford 

et al., 2012). As part of this survival strategy, P. gingivalis can adhere to and invade a 

variety of host cells and tissues by exploiting cellular pathways to evade the active 

surveillance of the immune system (Papapanou et al., 1994; Lamont et al., 1995; 

Deshpande, Khan and Genco, 1998; Dorn et al., 2000). After invasion, both pathogens 

and host cells remain viable for an extended period of time during which several 

cytological changes take place (Belton et al., 1999; Simin F Nakhjiri et al., 2001; Tribble 
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et al., 2006). These cytological changes include; remodelling of the tubulin and actin 

cytoskeleton (Yilmaz et al., 2003), prevention and manipulation of the apoptosis 

pathway through transcriptome alterations (Simin F Nakhjiri et al., 2001), secretion of 

an ATP hydrolysing enzyme (Yilmaz et al., 2008), dysregulation of cellular calcium 

signalling in the host cells (Izutsu et al., 1996), selective targeting of the MAP kinase 

pathway (Watanabe et al., 2001) and a down regulation of interleukin 8 expression at 

both the transcriptional and post-transcriptional level (Darveau et al., 1998).  

 

1.1.4.2 Tannerella forsythia 

Tannerella forsythia, an anaerobic, gram negative bacterium of the Cytophaga-

Bacteroides family, was originally isolated from the oral cavity and described as 

Bacteroides forsythus by Tanner and colleagues (1986). 

To date, whilst the presence of T. forsythia in periodontitis is well documented through 

clinical studies,  the virulence factors of the bacterium are not fully characterised 

(Sharma, 2010). Studies have shown that T. forsythia adheres to and invades epithelial 

cells both in vivo (Rudney, Chen and Sedgewick, 2005; Colombo et al., 2007) and in 

vitro (Sabet et al., 2003; Inagaki et al., 2006; Sakakibara et al., 2007). In addition, T. 

forsythia is known to induce enzymatic activity that both protect the bacterium from 

the innate immune system, whilst also digesting host proteins as a molecular resource 

(Sharma, 2010). Specifically T. forsythia is able to trigger an up-regulation of host 

metalloproteinases (including MMP- 2, 3, 8, 7, 13 14 (Tervahartiala et al., 2000; Kiili et 

al., 2002), induce neutrophil recruitment, increase inflammatory response (Jusko et al., 

2012; Garred et al., 2016) and degrade host proteins such as collagen, elastin, gelatin 

and casein (Ksiazek, Mizgalska, Eick, et al., 2015). The pathogen also expresses 
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endolases which can digest fibronectin and induce pro-inflammatory cytokine 

production (IL-1β, 6, 8 and TNF-α) (Lee et al., 2015). Furthermore, T. forsythia 

expresses sialidase enzymes, which cleave the sialic acids contained within host's 

surface glycoproteins (Sharma, 2010). As well as acting as a sources of macronutrients, 

this process also aides bacterial adhesion to mammalian cells and promotes biofilm 

development (Godoy et al., 1993; Thompson et al., 2009; Honma, Mishima and 

Sharma, 2011). T. forsythia has also been shown to directly affect host cell 

transcription by upregulating the  expression of an array of host genes (Bakthavatchalu 

et al., 2011). Taken together, all of these factors ultimately result in cytopathogenic 

consequences (Nakajima et al., 2006). 
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1.2 Introduction Part II: Platelets 

1.2.1 Megakaryocytes and platelet production 

Megakaryocytes constitute a highly specialized subset of the haematopoietic stem cell 

lineage, that through proliferation and terminal differentiation give rise to circulatory 

platelets (Deutsch and Tomer, 2006). Usually residing within red bone marrow, 

immature megakaryocytes undertake a series of maturation stages (Figure 1.5) which 

result in the expansion of cytoplasmic mass, measuring >50-100 nm and 

polyploidization up to 128N (Tomer, Harker and Burstein, 1988; Patel, Hartwig and 

Italiano, 2005).  

 

 

Figure 1.5 The cell lineage of megakaryocytes. Diploid megakaryocyte progenitor cells, blast forming 
units (BFU) and colony forming units (CFU), undertake several genetic replications, through endomitosis 
before reaching maturity. Adapted from Italiano and Hartwig (2007). 
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Until recently  the bone marrow was thought to be the only location for platelet 

maturation (Levine et al., 1993). Studies have since demonstrated  that 

megakaryocytes have the ability to migrate out of the red marrow and enter the 

circulatory system before translocating to the extravascular space of the lung tissue 

where they undertake platelet biogenesis (Lefrançais et al., 2017). However despite 

these novel findings, the precise understanding of mass platelet production remains to 

be elucidated.  

It was initially hypothesized that platelets stem from long cytoplasmic protrusions, 

which extend from megakaryocytes, to form what is termed 'pro platelets' (Radley and 

Scurfield, 1980) and although other mechanisms were proposed, a modified version of 

the proplatelet hypothesis provides the most reliable model both in vivo and in vitro 

(Italiano et al., 1999; Johnson, Fletcher and Morgan, 2016; Ru et al., 2016).This 

modified model proposes that during the formation of pro platelet, cytoplasmic 

extensions act as a cellular highway on which megakaryocytes transfer a plethora of 

cellular structures and proteins to form the anucleate platelets (Deutsch and Tomer, 

2006). For example, platelet proteins such as fibrinogen receptors and von Willebrand 

factor are synthesised by the megakaryocytes before being conveyed to either the 

newly formed platelet outer-membrane or are packaged into specialised secretory 

granules (Richardson et al., 2005). Individual organelles such as alpha/dense granules, 

lysosomes and mitochondria also migrate from the main cellular body of the 

megakaryocyte, with ~30% of organelles being in motion at any one time (Richardson 

et al., 2005). During this process, the pro-platelets extend into the sinusoidal space, 

where they fragment and detach into individual platelets (Machlus and Italiano, 2013). 

However the underlying mechanism of how platelets are packaged with the necessary 

organelles and granules remains to be fully understood. 
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1.2.2 Platelet morphology and ultrastructure 

Platelets are small, discoid, anucleate cells, measuring 2-3 µm that hold a fundamental 

function within haemostasis (Thon and Italiano, 2012). An adult human maintains 

approximately one trillion platelets, of which two-thirds are in circulation, with the 

remaining third reversibly sequestered in the spleen (Thon and Italiano, 2010). 

Circulatory platelets are maintained for 7-10 days, and as well as being anucleate, 

platelets contain several distinguishing organelles including the open canalicular 

system, the dense tubular system, as well as alpha and dense granules (Heijnen and 

Korporaal, 2017). 

1.2.2.1 The open canalicular system 

The surface connected open canalicular system (OCS) comprises of a complex series of 

intracellular membrane channels that form an interconnected membrane store with 

specific function (Heijnen and Korporaal, 2017). As platelets are anucleate and have a 

limited RNA stores, platelets have restricted capacity for protein synthesis and rely on 

protein uptake from the surrounding plasma (Zucker-Franklin, 1981). Proteins such as 

fibrinogen (Harrison et al., 1989) and tissue factor (Escolar et al., 2008) are 

endocytosed via the OCS and distributed to the relevant organelles, here the alpha 

granules within the platelet. 

The OCS also functions as a cellular delivery system. During platelet activation both 

alpha and dense granule stores fuse with the OCS and plasma membrane, allowing 

their content to be trafficked to the cellular surface which does not only facilitate 

granule release but is also thought to potentiate the activation process (White and 

Krumwiede, 1987; Fogelson and Wang, 1996). 
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As well as acting as a cellular transportation network, the OCS is crucial in maintaining 

the concentration of adhesion receptor levels on the outer membrane (Sixma, 1986; 

Escolar, Leistikow and White, 1989), by acting as a storage site for glycoprotein 

adhesion receptors. For example the glycoproteins GPIIbIIIa (Cramer et al., 1990) and 

GPIb (Cramer et al., 1990), are found to be evenly expressed between the outer 

membrane and the OCS. It is hypothesised that the reserves of adhesion molecules 

contained within the OCS are trafficked to the membrane during activation to 

upregulate adhesion receptors available during thrombus formation (Escolar, Leistikow 

and White, 1989). Despite the OCS not being classified as a completely separate 

cellular component, it is thought that this intracellular plasma membrane (Escolar, 

Leistikow and White, 1989) as well as secretory alpha granules (Peters, Michelson and 

Flaumenhaft, 2012) facilitate the membrane remodelling process during platelet 

spreading and filapodia formation. Whether the OCS and plasma membrane are able 

to fuse remains to be fully understood but it has been suggested that the OCS is crucial 

for platelet activation acting as both cellular storage and enabling trafficking of both 

granule stores and glycoproteins, regulating platelet adhesion and aggregation 

(Selvadurai and Hamilton, 2018). 
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1.2.2.2 The dense tubular system 

Circulatory platelets do not contain ribosomal endoplasmic reticulum. To compensate 

for this, platelets contain the dense tubular system (DTS) which is derived from the 

parent endoplasmic reticulum of megakaryocytes (White, 1972). The DTS is primarily 

thought to regulate and store intracellular calcium in a similar way to that of the 

sarcoplasmic reticulum of striated muscle cells (White, 1972). During platelet 

stimulation the DTS has been shown to rapidly discharge stored calcium ions and raise 

cytoplasmic calcium concentrations (Dean, 1984; Ware et al., 1986) thereby facilitating 

multiple aspects of platelet activation including granule centralisation (Kroll and 

Schafer, 1989) and regulation of aggregation (Nesbitt et al., 2003). 

1.2.2.3 Alpha granules, dense granules and lysosomes 

One of the defining characteristics of platelet haemostatic activity is their large 

granular storage; namely the alpha granules, dense granules and lysosomes which 

contain a number of biologically active molecules (Rendu and Brohard-Bohn, 2001). 

Alpha granules, the most abundant of the granules within platelets (40-80 per 

platelet), contain both soluble proteins which are released extracellularly, and 

membrane bound proteins that become expressed on the plasma membrane (Blair 

and Flaumenhaft, 2009). This proteinous payload is highly involved in platelet adhesion 

as well as wound healing, vascular remodelling, immune response and inflammation 

(Heijnen and van der Sluijs, 2015). Dense granules are the second most abundant of 

the platelet granules and house a variety of haemostatically active molecules that are 

predominantly responsible for recruiting further platelets to the site of vascular insult 

(Flaumenhaft, 2013). Further to this, platelets are also known to contain few primary 

and secondary lysosomes. Although their function is not well studied, it has been 
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suggested that their enzymatic content is involved in endosomal digestion as observed 

in nucleated cells (Flaumenhaft, 2013). Key alpha granules, dense granules and 

lysosomes are detailed in Table 1.1. 

 

Granule Compound  Function 

α granule 

Platelet factor 4 Neutralises heparin effect/cytokine 

β thromboglobulin Promotes fibroblast chemotaxis 

Platelet derived growth factor 
Mitogen for fibroblast and smooth 
muscle cells. Chemotaxin for 
neutrophils 

von Willebrand factor Adhesion molecule 

Thrombospondin 
Promotes platelet-platelet 
interaction 

Fibronectin Adhesion of platelets and fibroblasts 

Fibrinogen Promotes adhesion and coagulation 

Factor V Promotes coagulation 

vascular endothelial growth 
factor 

Vascular remodelling 

Dense 
granules 

ADP Activation of platelets 

ATP Source of ADP 

Serotonin Vasoconstriction 

Calcium Coagulation 

Lysosomes 

β-galactosidase Glycoside hydrolase 

Acid phosphatase Hydrolyses acid phosphatases 

hexosaminidase Hydrolyses hexosamines 
 

Table 1.1 Platelet granules and their primary functions. Adapted from Pallister and Watson (2011).  
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1.2.3 Platelet receptors 

Platelets, like many cells types express a multitude of surface receptors in order to 

sense and interact with their environment. The major platelet receptors as well as 

their agonist or ligands are summarised in Table 1.2. Platelet integrins/membrane 

glycoproteins specific to this thesis are reviewed in more detail within Section 1.2.4. 
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Receptor Classification Platelet Receptor Ligand/Agonist Physiological Role 

Integrins 

α2β1 (GPIaIIa, CD49b/61) Collagen Platelet adhesion and thrombus stabilisation  

α5β1 (CD49e/61) Fibronectin Platelet adhesion 

α6β1 (CD49f/61) Laminin Platelet adhesion 

αLβ2 (CD102, ICAM-2)) Leukocyte function-associated antigen 
1 (LFA-1) 

Leukocyte adhesion 

αIIbβ3 (GPIIbIIIa, 
CD41/61) 

Fibrinogen, fibrin, von Willebrand 
factor, fibronectin, vitronectin and 
thrombospondin 

Promotion of platelet aggregation and 
platelet-platelet binding 

αVβ3 (CD51/61) Vitronectin, fibrinogen, von 
Willebrand factor, prothrombin and 
thrombospondin 

Platelet adhesion 

Selectins 

P-selectin (CD62P, GMP-
140) 

P-selectin glycoprotein ligand-1 (PSGL-
1), GPIb-IX-V 

Expressed during platelet activation through 
alpha granule release. Binds to neutrophils 
and monocytes. 

C-type lectin-like receptor-
2 (CLEC-2) 

Podoplanins and rhodocytin Platelet aggregation 

Leucine-rich repeat 
receptors 

GPIb-IX-V von Willebrand factor, thrombin, P-
selectin, factor XI, factor XII 

Platelet adhesion and aggregation 

Toll-like receptor 2 (TLR2) Identify various products of bacteria, 
viruses, protozoa and fungi 

Innate immune response and platelet 
activation 

Toll-like receptor 4 (TLR4) Identify various products of bacteria, 
viruses, protozoa and fungi 

Innate immune response and platelet 
activation 
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Receptor Classification Platelet Receptor Ligand/Agonist Physiological Role 

Transmembrane 
receptors 

P2X1 Adenosine triphosphate (ATP) Extracellular calcium influx, platelet activation 
and aggregation 

P2Y12 Adenosine diphosphate (ADP), P2Y1 Calcium mobilisation, platelet spreading, 
granule release, thromboxane production, 
αIIbβ3 activation and platelet aggregation 

P2Y1 Adenosine diphosphate (ADP), P2Y12 Calcium mobilisation, platelet spreading, 
granule release, thromboxane production, 
αIIbβ3 activation and platelet aggregation 

Immunoglobulin 
receptors 

GPVI Collagen Intracellular calcium mobilisation, cytoskeletal 
rearrangement, granule release, GPIIbIIIa 
activation 

FcγRIIA (CD32) Binding of GPVI Intracellular calcium mobilisation, cytoskeletal 
rearrangement, granule release, GPIIbIIIa 
activation 

Prostaglandin receptors Thromboxane 
A2/prostaglandin H2 

Thromboxane A2 Calcium mobilisation and platelet activation 

Prostacyclin receptor 
(PGI2) 

Prostacyclin Platelet inhibitor, retains platelet resting state 

Prostaglandin receptors Thromboxane 
A2/prostaglandin H2 

Thromboxane A2 Calcium mobilisation and platelet activation 

Prostacyclin receptor 
(PGI2) 

Prostacyclin Platelet inhibitor, retains platelet resting state 

 

Table 1.2 Major platelet receptors and their ligands/agonists. Adapted from Saboor and colleagues (2013) and Watson, Morgan and Harrison (2015). 
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1.2.4 Platelet integrins/glycoproteins 

Glycoproteins are a family of transmembrane adhesion and signalling proteins, which 

within platelets are fundamental to haemostasis and thrombus formation (Clemetson 

and Polgár, 1997). Many of the glycoproteins expressed by platelets belong to the 

supergene family of integrins (Saboor et al., 2013). Mammalian integrins are expressed 

as heterodimers of non-covalently associated α and β subunits (Hynes, 2002). There 

are 18 α subunits and eight β subunits that construct the 24 separate heterodimers 

shown in Figure 1.6. 
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Figure 1.6 Representation of the 24 prototypical mammalian integrins. The integrin family of proteins 
are constructed of 24 heterodimers, each containing an α and β subunit. (Barczyk, Carracedo and 
Gullberg, 2010). 
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Platelets are known to express six integrins; namely three β1 associated integrins 

(α2β1, α5β1 and α6β1), a further two β3 associated integrins (αIIbβ3 and αVβ3) as well 

as integrin αLβ2 which are summarised in Section 1.2.3 (Table 1.2). In addition to 

integrins, platelets are also known to express other glycoproteins such as the von 

Willebrand factor receptor complex, GPIb-IX-V and the collagen receptors GPIV and 

GPVI (Saboor et al., 2013). Glycoproteins relevant to the work described in this thesis 

are reviewed in detail, below. 

1.2.4.1 Integrin αIIbβ3/GPIIbIIIa 

Expressing 80,000-100,000 copies, integrin αIIbβ3 (GPIIbIIIa, CD41/61) is the major 

integral plasma membrane protein of platelets, accounting for ~17% of the total 

membrane mass (Wagner et al., 1996a). Like all integrins, αIIbβ3 is a heterodimer and 

consists of a 1008 amino acid αIIb subunit and a 762 amino acid β3 subunit. Each of 

the subunits consist of a large extracellular region, a single transmembrane spanning 

region and a short cytoplasmic tail (Bennett, 2005). The extracellular domain of the 

alpha subunit consists of the N-terminal β-propeller domain, the thigh domain and two 

calf domains (Xia et al., 2004). The extracellular domain of the β3 subunit is composed 

of an A domain, PSI domain (plexin/semaphorin/integrin), hybrid domain, four EGF 

domains and a membrane-proximal βTD domain (Xiong et al., 2001; Xia et al., 2004). 

These 12 domains assemble as two cytoplasmic 'tails' and a globular 'head' that is 

formed by the interaction of the seven-bladed β-propeller of the α-subunit and the βA 

domain (Figure 1.7; Takagi et al., 2002; Xia et al., 2004). 
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Figure 1.7 The structure of integrin αIIbβ3. The αIIb (blue) and β3 (red) subunits depicted in the 
extended formation. (Bledzka et al., 2013).  

 

Located between the thigh and calf domains is a bending point, referred to as a 'genu' 

or 'knee'. This genu allows both subunits of the αIIbβ3 integrin to exist in two extreme 

conformations; a bent resting state or an activated extended state (Takagi et al., 2002). 

In the bent conformation, the ligand binding site of αIIbβ3 is partially sequestered 

resulting in a low affinity phenotype, but during platelet activation, this inactive bent 

integrin extends upwards in a 'switch blade' like motion, opening the head piece into a 

high affinity state for the ligand (Shimaoka, Takagi and Springer, 2002; Takagi et al., 

2002). 

αIIbβ3 is known to recognise and bind to the amino acid sequence Arg-Gly-Asp (RGD) 

present on many extracellular matrix proteins including fibrinogen, fibronectin, 

vitronectin and von Willebrand factor (Bennett, 2005). Although αIIbβ3 is known to 

contribute to platelet adhesion through interactions with extracellular matrix proteins 
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such as von Willebrand factor, this integrin holds a predominant role in facilitating 

platelet aggregation (George, 2000). Following activation and conformational changes 

in the αIIbβ3 integrin structure, the receptor is able to bind to soluble circulatory 

fibrinogen, which then acts as bridging molecules between two αIIbβ3 receptors on 

adjacent platelets (Refaai and Laposata, 2002).  

The conformational change undertaken by integrins following platelet activation are 

often attributed to the process of inside-out' signalling. Despite this process not being 

fully understood, it is known that integrin ligand binding by an external stimulus such 

as collagen or ADP, induces a series of cellular signalling pathways including activating 

the protein kinase C pathway and calcium mobilisation (Takagi et al., 2002). This in 

turn then stimulates integrin activation through 'inside-out' signalling, increasing 

ligand affinity thus driving platelet aggregation and thrombus formation (Bennett, 

2005; Bledzka et al., 2013). 

1.2.4.2 Integrin α2β1/GPIaIIa 

The α2β1 integrin (GPIaIIa, CD49b/61), expressed at 2000-4000 copies per platelet, is 

often hailed as the second most important platelet receptor after integrin αIIbβ3 

(Clemetson and Clemetson, 2007). The importance of α2β1 within coagulation was 

first identified in patients lacking in α2β1 expression, who present with a mild bleeding 

disorder and a defective aggregatory response following collagen stimulation 

(Nieuwenhuis et al., 1985).  

The activity of α2β1 is often discussed with the other major platelet collagen receptor 

GPVI. Historically it was believed that α2β1 was solely responsible for collagen 

adhesion, with GPVI acting as a regulatory mediator of the subsequent platelet 

aggregation (Jung and Moroi, 1998). However recent advancements have found that 
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binding of GPVI to collagen generates further inside-out signalling, activating integrin 

α2β1 allowing it to also bind to the collagen ligand (Jung and Moroi, 1998, 2000). 

Interestingly agonists specific to αIIbβ3-induced platelet aggregation have also been 

shown to activate integrin α2β1 increasing its affinity and initiating collagen binding 

(Jung and Moroi, 2000). Further to this, under sheer flow the α2β1 collagen receptor is 

not able to initiate platelet adhesion independently (Sarratt et al., 2005). In vitro, 

platelets depend on the initial tethering of GPIb of the GPIb-IX-V complex, to initiate 

adhesion before secondary binding activity is undertaken by further collagen binding 

proteins such as α2β1 and GPVI, further emphasising the complexity of platelet 

thrombus formation (Clemetson and Clemetson, 2007). 

1.2.4.3 GPIb-IX-V 

The GPIb-IX-V complex is a platelet surface receptor with unique properties regarding 

structure, function and signalling pathways (López, 1994). The history of GPIb-IX-V 

begins with the discovery of the congenital bleeding disorder, Bernard-Soulier 

syndrome (Bernard and Soulier, 1948), in which patients present with an increased 

bleeding time, thrombocytopenia and extremely large platelets, which was later 

attributed to a deficiency of GPIb-IX-V expression (López et al., 1998). GPIb-IX-V 

consists of the following subunits; GPIbα (CD42bα) disulphide-linked to GPIbβ 

(CD42bβ/CD42c), noncovalently complexed with GPIX (CD42a) and GPV (CD42d) all of 

which contain leucine-rich repeat regions and are expressed in a ratio of 2:2:2:1 

respectively (Figure 1.8) (Andrews, Lopez and Berndt, 1997; López et al., 1998; Berndt 

et al., 2001). 
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Figure 1.8 The GPIb-IX-V complex. GPIb-IX-V is constructed of the following subunits; GPIbα disulphide-
linked to two GPIbβ subunits which are noncovalently associated with GPIX and GPV. The N-terminal 
houses the ligand binding site and leucine-rich repeat regions. (Hadjkacem, Gargouri and Gargouri, 
2011). 

 

The 282 amino acid residues within the N-terminal of GPIbα house the binding site for 

the ligands von Willebrand factor, macrophage-1 antigen (Mac-1), P-selectin, α-

thrombin, clotting factors XI and XIIa, as well as circulatory high-molecular weight 

kininogen (HMWK; Berndt et al., 2001). 

During haemostasis, the predominant function of GPIb-IX-V is adhesion to von 

Willebrand factor under high sheer flow, after which, several signalling pathways are 

initiated with platelets, resulting in intracellular calcium mobilisation, cytoskeletal 

rearrangement, degranulation, inside-out activation of αIIbβ3 and ultimately in 

platelet aggregation (Andrews, Lopez and Berndt, 1997; López et al., 1998; Bodnar et 

al., 1999; Gu et al., 1999; Berndt et al., 2001). GPIbα is also known to bind α-thrombin, 

thereby inducing thrombin dependant platelet aggregation and can bind to factor XI 

and XIIa which regulates the coagulation cascade (Berndt et al., 2001). 
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In addition, GPIb-IX-V is also thought to contribute to innate immune response. 

Interactions between GPIb-IX-V and neutrophil Mac-1 or P-selectin are suggested to 

facilitate the formation of platelet-leukocyte-endothelial multi-cellular complexes, 

localising immune response to the site of vascular insult (Cerletti, Evangelista and de 

Gaetano, 1999; Cerletti, de Gaetano and Lorenzet, 2010). 

1.2.5 Platelets in haemostasis 

Haemostasis is the process in which, following vessel injury, platelets form a clot which 

serves to limit the resulting haemorrhage (Rasche, 2001). This process is defined in two 

stages; primary haemostasis consists of the initial adhesion of platelets to the injured 

vessel and secondary haemostasis which is often referred to as the coagulation 

cascade. The original coagulation cascade proposed by Macfarlane (1964) suggested 

that coagulation was initiated by contact of the blood with foreign substances or 

damaged tissues. This contact then initiates a series of enzymatic steps in which 

coagulation factors, generally indicated by roman numerals, act firstly as a substrate 

and then as an activator or catalyst for the subsequent stages (Macfarlane, 1964). 

Since then, the majority of these 13 coagulation factors have been shown to circulate 

within the blood stream as zymogens, before being activated into serine proteases 

(Davie, Fujikawa and Kisiel, 1991) The exceptions are factors V and VIII which are 

glycoprotein cofactors as well as factor XIII which is a transglutaminase (Chaudhry and 

Babiker, 2018). Combined, these factors result in the coagulation cascade which 

concludes in the conversion of fibrinogen to fibrin and thrombus formation (Chaudhry 

and Babiker, 2018). The coagulation cascade can be separated into the three distinct 

extrinsic, intrinsic, and common activation pathways which are detailed in Figure 1.9 

and summarised below. 
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Figure 1.9 The intrinsic, extrinsic and common pathways of the coagulation cascade. The intrinsic 
pathway is activated through contact with a negatively charged surface or through exposure to collagen. 
The extrinsic pathway is activated through exposure to tissue factor released by damage vessel. Both 
the intrinsic and extrinsic pathway result in the activation of the common pathway, which through 
activation of factor X result in the formation of fibrin and a stabilised thrombus. Adapted from Pallister 
and Watson, 2011. 

 

 

1.2.5.1 The intrinsic pathway 

The intrinsic pathway is the longer of the two pathways of secondary haemostasis. In 

vitro this pathway is initiated through platelet interaction with the exposed collagen 

within the damaged extracellular matrix of the vascular endothelium. This interaction 

initiates the activation of the serine kinase factor XII which becomes XIIa, which in turn 

acts as a catalyst activating factor XI to factor XIa. This activated XIa then results in the 

activation of factor X to Xa, giving rose to the subsequent stages of the coagulation 

cascade (Gailani and Renné, 2007). 
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1.2.5.2 The extrinsic pathway 

The extrinsic pathway is the shorter of the two haemostatic pathways and was named 

so because of its dependence on the exogenous stimulation by tissue factor (TF) 

(Davie, Fujikawa and Kisiel, 1991). Following damage to the vessel wall, endothelial 

cells release tissue factor forming the activated TF-VIIa complex (Nemerson, 1988). 

This TF-VIIa complex is the key initiator of the protease coagulation cascade, resulting 

in the activation of both factor IX to IXa and X to Xa (MacKman, 2009). The extrinsic 

pathway also results in the production of low amounts of thrombin, which further 

amplifies to coagulation cascade by activating the glycoprotein cofactors V and VIII 

(Edgington et al., 1991). 

1.2.5.3 The common pathway 

The common pathway begins with the activation of factor X to Xa, which unifies both 

the intrinsic and extrinsic pathways. Activated factor X, factor V, tissue phospholipids, 

platelet phospholipids as well as calcium ions form the thrombinase complex which 

cleaves prothrombin (factor II) to thrombin (factor IIa) (Coughlin, 2000). Thrombin 

then cleaves fibrinogen into insoluble fibrin and activates factor XIII, which covalently 

crosslinks the fibrin polymers, forming the dense fibrin mesh and a definitive 

secondary haemostatic plug (Palta, Saroa and Palta, 2014). 

  



 

36 

1.2.6 Platelet adhesion, aggregation and plug formation 

The complex series of events that result in normal haemostatic response not only 

require the enzymatic stages of the coagulation cascade but also rely on fundamental 

changes in platelet phenotype and cellular activity (Gailani and Renné, 2007). In 

platelets, primary adhesion or primary haemostasis refers to the attachment of 

platelets to the sub endothelium, while platelet to platelet 'adhesion' is termed 

aggregation to differentiate the two processes entirely (Clemetson and Polgár, 1997). 

Upon the initial insult to the vessel wall, platelets are recruited to the injury site via 

interactions with the exposed subendothelial extracellular matrix (ECM), resulting in 

primary adhesion (Ruggeri, 2009). Following contact with the ECM, the platelet 

glycoprotein (GP) complex Ib-IX-V binds to von Willebrand factor associated with the 

exposed collagen fibres of the subendothelium. This initial tethering with GPIb-IX-V 

then leads platelets to undertake subsequent activation signalling and phenotypic 

cytoskeletal spreading/flattening(Ruggeri and Mendolicchio, 2007).  

Once activated, platelets then initiate a further barrage of cellar events, resulting in 

secondary haemostasis and platelet plug stabilisation. Platelet aggregation is initiated 

through conformational changes within GPIIbIIIa, which increases the receptors' 

binding affinity for fibrinogen, resulting in platelet-platelet aggregation (Clemetson and 

Polgár, 1997). The growing platelet aggregate is stabilised through a multitude of 

platelet to platelet interactions contained within the thrombus and remains adhered 

to the vessel wall through further interaction with the secondary collagen receptors 

GPIaIIa, GPIV and GPVI (Holinstat, 2017).  

In addition to this, thrombin, as well as acting as a platelet agonist, converts fibrinogen 

to fibrin, forming a dense, insoluble, fibrin mesh that intertwines adhered platelets and 
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passing red blood cells, resulting in a definitive platelet plug (Tomaiuolo, Brass and 

Stalker, 2017). Once formed the haemostatic plugs become firmly adhered to the site 

of vascular injury, preventing further haemorrhage whilst also resisting the sheer force 

of circulatory blood flow (Minors, 2007). 

1.2.7 The roles of platelet within innate and adaptive immunity 

As well as having a substantial involvement within the haemostasis, platelets also hold 

a primary role within the immune system, which at the very principle level rapidly 

accumulate to the epicentre of any vascular injury and provide an immediate barrier 

against infection (Gardiner and Andrews, 2013). Platelets have been shown to 

accumulate and attract other immune cells to sites of infection through active 

chemotaxis and the release of antimicrobial chemokines, such as platelet factor 4 and 

interleukin 8 (Lowenhaupt et al., 1982; Juselius and MacDonald, 2004; Skoglund et al., 

2008; Ali, Wuescher and Worth, 2015). Further studies have demonstrated that 

platelets have both the ability to internalize pathogens (Yeaman, 1997, 2010a, 2010b) 

and to exhibit antimicrobial activity which is triggered by bacterial LPS stimulation 

(Zielinski et al., 2001; Lopes-Pires et al., 2012). Bacterial LPS has also been shown to 

upregulate the production of IL-6, cyclooxygenase-2 and prostaglandin E2 through 

stimulation of toll-like receptor 4, the MAP-kinase pathway and Nf-kB signalling (Scott 

and Owens, 2008). Periodontitis has also been implicated in bacterial-platelet 

interactions, with periodontal pathogens, specifically Porphyromonas gingivalis 

increasing the levels of P-selectin excretion, triggering platelet activation (Laky et al., 

2011; Ganji et al., 2014), as well as causing an up regulation of CD40L expression 

through TLR-2 and 4 interactions (Assinger et al., 2012). 

  



 

38 

 

1.3 Introduction Part III: Periodontitis and cardiovascular 

disease 

1.3.1 The systemic impact of periodontitis  

Periodontitis and the associated chronic periodontal inflammation have historically 

been linked to other systemic diseases (Kerr, 1951, 1962). Both periodontal diseases 

and systemic diseases share a number of the similar risk factors such as smoking, age 

and obesity and often have inflammation as an underlying principle basis (Beck et al., 

1998; Paquette, Brodala and Nichols, 2007). A highly studied example of the systemic 

impact of periodontitis is the development of endocarditis. Although the specific 

factors that lead to endocarditis are unknown, it is believed that the increased 

bacterial load of predominantly Staphylococcus, Streptococcus and Enterococcus 

species found within the bloodstream that leads to infected cardiac tissue could 

originate from the dysbiotic biofilm found within periodontitis (Carinci et al., 2018). 

Further to this, recent research has shown that periodontal bacteria are found within 

post-mortem human brains (Poole et al., 2013), have been implicated in nerve cell 

damage (Watts, Crimmins and Gatz, 2008) and shown to exacerbate pathogenesis 

(Miklossy, 2011) within Alzheimer's disease. In addition, there have been further links 

between periodontal pathogens and rheumatoid arthritis (RA) with genomic material 

derived from P. gingivalis been discovered within samples of patient synovial fluid 

(Martinez-Martinez et al., 2009; Reichert et al., 2013), encouraging suggestions that 

these bacteria may provide a novel mechanism for the progression of RA (Wegner et 

al., 2010). Further relationships between periodontal pathogens and diabetes have 

also been suggested by groups such as Demmer et al., 2008, with further groups 
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suggesting that periodontitis could produce adverse effects for patients with diabetes 

(Borgnakke et al., 2013) but also that diabetes may increase the progression of 

periodontitis (Chávarry et al., 2009). Furthermore, several mechanisms linking 

periodontitis  to the atherosclerotic process and atherosclerotic disease such as stroke 

and myocardial infarction have been put forward (Joshipura et al., 2003; Reyes et al., 

2013; Scannapieco and Cantos, 2016). 

Although clear evidence links oral infection and systemic disease, the bacterial 

interactions that take place are likely to be complex and involve more than a singular 

mechanism. Due to this fact several theorised mechanisms that have been proposed 

by which periodontal disease may impact further than the immediate oral 

environment and have a distal effect (Table 1.3). 

 

 

Table 1.3 Theoretical mechanisms proposed to how explain periodontal disease may have a systemic 
impact. Adapted from Reyes et al (2013).  

Oral bacterial invasion of epithelial and endothelial cells; 

• Protects bacteria from host defence to extend bacterial survival 

• Stimulates innate immune response and exacerbates systemic inflammation  

Oral bacteria penetrate and enter the vascular system; 

• Able to migrate and establish infection within other organs and tissues (e.g. 

brain abscess) 

• Exacerbate or stimulate inflammation in non-localised tissues 

• Directly impact other organs or tissues (e.g. arteries, liver.). 

Biologically active molecules from chronic oral inflammation enter the vascular system 

and impact both ongoing inflammation or organ/tissue systems (e.g. LPS, cytokines) 
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1.3.2 Periodontal infection and atherosclerotic vascular disease 

Cardiovascular disease (CVD) and atherosclerosis are globally a leading cause of death 

accounting for ~30% of all deaths worldwide (WHO, 2018). Various cross-sectional 

studies have suggested that periodontitis is directly associated with atherosclerotic 

cardiovascular disease independently of traditional risk factors such as smoking and 

obesity (Bahekar et al., 2007; Friedewald et al., 2009; Kebschull, Demmer and 

Papapanou, 2010). 

When considered broadly, periodontal disease and atherosclerotic vascular disease 

(AVD) have a multitude of common etiological and epidemiological factors including 

sharing several risk factor groups (smoking, diabetes, diet) and producing correlative 

biological markers (C-reactive protein, interleukin 1, endothelial growth factor, 

interleukin 8 etc.) (Aarabi et al., 2015). Periodontal infection has also been shown to 

cause an increase in AVD associated markers (Eberhard et al., 2013). Studies have 

found bacterial DNA through PCR analysis of endarterectomy samples (Nakano et al., 

2006, 2007, 2008; Pucar et al., 2007; Gaetti-Jardim et al., 2009), with both genetic 

material and viable cells of both P. gingivalis and T. forsythia found in atherosclerotic 

legions (Marcelino et al., 2010). Further studies have shown that periodontal 

pathogens can directly influence endothelial cells in vitro, causing the up-regulation of 

inflammatory cytokines, such as IL-1β, IL-6 and IL-8, as well as causing up-regulation of 

adhesion molecules, monocyte chemotactic protein (MCP-1), intracellular adhesion 

molecule (ICAM-1), vascular adhesion molecule (VCAM-1), and endothelial-leukocyte 

adhesion molecule (E-selectin) (Takahashi et al., 2006; Ho et al., 2009). Interestingly, P. 

gingivalis and its fimbriae are able to induce cell adhesion molecule cleavage and 

endothelial apoptosis (Sheets et al., 2005, 2006). In vitro studies have demonstrated 
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that monocytes suffer very similar consequences to endothelial cells when exposed to 

periodontal pathogens (Hajishengallis et al., 2006). Further reports also highlight an 

increased adhesion of monocytes to P. gingivalis infected endothelial cells (Roth, 

Moser, et al., 2007), with both P. gingivalis and T. forsythia causing an increase in 

monocytic cytokine and adhesion molecule production (Pollreisz et al., 2010; Sahingur 

et al., 2010). P. gingivalis has been described to increase the low density lipoprotein 

(LDL) uptake of monocytes, promoting the formation of foam cells (Giacona et al., 

2004). Although conclusive evidence is yet to be presented, three specific and distinct 

pathways have been proposed as to how periodontal pathogens may migrate into the 

vascular system; Firstly, bacteria conduct trans-cellular migration, moving through 

multiple epithelial cells until reaching vascular endothelial cells (Kebschull, Demmer 

and Papapanou, 2010). Secondly, the pathogen either invade or exploit phagocytosis 

of host immune cells, evading the intracellular digestion processes and elicit a 'Trojan 

horse' method of transportation and thirdly, external influence, such as dental work, 

chewing or brushing of the teeth and gums, directly ruptures the vascular system , 

bridging the gap to the periodontal infection (Reyes et al., 2013). It is therefore 

essential to understand the key stages of AVD progression and how periodontal 

pathogens may influence this process. The following three figures describe; (A) the 

potential role of periodontal pathogens in the initiation and development of 

endothelial dysfunction (Figure 1.10a), (B) how these pathogens may contribute to the 

formation of fatty streaks and atherosclerotic plaques (Figure 1.10b) and (C) the 

proposed pathways that model the maturation and rupture of atherosclerotic plaques 

(Figure 1.10c) (Kebschull, Demmer and Papapanou, 2010).  
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Figure 1.10 Schematic representation of the potential role of periodontal pathogens in atherosclerotic 
vascular disease progression. (A.) Vascular endothelial cells are exposed to and invaded by periodontal 
pathogens e.g. P. gingivalis, which proceed to multiply intracellularly, triggering activation of toll-like 
receptor 2 (TLR2) and an up regulation of pro-inflammatory cytokines, cell adhesion molecules and 
apoptosis. (B). Further potential progression of atherosclerotic plaque formation, through foam cell 
formation due to exposure to periodontal pathogens. Apoptosis of low-density laden (LDL) macrophages 
cause accumulation of lipids. Periodontal pathogens also influence the induction of smooth muscle cell 
proliferation, extracellular matrix (ECM) build-up and the attraction of T-cells within the plaque. (C) 
Exposure to periodontal pathogens causes the up regulation of endothelial apoptosis or anti-endothelial 
auto antibodies. Pathogen assisted breakdown of the ECM matrix also occurs by plaque macrophages, T-
cells and plasma cells leading to mature plaque formation and subsequent vessel rupture. (Kebschull, 
Demmer and Papapanou, 2010) 
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Another mechanism that resides at the heart of atherosclerotic biology is the 

substantial role of platelets. Platelets can be activated either indirectly, through the 

vascular endothelium and exposed surface markers or through direct interaction with 

bacterium or their biological products such as LPS (Jennings, 2009). Oral pathogenic 

bacteria have been described to interact with platelets through toll-like receptors 

(TLR's), causing activation and the release of activation markers such as P-selectin and 

ADP (Shiraki et al., 2004; Blair et al., 2009; Zhang et al., 2009). Both T. forsythia and P. 

gingivalis have been described to increase the activation of platelets, inducing the up 

regulation of P-selectin and platelet-monocyte complexes (Nicu et al., 2009; 

Papapanagiotou et al., 2009; Laky et al., 2011), with P. gingivalis also inducing the pro-

thrombotic pathway (Roth et al., 2009). However, the mechanisms underlying these 

interactions and the resulting consequences remain to be elucidated. 
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1.4 Research rationale and Thesis aims 

The periodontopathogens Porphyromonas gingivalis and Tannerella forsythia found 

within the chronic oral disease of periodontitis have been suggested to contribute to 

and exacerbate the progression of atherosclerotic vascular disease. It is hypothesised 

that through the destructive phenotypes of chronic periodontitis and the subsequent 

localised bleeding within the periodontium, opportunistic pathogens P. gingivalis and 

T. forsythia are able to gain access to the vasculature. During this process, these 

periodonto-pathogens are able to directly or indirectly interact with circulatory 

platelets, resulting in an activated platelet state and the formation of platelet 

aggregates. It is then this altered platelet state which exacerbates or contributes to the 

progression of atherosclerotic vascular disease. 

In order to investigate the potentiated interactions between periodonto-pathogens 

and mammalian platelets: 

• The use of the megakaryocytic-like cells, CHRF-288-11 was investigated as a 

putative in vitro platelet-like cell model.  

• A multicolour flow cytometry panel was developed to study the effect of 

periodontal pathogen interactions on platelet marker expression. 

• The direct interactions of pathogens with platelets were characterised 

• The possible induction of platelet aggregation by a range of P. gingivalis and T. 

forsythia strains at varying multiplicities of infection was investigated. 

• The mechanisms by which periodonto-pathogen might induce platelet 

activation were determined. 
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Chapter 2: Materials and methods 
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2.1 Materials 

All chemical reagents unless otherwise stated were purchased from Sigma-Aldrich or 

ThermoFisher Scientific.  All manufacturers and suppliers are shown in Table 2.1. 

Supplier Location 
ABBIOTEC California, USA 

Abcam Cambridgeshire, UK 

Biolegend London, UK 

BMG Labtech Buckinghamshire, UK 

G E Healthcare Buckinghamshire, UK 

Gibco, ThermoFisher Scientific Leicestershire, UK 

Hawksley Sussex, UK 

Invivogen Toulouse, Fr 

Oxoid, ThermoFisher Scientific Hampshire, UK 

Pierce, ThermoFisher Scientific Illinois, USA 

Roche Hertfordshire, UK 

Sigma-Aldrich Poole, UK 

Sysmex Buckinghamshire, UK 

ThermoFisher Scientific Leicestershire, UK 

TOCRIS Gloucestershire, UK 

Table 2.1 Manufacturers and suppliers.  
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2.2 Antibodies 

All antibodies against P. gingivalis and T. forsythia were kindly donated by Dr Graham 

Stafford, School of Clinical Dentistry, University of Sheffield, Sheffield, UK. Details of 

antibodies used in this study are provided in the Table 2.2 below: 

Antibody Name Host 
Animal 

Raised Against 

mAb 1B5 Mouse Porphyromonas gingivalis LPS 

TF S-Layer 

Rabbit 

Tannerella forsythia S-layer 

TF Whole Cell 1 Tannerella forsythia ATCC 43037 

PG Whole Cell 1 Porphyromonas gingivalis NCTC 11834 

PG Whole Cell 2 Porphyromonas gingivalis, NCTC 11834 

α nanH Sialidase 

Rat 

Tannerella forsythia ATCC 43037, sialidase 
mutant (ΔnanH) 

α nanS Sialate-exterase 
Porphyromonas gingivalis ATCC 381, sialate-O-
acetylesterase mutant (ΔnanS) 

Table 2.2 Bacterial specific antibodies used within this study. 
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Table 2.3 shows mammalian antibodies used throughout this body of work, with Table 

2.4 detailing secondary antibodies used within this study. 

Specificity Alternate Name Host Species Supplier and 
Catalogue Number 

Integrin β1 CD29 Mouse Abcam #ab30394 

Integrin β3 CD61 Mouse Abcam #ab34409 

mToR N/A Rabbit Cell Signalling #7C10 

Phalloidin-X Texas 
Red 

N/A N/A ThermoFisher #T7471 

Zombie Green N/A N/A Biolegend #423111 

CD42b-PE GP1b Mouse Biolegend #303906 

CD61-PE/Cy7 Integrin β3, GPIIIa Mouse Biolegend #336416 

CD41-Pacific Blue Integrin αIIb, GPIIb Mouse Biolegend #303714 

CD62P-PE/Cy7 GMP-140, PADGEM Mouse Biolegend #304922 

CD41/61-APC Integrin αIIbβ3, GPIIbIIIa Mouse Biolegend #359808 

PE-IgG Control N/A Mouse Biolegend #400112 

Pacific Blue-IgG 
Control 

N/A Mouse Biolegend #400151 

PE/Cy7-IgG Control N/A Mouse Biolegend #400126 

APC-IgG Control N/A Mouse Biolegend #4000222 

Table 2.3 Primary antibodies used throughout this study. Antibodies were optimised and used at assay 
dependant concentrations detailed within each relevant section of Chapter 2. 

 

Specificity Host Species Catalogue Number and 
Supplier 

Anti-Rabbit Alexa Fluor 488 Goat Invitrogen #A11008 

Anti-Mouse Alexa Fluor 488 Goat Abcam #ab150117 

Table 2.4 Secondary antibodies used throughout this study.  
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2.3 Bacterial Strains and Mutants 

All bacterial strains used were kindly donated by Dr G. Stafford and details of the 

strains are shown in Table 2.5. 

Species Genotype Relevant characteristic(s) 

Tannerella 
forsythia 

43037 ATCC Strain 

43037 ΔNanH 
NanH sialidase deficient mutant of ATCC 
43037 (eryR) (Honma, Mishima and Sharma, 
2011) 

43037 ΔWecC 
WecC isogenic mutant of ATCC 43037 (eryR) 
(Honma et al., 2007) 

Porphyromonas 
gingivalis 

NCTC 11834 NCTC Strain 

NCTC 11834 ΔOmpA1 
OmpA1 (PGN_0729) deletion mutant of ATCC 
33277 (eryR) (Naylor et al., 2016) 

NCTC 11834 ΔOmpA2 
OmpA2 (PGN_0728) deletion mutant of ATCC 
33277 (eryR) (Naylor et al., 2016) 

ATCC 381 ATCC Strain 

ATCC 381 ΔSia0352 
Sialidase 0352 deficient mutant of ATCC 381 
(eryR) 

 ATCC W50 ATCC Strain 

Table 2.5 Bacterial strains and mutants used within this study. EryR - erythromycin resistance.  
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2.4 Bacterial Growth 

P. gingivalis strains were maintained on fastidious anaerobic agar (FA) supplemented 

with 5% horse blood (Oxoid, ThermoFisher) while T. forsythia strains were maintained 

on FA agar supplemented with 5% horse blood, 0.17 mM N-acetylmuramic acid (NAM) 

and 25 μg/mL gentamycin. 

For growth in liquid cultures, P. gingivalis was grown in brain heart infusion (BHI) 

(Oxoid, ThermoFisher) broth supplemented with 0.4 % yeast extract, 1 mg/mL vitamin 

K1, 1 mg/mL hemin and 250 μg/mL cysteine.  

T. forsythia was grown as liquid cultures in tryptic soy broth (TSB) supplemented with 

0.5% yeast extract, 5 μg/mL hemin, 0.5 μg/mL vitamin K, 0.17 mM NAM and 0.1% 

cysteine.  

Erythromycin (10 μg/mL) was included as a selective antibiotic in the media after 

autoclaving where appropriate (see table 2.5) and bacteria grown on solid surface or 

as liquid cultures were incubated at 37 °C under anaerobic conditions (10% H2, 80% N2, 

10% CO2). Bacterial counts were determined using a bacterial counting chamber 

(Hawksley). 

2.4.1 Long Term Bacterial Storage 

For long term storage, bacterial cultures were kept at -80 °C. Routine bacterial cultures 

were maintained as in section 2.4 before being removed from supplemented FA plates, 

resuspended in ice-cold fresh growth medium containing 17% glycerol and 

immediately stored. 
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2.5 Megakaryocytic Cell Culture and Differentiation 

2.5.1 Megakaryocyte Cell Line CHRF-288-11 

The CHRF-288-11 cell line was kindly provided by Prof. Willem Ouwehand & Dr Cederic 

Ghevaert (Division of Transfusion Medicine, Department of Haematology, University of 

Cambridge, Cambridge, UK). The CHRF-288-11 cells were routinely cultured in RMPI-

1640 medium containing L-glutamine (Gibco, ThermoFisher Scientific) supplemented 

with 1% non-essential amino acids and 10% foetal bovine serum (FBS) at 37 °C in a 

humidified incubator with 5% CO2. 

2.5.2 Cell Passaging 

CHRF-288-11 cells were grown until confluent (~1x106 cells/mL) before passaging. Cells 

suspensions were transferred to a fresh tube before centrifugation (200 g, 5 min, room 

temperature (RT)). The supernatant was discarded and the cell pellet was resuspended 

in phosphate-buffered saline (PBS). Following further centrifugation (200 g, 5 min, RT), 

cells were resuspended in fresh RPMI at a density of 1x105 cells/mL. 

2.5.3 Cryopreservation of Cells 

Cells were cryopreserved for long term storage. Cells at confluency (1x106 cells/mL) 

were pelleted at 200 g for 5 min at RT before being resuspended and washed in PBS. 

Cells were then further centrifuged for 5 min (200 g, RT) and re-suspended in freezing 

media (complete RPMI-1640 containing 10% dimethyl sulfoxide (DMSO). Cells at a 

density of ~5x105 cells/mL were then transferred into cryopreservation tubes before 

being placed into a Mr Frosty™ for 24 hours at -80 °C, after which the vials were 

transferred to liquid nitrogen for long term storage. When needed, cells were revived 

by quickly thawing in a water bath at 37 °C. Cells were then immediately transferred 
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into fresh culture media and cultured for 6h. After this time period, the cell media was 

replaced to remove the DMSO and normal cell culture protocol was then followed. 

2.5.4 CHRF-288-11 Differentiation 

For differentiation, CHRF-288-11 cells were seeded in routine culture medium (RPMI-

1640 with L-glutamine (Gibco, ThermoFisher Scientific), 1% non-essential amino acids, 

10% FBS) containing 50 ng/mL of Phorbol 12-myristate 13-acetate (PMA). Cells were 

then cultured for five days without a media change at 37 °C in a humidified incubator 

with 5% CO2. For experiments requiring cells in suspension, differentiated CHRF-288-

11 cells were washed twice with PBS and incubated in 1x trypsin-EDTA for two min at 

37°C in a humidified incubator with 5% CO2. Cell detachment was confirmed using light 

microscopy and an equal volume of complete RPMI-1640 was added to neutralise 

trypsin activity. After detachment cells were then processed in an assay dependant 

manner.  

2.5.5 Cell Counting 

Cells were counted using the Countess II FL automated cell counter (Invitrogen). Cell 

suspensions were removed and mixed with an equal volume of trypan blue before 

being transferred into a countess chamber slide. Cell counts were then generated 

automatically, with none viable cells being discounted by trypan blue exclusion. 

2.6 Platelet Isolation 

Blood was obtained from healthy volunteers within the Biomolecular Sciences 

Research Centre, Sheffield Hallam University, UK, with informed consent. The use of 

platelets in this study was approved by the Sheffield Hallam University Research Ethics 

Committee (Ethics application No. HWB-BIO-03), Sheffield Hallam University, Sheffield, 

UK. 
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2.6.1 Blood collection 

After a tourniquet had been applied, the first sample was drawn into an EDTA-

containing Vacutainer. The tourniquet was then removed and any subsequent samples 

were drawn into sodium citrate Vacutainers, allowing blood to flow by gravity. All 

tubes were inverted to ensure full distribution of the anticoagulant and then processed 

accordingly. Full blood count (FBC) was determined using the EDTA blood sample by a 

haematology analyser (XP-300, Sysmex). 

2.6.2 Platelet rich plasma preparation 

Each sample was centrifuged at 200 g for 20 min at room temperature with no brake 

applied. After centrifugation, the straw-coloured platelet rich plasma (PRP) layer was 

removed using a sterile Pasteur pipette and transferred to a fresh tube. The isolated 

PRP was analysed by the Sysmex XP-300 to determine platelet concentration and 

confirm that the sample is free of other blood contaminants. 

2.6.3 Platelet poor plasma preparation 

Previously isolated PRP was further centrifuged at 800 g for 20 min at room 

temperature with no brake in order to pellet platelets. After centrifugation, the 

supernatant was carefully removed and transferred to a fresh tube before being 

utilised to set '0% aggregation' in an experiment dependant manner. 

2.6.4 Modified Tyrode's Buffer 

Modified Tyrode's Buffer was made by adding; 134 mM NaCl, 12 mM NaHCO3, 2.9 mM 

KCl, 0.34 mM Na2HPO4, 1 mM MgCl2, 10 mM HEPES, to dH2O and adjusting the pH to 

7.4. Prior to use, the buffer was supplemented with 5 mM glucose, 25 mM CaCl2 and 3 

mg/mL BSA. 
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2.7 Phenotypic Analysis Methods 

2.7.1 Antibiotic Protection Assays 

Antibiotic protection assays were carried out in a Class II safety cabinet that had 

previously been sterilised by UV light. CHRF-288-11 cells were seeded at a density of 

1x106 cells/mL into 24 well plates in complete RPMI media and allowed to differentiate 

for five days (Section 2.5.4). Before starting the antibiotic protection assay, all buffers 

and cell culture media were pre-warmed to 37 °C. Three 'sacrificial' wells were washed 

three times with PBS, before 1x trypsin-EDTA was added to the plate and incubated for 

two min at 37 °C in a humidified incubator with 5% CO2. The trypsin-EDTA was then 

neutralised with an equal volume of complete media, the cell suspensions were 

removed, counted and averaged to determine the relevant bacterial count for an MOI 

of 1:100. The remaining wells were washed twice with PBS to remove any 

undifferentiated cells before incubating with complete RPMI supplemented with 2% 

BSA for one hour at 37 °C in a humidified incubator with 5% CO2. During this 

incubation, P. gingivalis strains (wild-type or mutants) were removed from 72 hour 

blood agar plates, resuspended in complete RPMI before being counted and adjusted 

to equal an MOI of 1:100. Following blocking of non-specific sites, wells were washed 

three times with PBS before the addition of the bacterial suspension. In parallel, the 

bacterial suspension was added to three wells not seeded with mammalian cells to 

assess bacterial viability throughout the assay. Well seeded with CHRF-288-11 cells but 

not infected were also included as controls. Samples were incubated for 90 min at 

37°C in a humidified incubator with 5% CO2. Following bacterial incubation, to 

determine percentage invasion, cells were washed three times with PBS, before being 

incubated for a further 60 min with complete RPMI media supplemented with 200 µM 
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of metronidazole in order to asses in the invaded population. All wells containing 

mammalian cells were then washed a further three times with PBS before the addition 

of sterile water and each well was scraped for one minute for ensure complete cell 

lysis. Cell lysates were then serially diluted and spotted onto blood agar plates using 

the Miles-Misra method. Well containing only bacterial cells were only serially diluted 

before being plated the same way. Blood agar plates with then incubated 

anaerobically at 37 °C for up to five days before colony forming units (CFU's) were 

counted and recorded. 

2.7.2 Immunofluorescent Microscopy 

2.7.2.1 Phenotypic characterisation of CHRF-288-11 differentiation 

Sterile 13mm coverslips were added to each well of a 24-well plate. The wells were 

then washed twice with PBS before being seeded at a density of 1x106 cells and 

allowed to differentiate for up to seven days (Section 2.5.4). Cells were also seeded at 

a density of 5x105 cells as an undifferentiated control. After the appropriate 

differentiation period, cell media was removed, each well was washed three times 

with PBS before cells were fixed for 10 min in 4% paraformaldehyde (PFA). After 

fixation, cells were washed three times in PBS, permeabilised with 0.5% Triton-X in PBS 

for 8 min and washed a further three times with PBS. Cells were then blocked with 3% 

BSA for one hour at room temperature, washed three times with PBS before being 

incubated with the high affinity F-actin probe Texas Red-X phalloidin at a 

concentration of 1:3500 in PBS with 3% BSA for a further hour at room temperature, 

protected from light. Each well was washed a further three times with PBS before the 

coverslips were removed and mounted with ProLong Gold anti-fade mountant with 
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DAPI (Invitrogen). Each slide was then left in the dark for 24 hours at room 

temperature before imaging with a fluorescent microscope (Olympus BX60). 

2.7.2.2 Phenotypic evaluation of bacterial challenge on differentiated CHRF-

288-11 cells 

Sterile 13 mm coverslips were added to each well of a 24-well plate. The wells were 

then washed twice with PBS before being seeded at a density of 1x106 cells and 

allowed to differentiate for five days (Section 2.5.4) at 37°C in a humidified incubator 

with 5% CO2. Cells were also seeded at a density of 5x105 cells as an undifferentiated 

control. P. gingivalis (wild-type or mutants) or T. forsythia strains were removed from 

72 hour blood agar plates, resuspened in RPMI before being counted and adjusted to 

equal an MOI of 1:100. Cells were then challenged with bacterial suspensions for 90 

min at 37°C in a humidified incubator with 5% CO2 before fixation in 4% PFA for 10 min 

at room temperature. As above, cells were washed three times in PBS, permeabilised 

with 0.5% Triton-X in PBS for 8 min and washed a further three times with PBS. Cells 

were then blocked with 3% BSA for one hour at room temperature, washed three 

times with PBS before being incubated with primary antibodies (see Table 2.3) at a 

relevant concentration in 3% BSA. Cells were washed three times with PBS and before 

further incubation with the corresponding secondary antibodies (see Table 2.4) at the 

desired concentration in 3% BSA. Where applicable the high affinity F-actin probe 

Texas Red-X phalloidin (diluted 1:3500) was also included with the secondary 

antibodies. Each well was washed a further three times with PBS before the coverslips 

were removed and mounted with ProLong Gold anti-fade mountant with DAPI. Each 

slide was then left in the dark for 24 hours at room temperature to allow the mountant 

to cure before imaging with a fluorescent microscope (Olympus BX60). 
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2.7.2.3 Visualisation of platelets challenged with perio-pathogens 

Isolated platelets (PRP) in sodium citrate Vaccutainers were counted using the Sysmex 

XP-300 and resuspended at 1x106 platelets/mL of modified Tyrode's buffer. Where 

applicable, this modified Tyrode's suspension also included either 20µM ADP or P. 

gingivalis strains that had been removed from 72 hour blood agar plates, counted and 

resuspended at an MOI of 1:10. Each platelet suspension was incubated at room 

temperature for 20 min before fixation in 0.5% PFA for 30 min again at room 

temperature. Each sample was then cytospun onto separate slide at 800 g for 20 min 

at room temperature before being washed three times with PBS, permeabilsed for 8 

min with 0.5% Triton-X, washed a further three times with PBS and blocked with 3% 

BSA for an hour at room temperature. Each slide was then incubated with primary 

antibodies (anti-integrin β1, anti-integrin β3, anti-mToR; see Table 2.3) for 1 hour at 

room temperature at a relevant concentration in 3% BSA, before being washed three 

times with PBS and further incubation with the corresponding secondary antibodies 

(see Table 2.4) at the desired concentration in 3% BSA for an hour at room 

temperature. Where applicable the high affinity F-actin probe Texas Red-X phalloidin 

was also included with the secondary antibodies at a concentration of 1:3500. Each 

slide was then washed three times with PBS before mounting with ProLong Gold 

antifade mountant containing DAPI. Each slide was left in the dark for 24 hours at 

room temperature before imaging with a fluorescent microscope (Olympus BX60). 
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2.7.3 Electron microscopy  

2.7.3.1 White's Saline  

White's saline A was made by adding; 2.4 M of sodium chloride (NaCl), 0.1 M of 

potassium chloride (KCL), 0.046 M of magnesium sulphate (MgSO4), 0.064 M of 

calcium nitrate tetrahydrate (Ca(NO3)2 4H2O) to 100 mL of distilled water. 

White's saline B was made by adding; 0.131 M of sodium carbonate (NaHCO3), 0.008 M 

of sodium phosphate dibasic heptahydrate (Na2HPO4 7H2O), 0.004 M of potassium 

phosphate monobasic (KH2PO4 anhydrous), 0.0003 M of phenol red to distilled water. 

The solution was adjusted to pH 7.4 before being further distilled water was added to 

a total volume of 100 mL. 

2.7.3.2 Electron microscopy of platelet/perio-pathogen interactions 

Isolated platelets (PRP) were counted using the Sysmex XP-300 and transferred into 

fresh Eppendorph tubes ( 4x108 platelets/test). Platelets were then infected with P. 

gingivalis (at an MOI of 1:10 ) that had been removed from 72 hour blood agar plates, 

resuspended in modified Tyrode's buffer and counted. As a positive control platelets 

exposed to 20 µM of ADP were also included. Samples were incubated for 20 min at 

room temperature before the addition of glutaraldehyde in equal volumes of both 

White's saline A and B to give a final concentration of 0.1% glutaraldehyde. Samples 

were fixed for 30 min before centrifugation at 800 g for 20 min and resuspended in 3% 

glutaraldehyde in an equal volume of White's saline A and B for a further 60 min.  

For SEM analysis, samples were post fixed using 2% aqueous osmium tetroxide for two 

hour at room temperature before being dehydrated in a graded series of ethanol 

solutions and partially dried in a 50/50 mixture of 100% ethanol and 

hexamethyldisilazane (HEX). Samples were fully dried in 100% HEX before being 
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mounted onto a pin-stub using Leit-C sticky tabs, gold coated using an Edwards S150B 

sputter coater and examined using a Tescan Vega3 LMU scanning electron microscope. 

Scanning electron microscope was operated at a voltage of 12 kV. 

For TEM analysis, samples were post fixed in 2% aqueous osmium textroxide, 

dehydrated using a graded series of ethanol solutions, cleared in epoxypropane (EPP) 

and infiltrated in 50/50 araldite resin:EPP mixture overnight on a rotor at room 

temperature. This mixture was replaced with two changes, over 8 hours with fresh 

araldite resin mixture before being embedded and cured at 60 °C for 72 hours. 

Ultrathin sections, approximately 85 nm thick, were cut on a Leica UC 6 

ultramicrotome onto 200 mesh copper grids, stained for 30 min with saturated 

aqueous Uranyl Acetate followed by Reynold’s Lead Citrate for 5 min. Sections were 

examined using a FEI Tecnai Transmission Electron Microscope at an accelerating 

voltage of 80 Kv. Electron micrographs were recorded using a Gatan Orius 1000 digital 

camera and Gatan Digital Micrograph software. 

Sample processing and acquisition was conducted by Chris Hill at the department of 

Electron Microscopy Services, University of Sheffield. 

2.7.4 Flow cytometry 

2.7.4.1 Relative expression of platelet markers by CHRF-288-11 cells 

Cell suspension of either differentiated or undifferentiated cells were counted using 

the Countess II cell counter and adjusted to 1x106 cells/mL in complete RPMI. Where 

required cells were exposed to either ADP (20µM) or P. gingivalis (MOI 1:100, wild 

type or mutant strains) as previously described. Platelet/bacteria samples were then 

incubated for 90 min at 37 °C in a humidified incubator with 5% CO2. Cells were 
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pelleted by centrifugation at 200 g for 5 min at room temperature before 

resuspending in PBS. The cells were then centrifuged again for 5 min at 200 g, room 

temperature before the supernatants were discarded and the pellet gently 

resuspended in the residual volume. The expression of each cell marker was 

determined by incubating with the relevant antibodies or IgG controls (see Table 2.3) 

at room temperature for 20 min before each sample was washed with PBS, centrifuged 

at 200 g for 5 min at room temperature and supernatants then discarded. Each sample 

was re-suspended in PBS and analysed on a Beckman Coulter Gallios flow cytometer.  

2.7.4.2 Phenotypic analysis of platelet/perio-pathogen interactions 

Isolated platelets (PRP) were counted using the Sysmex XP-300 and resuspended in 

modified Tyrode's buffer at a density of 1x106/100 µL. P. gingivalis strains (wild-type or 

mutants) were removed from 72 hour blood agar plates and resuspended in modified 

Tyrode's buffer at an MOI of 1:10. Platelets were exposed to the bacteria or ADP 

(20µM) for 20 min at room temperature before fixation with 0.5% PFA for 30 min. 

After fixation, each sample was resuspended in PBS before being centrifuged at 800 g 

for 20 min at room temperature. The supernatants were then discarded and the pellet 

gently resuspended in the residual volume. The expression of each cell marker was 

determined by incubating with the relevant antibodies or IgG controls (see Table 2.3) 

at room temperature for 20 min. Each sample was then diluted in PBS and analysed on 

a Beckman Coulter Gallios flow cytometer.  
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2.7.5  Enzyme linked immunosorbent assays (ELISAs) 

2.7.5.1 Development of a cell-based ELISA 

To investigate whether oral pathogens interacted with integrins β1 and β3, an in-house 

ELISA was developed. Cells were seeded at a density of 3x104 cells/well and allowed to 

differentiate for five days in a tissue culture grade 96-well plate (37 °C, 5% CO2). 

Following differentiation, media containing non-differentiated and non-viable cells 

were removed and discarded and cells were washed twice with PBS. Three of the wells 

were trypsinised to recover attached cells and the average number of differentiated 

cells per well was determined. The differentiated cells were subsequently challenged 

with bacteria (MOI 1:100 in complete media) and incubated for 90 min in a humidified 

incubator (37 °C, 5% CO2) after which supernatants were removed and discarded. The 

cells were washed twice with PBS containing 0.1% Tween20 (PBST) and blocked for 

one hour with PBS containing 3% BSA. Following blocking, cells were washed as 

described above and fixed using 4% paraformaldehyde. Wells were then incubated 

with anti-integrin β1 (2 µg/mL; Abcam), anti-integrin β3 (2 μg/mL, Abcam), a polyclonal 

rabbit IgG anti-P. gingivalis (1:5000) or a polyclonal rabbit IgG anti-T. forsythia (1:5000) 

for a further hour, after which cells were washed before incubation with secondary 

antibodies; either the peroxidase anti mouse IgG (1:40,000) or peroxidase goat anti-

rabbit IgG (1:20,000) for one hour. Wells were then washed three times with PBST and 

3,3',5,5'-tetramethylbenzidine peroxidase substrate (Fisher Scientific) was added. The 

reaction was allowed to develop before stopping with 2 M H2SO4. Plates were read 

spectrophotometrically at 450 nm with a Clariostar microplate reader (BMG Labtech). 
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2.7.5.2 Recombinant protein-based ELISA 

2.7.5.2.1  Coating Buffer 

Sodium bicarbonate coating buffer was made by adding 0.019 M NaCO3 and 0.035 M 

NaHCO3 to 1 L of dH2O, pH 9.6. The pH of this buffer was not adjusted and if not 

correct was remade. 

2.7.5.2.2 Detection of P. gingivalis binding to recombinant integrins 

Wells of 96-well MaxisorpTM microplates were coated with either recombinant integrin 

β1 or β3 at 5 μg/mL in coating buffer, overnight at 4 °C. After washing once with wash 

buffer (PBS with 0.05% Tween-20, 0.5 μM CaCl2), non-specific binding sites were 

blocked with blocking buffer (PBS with 3% BSA and 0.5 μM CaCl2) for one hour under 

agitation before washing a further two times. Bacterial cells were removed from FA 

agar, resuspended in blocking buffer before being added to the pre-coated plates and 

incubated at room temperature for one hour under agitation. Untreated wells were 

also included as a control. Wells were then washed three times with wash buffer 

before incubating with a polyclonal rabbit IgG anti-P. gingivalis (1:3500) or a polyclonal 

rabbit IgG anti-T. forsythia (1:3500) antibodies for one hour at room temperature 

under agitation. After washing three times with wash buffer, wells were incubated 

with peroxidase goat anti-rabbit IgG (1:20,000) for one hour under agitation, washed 

three times with PBST and 3,3',5,5'-tetramethylbenzidine peroxidase substrate (Fisher 

Scientific) was added. The reaction was allowed to develop before stopping with 2 M 

H2SO4. Plates were read spectrophotometrically at 450 nm with a Clariostar microplate 

reader (BMG Labtech). 
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2.8 Platelet Function Methodology 

2.8.1 Platelet Aggregation 

2.8.1.1 Agonist preparation 

2.8.1.1.1  Live perio-pathogens 

Initially bacterial strains (wild-type or mutants) of both P. gingivalis and T. forsythia 

were removed from 72 hour blood agar plates and resuspended in modified Tyrode's 

buffer. These suspensions were then counted and calculated to give a MOI of either 

1:10 or 1:1 

2.8.1.1.2 Heat killed perio-pathogens 

Strains of P. gingivalis or T. forsythia were prepared as above (Section 2.9.1.1.1) before 

being boiled for 5 min at 100 °C. In order to confirm bacterial viability, each bacterial 

suspension was transferred to a fresh blood agar plate and cultured at 37 °C in an 

anaerobic environment for five days. 

2.8.1.1.3 2.9.1.1.3 Bacterial supernatants 

Wild-type strains of P. gingivalis were grown in liquid cultures until they reached an 

optical density (O.D.) of 0.8 at 600 nm. Each culture was centrifuged at 13,000 g for 5 

min at room temperature before the supernatants were removed and passed through 

a 0.2 µm filter. 20 µL of this suspension was then added to platelet suspensions during 

aggregation determination. 

2.8.1.1.4 P. gingivalis lipopolysaccharide 

Commercial lipopolysaccharide (LPS; Invivogen) purified from P. gingivalis NCTC 

11834was used in aggregation investigations at concentrations of 10, 20 and 40 µg/mL. 
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2.8.1.2  Platelet inhibitors 

Before measuring aggregation, 250 µL of PRP was transferred into individual cuvettes 

and platelets were incubated with selective platelet inhibitors (shown in Table 2.6) for 

15 min at room temperature. Each cuvette was then analysed routinely as described in 

2.9.1.3. 

Inhibitor Supplier Final Concentration 

TRL-2 Invivogen 5 μg/mL 

TLR-4  Invivogen 5 μg/mL 

Integrin α2β1 TOCRIS 20 μM 

Integrin β3 ABBIOTEC 11.2 μg/mL 

Table 2.6 Platelet inhibitors. 

 

2.8.1.3 Light transmission aggregometry 

Prior to the measurement of aggregatory responses, each channel of the AggRAM light 

transmission aggregometer (Helena Biosciences), was blanked with PPP of the same 

donor. To measure aggregation, PRP was transferred into individual cuvettes 

containing a siliconised magnetic stirrer and incubated for one minute at 37 °C. Where 

applicable each agonist was then added to each cuvette and the aggregatory response 

was recorded for 10 min at 37 °C with continuous stirring at 650 nm. As a positive 

control measure and to determine 100% aggregation, PRP treated with 20 µM ADP 

was also included. The raw data files were exported and further processed using 

Microsoft Excel to determine initiation of aggregation (AG0) and time taken to reach 

50% aggregation (AG50). 
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2.8.2 Platelet Calcium Mobilisation 

Isolated PRP was initially counted using the Sysmex XP-300 before incubating with 

5µM FURA-2/AM for 45 min at room temperature. Platelets were then pelleted at 800 

g for 20 min at room temperature before being resuspended in modified Tyrode's 

buffer at a concentration of 4x108 platelets/mL. Wild-type or mutant strains of P. 

gingivalis were removed from 72 hour blood agar plates, resuspended in modified 

Tyrode's buffer and counted to determine an MOI of 1:10. The preloaded platelet 

suspension was transferred to each well of a 96-well plate, before recording the 

excitation of fluorescent intensities at both 340 and 380 nm simultaneously using a 

Clariostar microplate reader (BMG Labtech). The fluorescent emission of each test was 

recorded at 510 nm for 210 seconds with the initial 20 seconds being used as a 

baseline before automatically injecting platelet agonists or a buffer control.  

Intracellular calcium levels are then determined using the following equation; 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑐𝑎𝑙𝑐𝑖𝑢𝑚 =
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑡 340𝑛𝑚

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑡 380𝑛𝑚
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2.8.3 Platelet Granule Release Quantitation by Enzyme-linked 

Immunosorbent Assay (ELISA) 

PRP was initially counted using the Sysmex XP-300 before platelets were pelleted at 

800 g for 20 min at room temperature before resuspending at a density of 2x108/mL in 

modified Tyrode's buffer. Strains of P. gingivalis (wild-type or mutants) were removed 

from 72 hour blood agar plates, resuspended in modified Tyrode's buffer, counted and 

adjust to an MOI of 1:10. 2x108 platelets were then incubated with bacteria or ADP (20 

µM) for 20 min at room temperature before fixing in 0.5% PFA for 30 min, again at 

room temperature. Samples were centrifuged at 13,000 g for 5 min at 4 °C before the 

supernatants were removed and processed following the manufacturer's instructions 

of one of the following ELISA kits; human platelet factor 4 (PF4) (Abcam), interleukin 

1β (IL-1β) (Bio-Techne LTD) or Serotonin (Abcam). ELISA plates were read using and the 

data recorded using a Clariostar microplate reader (BMG Labtech). 

2.9 Statistical Analysis  

Statistical analysis was conducted using the StatsDirect3 software (StatsDirect Ltd, 

Cheshire, UK). Data normality was determined by a D'Agostino & Pearson normality 

test before subsequent statistical analysis. 

Parametric data was analysed using paired t-test. Non-parametric paired data was 

analysed using the Friedman test whereas non-paired non-parametric data was 

evaluated using the Kruskal-Wallis Test (Conover-Iman). The threshold for statistical 

significance was set at p<0.05; * = P≤ 0.05, ** = P≤ 0.01 and *** = P≤ 0.001. All 

experiments consisted of at least three biological replicates.  
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Chapter 3: Characterisation of an in vitro cellular 

model to study platelet-periodontal pathogen 

interactions 
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3.1 Introduction 

The development and application of megakaryocytic cell lines, derived from patients 

with leukaemia, allow a unique opportunity to study the maturation and 

differentiation of megakaryocytes and their associated platelet-like phenotypes (Saito, 

1997). The overall aim of this thesis is to investigate the effect of periodontal 

pathogens on platelet aggregation, activation and function. However, as experimental 

work on platelets requires fresh blood which needs to be immediately used due to an 

inability to effectively store samples (Bausset et al., 2012), the megakaryocytic cell line, 

CHRF-288-11 was recruited as a cellular model to study platelet-pathogen interactions. 

The CHRF-288-11 cell line is a megakaryocytic cell line, which was initially isolated from 

a biopsy of a metastatic tumour in a 17 month old infant with acute megakaryoblastic 

leukaemia (Fugman et al., 1990). Further characterisation of this cell line indicated that 

CHRF-288-11 cells can be used as an effective megakaryocyte/platelet model (Lev-

Lehman et al., 1997), which can be matured towards platelet production (Deutsch et 

al., 2008) as the cells express platelet derived growth factors (Yang et al., 1997) as well 

as expressing platelet markers including integrins which are involved in platelet 

adhesion, aggregation and activation (Fugman et al., 1990; Conran and Hemming, 

1998; Nurhayati, Ojima and Taya, 2015). 
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3.2 Aims 

The overall aim of this chapter is to validate a differentiated megakaryocytic cell line 

for the study of platelet-periodonto-pathogen interactions. This will be achieved by: 

• Investigating the use of the CHRF-288-11 cells as an in vitro platelet-like cell line 

by determining expression of platelet specific markers 

• Investigating CHRF-288-11 cells as an in vitro platelet-like model to study 

platelet pathogen interactions  
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3.3 Results 

3.3.1 Optimisation of CHRF-228-11 differentiation  

Differentiation and maturation of CHRF-288-11 (CHRF) cells following exposure to 

phorbol 12-myristate 13-acetate (PMA) was investigated by immunofluorescence 

microscopy. PMA at both concentrations (10 and 50 ng/ml) successfully induced CHRF 

differentiation over the period investigated. 

Successful differentiation was determined through cellular adherence, DAPI staining 

for nucleic morphology and an F-actin probe for cytoskeletal phenotyping. 

Representative micrographs are shown for both 10 ng/ml (Figure 3.1) and 50 ng/ml 

(Figure 3.2) PMA treatments. Both 10 and 50 ng/ml of PMA treatment induced 

differentiation from the day one time point as characterised by development of large 

multi-lobed nuclei and the formation of pseudopodial structures that protrude from 

the main cellular body when compared to the control cells. No changes were observed 

with cells treated with DMSO vehicle control, with consistent low cell numbers 

observed across all investigated time points. The observed phenotypic cellular 

differentiation was maintained throughout the day three, five and seven time points 

within both PMA treatments, with both treatments resulting in highly heterogeneous 

cellular populations with varying pseudopodia and no distinctive cytoskeletal 

structure. Cellular viability was also confirmed by trypan blue exclusion and remained 

at ~98% throughout all PMA treatments (data not shown). It was determined that 

50ng/ml for a period of five days yielded the most consistent differentiated cell 

densities and was therefore selected for future investigations utilising this cellular 

model.  
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Figure 3.1 CHRF-288-11 differentiation with 10 ng/ml of PMA. CHRF-288-11 cells were differentiated 
onto glass coverslips before being stained with a high affinity F-actin probe and DAPI. DAPI staining 
revealed the formation of large multi-lobed nuclei within 24 hours of PMA treatment. F-actin positivity 
showed the development of large pseudopodia that protruded from the cell body and became more 
defined over a seven day time course. DMSO was included as a vehicle control and is shown at the 7 day 
time point. Images are representative of at least three independent observations. Scale bars= 50 μm. 
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Figure 3.2 CHRF-288-11 differentiation using 50 ng/ml of PMA. CHRF cells were differentiated onto 
glass coverslips before being treated with an F-actin probe and the nucleic stain DAPI. Staining revealed 
the formation of large multi-lobed nuclei and large pseudopodial structures over the seven days of 
treatment. DMSO is included as a vehicle control and is shown at the 7 day time point. Images are 
representative of at least three independent observations. Scale bars= 50 μm. 
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To further characterise the differentiated CHRF cells, expression of 

megakaryocytic/platelet surface protein and activation markers was determined by 

flow cytometry. A general increase in expression of CD41 and CD41/61 was observed 

up to five days of culture after which a decrease was observed with both PMA 

treatments (10 and 50 ng/ml). Over the seven day time course CHRF-288-11 cells were 

found not to express CD42b, throughout both the 10 and 50 ng/ml treatments, whilst 

the expression of CD62P increased almost two-fold compared to the DMSO controls 

(Figure 3.3). No significant differences were observed between 10 and 50 ng/ml PMA 

treatments at any of the time points investigated. The decrease in overall expression at 

day seven was attributed to cell detachment. 
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Figure 3.3 Analysis of megakaryocytic protein expression following CHRF-288-11 differentiation. CHRF-
288-11 cells were treated with either 10 or 50 ng/ml of PMA and differentiation was monitored over a 
period of seven days. Cells were analysed by flow cytometry to determine the relative expression of cell 
surface proteins and platelet activation markers: CD41 (A), CD41/61 (B), CD62P (C) and CD42b (D). 
Expression of CD41, CD41/61 and CD62P increased within both PMA treatments when compared to the 
DMSO vehicle control up to day five before decreasing. CHRF cells did not express CD42b across all 
treatments and time points. No changes were observed in the DMSO vehicle control across all time 
points, with the day seven time point being included as a representative control. Data is expressed as 
the mean fluorescent index (MFI) ±SEM, n=3. 
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3.3.2 Periodontal pathogen invasion and adhesion of CHRF-288-11 

cells 

Following optimisation of CHRF differentiation, the ability of periodontal pathogens to 

adhere to and invade the differentiated CHRF-288-11 cells were investigated. Initially, 

undifferentiated and differentiated cells were treated with either P. gingivalis NCTC 

11834 or T. forsythia ATCC 43037 (MOI of 1:10 or 1:100) and probed with pathogen 

specific antibodies, a high affinity actin probe and DAPI as a nucleic stain. 

It was observed that, P. gingivalis associated with and invaded the undifferentiated 

CHRF-288-11 cells (Figure 3.4), with association and invasion increasing following 

CHRF-288-11 differentiation independent of MOI (Figure 3.5). Similarly T. forsythia was 

shown to interact with undifferentiated CHRF-288-11 cells (Figure 3.6) with cellular 

association and invasion increasing following CHRF differentiation (Figure 3.7) at both 

MOIs investigated. Within both undifferentiated and differentiated cells, P. gingivalis 

and T. forsythia were shown to localise within the cell membrane and the perinucleic 

space. 
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Figure 3.4 Invasion of CHRF-288-11 cells by P. gingivalis NCTC 11834. Undifferentiated CHRF-288-11 cells were challenged with P. gingivalis NCTC 11834 (MOI of 1:10 and 
1:100) for 90 minutes at 37 °C, before being fixed and mounted onto glass microscope slides. Cells were then permeabilised and probed with a pathogen specific antibody, 
PGWC1 (green), an F-Actin probe (red) and the nucleic stain DAPI (blue). P. gingivalis NCTC 11834 localised with and invade CHRF-288-11 cells (white arrows). Images are 
representative of at least three independent observations. Scale bars= 50 μm.  
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Figure 3.5 P. gingivalis invades differentiated CHRF-288-11 cells. CHRF cells were differentiated for five days before being challenged with P. gingivalis NCTC 11834 (MOI 1:10 
or 1:100) and fixed. Cells were then permeabilsed and stained with a P. gingivalis specific antibody (PGWC1; green), an F-actin probe (red) and mounted with DAPI (blue). A 
high level of invasion was observed with differentiated CHRF cells, with P. gingivalis localising within the membrane and nucleic regions of the cells. Images are representative 
of at least three independent observations. Scale bars= 50 μm. 
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Figure 3.6 CHRF-288-11 cellular invasion by T. forsythia ATCC 43037. Undifferentiated CHRF-288-11 cells were exposed at an MOI of 1:10 or 1:100 to T. forsythia ATCC 43037 
before being fixed and permeabilised. Cells were then stained with a pathogen specific antibody, TFWC (green), an F-actin probe (red) and DAPI (blue). These images 
demonstrate that T. forsythia invades and adheres to undifferentiated CHRF-288-11 cells (white arrows). Images are representative of at least three independent observations. 
Scale bars= 50 μm. 
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Figure 3.7 Invasion of differentiated CHRF-288-11 cells by T. forsythia. Cells were challenged with T. forsythia at an MOI of either 1:10 or 1:100 before fixation. Cells were then 
permeabilised and probed with a pathogen specific antibody, TFWC (green), a high affinity F-actin probe (red) and DAPI (blue). A high level of cellular invasion was observed 
with bacterial cells localising within the cellular membrane and around the nuclei (white arrows). Images are representative of at least three independent observations. Scale 
bars= 50 μm. 
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To quantitate cellular invasion, an antibiotic protection assays were performed on 

differentiated CHRF-288-11 cells (Figure 3.8). Differentiated CHRF-288-11 cells were 

challenged with wild-type strains of P. gingivalis (NCTC 11834, ATCC W50) or T. 

forsythia (ATCC 43037). To determine the role of the P. gingivalis outer-membrane 

protein (OMPA), cells were also challenged with deficient mutants lacking the two 

major subunits of the OMPA protein (NCTC 11834 ΔompA1, NCTC 11834 ΔompA2). 

All of the wild-type strains and mutants tested successfully adhered to and invaded the 

megakaryocytic-like cells. Although some variation in both cellular adhesion and 

invasion were observed, no significant differences were calculated between any of the 

variables tested. 
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Figure 3.8 Bacterial adhesion and invasion of CHRF-288-11 cell by periodontal pathogens. 
Differentiated CHRF-288-11 cells were challenged with P. gingivalis (NCTC 11834, NCTC 11834 ΔompA1, 
NCTC 11834 ΔompA2, ATCC W50) or T. forsythia (ATCC 43037) for 90 minutes (37 °C, 5% CO2). Invasion 
was defined as the percentage of bacterial inoculum protected from metronidazole, whereas total 
associated is the total percentage of bacterial cells recovered. The adhered population is then 
determined by subtracting the 'invaded' from 'total associated'. All P. gingivalis and T. forsythia strains 
tested were shown to adhere to and invade differentiated CHRF-288-11 cells. Data is presented as a 
percentage recovery relative to the total inoculum. ±SEM, n=3. 
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3.3.3 Analysis of CHRF-288-11 interactions with periodontal 

pathogens by immunofluorescent microscopy 

Following the initial immunofluorescent characterisation of periodontal-pathogen 

invasion of CHRF cells, further investigation focussed on exploring the impact of 

pathogen invasion on CHRF protein expression. The effects of P. gingivalis NCTC 11834 

and T. forsythia ATCC 43037 were determined in relation to the expression of two 

proteins of interest; the Mammalian Target of Rapamycin (mToR) and integrin β3. 

3.3.3.1 Analysis of CHRF-288-11 mToR expression following incubation with 

periodontal pathogens 

Undifferentiated CHRF-288-11 cells expressed mToR and the rate of bacterial 

association increased with increasing MOI with both P. gingivalis NCTC 11834 (Figure 

3.9) and T. forsythia 43037 (Figure 3.10). However, no variances in protein expression 

were observed in either bacterial treatment when compared to the untreated control. 

In contrast, while differentiated CHRF-288-11 cells also showed/demonstrated 

increased bacterial association with increasing MOI, the overall expression of mToR 

decreased following exposure to both P. gingivalis NCTC 11834 (Figure 3.11) but not 

with T. forsythia 43037 (Figure 3.12).  
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Figure 3.9 The effect of P. gingivalis invasion on mToR expression in CHRF-288-11 cells. CHRF cells were challenged with P. gingivalis NCTC 11834 for 90 minutes before being 
fixed and permeabilised. Cells were then probed for mToR expression (red), a pathogen specific antibody (PGWC1, green) and DAPI. Images highlight the CHRF-288-11 cells 
express mToR but its relative expression is not effected through bacterial association at an increasing MOI. Images are representative of at least three independent 
observations. Scale bars= 50μm.  
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Figure 3.10 Determination of mToR expression following exposure to T. forsythia in CHRF-288-11 cells. Cells were challenged with T. forsythia ATCC 43037 for 90 minutes 
before fixation. Cells were then permeabilised and stained for mToR (red), DAPI (blue) and T. forsythia (green). Despite bacterial association increasing with an increasing MOI, 
no changes in mToR expression were observed across any treatments. Images are representative of at least three independent observations. Scale bars= 50 μm.  
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Figure 3.11 P. gingivalis decreases mToR expression in differentiated CHRF-288-11 cells. CHRF-288-11 cells were differentiated for five days before being challenged with P. 
gingivalis at an MOI of either 1:10 or 1:100. Cells were then fixed, permeabilised and probed for DAPI (blue), mToR (red) and P. gingivalis (PGWC1, green). Large lobed nuclei 
confirm cellular differentiation, with bacterial association also increasing with an increasing MOI. Bacterial treatment resulted in no change within expression of mToR at both 
an MOI of 1:10 and 1:100. Images are representative of at least three independent observations. Scale bars= 50 μm.  
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Figure 3.12 Effect of T. forsythia invasion on mToR expression in differentiated CHRF-288-11 cells. Cells were differentiated for five days before being exposed to T. forsythia 
ATCC 43037 for 90 minutes and fixed. Cells were then permeabilised before being stained for mToR expression (red), nucleic phenotyping (DAPI, blue) and bacterial cells 
(TFWC, green). Bacterial treatment with T. forsythia resulted in no change within mToR staining despite an increased bacterial association at both an MOI of 1:10 and 1:100. 
Images are representative of at least three independent observations. Scale bars= 50 μm. 
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3.3.3.2 Analysis of CHRF-288-11 integrin β3 expression following incubation 

with periodontal pathogens 

Undifferentiated and differentiated CHRF-288-11 cells expressed integrin β3, uniformly 

diffused across the cell membrane (Figure 3.13-3.16). Exposure to bacterial cells at an 

increasing MOI resulted in an increased bacterial association and invasion by both P. 

gingivalis NCTC 11834 and T. forsythia 43037. Within both undifferentiated (Figure 

3.13 and 3.14) and differentiated (Figure 3.15 and 3.16) cells, exposure to either 

pathogen resulted in an increased expression of integrin β3 although no localisation 

between either pathogen or integrin β3 could be determined. 
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Figure 3.13 The effect of P. gingivalis invasion on integrin β3 expression in CHRF-288-11 cells. CHRF cells were challenged with P. gingivalis for 90 minutes before cells were 
fixed and permeabilised. Cells were then treated with anti-β3 (red) and pathogen specific (PGWC1, green) antibodies before being mounted with DAPI (blue). Incubation with 
P. gingivalis increases staining of integrin β3 most notably at an MOI of 1:100. Images are representative of at least three independent observations. Scale bars= 50 μm.  
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Figure 3.14 Relative integrin β3 expression following exposure to T. forsythia ATCC 43037. CHRF cells were treated with T. forsythia ATCC 43037 for 90 minutes before 
associated bacterial cells were removed. Cells were then fixed, permeabilised and probed for integrin β3 (red), T. forsythia ATCC 43037 (TFWC, green) and mounted with DAPI 
(blue). Bacterial challenge with T. forsythia ATCC 43037 increases integrin beta 3 expression at an MOI of 1:10 and 1:100. Images are representative of at least three 
independent observations. Scale bars= 50 μm.  
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Figure 3.15 The effect of P. gingivalis invasion on integrin β3 expression by differentiated CHRF-288-11 cells. CHRF-288-11 cells were differentiated for five days before being 
challenged with P. gingivalis NCTC 11834 at an MOI of with 1:10 or 1:100 for 90 minutes at 37 °C. Cells were then fixed, permeabilised and probed for P. gingivalis NCTC 11834 
(PGWC1, green), integrin β3 expression (red) and DAPI (blue). Incubation with P. gingivalis NCTC 11834 increased β3 expression at both an MOI of 1:10.and 1:100 when 
compared with the untreated controls. Images are representative of at least three independent observations. Scale bars= 50 μm. 
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Figure 3.16 T. forsythia increases β3 expression in differentiated CHRF-288-11 cells. CHRF-288-11 cells were differentiated before being exposed to T. forsythia ATCC 43037 at 
an MOI of either 1:10 or 1:100. Cells were then fixed and permeabilised before being stained for β1 (red), T. forsythia ATCC 43037 (TFWC, green) and DAPI (blue). Following 
exposure to T. forsythia ATCC 43037, integrin β1 staining increased at both an MOI of 1:10 and 1:100. Images are representative of at least three independent observations 
Scale bars= 50 μm. 
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3.3.4 Flow cytometric analysis of megakaryocytic/platelet markers 

following P. gingivalis challenge 

Having demonstrated that P. gingivalis invade differentiated megakaryocytic-like cells, 

impacting on integrin β1 and mToR expression, further investigations were undertaken 

to determine the effect of periopathogens on surface megakaryocyte/platelet 

markers. Using flow cytometry, P. gingivalis association with differentiated CHRF cells 

and the relative expression of CD41, CD61, CD41/61 and CD62P were quantified 

(Figure 3.17). 

Using this approach, sub-populations of cells associated with P. gingivalis (wild-type or 

OMPA deficient mutants) could not be identified as no significant increase in PGWC1 

fluorescence was detected when bacterial treated samples were compared to 

untreated controls (Figure 3.17a). Similarly, no significant change in integrin expression 

was detected with either CD41 (Figure 3.17b), CD61 (Figure 3.17c), CD41/61 (Figure 

3.17d) or CD62P (Figure 3.17e) following bacterial treatment with wildtype of mutant 

P. gingivalis. 
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Figure 3.17 Quantitation of megakaryocytic surface marker expression following challenge with P. 
gingivalis using flow cytometry. Differentiated CHRF-288-11 cells were challenged with either wild-type 
P. gingivalis (NCTC 11834, ATCC W50) or the OMPA deficient mutants NCTC 11834 ΔompA1 and NCTC 
11834 ΔompA2 before being treated with antibodies to detect the expression of platelet surface 
antigens and pathogen presence (PGWC1). No significant changes in detection of bacterial association 
(A) or the expression of CD41 (B), CD61 (C), CD41/61 (D) and CD62P (E) following bacterial challenge. 
Data is expressed as ±SEM, n=3.  
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3.3.5 Development of a cell-based ELISA for immunophenotyping of 

CHRF-288-11 cells following periodontal pathogen challenge  

To further quantify periodontal pathogen invasion of CHRF-288-11 cell and the effect 

of pathogen invasion on surface protein expression, a cell-based ELISA was developed. 

Cells were differentiated onto a solid surface and probed for bacterial binding using 

pathogen specific antibodies (PGWC1, TFWC) or the relative expression of CHRF 

integrins β1 and β3.  

Following bacterial challenge at an MOI of 1:100, significant binding of P. gingivalis 

NCTC 11834 and ATCC W50 was observed (p<0.001; Figure 3.18a), as well as a 

significant increase in expression of integrin β1 (p<0.001, Figure 3.18b). P. gingivalis 

NCTC 11834 was also found to induce a significant increase of β3 expression (p<0.001; 

Figure 3.18c). A slight increase in integrin β3 expression was also observed following 

exposure to ATCC W50, although this was determined as not statistically significant 

(Figure 3.18c). T. forsythia ATCC 43037 did not associate with differentiated CHRF-288-

11 cells (Figure 3.18a) or induce any change in either integrin β1 (Figure 3.18b) or β3 

(Figure 3.18c) expression. 
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Figure 3.18 Analysis of bacterial association and integrin expression by a cell-based ELISA. CHRF-288-11 were differentiated into well-plates before being challenged with 
periodontal pathogens (MOI 1:100), fixed and probed with pathogen specific antibodies (PGWC1 or TFWC) (A) or for expression of integrin β1 (B) and integrin β3 (C). Significant 
binding of P. gingivalis NCTC 11834 and ATCC W50 was detected at an MOI of 1:100 (A). A significant increase in expression of integrin β1 was detected following treatment 
with P. gingivalis NCTC 11834 and ATCC W50 (B), with P. gingivalis NCTC 11834 also stimulating a significant increase in β3 expression (C). Data is expressed as ±SEM, p=*** 
<0.001, n=3. 
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3.3.5.1 Is P. gingivalis association and interaction with CHRF-288-11 

dependent on the multiplicity of infection? 

Investigations to determine whether the observed association to CHRF-288-11 cells by 

P. gingivalis was MOI dependant. Differentiated CHRF-288-11 cells were challenged 

with P. gingivalis at an increasing MOI before cells were fixed and probed with 

pathogen specific antibodies (PGWC1). P. gingivalis NCTC 11834 (Figure 3.19a) and 

ATCC W50 (Figure 3.19b) were both shown to increase in bacterial association relative 

to an increasing MOI. 
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Figure 3.19 Specific periodontal pathogen interaction with differentiated CHRF-288-11 cells. 
Differentiated CHRF-288-11 cells were challenged with bacterial cells at an increasing MOI before 
fixation and detection with pathogen specific antibodies. The data demonstrates specific, pathogen 
binding in a direct relationship with increasing MOI following treatment with P. gingivalis NCTC 11834 
(A), P. gingivalis ATCC W50 (B). Data is expressed as ±SEM, n=3. 
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After confirming that periodontal pathogen interaction was specific and MOI 

dependant, the relationship between integrin expression and bacterial invasion was 

investigated. As above, differentiated CHRF-288-11 cells were challenged with a 

titrated MOI of periodontal pathogens before fixation and the relative expression of 

integrin β1 and β3 was detected (Figure 3.20). These results show that P. gingivalis 

NCTC 11834 stimulates an increase in expression of integrin β1 (Figure 3.20a) and 

integrin β3 (Figure 3.20b) at all the MOI's tested with the observed increase in 

expression appearing to be independent of MOI and of direct consequence, solely to 

bacterial treatment. Similar findings were also observed when cells were treated with 

P. gingivalis ATCC W50 (Figure 3.20c-d). 
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Figure 3.20 The effect of MOI on periodontal pathogen induced integrin expression in differentiated 
CHRF-288-11 cells. Differentiated CHRF cells were challenged with periodontal pathogens at an 
increasing MOI, before being fixed and probed for expression of integrin β1 and β3. Both P. gingivalis 
NCTC 11834 and ATCC W50 induced an increase in expression of integrin β1 (A and C) and β3 (B and D). 
Data presented is a representative figure of three independent observations.   
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3.4 Discussion 

The overall aim of this study is to determine whether an in vitro megakaryocytic cell 

line can be used to study platelet-pathogen interactions. Due to the ability of platelets 

to become readily activated and the lack of reliable storage options, platelet studies 

require fresh platelets and as such, also rely on regular blood donations (Bausset et al., 

2012).The availability of a platelet-like cell line will therefore help minimise the 

reliance on blood donations, an invasive procedure, whilst enabling studies to be 

conducted in vitro, prior to validation using fresh platelets isolated from donors. 

Earlier studies have proposed the use of megakaryocytic-like cell lines such as DAMI 

(Greenberg et al., 1988) and UT-7 (Komatsu et al., 1991) within platelet research. 

However, as with many cells lines, megakaryocytic-like cells carry many caveats 

including misidentification, contamination as well as genomic and phenotypic 

instability (Geraghty et al., 2014). As an example, UT-7 cells have since been shown to 

express markers of different cell lineages including those associated with erythroid and 

myeloid phenotypes (Saito, 1997). Further to this, although the DAMI cell line seemed 

promising as an in vitro platelet model, since its initial characterisation it is reported to 

either be contaminated with or share genetic markers with the HEL erythroleukemia 

cell line (MacLeod et al., 1997). For these reasons, initial investigations focussed on 

characterising the CHRF-288-11 cell line and exploring its suitability as a platelet-like 

model. 

Optimisations of the CHRF-288-11 cells confirmed that treatment with PMA (50 ng/ml) 

over a five day period yielded consistent CHRF differentiation. This was assessed by the 

characteristic changes in phenotype and illustrated by cell enlargement and the 
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formation of polyploidal, multi-lobed nuclei in line with previous reports by Fugman 

and colleagues (1990). 

Further analysis of differentiated CHRF cells via flow cytometry confirmed the 

expression of several markers attributed to the megakaryocytic cell lineage and 

platelet production. In agreement with findings by Conran and Hemming (1998), CHRF 

cells were found to express both CD41 (αIIb, GPIIb) and CD61 (β3, GPIIIa), which form 

the heterodimer complex of CD41/61 that is expressed by both megakaryocytes 

(Duperray et al., 1987) and platelets (Wagner et al., 1996b). The megakaryocytic-like 

cells were also shown to express the activated epitope of CD41/61, which acts as a 

fibrinogen receptor during platelet activation (Shattil et al., 1985).  

Additionally, an increase in CD62P expression, a protein normally contained within 

platelet alpha granules (Stenberg et al., 1985), was observed following PMA treatment 

on the cell surface of the differentiated megakaryocytic cells. Surprisingly, it was also 

found that CHRF-288-11 cells did not express CD42b (GPIbα) within either 

undifferentiated or differentiated cells. Although GPIbα is highly expressed on the 

surface of platelets (Li and Emsley, 2013), it is also expressed by megakaryocytes, with 

an increase in GPIbα expression being reported as a marker for both maturation and 

differentiation (Lepage et al., 2000). 

Following the initial characterisation of the CHRF-288-11 cells and their associated 

platelet-like phenotype, further investigations explored whether this cell type could 

interact with oral pathogens. Despite the role of platelets within the immune system 

being widely published (Klinger and Jelkmann, 2002; Yeaman, 2010b; Gardiner and 

Andrews, 2013; Ali, Wuescher and Worth, 2015; Koupenova and Freedman, 2015), 

research surrounding bacterial interactions with megakaryocytes is highly limited. 
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Megakaryocytes are derived through haematopoietic stem cell differentiation and as a 

cell type are extremely rare, accounting for approximately 0.1% of nucleated cells 

within the bone marrow, which would suggest that interactions with bacterial cells are 

highly improbable. However, as well as residing within the bone marrow, 

megakaryocytes are also routinely found within circulating blood (Kallinikos-Maniatis, 

1969) and have been shown to migrate to, terminally differentiate and produce 

platelets within the lung tissue (Howell and Donahue, 1937; Lefrançais et al., 2017) 

suggesting that although improbable, interactions with bacterial cells are not 

altogether impossible. It has also been previously reported that megakaryocytes 

express toll-like receptors, suggesting that they could hypothetically interact with 

bacterial cells (Beaulieu and Freedman, 2010), with a further study showing that 

isolated megakaryocytes can interact with heat-inactivated Escherichia coli, stimulating 

the translocation of complement protein C (Arbesu et al., 2016).  

In contrast, it is well-established that the periodontal pathogens P. gingivalis and T. 

forsythia ATCC 43037 interact and invade a range of cell types including epithelial cells 

(Nakajima et al., 2006; Stathopoulou et al., 2010; Suwannakul et al., 2010; Mishima 

and Sharma, 2011; Stafford et al., 2013),osteoblasts (Zhang et al., 2010), trophoblasts 

(Inaba et al., 2009) as well as cells of the hematopoietic stem cell lineage such as 

monocytes (Pollreisz et al., 2010; Bloch et al., 2018). Periodontal pathogens have also 

been associated with increasing risk of cardiovascular disease (Kebschull, Demmer and 

Papapanou, 2010) while P. gingivalis has been shown to induce platelet aggregation 

(Curtis et al., 1993a). However, the mechanisms of these interactions are not fully 

understood.  
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Using the CHRF-288-11 cells as a platelet-like cell line, the interaction of both P. 

gingivalis and T. forsythia were investigated. Increased association of pathogens with 

differentiated CHRF cells were observed by immunofluorescence microscopy and 

further confirmed by ELISA. P. gingivalis and T. forsythia invaded the differentiated 

cells in an antibiotic-protection assay and were shown to localise within peri-nuclei 

regions. This observed cellular interaction with CHRF-288-11 cells agrees with previous 

findings that demonstrate that both P. gingivalis (Belton et al., 1999) and T. forsythia 

(Inagaki et al., 2006) are able to localise intracellularly with cellular invasion occurring 

in similar levels to that observed within host epithelium.  

As well as characterising interactions with wild-type P. gingivalis, the role of the major 

outer membrane protein subunits OMPA1 and OMPA2 within CHRF-288-11 

interactions were also explored. No significant differences were observed between 

either the ΔompA1 or the ΔompA2 deficient mutants when compared to the parent 

strain within CHRF-288-11 association as determined by antibiotic protection assays 

and flow cytometry. It has previously been shown that OMPA, specifically the OMPA2 

subunit is fundamental for interactions between P. gingivalis and epithelial cells in 

vitro (Naylor et al., 2016). However the data produced within this chapter of work 

suggests that P. gingivalis interactions with CHRF-288-11 cells occur independently of 

either OMPA subunit, suggesting that both of the OMPA subunits can facilitate 

bacterial association with CHRF-288-11 cells independently. Further investigations 

therefore targeted understanding how P. gingivalis interacts with megakaryocytic-like 

cells.  

As pathogens such as Escherichia coli (Arbesu et al., 2016) are known to activate 

platelets and alter the expression levels of surface platelet markers, the effect of P. 
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gingivalis NCTC 11834 and ATCC W50 on the expression of specific cellular markers 

expressed by both CHRF-288-11 cells and mammalian platelets was investigated.  

The mammalian target of rapamycin (mToR), a serine kinase that integrates with 

several key process including cell proliferation, protein synthesis and autophagy (Hay 

and Sonenberg, 2004) has been identified within previous research by Stafford and 

colleagues (2013) as a target for P. gingivalis host cell manipulation. Within this 

chapter of work, immunofluorescent analysis revealed that incubation with P. 

gingivalis resulted in a decreased expression of mToR within differentiated CHRF-288-

11 cells in an MOI dependant relationship, whereas incubation with T. forsythia did 

not. In agreement with these findings, within epithelial cells, gingipains derived from P. 

gingivalis have been shown to degrade mToR and manipulate cell signalling pathways 

(Stafford et al., 2013) and could suggest a similar mechanism in which P. gingivalis 

interacts with megakaryocytic-like cells. 

Further to this, P. gingivalis is known to interact with host cells through multiple 

pathways including targeting and manipulating integrin expression, such as integrin β1 

(Yilmaz, Watanabe and Lamont, 2002; Li et al., 2013) and β3 (Li et al., 2013; Boisvert, 

Lorand and Duncan, 2014). Within this chapter of work, it was investigated as to 

whether P. gingivalis could affect integrin β1 and β3 expression within the CHRF-288-

11 cell line. Immunofluorescent images highlighted an overall increase in CHRF-288-11 

expression of integrin β3 following bacterial challenge with both P. gingivalis and T. 

forsythia. It was also found that CHRF-288-11 integrin β3 expressions was uniformly 

diffused throughout the cell membranes and no distinct localisation between integrin 

expression and the presence of either P. gingivalis or T. forsythia. This initial data was 

also further confirmed through the application of a cell based ELISA, which 
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demonstrated an increase in expression in both integrin β1 and β3 following exposure 

to both P. gingivalis NCTC 11834 and ATCC W50 that was not dependent on MOI. 

Surprisingly however, further application of this developed ELISA revealed that T. 

forsythia did not bind to either recombinant β1 or β3, suggesting that other external 

factors may be needed for T. forsythia to associate with CHRF-288-11 cells for example 

through binding of lectin-like receptors or interactions with host toll-like receptors 

through expressed leucine-rich repeat motifs (Sharma, 2010). 

Although the development of this protocol is novel within the study of 

megakaryocytic-like cells, it has previously reported that several bacterial species 

including Staphylococcus spp., Streptococcus spp. and Escherichia coli can induce and 

amplify platelet activation through interactions with the integrin complex αIIbβ3 

(Arman et al., 2014; Watson et al., 2016), with P. gingivalis also being shown to bind to 

both integrin αvβ3 and α5β1 when overexpressed with a Chinese hamster ovary cell 

lines. However research surrounding the interactions between either P. gingivalis or T. 

forsythia and cells of megakaryocytic lineage is to date extremely limited. Within this 

study, a more in-depth analysis of integrin expression by flow cytometry following 

exposure to periodontal pathogens was attempted but was deemed unsuccessful and 

did not generate any observable differences within any of the makers tested. It was 

originally hypothesised that sub-populations of invaded CHRF-288-11 cells could be 

identified through the application of pathogen specific antibodies but due to 

experimental and equipment limitations this could not be achieved.  

The application of the CHRF-288-11 cell line within this study has provided an 

unlimited and rapid screening methodology of bacterial interactions with several 

markers specific to mature mammalian platelets. However it must be noted that as 
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with many megakaryocytic cell lines, the CHRF-288-11 cells are of leukemic origin 

(Fugman et al., 1990) and despite the CHRF-288-11 cells actively expressing multiple 

phenotypes associated with both megakaryocytes and platelets, it is important to 

confirm any finding within a highly purified platelet population. Further to this, recent 

developments within megakaryocyte culture techniques are detailing the routine 

culture of primary megakaryocytes and the production of large volumes of platelets in 

vitro (Moreau et al., 2016; Strassel, Gachet and Lanza, 2018), meaning that the use of 

megakaryoblast cell lines as well as the need for regular blood acquisition could soon 

be abolished entirely within the field of platelet research. 
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3.5 Summary 

In conclusion, this study has highlighted that the CHRF-288-11 megakaryocytic-like 

cells can be utilised through a series of methodologies to study the pathogenic effects 

of periodontal pathogens on platelets and the megakaryocytic cells in vitro. This 

developed methodology could be applied to understand how these anaerobic bacteria 

can stimulate host cell responses and how platelets behave following infection.  

Although multiple previous have studies have shown that periodontal pathogens can 

infiltrate and interact various cell types (Lamont et al., 1995; Deshpande, Khan and 

Genco, 1998; Simin F Nakhjiri et al., 2001; Yilmaz, Watanabe and Lamont, 2002; Yilmaz 

et al., 2008; Kirschbaum et al., 2010a; Suwannakul et al., 2010; Honma, Mishima and 

Sharma, 2011; Stafford et al., 2013; Naylor et al., 2016) , as well as alter host cellular 

functions (Darveau et al., 1998; Tervahartiala et al., 2000; Kiili et al., 2002; Yilmaz et al., 

2003, 2008; Nakajima et al., 2006; Posch et al., 2011; Settem et al., 2013; Stafford et 

al., 2013; Ksiazek, Mizgalska, Enghild, et al., 2015; Lee et al., 2015; Naylor et al., 2016) 

very little work has focussed on how these bacterial species may impact platelets or 

result in atherosclerotic phenotypes (Yun et al., 2005; Nicu et al., 2009; 

Papapanagiotou et al., 2009; Arman et al., 2014). More specifically, no current work 

has explored; how T. forsythia may affect any haematopoietic cell lineages, how 

periodontal pathogens could affect platelet function or how platelet/periopathogen 

interactions and the resulting consequences occur at the cellular level.  Further work is 

needed to expand these initial studies to fully characterise the effects of P. gingivalis 

and T. forsythia on CHRF-288-11 cells as well as moving on to validating these finding 

in platelets, in order to answer these questions.  
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Chapter 4: Can periodontal pathogens interact with 

and induce platelet aggregation?  
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4.1 Introduction 

The interactions between prokaryotes and mammalian platelets have been well 

documented with detailed studies showing that a broad spectrum of bacterial species 

can not only bind to platelets, but also induce platelet aggregation and activation 

(Clawson and White, 1971a, 1971b; Clawson, 1973; Clawson, Rao and White, 1975; 

Kerrigan, 2015). Examples of such interactions include the induction of aggregation 

and degranulation of platelets by Staphylococcus aureus (Hawiger et al., 1979) and the 

indirect interaction between Streptococcus pyogenes and platelets that is mediated by 

the availability of fibrinogen and von Willebrand factor (vWf) (Kurpiewski et al., 1983; 

Johnson and Bowie, 1992). Further to this several orally derived bacterial species, 

including Streptococcus spp., Staphylococcus spp., Pseudomonas aeruginosa and 

Porphyromonas gingivalis, have been implicated in cardiovascular disease (CVD) 

(McNicol and Israels, 2010; McNicol, 2015). It is thought that bacteria are able to gain 

access to the circulation, penetrate vascular walls causing secondary infections that 

ultimately lead to the formation of atherosclerotic plaques which then rupture and 

lead to platelet clotting and atherothrombosis (Kaplan and Jackson, 2011). Several 

studies have also suggested that bacterial-platelet interactions are crucial to the 

pathogenesis of some cardiovascular pathologies, as reviewed by McNicol and Israels 

(2010).  

Blood platelets undoubtedly play a predominant role within haemostasis, but their 

emerging role within antimicrobial host defence and in modulation of inflammatory 

responses could hold a crucial link that underpins the mechanism behind thrombotic 

and inflammatory events (Von Hundelshausen and Weber, 2007). In the context of 

periodontal pathogens, oral pathogenic bacteria have been reported to interact with 
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platelets through toll-like receptors (TLR's), causing platelet activation and the release 

of activation markers such as P-selectin and ADP (Shiraki et al., 2004; Blair et al., 2009; 

Zhang et al., 2009) as well as inducing the pro-thrombotic pathway (Roth et al., 2009). 

However the exact mechanisms by which these interactions occur are not fully 

elucidated. 

The sequence of events that follows platelet-bacterial association can be defined as; 

contact, shape change, early aggregation and irreversible aggregation (Clawson and 

White, 1971a). The use of light transmission aggregometry was initially developed in 

the 1960's (Born and Cross, 1963; Vigdahl, Marquis and Tavormina, 1969) and is still 

recognised as the gold-standard approach in platelet function testing in relation to 

cardiovascular diseases (Michelson, 2004). This chapter expands on the initial findings 

that P. gingivalis can induce platelet aggregation (Naito et al., 2006; Naito, 2007; Li et 

al., 2008) and investigates how viability and virulence factors of both P. gingivalis and 

T. forsythia could act as contributing factors to platelet/periopathogen interactions. 

4.2 Aims 

The studies described in this chapter aim to determine whether the periodontal 

pathogens P. gingivalis and T. forsythia induce platelet aggregation. This was 

investigated by determining: 

• The possible induction of platelet aggregation by a range of P. gingivalis and T. 

forsythia strains at varying multiplicities of infection. 

• The contribution of virulence associated bacterial proteins on the induction of 

platelet aggregation. 

• Whether heat-killed bacteria can induce platelet aggregation. 
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4.3 Results 

4.3.1 Platelet aggregation with wildtype P. gingivalis and T. forsythia 

Light transmission aggregometry was initially used to screen wildtype (WT) P. gingivalis 

strains NCTC 11834, ATCC W50, ATCC 381 and T. forsythia ATCC 43037 to determine 

whether they induced platelet activation at varying multiplicity of infection (MOI). 

Isolated platelet rich plasma (PRP) was exposed to wildtype P. gingivalis at an MOI of 

1:1 and 1:10. The rate of platelet aggregation was recorded over a period of 10 

minutes at 37 °C and compared to untreated PRP or PRP treated with ADP (20 μM), as 

a negative and positive control respectively. A representative aggregation plot is 

shown in Figure 4.1a. As expected ADP induced platelet aggregation (red), while no 

aggregation was observed with untreated PRP (blue). P. gingivalis NCTC 11834 was 

also observed to induce platelet aggregation which reached a peak at 8 minutes when 

compared to ADP with maximum aggregation reached within 4 minutes. 

Interestingly, aggregation was observed to be strain dependent with significant 

aggregation induced by P. gingivalis NCTC 11834 at an MOI of both 1:1 (p<0.05) and 

1:10 (p<0.001), and by P. gingivalis ATCC 381 at an MOI of 1:10 (p <0.001; Figure 4.1b). 

With P. gingivalis ATCC W50, no aggregation was observed at either MOI within the 10 

minute period (Figure 4.1b). In contrast to P. gingivalis, aggregation was not induced 

by wildtype T. forsythia at either MOI under the same experimental conditions (Figure 

4.1c). 
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Figure 4.1 Induction of platelet aggregation by wildtype (WT) periodontal pathogens. (A) Example 
aggregation plot. An example trace of light transmission aggregometry recorded over 10 minutes at 
37°C with P. gingivalis (green). Aggregation induced by ADP (20 μM, red) represents 100% aggregation 
and was included as a positive control. Untreated PRP (blue) was included as a negative control and 
demonstrates 0% aggregation. (B) Platelet aggregation by WT P. gingivalis. WT P. gingivalis NCTC 11834 
and ATCC 381 triggered platelet aggregation at MOI of 1:1 and 1:10. Aggregation was not observed with 
ATCC W50 at either MOI investigated over the 10 minute period. (C) Platelet aggregation by WT T. 
forsythia. Platelet aggregation was not observed in the presence of WT T. forsythia at an MOI of either 
1:1 or 1:10 ADP (20 μM) and untreated PRP are included as positive and negative control respectively. 

Data is expressed as ±SEM, p= *0.05, ***0.001. n=4.  
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4.3.2 Investigation of the effect of bacterial virulence on platelet 

aggregation in induced by P. gingivalis  

After the initial findings that wildtype P. gingivalis induces platelet aggregation in a 

strain dependant manner, further investigations were conducted to explore whether 

factors associated with bacterial virulence and/or interaction with cells could affect 

either the total percentage or the rate of aggregation. The ability of the P. gingivalis 

mutants P. gingivalis NCTC 11834 ΔompA1, P. gingivalis NCTC 11834 ΔompA2 and P. 

gingivalis ATCC 381 ΔSia0352 (described in Section 3.4) on platelet aggregation was 

determined. All mutants investigated, induced aggregation (p<0.001) at MOI 1:10, 

which was comparable to the parental strain (Fig 4.2). 

The rate of aggregation was determined by calculating the time taken to reach 50% 

aggregation (AG50). Interestingly, AG50 values were found to vary when wildtype and 

mutants were compared (Figure 4.2). Both PG mutants deficient in the outer-

membrane proteins OMPA1 (P. gingivalis NCTC 11834 ΔompA1) and OMPA2, (P. 

gingivalis NCTC 11834 ΔompA2) significantly induce platelet aggregation when 

compared to the parent wildtype strain (p<0.05, 0.01). The ΔompA2 mutant also 

exhibited a faster rate of aggregation when compared to the ΔompA1 mutant. This 

finding was also observed with P. gingivalis ATCC 381 ΔSia0352, which induced a 

significantly faster rate of platelet aggregation when compared to the wildtype strain 

(p<0.01; Fig. 4.2). 
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Figure 4.2 The effect of virulence associated proteins on platelet aggregation. (A) Induction of 
aggregation by mutants of P. gingivalis. Following exposure to mutants or WT strains of P. gingivalis, 
significant levels of aggregation was observed when compared to untreated PRP samples. (B) Time 
taken for platelet aggregation to reach 50% (AG50) of platelet aggregation when stimulated by WT P. 
gingivalis and mutants. Both mutants deficient in the outer membrane proteins (OMPA1 and OMPA2) 

and the Sialidase deficient strain (Sia0352) significantly induced a faster rate of aggregation when 
compared to the relevant WT strains. The ΔompA2 mutant was also observed to induce aggregation a 
faster rate when compared to the ΔompA1 mutant. ADP (20 μM) was included as a positive control for 

platelet aggregation. Data is expressed as ±SEM, p= *0.05, **0.01, ***0.001. n=4. 
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4.3.3 Investigation of aggregation induced by T. forsythia mutants 

After previous experiments (Section 4.3.2) revealed that bacterial virulence associated 

factors could affect the rate of platelet aggregation it was hypothesised that the 

virulence factors associated with T. forsythia could be preventing an aggregatory 

response. In order to investigate this both the T. forsythia ATCC 43037 ΔnanH deficient 

mutant and the T. forsythia ATCC 43037 ΔwecC isogenic mutant (described in Section 

3.4) were investigated in parallel with the wildtype strain. Contrary to the hypothesis, 

none of the bacterial stimulants caused platelet aggregation when compared to 

untreated PRP and PRP treated with ADP (20 μM) as a negative and positive control 

respectively (Figure 4.3). 

 

Figure 4.3 Platelet aggregation by T. forsythia WT strain and mutants. Platelets treated with T. 
forsythia ATCC 43037 or one of the two mutants (T. forsythia ATCC 43037 ΔnanH or T. forsythia ATCC 
43037 ΔwecC) did not induce platelet aggregation at an MOI of 1:10. ADP (20 μM) was included as a 
positive control and all samples were directly compared to untreated PRP. Data is expressed as ±SEM, 
p=***<0.001. n=4.  
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4.3.4 Investigations into the effect of bacterial viability on platelet 

aggregation 

After it had been demonstrated that platelet aggregation can be induced by viable 

periodontal pathogens, investigations were conducted to elucidate whether the 

pathogens need to be viable to elicit this effect. P. gingivalis NCTC 11834, ATCC W50 

and T. forsythia ATCC 43037 were heat treated and the effect of the resulting heat-

killed bacteria on platelet aggregation was determined. It was observed that both 

viable and heat killed P. gingivalis induced significant aggregation (p <0.01, 0.001), 

however when compared to the wildtype, the heat killed bacteria showed a significant 

decrease in percentage aggregation (p<0.001; Figure 4.4a). In contrast to this, although 

some aggregatory response was observed with wild type P. gingivalis ATCC W50, no 

significant aggregation was recorded with T. forsythia ATCC 43037 or P. gingivalis ATCC 

W50 in either treatment (Figure 4.4a)  

Earlier findings demonstrated that P. gingivalis lacking the outer membrane proteins 

OMPA1 and OMPA2 showed a significant increase in the rate of platelet aggregation. 

To further understand these findings, investigations were designed to explore whether 

bacterial viability could impact the aggregatory response as seen with wildtype P. 

gingivalis (Figure 4.4a). All bacterial treatments successfully resulted in stimulating 

platelet aggregation, however only the viable treatments resulted in significant 

readings (Figure 4.4b). Total percentage aggregation does not account for the time 

taken for aggregation to initiate or the rate of the recorded aggregatory response. To 

overcome this factor the data was further processed to analyse the time take for each 

sample to reach AG50. The analysis highlights that all bacterial treatments induce 

platelet aggregation (Figure 4.4b) but also that with heat killed, non-viable bacteria 
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there was a significant decrease in the rate of aggregation (Figure 4.4c) suggesting that 

interactions with viable bacteria are needed to induce a platelet aggregatory response. 
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Figure 4.4 The effect of bacterial viability on platelet aggregation. (A) Aggregation by periodontal 
pathogens. Both wild type (WT) and heat killed (HK) P. gingivalis NCTC 11834 induced a significant level 
of platelet aggregation. In contrast, both WT and HK P. gingivalis ATCC W50 and T. forsythia ATCC 43037 
did not induce significant aggregation. Interestingly, the HK treated P. gingivalis NCTC 11834 bacterium 
produced a significant reduction in aggregatory response when compared to the WT. (B) Induction of 
aggregation by viable and heat killed P. gingivalis deficient in the outer membrane proteins. Significant 
levels of aggregation was observed by P. gingivalis NCTC 11834 and mutants (P. gingivalis NCTC 11834 
ΔompA1 and P. gingivalis NCTC 11834 ΔompA2) when compared to untreated PRP. All HK treatments 
also induced some level of aggregation but none of these findings were statistically significant. (C) AG50 
of aggregation triggered by both viable and HK P. gingivalis. Platelets were exposed to both viable and 
HK bacteria before aggregation times were recorded against A significant decrease in the time taken to 
reach 50% aggregation was observed in the WT P. gingivalis NCTC 11834 and both mutant strains (PG 
NCTC 11834 ΔompA1 and PG NCTC 11834 ΔompA2). Aggregation was measured following exposure to 
pathogens (WT and HK) at an MOI of 1:10 for 10 minutes at 37 °C. Data is expressed as ±SEM, p= 

**0.01, ***0.001. n=4. 
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4.4 Discussion 

Understanding the relationship by which periodontal pathogens and platelets interact 

is crucial to explicate the postulated impact of oral pathogens on cardiovascular 

disease. This chapter investigated the effect of periodontal pathogens on the induction 

of platelet aggregation. The data presented here corroborate previous findings 

suggesting that P. gingivalis NCTC 11834 interacts with platelets and induces 

aggregation at increasing MOI (Naito et al., 2006; Naito, 2007; Li et al., 2008). 

This study demonstrates that P. gingivalis induced aggregation is strain specific as 

aggregation was observed with both P. gingivalis NCTC 11834 and P. gingivalis ATCC 

381 strains but not with ATCC W50. This is in contrast to the findings of Klarström 

Engström and co-workers (2015) who reported that ATCC W50 caused approximately 

50% aggregation when compared to NCTC 11834. The two studies however are not 

strictly comparable due to substantial differences in the methodology used. Klarström 

Engström et al (2015) conducted aggregation experiments in a modified Krebs Ringer 

glucose buffer, which replaces chelated cations that are lost within the platelet 

isolation process, over a longer time frame (15 minutes) and in the absence of relevant 

positive controls. In this work, all assays were conducted using isolated platelet rich 

plasma in citrate buffer and aggregation was monitored over 10 minutes. Throughout 

the optimisation of initial aggregation experiments with wildtype P. gingivalis strains 

within this body of work, it was noted that after three passages of bacterial culture all 

experimental conditions began to induce platelet aggregation. It is well documented 

that bacterial species are able adapt their behaviour and phenotype according to 

environmental conditions (Friedman et al., 2015) and for this reason all experiments 
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reported within this thesis were done with bacteria that had undergone no more than 

three passages. 

Strain-specific induction of platelet aggregation has been previously reported with 

other bacterial species including Helicobacter pylori which is associated with peptic 

stomach ulcers  and Streptococcus pneumoniae, one of the underlying causes of 

bacterial pneumonia (Corcoran et al., 2007; Keane et al., 2010), thereby suggesting 

that strain-specific factors may affect the pathogenicity of different bacterial isolates. 

This is further illustrated by the fact that strain variances are known to impact on the 

invasive and virulent characteristics of P. gingivalis (Jandik et al., 2008; Suwannakul et 

al., 2010; Baek et al., 2015). It was previously reported that both P. gingivalis NCTC 

11834 and P. gingivalis ATCC 381 are highly invasive when compared to P. gingivalis 

ATCC W50 in human umbilical vein endothelial cells (HUVEC) and KB epithelial cell lines 

when characterised via antibiotic protection assays (Dorn et al., 2000). 

Other work has also begun to elucidate the underlying genetics which may explain the 

observed variances across bacterial isolates. Igboin and colleagues (2009) 

demonstrated that, when compared by heteroduplex and ribosomal intergenic spacer 

region (ISR) sequencing, P. gingivalis strains NCTC 11834 and 381 were genetically 

highly related but are both highly divergent when similarly compared with P. gingivalis 

ATCC W50. These findings by Igboin et al., (2009) not only explain the observations of 

this study that NCTC 11834 and 381 but not ATCC W50 caused platelet aggregation, 

but may also provide an insight into the underlying genetic variances that contribute to 

P. gingivalis phenotypes and virulence. 

As well as strain specific variations, it was also hypothesised that periodontal-pathogen 

mediated platelet aggregation could be dependent on specific bacterial membrane 
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proteins and their involvement in mammalian cellular interactions. Therefore the role 

of the outer-membrane proteins OMPA1 and OMPA2 was investigated.  

Previous studies by Suwannakul and colleagues (2010) identified the OMPA protein as 

being important in host interactions. Further studies demonstrated that two major 

subunits of the outer membrane proteins namely OMPA1 and OMPA2 were important 

in biofilm formation as well as epithelial cell interactions (Naylor et al., 2016). In this 

study, the deletion of either subunit OMPA1 and OMPA2 did not impact on the overall 

percentage of aggregation although the data suggest a possible role in triggering the 

onset of an aggregatory response. When compared to the parent strain, both OMPA1 

and OMPA2 mutants were shown to significantly decrease the time taken to initiate 

platelet aggregation (p<0.05 and <0.001 for the OMPA1 and OMPA2 mutants, 

respectively). OMPA2 was also observed to induce aggregation at a faster rate than the 

OMPA1 mutant, but this difference was not statistically significant at the 0.05 level.  

In addition to the OMPA proteins, the P. gingivalis sialidase enzyme 0352 has also been 

implicated in cellular interactions and bacterial pathogenesis. Work by Aruni et al 

(2011) identified that 0352 sialidase facilitates bacterial-host interactions within the 

periodontal pocket by allowing the exposure of potential binding receptors on 

glycoproteins and glycolipids. Further to this, sialidase activity has also been directly 

associated with the expression of virulence factors in P. gingivalis including LPS, 

capsule, gingipain activity, fimbriae as well as circumventing host response (Aruni et 

al., 2011; Li et al., 2017; Yang et al., 2018). When the P. gingivalis ATCC 381Sia0352 

was screened in platelet aggregation, no differences were observed, with both the 

mutant and parent strain inducing a significant level of percentage aggregation 

(p<0.001). However, similarly to the findings with the OMP deficient mutants, P. 
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gingivalis ATCC 381 ΔSia0352 caused a significantly faster onset of platelet aggregation 

when compared to the wildtype P. gingivalis ATCC 381 (p<0.001). 

The P. gingivalis mutants screened throughout these aggregation studies were 

selected on the basis of their involvement in cellular interactions. Despite the stark 

biological differences between the OMPA and the ΔSia0352 mutants, the data suggests 

that disrupting bacterial/cellular interactions, results in a faster rate of aggregation 

more akin to that of a naturally occurring stimulant such as ADP. The process of 

delaying the aggregatory response that was observed with wildtype strains of P. 

gingivalis (NCTC 11834 and ATCC 381) could reflect a bacterial counterstrategy against 

the antimicrobial properties of platelets. Similar findings by Svensson and colleagues 

(2014) suggested that Streptococcus pyogenes not only initiates platelet aggregation, 

but exploits the fact that the formed aggregate is not significantly bactericidal allowing 

the bacterium to evade further host response, before disaggregating the platelets and 

escaping. P. gingivalis is well documented to supress and evade host response through 

a number of virulence factors including supressing complement activation though the 

secretion of LPS and gingipains, which promote bacterial survival (Hajishengallis, 2011). 

Taken together these observations suggest a possible mechanism in which P. gingivalis 

is able to hijack platelet aggregation and might be able to contribute to systemic 

pathogenesis. 

In contrast to P. gingivalis, the systemic impact of T. forsythia is less characterised. To 

date limited studies have investigated interactions between T forsythia and platelets. 

Under the same experimental conditions as P. gingivalis, wild type T. forsythia did not 

induce platelet aggregation. In an attempt to determine whether T. forsythia does not 

induce platelet aggregation or whether it actively evades platelet response, two 
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virulence factors of interest were selected. Firstly, the NanH sialidase is a virulence 

associated enzyme present in the outer membrane of T. forsythia that cleaves sialic 

acids on host glycoproteins, destroying their integrity and promoting cellular adhesion 

and invasion (Honma, Mishima and Sharma, 2011). Secondly, further work by Honma 

et al (2007) identified that the wecC gene present in T. forsythia is responsible for 

regulating biofilm formation. Disruption of the wecC gene promotes exopolysaccharide 

synthesis, promotes biofilm formation and an overall increase in bacterial virulence 

(Honma et al., 2007). These two virulence associated characteristics of wecC and nanH 

were then screened in further aggregation experiments using the T. forsythia ATCC 

43037nanH deficient mutant and T. forsythia ATCC 43037 ΔwecC isogenic mutant. 

Neither the parental strain nor the mutants resulted in an aggregatory response, 

suggesting that under these conditions, T. forsythia ATCC 43037 does not induce 

platelet aggregation. However, the lack of an aggregatory response does not indicate 

that T. forsythia cannot interact with platelets. Previous work has also identified that 

other bacterial species such as Staphylococcus aureus (Loughman et al., 2005) and 

Streptococcus gordonii (Kerrigan et al., 2007) do not interact directly with platelets but 

interact with them indirectly via bridging molecules. This indirect interaction process 

results in an increased lag time of up to 18 minutes to induce platelet aggregation 

(Loughman et al., 2005; Kerrigan et al., 2007) and could explain why no aggregation 

was recorded following stimulation by wild-type T. forsythia within this thesis during 

the 10 minute time period. It is also well established that bacterial species induce an 

'all or nothing' response in relation to platelet aggregation (Kerrigan, 2015) and thus 

further experiments are needed to fully characterise the potential interactions 

between platelets and T. forsythia. 
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In order to expand on initial aggregatory finding, the effects of bacterial viability were 

also explored within this chapter. The initial experiments screened both P. gingivalis 

(NCTC 11834 and ATCC W50) and T. forsythia (ATCC 43037) and found that both P. 

gingivalis ATCC W50 and T. forsythia ATCC 43037 did not induce significant levels of 

platelet aggregation with either the viable or heat-killed treatments. In contrast, P. 

gingivalis NCTC 11834 significantly induced platelet aggregation with both the viable 

and HK treatments (p<0.001), however comparatively the overall level of aggregation 

induced by the heat-killed P. gingivalis NCTC 11834 was significantly less in relation to 

the viable wildtype strain (p<0.05).  

To probe this further, wild type P. gingivalis NCTC 11834 was comparatively screened 

by aggregation against the two OMPA deficient mutants OMPA1 and OMPA2.  As 

previously mentioned, viable wild type NCTC11834 and both OMPA mutants were able 

to induce significant levels of aggregation (p<0.001). However in some cases, heat 

killed bacteria were observed to induce late-onset aggregation which is thought to 

reflect the variability in platelet response but this was not statistically significant. 

These finding were also compared to the rate at which aggregation occurred, with all 

the heat killed treatments (P. gingivalis NCTC 11834, OMPA1 and OMPA2) resulting in 

significantly longer times to reach AG50 when compared to the relevant viable 

treatments (p<0.01, 0.001). Taken together these findings suggest that while viability 

seems essential for a faster onset of platelet aggregation, it may be possible for non-

viable bacterium to interact with platelets but at a slower rate. Similar findings were 

reported by Klarström Engström and colleagues (2015) who demonstrated that P. 

gingivalis NCTC 11834 induces platelet aggregation at an MOI of 1:1, whereas heat 

killing the bacterium completely eradicated any aggregatory response. The authors 

concluded that the heat killed treatment lacked gingipain proteolytic activity and the 



 

125 

ability to induce cytosolic calcium changes thereby preventing platelet activation and 

aggregation (Klarström Engström et al., 2015). However, the observed reduction in 

platelet aggregation could also be explained by the experimental approach used, as 

although heat-killing bacterium is a standard laboratory procedure, the process does 

denature key proteins involved in bacterial virulence, such as gingipains (Belton et al., 

1999; Nakhjiri et al., 2001; Ankersmit, et al., 2007) and therefore it can be argued that 

these findings highlight the combined effect of denaturation and of bacteria cell 

viability.  

4.5 Summary 

In conclusion, this study demonstrates that viable P. gingivalis induces platelet 

aggregation in a strain dependant manner. Additionally, the data presented show that 

bacterial virulence associated with periopathogen/platelet interactions may reduce or 

dampen the aggregatory response. Within this study, neither wild-type T. forsythia nor 

any of the screened T. forsythia mutants were able to induce platelet aggregation. This 

suggests that T. forsythia cannot interact with platelets in the context that was 

observed with P. gingivalis.  
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Chapter 5: Development and characterisation of a 

multicolour flow cytometry panel 
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5.1 Introduction 

Platelets are small, anucleate discoid shaped blood cells, which play a fundamental 

role in both haemostasis and immune response (Sonmez and Sonmez, 2017). 

Normally, platelets circulate around the body in an unstimulated and resting form but, 

upon activation, they express a range of activation-specific markers (Jennings, 2009). 

This method was designed to identify and develop a panel for the simultaneous 

analysis of both platelet-surface and platelet-activation markers after treatment by an 

agonist or other stimulus following previously published guidelines on platelet analysis 

(Schmitz et al., 1998). Despite flow cytometry being routinely applied to the clinical 

analysis of whole blood to monitor platelet function in diseased states and being a 

well-established tool within platelet research (Michelson et al., 2000), very few 

comprehensive methodologies exist for quantitative analysis of platelet function that is 

relevant to their in vivo activity. 

As platelets can be easily activated during sample processing (Wallén et al., 1997) and 

storage (Rinder et al., 1991; Vučetić et al., 2018) in the absence of inhibitors, a 

standardised single-step analysis panel was developed and optimised using freshly 

acquired platelets from healthy donors. This would enable the capture of key platelet 

surface markers, as well as those altered during activation, thereby reducing 

experimental variability and the need for large sample volume. 

This five-colour flow cytometry panel was optimised to allow the differential 

expression of platelet surface receptors to be quantified in both unstimulated and 

stimulated platelet populations, following treatment with adenosine diphosphate 

(ADP) or bacterial stimulation.  
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The panel was specifically designed to include commercially available antibodies in a 

single-step staining process to minimise the risk of spontaneous platelet activation 

during sample handling and preparation. 
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5.2 Aims 

The aim of this chapter was to enable the quantification of a range of platelet surface 

markers following the addition of an agonist or bacterial stimulus. To minimise 

spontaneous activation of platelets and maximise the use of individual samples, a 

single-step protocol was developed to allow simultaneous measurement of key 

platelet markers. This chapter focusses on; 

• The development of a multicolour flow cytometry panel to study marker 

expression in stimulated and unstimulated platelet populations following 

treatment with ADP 

• The adaptation of an optimised multicolour flow cytometry panel to study the 

effect of periodontal pathogen interactions on platelet marker expression 

 

The methodology developed within this chapter has been written up as an original 

paper and submitted to the journal Cytometry Part A. 
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5.3 Method development and gating strategy 

This workflow has been optimised and validated for the analysis of freshly acquired 

platelets isolated from whole blood and from a range of healthy donors to ensure 

reproducibility. 

5.3.1 Panel selection 

To identify the platelet population, CD41 (αIIb, GPIIb) and CD61 (β3, GPIIIa) were 

selected as markers. CD41 is expressed exclusively on select early haematopoietic 

progenitors, megakaryocytes and platelets (Wiles and Keller, 1991; Mitjavila-Garcia et 

al., 2002), whilst CD61 is expressed on platelets, osteoclasts, fibroblasts, macrophages, 

and some tumour cells (Hynes, 1987; Savill et al., 1990; Engleman et al., 1997; Sloan et 

al., 2006). To determine levels of platelet activation following treatment, three 

markers and corresponding antibodies were selected. The antibody, against an 

activated epitope of the heterodimer CD41/CD61 (αIIbβ3, GPIIbIIIa) was included in 

the panel (Gardiner et al., 2007) as well as CD62P (P-selectin, GMP-140), a Type I 

transmembrane glycoprotein expressed on activated platelets (Ault et al., 1989). 

Finally, CD42b (GPIb) was included within the panel because its shedding can be 

related to both platelet activation in treated samples and platelet viability in untreated 

samples (Bergmeier et al., 2003, 2004; Gardiner et al., 2007). The panel also includes 

IgG isotype controls although the specific focus of this work is on the comparison of 

unstimulated and stimulated platelets.  
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5.3.2 Flow cytometer instrument configuration 

The panel was optimised for use on the Gallios flow cytometer (Beckman Coulter; 

Table 5.1). The Gallios flow cytometer was selected due to its three laser, 10 colour 

configuration and its routine application in both research and diagnostics. The Gallios 

flow cytometer has previously been applied to the phenotypic study of various 

haematopoietic cells including dendritic cells (Ferreira et al., 2013), monocytes 

(Morandi, Airoldi and Pistoia, 2014), B cells (Griffin and Rothstein, 2012), and platelets 

(Lacroix et al., 2010; Maugeri et al., 2012; Tynngård et al., 2015). 
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Laser 

(nm) 

Laser Power 

(mW) 

Laser Type Detector Spectral Range 

for Detector 

(nm) 

Dichroic Filter 

(nm) 

Band Pass 

(nm) 

Fluorochrome 

488 22 Solid State 

Diode 

FL-1 505-545 550 525/40 Alexa Fluor 488 

FL-2 560-590 595 575/30 PE 

Fl-5 >755 N/A 755LP PE/Cy7 

638 25 Solid State 

Diode 

FL-6 650-670 710 660/20 APC 

405 40 Solid State 

Diode 

FL-9 425-475 480 450/50 Pacific Blue 

 

Table 5.1 Flow cytometer instrument configuration. This panel was optimised for a Gallios flow cytometer (Beckman Coulter), with a 10 colour, three laser configuration 
(Blue/Red/Violet). APC-allophycocyain, Cy-cyanin, PE- R-phycoerythrin.
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To assess suitability of conjugates in a multi-colour panel (Table 5.2) compensation 

matrix was generated using FlowJo to determine spill-over of signals (Table 5.3). 

FlowJo FACS data analysis software is a leading analysis platform that computes and 

applies compensation corrections and enables visualization of all flow cytometry data 

(Herzenberg et al., 2006).  

Fluorescent intensities from single stain treatments were compared to those obtained 

through full panel analysis to account for potential steric hindrance and overlapping 

epitopes of antibodies. This single-stain approach allows both sample processing and 

analysis within four hours of blood sampling, which is critical for limiting spontaneous 

platelet activation and retaining in vivo platelet characteristics. 

Specificity Fluorochrome Clone Antigen Reference Stock Conc. 

(μg/ml) 

CD61 PE/Cy7 VI-PL2 Zola et al., (2007) 25 

CD41 Pacific Blue HIP8 Riberdy et al., (1994); 

Denzin and Cresswell, 

(1995); Denzin, (1996) 

80 

CD41/61 APC A2A9/6 Bennett et al., (1983); 

Clemetson and Clemetson, 

(1994); Matsumura-Takeda 

et al., (2007) 

150 

CD62P Alexa Fluor 

488 

AK4 Varki, (1994); McEver, 

Moore and Cummings, 

(1995) 

200 

CD42b PE HIP1 Clemetson et al., (1982); 

Fox, Aggerbeck and Berndt, 

(1988); Kuijpers et al., 

(1992) 

50 

Table 5.2 Commercial reagents used. Samples were fixed with 0.5% paraformaldehyde and then 
incubated with listed antibodies for 20 minutes at room temperature in the dark prior to analysis.  
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 Alexa Fluor 488 PE PE/Cy7 APC Pacific Blue 

Alexa Fluor 488 N/A 9.180% 2.430% 0.000% 5.880% 

PE 2.460 % N/A 1.360% 0.000% 0.021% 

PE/Cy7 2.160% 0.463% N/A 0.000% 0.027% 

APC 0.000% 0.000% 0.000% N/A 0.000% 

Pacific Blue 5.400% 0.195% 0.047% 0.000% N/A 

Table 5.3 Representative compensation matrix. Data from one sample with compensation analysis 
completed in FlowJo (Ver 7.6) to assess spill-over. 

 

The use of five fluorochromes allows additional application-specific markers to be 

introduced as needed. The selection of the antibody/fluorochrome combinations, 

based on expression levels of the antigen of interest and brightness of fluorophore; 

with the brighter fluorophores conjugated to lower density antigens, was guided by 

their commercial availability and possible application using a single-step staining 

approach. This also ensures that selected antibodies have a level of quality assurance 

and validation, whilst reducing the number of steps within the protocol. 

Following initial isolation of platelet rich plasma (PRP) from whole blood, platelets 

were treated as described in Chapter 2. Following fixation, a platelet population was 

first defined on the basis of forward size scatter (FSC) and side scatter (SSC) followed 

by gating on two platelet surface proteins CD41 and CD61, which allow for platelet 

subsets to be identified, irrespective of stimulation (Saboor, Moinuddin and Ilyas, 

2012).  
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To determine the activation status of platelets, three platelet activation 

markers/epitopes were selected; CD62P (Ault et al., 1989), CD42b (glycoprotein Ib) 

(Bergmeier et al., 2003, 2004; Gardiner et al., 2007) and an antibody against an 

epitope expressed on activated but not resting platelets CD41/CD61 (Gardiner et al., 

2007). 

The panel was designed with particular attention to antibody-fluorophore 

combinations to ensure that optimal staining was obtained whilst minimising spill-over 

of background fluorescence. The selection of antibodies was validated using non-

permeabilised platelets as benefits of this approach include a simpler and shorter 

procedure with minimal sample handling and processing. The finalised constructed 

panel therefore consists of Pacific Blue-CD41, PE/Cy7-CD61, APC-CD41/61, Alexa Fluor 

488-CD62P, PE-CD42b. 
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5.4 Results 

5.4.1 Antibody optimisation 

In order to optimise antibody concentrations, antibodies were serially titrated on 

platelets isolated from healthy volunteers (n=6) before the scatter profiles were 

analysed to detect antibody saturation (Figure 5.1). Optimum antibody concentrations 

were determined at the plateau of signal intensity and are depicted with red boxes. 
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Figure 5.1 Reagent titrations. Antibodies were serially titrated (1:4) on platelets isolated from healthy volunteers. Individual files were concatenated to allow visualisation of all 
titrations in a single figure. Unstained controls samples are labelled as zero. Selected antibody titers used are highlighted with red boxes. IgG controls were used at the same 
concentration as the corresponding antibody. Antibody concentrations are arranged along the X-axis. 

.
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5.4.2 Gating strategy 

Following antibody optimisation, platelets were treated with ADP (20 μM) before 

analysis was undertaken with the designed gating strategy and comparative 

histograms. A representative plot is shown in Figure 5.2. Platelet populations were 

successfully isolated on CD41, CD61 positivity, with subsequent comparative 

histograms demonstrating an increased expression of both CD41/61 and CD62P, as 

well as a decreased expression of CD42b following stimulation with ADP (20 μM). 
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Figure 5.2 Top Panel: Gating strategy. Following platelet isolation and full blood count to confirm 
platelet purity and sample treatment, initial platelet population was first identified on basis of forward 
size scatter (FSC) and side scatter (SSC) (A). Corresponding isotype controls (B) and platelet markers 
CD41 and CD61 (C) were used to isolate CD41+CD61+ platelet sub-population (>95% as shown).  
Bottom Panel: Comparative histograms. Unstimulated (blue lines) and adenosine diphosphate treated 
platelets (ADP, 20 μM; stimulated, red lines) illustrate changes in activation markers in relation to levels 
of CD41+/61+ (D), CD62P+ (E) and CD42b- (F) populations. Sample processing and analysis were 
completed within four hours of blood collection. 
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5.5 Adaptation of stimulated population 

The optimised multicolour flow cytometry panel was then adapted to allow the 

simultaneous analysis of bacterial association and stimulation of platelets. Platelets 

were stimulated with periodontal pathogens (P. gingivalis or T. forsythia, MOI 1:10) 

before populations of interest were identified using forward scatter (FSC) and side 

scatter (SSC) profiles (Figure 5.3a). Platelet purity was selected on CD41 positivity 

(Figure 5.3b-c). 

 

Figure 5.3 Representative revised gating strategy of platelet isolation. Platelet populations identified 
through forward-side scatter profiling (A) were selectively gated on CD41 positivity using IgG isotype 
controls (B) and antibody treated platelets (C). 
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Association of isolated platelets to bacterial cells was then determined by the relative 

fluorescent intensity of the bacterial specific antibodies, PGWC1 and TFWC. PGWC1 

staining produced a 'smeared' scatter profile, which resulted in a lack of distinct 

populations (Figure 5.4). To overcome this issue, several methodologies were 

considered before quadrant gates were allocated on the third contour of both the 

negative (Figure 5.4a) and positive (Figure 5.4b) controls. This gating strategy allows 

the separation of bacterial associated platelets (Figure 5.4c, Q2), from platelets that 

remain unassociated (Figure 5.4c, Q3), with simultaneous analysis of platelet activation 

markers within both subpopulations (Figure 5.5). No distinct population separation 

could be achieved with platelets treated with Tannerella forsythia and subsequent 

staining with TFWC antibody.  
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Figure 5.4 Isolation of pathogen associated platelets. Example plots of CD41+ platelets (left-hand 
panel), showing the applied gating strategy (right-hand panel) to untreated PRP (A), PRP treated with 20 
μM ADP (B) and P. gingivalis NCTC 11834 treated PRP (C). Due to the 'smeared' profile of bacterial 
antibody staining (PGWC1), upper gated quadrants were placed above the third contour of untreated 
PRP and PRP treated with ADP (20 μM). Using these defined gates, platelets treated with P. gingivalis (C) 
could be separated to define un-associated platelets (C,Q3) and P. gingivalis associated platelets (C,Q2). 
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Figure 5.5 Comparative histograms of platelet activation following exposure to P. gingivalis. 
Comparative histograms of un-associated platelets (blue lines) and P. gingivalis associated platelets (red 
lines) illustrate platelet activation relative to the expression of CD62P (A), CD41/61 (B) and CD42b (C).
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5.6 Discussion 

This chapter of work focuses on the development and adaptation of a single-step 

multicolour flow cytometry panel for the evaluation of platelet activation following 

exposure to periodontal pathogens. The application of flow cytometry combines the 

advantages of both microscopy and biochemical analysis techniques allowing for rapid, 

simultaneous phenotypic analysis of a large volume of cellular events (Muirheadi, 

Horan and Poste, 1985). 

The initial panel development and optimisation demonstrated that platelet sub-

population could be identified following PRP isolation and selective gating on both 

CD41 and CD61 positivity. It was also shown that ADP (20 μM) effectively stimulates 

platelet activation, which could be quantified through an increased expression of both 

CD62P and CD41/61 as well as a decreased expression of CD42b. As previously stated, 

one of the major difficulties surrounding platelet studies is spontaneous activation and 

a reduction in viability during sample processing (Wallén et al., 1997) and storage 

(Rinder et al., 1991). Within this study, utilising multiparameter flow cytometric 

analysis has allowed the detection of surface antigens in a sensitive and specific 

manner whilst in agreement with previously published guidelines limiting sample 

processing to a maximum of four hours(Schmitz et al., 1998). 

However, adaptation of the newly optimised panel to incorporate the application of 

bacterial specific antibodies produced a 'smeared' staining scatter profile, resulting in a 

lack of definition between expected populations. Although spontaneous platelet 

activation was kept to a minimum, some level of activation was expected in all 

experimental conditions and appears to result in positive staining throughout all 

samples incubated with bacterial specific antibodies. 
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In order to separate bacterial associated platelets treated with these antibodies, 

several gating methodologies were investigated in detail following previously 

published guidelines on flow cytometry data presentation (Alvarez et al., 2010). 

Initially it was hypothesised that the bacterial associated populations could be 

separated by comparative histograms but this was challenging due to the 

heterogeneous populations. Analysis by comparative histograms was also discarded 

due to reliance on the user to define which two samples were significantly different 

(Baggerly, 2001) with the resulting subjective selection of gating introducing over 

manipulation of data and inaccurate analysis (Overton, 1988). Similarly, although dot 

plots are widely used to view acquired data, this type of analysis also draws 

considerable limitations. The inherent characteristics of these plots can often mask the 

density and distribution of the data through overlapping dot placements and a lack of 

definition between highly populated and sparsely populated regions (Herzenberg et 

al., 2006). 

In agreement with Herzenburg and colleagues (2006), it was subsequently concluded 

that coloured density plots, (zebra plots, quantile contour plots) offer the most 

accurate representation of the acquired data, with the increased dynamic range and 

frequency definition allowing for accurate gating placement. Gates placed above the 

third contour of control samples resulted in P. gingivalis associated populations being 

successfully isolated and provides a reproducible analysis methodology for the 

quantitation of platelet activation markers. P. gingivalis association was determined to 

induce increased CD62P, CD41/61 and CD42b staining when compared to the 

unassociated populations. The developed methodology however was not effective in 

separating populations of platelets associated with T. forsythia. It was surmised that 
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this was due to a lack of association of the bacterium to platelets that resulted in a lack 

of population definition and was not attributed to limitations within the methodology. 

Polychromatic flow cytometry, as with any analytical technique does carry a number of 

caveats that must be considered. The design and optimisation of multiparameter flow 

cytometry panels is an extremely labour intensive and costly process. It cannot be 

overlooked that without carefully constructed panels, extensive antibody titrations, 

antibody ranking and expression characterisation, as well as dismissal of incorrect 

antibody combinations and the correct compensation measures, this methodology 

would lack both accuracy and reproducibility (Mahnke and Roederer, 2007). As well as 

limitations surrounding instrument and panel set-up, another underlying issue 

surrounding multicolour flow cytometry is the magnitude of data produced during 

sample acquisition and the subsequent data analysis that follows.  

One of the fundamental advantages to polychromatic flow cytometry is the ability to 

define and analyse subsets of cells within a population, however by introducing several 

antibody combinations as well as the possibility of exploring hundreds of different 

phenotypic characteristic, a pragmatic and sensible approach must be undertaken 

towards data analysis (Chattopadhyay and Roederer, 2012), which complies with the 

availability of suitable software (Roederer and Moody, 2008). Within this study, 

although five phenotypic parameters were applied within the panel, analysis was 

confined to the comparison of data within two-dimensional plots, meaning that only 

two phenotypes of interest can be compared at any one time. 

Despite these limitations, the polychromatic, multiparameter flow cytometry panel 

designed within this study provides a robust analysis methodology that provides 

reliable data acquisition and analysis within this system. 
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5.7 Summary 

This study provides a practical tool to evaluate the status of freshly isolated platelets 

following treatment with a stimulus in a single-step staining process. The simple and 

relatively quick protocol described can be used in settings where spontaneous platelet 

activation needs to be minimised, minimal sample volumes are available and where 

platelets cannot be stored on-site for an extended period. 

  



 

148 

Chapter 6:The effect of periodontal pathogens on 

platelet function and protein expression 
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6.1 Introduction 

It has been postulated that oral pathogens can either penetrate the surrounding 

tissues and vascular network of the periodontal pocket or release a barrage of 

biologically active molecules including gingipains and hemagglutinins  (Reyes et al., 

2013) that can then contribute to or exacerbate several systemic conditions including 

rheumatoid arthritis (Wegner et al., 2010), diabetes (Borgnakke et al., 2013) and 

cardiovascular disease (Kerr, 1951, 1962; Kebschull, Demmer and Papapanou, 2010).  

Within the vascular system, the role of platelets within homeostasis is well established 

(Zucker and Nachmias, 1985). Recent studies have highlighted the antimicrobial role of 

platelets within both the adaptive and innate immunity and how these mechanisms 

may contribute to atherosclerosis (Ali, Wuescher and Worth, 2015; Hamzeh-Cognasse 

et al., 2015; Koupenova and Freedman, 2015). Bacterial species are known to interact 

with platelets, including various streptococcal, staphylococcal and helicobacter strains 

(Kerrigan and Cox, 2010) with platelets being capable of Platelets  immobilising and 

internalising pathogens (Yeaman, 1997, 2010a, 2010b) and exhibiting antimicrobial 

activity (Zielinski et al., 2001; Lopes-Pires et al., 2012). Several mechanisms have been 

reported to facilitate bacterial-platelet association including direct interactions via Toll-

like receptors (Assinger et al., 2012), glycoprotein (GP) IIbIIIa, GPIb, the fcγRIIa 

receptor (Cox, Kerrigan and Watson, 2011), or indirect interactions such as  

lipopolysaccharides (LPS) (Shiraki et al., 2004; Scott and Owens, 2008) or various 

plasma protein bridges such as fibrinogen or von Willebrand factor (vWF) (Cox, 

Kerrigan and Watson, 2011). 

Periodontal pathogens in the form of bioflims have been reported to induce platelet 

aggregation (Tu et al., 2016). More specifically, P. gingivalis been shown to induce both 
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platelet aggregation and activation (Curtis et al., 1993b; Afrodite Lourbakos et al., 

2001; Li et al., 2008; Assinger et al., 2012; Klarström Engström et al., 2015) which may 

suggest a possible role of periodontitis in CVD. Although the interaction of P. gingivalis 

and platelets has previously been reported within the literature the underlying 

mechanisms as well as the full extent and consequences of these interactions are yet 

to be elucidated. 

6.2 Aims 

Previous findings (Chapter 4) demonstrated that the periodontal pathogen P. gingivalis 

interacts with platelets in a strain-dependant manner and induces platelet 

aggregation. This chapter focuses on elucidating the mechanisms underlying these 

platelet/pathogen interactions by addressing the following questions: 

• Do periodontal pathogens directly interact with platelets, resulting in the 

formation of aggregates? 

• Does P. gingivalis or T. forsythia interaction result in platelet activation, 

changes in integrin expression and degranulation of mammalian platelets? 

• What are the possible sites of interaction and association between platelets 

and periodontal pathogens? 
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6.3 Results 

6.3.1  Analysis of platelet-P. gingivalis interactions by 

immunofluorescence microscopy.   

Immunofluorescence (IF) microscopy was initially used to determine whether platelets 

are able to directly interact with the periodontal pathogens, P. gingivalis and T. 

forsythia. Platelets were exposed to P. gingivalis (MOI 1:10) and stained for F-actin to 

determine platelet morphology and with the pathogen specific antibody PGWC1 to 

identify P. gingivalis NCTC 11834 (Figure 6.1). The immunostaining demonstrates that 

P. gingivalis associates with, and appears to cause 'clumping' of the platelets when 

compared to control platelets not exposed to the pathogen. Platelets were also probed 

with integrin β1 (Figure 6.2) and β3 (Figure 6.3) specific antibodies, to investigate 

whether treatment with P. gingivalis NCTC 11834 could affect the overall expression of 

these integrins or whether any co-localisation of bacteria and integrins could be 

observed. DAPI staining was utilised for identification of P. gingivalis. Both integrin β1 

and β3 are expressed across all samples but do not seem to be affected by P. gingivalis 

treatment. Integrin staining was diffused throughout the cytoplasmic space, detailing 

that with this methodology no specific localisation or changes in expression could be 

determined.  
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Figure 6.1 P. gingivalis localises and associates with platelets. Isolated platelets were challenged with P. gingivalis NCTC 11834 (MOI: 10) for 20 minutes at RT before fixing. 
Platelets were permeabilised before incubation with pathogen specific antibody, PGWC1 (green) and an F-actin probe (red). Co-localisation and small aggregates of platelets 
with P. gingivalis were observed. Untreated and ADP treated platelets were included as negative and positive control respectively. Data is representative of at least three 
independent observations.  
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Figure 6.2 The effect of P. gingivalis on platelet integrin β1 expression. Isolated PRP was exposed to P. gingivalis NCTC 11834 for 20 minutes at room temperature before 
fixation. Cells were permeabilised, incubated with an integrin β1 specific antibody before analysis by immunofluorescence microscopy. DAPI staining was also included as a 
bacterial stain. Uniform diffused staining was observed throughout all treatments, with co-localisation between P. gingivalis and platelets (indicated by white arrows). 
Untreated and ADP treated platelets are included as negative and positive controls respectively. Data is representative of at least three independent observations.  
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Figure 6.3 The effect of P. gingivalis on platelet integrin β3 expression. Isolated PRP was incubated with P. gingivalis NCTC 11834 for 20 minutes at RT before fixation. Cells 
were then permeabilised, incubated with an integrin β3 specific antibody before analysis by immunofluorescence microscopy. DAPI staining was also included as a bacterial 
stain. Platelets stained positive for integrin β3, with diffused staining throughout all treatments. Co-localisation between P. gingivalis and platelets was also observed with 
platelets treated with NCTC 11834. Untreated and ADP treated platelets are included as negative and positive controls respectively. Data is representative of at least three 
independent observations. 
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Platelets were stained with an F-actin probe in combination with an anti-mToR 

antibody to determine the cytoskeletal rearrangements undertaken during platelet 

aggregate formation (Figure 6.4). DAPI staining was included to identify bacterial cells. 

While both the untreated platelet control and the platelet stimulated control (ADP) 

display a similar phenotype to the other staining figures (Figure 6.1) in relation to F-

actin staining, P. gingivalis NCTC 11834 treated platelets appear to have formed a 

large, fibrous matrix that is positively stained for mToR (Figure 6.4). Additionally, 

distributed throughout this fibrous matrix are platelets that stained positive for F-actin 

and bacteria suggesting that P. gingivalis NCTC 11834 might become trapped within 

these large fibrous aggregates. 
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Figure 6.4 Platelet aggregate phenotyping by immunofluorescence microscopy. PRP was incubated with PG 11834(MOI: 10) for 20 minutes at RT before being fixed onto glass 
slides. The effect of P. gingivalis was determined by staining two cytoskeletal markers F-actin (red) and mToR (green), with DAPI also being included for bacterial visualisation. 
Platelets treated with PG 11834 form large fibrous aggregates that are highly positive for mToR staining that show F-actin positivity and bacterial cells distributed throughout. 
Untreated platelets and platelets treated with ADP (20 μM) were included as negative and positive controls. Data representative of at least three independent observations. 
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6.3.2 Investigation of platelet aggregates by electron microscopy 

The underlying characteristics of the platelet aggregates formed following P. gingivalis 

challenge were investigated by electron microscopy using PRP treated with P. 

gingivalis NCTC 11834 or ATCC W50. Untreated and ADP (20 μM) treated PRP were 

included as negative and positive controls respectively. Scanning electron microscopy 

(SEM) revealed that untreated platelets remained in an inactivated spherical shape, 

whereas when stimulated with ADP as positive control, a combination of small platelet 

aggregates together with individual platelets were observed (Figure 6.5). In contrast, 

platelets exposed to either wildtype strains of P. gingivalis (NCTC 11834 or ATCC W50), 

showed drastic phenotypic changes in comparison to both the positive and negative 

controls (Figure 6.5), with the formation of large, fibrous aggregates in which 

individual platelets can no longer be defined. Bacteria were also identified within the 

samples treated with P. gingivalis ATCC W50 and found embedded within the centre of 

a platelet aggregate and are isolated to a small area of the overall aggregate. It is 

suspected that similar findings could be identified within P. gingivalis NCTC 11834 

treated samples but due to the constraints of SEM and the expanse of the formed 

aggregates, bacteria could not be identified. 
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Figure 6.5 Phenotypic analysis of platelet aggregates by scanning electron microscopy (SEM). Platelets were treated with P. gingivalis (NCTC 11834 or ATCC W50) for 20 
minutes at room temperature before fixation and mounting and analysis by SEM. Platelets treated with P. gingivalis form large fibrous aggregates that encase the bacteria. 
When compared to the negative (untreated PRP) and positive controls (ADP, 20 μM), individual platelets are no longer visible, with the aggregates forming large masses. White 
arrows indicate small aggregates formed with ADP treatment.  
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To further probe these findings, bacterially treated platelets were also analysed by 

transmission electron microscopy (TEM), to identify possible ultrastructural changes 

and determine whether platelets can internalise P. gingivalis. As with SEM, within 

untreated PRP samples, individual platelets are easily identifiable and are 

phenotypically comparable to that of a resting platelet state (Figure 6.6).Samples 

treated with ADP (20 μM) were also easily identifiable and shown to have formed 

small aggregates with an increase in pseudopodial structures (white arrows; Figure 

6.6). Platelets treated with P. gingivalis NCTC 11834 and ATCC W50, showed large 

amounts of cellular debris amongst distinctive bacterial cells (black arrows), with no 

definitive platelets visible (Figure 6.6). Within the cellular debris are small structures, 

that could be the remnants of activated platelets but without distinctive phenotype 

and visible organelles this cannot be confirmed.
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Figure 6.6 Visualisation of platelet aggregates by transmission electron microscopy (TEM). Isolated 
PRP was incubated with P. gingivalis (NCTC 11834 or ATCC W50; MOI 1:10) for 20 minutes at room 
temperature before fixation and processing for imaging by TEM. Within the samples treated with P. 
gingivalis, bacteria surrounded by cellular debris (indicated with black arrows) are clearly visible. 
Platelets treated with ADP as a positive control show small aggregate formations indicated with white 
arrows. Untreated PRP was included as a negative control. Each image is shown at two magnifications 
(left panel 2 µm and right panel 0.5 µm) for increased definition. 
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6.3.3 Analysis of platelet activation and bacterial association by flow 

cytometry 

Following the visualisation of platelet aggregates, flow cytometry was used to 

determine whether bacteria associated with platelets and induce platelet activation 

using the optimised multiparameter, polychromatic flow cytometry panel developed in 

Chapter 5. 

Initial analysis was undertaken to determine wildtype bacterial association to platelets, 

in relation to bacterial specific antibody staining (PGWC1/TFWC; Figure 6.7). Significant 

association of both wildtype P. gingivalis NCTC 11834 and ATCC W50 was detected 

within populations of CD41+ platelet (p<0.001), whereas no association of T. forsythia 

ATCC 43037 could be determined (Figure 6.7). A slight increase in staining was also 

observed within samples treated with ADP (20 μM) but this was not statistically 

significant.  
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Figure 6.7 Detection of wild-type periodontal pathogen-platelet association by flow cytometry. 
Isolated platelets were exposed to periodontal pathogens (MOI 1:10) before fixation, staining and 
analysis by flow cytometry. Isolated CD41+platelet populations significantly associated with both P. 
gingivalis NCTC 11834 and ATCC W50. No bacterial association was observed with platelets treated with 
T. forsythia ATCC 43037. Untreated PRP and PRP treated with ADP (20 μM) were included as a negative 

and positive control respectively. Data is presented as ±SEM, p0.001. n=3.  

 

P. gingivalis-associated platelets were further analysed to determine the relative 

expression of platelet activation markers. Platelets associated with P. gingivalis NCTC 

11834 showed significantly higher expression levels of CD41/61 (p0.05), CD62P 

(p0.05) and CD42b (p0.01) when compared with unassociated platelets within the 

same population (Figure 6.8). Similarly, platelets associated with P. gingivalis ATCC 

W50 were also shown to exhibit significantly higher expression of both CD41/61 

(p0.05) and CD42b (p0.05), whilst also inducing an increase in CD62P expression 

although the latter was not statistically significant (Figure 6.8). 
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Figure 6.8 Expression of platelet activation markers following association with P. gingivalis. Platelet rich plasma was exposed to P. gingivalis NCTC 11834 and ATCC W50 (MOI 
1:10) before fixation and staining for activation specific antigens. Samples were analysed via flow cytometry. Platelets associated with bacteria showed an increased expression 

of CD41/61 (A), CD62P (B) and CD42b (C) when compared to associated platelets within the sample population. Data is expressed at ±SEM, n=3. p= *0.05, **0.01. 

  



 

164 

After identifying a possible role for the P. gingivalis outer-membrane proteins OMPA1 

and OMPA2 within platelet aggregation (Chapter 4), further investigations probed the 

role of these outer membrane proteins within P. gingivalis-platelet association and the 

induction of platelet activation.  

OMPA1 and OMPA2 deficient mutants were shown to significantly associate with 

platelets (p0.001) with no observable differences between the mutants and the 

parent strain NCTC 11834 (Figure 6.9). When compared to the unassociated platelet 

populations, bacterial association was also shown to induce significant increase in 

expression of CD41/61 (p0.05), CD62P (p<0.05) and CD42b (p<0.01) within samples 

treated with the OMP A1 deficient mutant (Figure 6.10). Bacterial association with the 

OMP A2 deficient mutants also induced an increased expression of CD41/61 as well as 

significantly increasing the expression of CD62P (p<0.05) and CD42b (p<0.01) (Figure 

6.10). 
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Figure 6.9 The role of P. gingivalis outer membrane protein A (OMPA) in platelet association. Isolated 
PRP was exposed to P. gingivalis (NCTC 11834, NCTC 11834 ΔompA1 or NCTC 11834 ΔompA2; MOI 1:10) 
and fixed. Bacterial association was determined through staining with a P. gingivalis specific antibody 
(PGWC1) and flow cytometry analysis. Significant levels of bacterial association were observed with wild 
type P. gingivalis and both OMPA subunit deficient mutants, OMPA1 and OMPA2. Untreated PRP and 
PRP treated with ADP (20 μM) was included as a negative and positive control. Data is expressed as 
±SEM, p= ***<0.001. n=3 
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Figure 6.10 P. gingivalis outer membrane protein (OMP) deficient mutants induce platelet activation. Isolated PRP was resuspended in modified Tyrode's buffer before being 
exposed to P. gingivalis (NCTC 11834, NCTC 11834 ΔompA1 or NCTC 11834 ΔompA2; MOI 1:10) and fixed. Platelets were stained with antibodies specific for platelet activation 
associated antigens and analysed on a Gallios flow cytometer. Platelets associated with P. gingivalis 11834 and the OMP A1 mutant induced significant expression of CD41/61 
(A), CD62P (B) and CD42b (C) when compared with unassociated populations. Similarly, platelet populations associated with the OMP A2 deficient mutant showed an increased 
expression of CD41/61 (A), as well as significant increases in the expression of both CD62P (B) and CD42b (C). PRP treated with ADP (20 μM) and untreated PRP were included 
as a positive and negative control respectively. Data is expressed as ±SEM, p= *<0.05 **<0.01. n=3. 
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6.3.4 Induction of calcium mobilisation by periodontal pathogens 

Having demonstrated that periodontal pathogens can associate with, and induce 

platelet activation, the effect on intracellular calcium mobilisation was investigated. 

Isolated platelets were pre-loaded with the intracellular calcium indicator FURA-2/AM 

and real-time calcium mobilisation was monitored following exposure to pathogens at 

an MOI of 1:10 (P. gingivalis NCTC 11834, ATCC W50; T. forsythia ATCC 43037). 

Untreated PRP and platelets treated with ADP (20 μM) were included as a negative 

and positive control respectively. A representative plot of intracellular calcium flux is 

shown in Figure 6.11a. Both P. gingivalis NCTC 11834 and ATCC W50 induced 

significant platelet calcium mobilisation (p<0.001), whereas no response was recorded 

with T. forsythia ATCC 43037 (Figure 6.11b). P. gingivalis ATCC W50 induced a 

significantly higher level of calcium mobilisation when compared to P. gingivalis NCTC 

11834 (p<0.001). 
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Figure 6.11. Platelet calcium mobilisation is induced by wild type periodontal pathogens. Platelets pre-
loaded with FURA-2/AM were exposed to either wild type P. gingivalis (PG NCTC 11834 or PG ATCC 
W50) or wild type T. forsythia (T. forsythia ATCC 43037). Real time intracellular calcium mobilisation was 
monitored after injection of bacteria as a ratio of fluorescent emission excited at both 340 and 380 nm. 
(A) Representative calcium mobilisation plot. (B) Both wild type P. gingivalis strains significantly induce 
calcium mobilisation, with no response being recorded with T. forsythia. P. gingivalis ATCC W50 also 
induced a significantly higher level of calcium flux when compared to NCTC 11834. Untreated platelets 
and platelets treated with ADP (20 μM) were included as a negative and positive control. Data is 
expressed as ±SEM, p <0.001. n=3. 
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Similarly to wild type P. gingivalis strains, the effect of the two outer-membrane 

proteins OMPA1 and OMPA2 on platelet calcium mobilisation was determined. As with 

the parental strain P. gingivalis NCTC 11834, both OMPA1 and OMPA2 deficient 

mutants significantly induced platelet intracellular calcium flux (p<0.001) (Figure 6.12) 

with the OMPA2 deficient mutant inducing a significantly higher levels of calcium 

mobilisation when compared to both the wildtype P. gingivalis NCTC 11834 and the 

OMPA1 mutant (p<0.001), whereas no difference was observed between the wildtype 

and OMPA1. 
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Figure 6.12 Platelet calcium mobilisation is induced by OMPA deficient P. gingivalis mutants. Platelets 
pre-loaded with FURA-2/AM were exposed to wild type P. gingivalis NCTC 11834 or either OMPA 
deficient mutants (PG NCTC 11834 ΔompA1 or PG NCTC 11834 ΔompA2) and intracellular calcium 
mobilisation was monitored as a ratio of fluorescent emission excited at both 340 and 380 nm. (A) An 
example calcium mobilisation plot. (B) Wildtype P. gingivalis and both OMPA mutants significantly 
induce calcium mobilisation. The OMPA2 mutant also induced significantly higher levels of calcium flux 
when compared to both the wildtype and OMPA1 mutant. Untreated platelets and platelets treated 
with ADP (20 μM) were included as a negative and positive control. Data is expressed as ±SEM, p<0.001. 
n=3. 
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6.3.5  Investigations into platelet degranulation by P. gingivalis  

Having demonstrated that P. gingivalis can trigger intracellular calcium mobilisation, 

the effects on alpha and dense granule release were investigated. 

Isolated PRP was exposed to either P. gingivalis NCTC 11834 or ATCC W50 before 

granular secretion of platelet factor 4 (PF4), serotonin and interleukin 1β (IL-1β) was 

determined by enzyme-linked immunosorbent assays (ELISA). Untreated and ADP (20 

μM) treated PRP were included as a negative and positive control respectively. ELISA 

assays revealed that both P. gingivalis NCTC 11834 and ATCC W50 induced significant 

secretion of PF4 (p<0.001) and serotonin (p<0.05), whereas no significant levels of IL-

1β were detected (Figure 6.13a-c). 
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Figure 6.13 Induction of platelet degranulation by wild type P. gingivalis. PRP, resuspended in modified Tyrode's buffer were exposed to P. gingivalis NCTC 11834 or P. 
gingivalis ATCC W50 after which the supernatants were removed and analysed by ELISAs specific for platelet factor 4 (PF4), serotonin and interleukin 1β (IL-1β). Both P. 
gingivalis NCTC 11834 and ATCC W50 significantly induced PF4 (A) and serotonin (B) release from platelets whilst no changes in IL-1β release were observed (C). Untreated 
platelets and platelets treated with ADP (20 μM) were included as a negative and positive control respectively. Data is presented as ±SEM. p= *<0.05, **<0.01, ***<0.001. n=3. 
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6.3.6 Does the secretome of P. gingivalis induce platelet aggregation? 

To determine whether proteins secreted by P. gingivalis were sufficient to induce 

platelet aggregation, the bacterial culture supernatants of P. gingivalis NCTC 11834 

and ATCC W50 was utilised as stimulants in aggregatory assays. An example 

aggregation plot is shown in Figure 6.14a. Both bacterial supernatants from P. 

gingivalis NCTC 11834 and ATCC W50 failed to induce an aggregatory response (Figure 

6.14b). As expected, wildtype whole cell P. gingivalis NCTC 11834 is able to stimulate 

platelet aggregation whereas P. gingivalis NCTC 11834 does not. Untreated PRP, PRP 

treated ADP (20 μM) and PRP treated with bacterial growth media were also included 

as both positive and negative experimental controls. 
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Figure 6.14 Platelet aggregatory response following exposure to P. gingivalis culture supernatant. 
Wildtype P. gingivalis NCTC 11834 and ATCC W50 were grown as liquid cultures in BHI media until an 
optical density of 0.8 at 600 nm before centrifugation at 13000 g. The supernatants were removed and 
used as stimulants in platelet aggregation assays. Sterile BHI media and the relevant WT strains were 
also included as experimental controls. (A) An example aggregation plot. (B) No aggregatory response 
was observed with supernatants from either P. gingivalis NCTC 11834 or ATCC W50. Untreated PRP and 
PRP treated with ADP (20 μM) was included as a negative and positive control. Data is expressed as 
±SEM, n=3. 
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It was also hypothesised that lipopolysaccharide (LPS) from P. gingivalis could interact 

with and induce platelet aggregation at higher concentrations. This was determined 

using commercially available LPS derived from P. gingivalis NCTC 11834 at varying 

concentrations. An example aggregation figure is shown in Figure 6.15a. However as 

with bacterial supernatants, no aggregatory response was observed with LPS at 

concentrations of 10, 20 or 40 μg/ml (Figure 6.15b).  
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Figure 6.15 P. gingivalis LPS as a platelet agonist. Isolated PRP was utilised in aggregation experiments 
where commercial LPS derived from P. gingivalis NCTC 11834 was used as a platelet stimulant. (A) An 
example aggregation plot. (B) No Platelet aggregation was recorded following stimulation with P. 
gingivalis NCTC 11834 LPS at all tested concentrations (10-40 μg). Untreated PRP and PRP treated with 
ADP (20 μg) was included a negative and positive control respectively. Data is expressed as ±SEM, n=3. 
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6.3.7  Investigation of platelet receptor inhibitors on P. gingivalis 

induced platelet aggregation 

6.3.7.1 The effect of Toll-like receptor inhibitors on P. gingivalis induced 

platelet aggregation 

Having demonstrated that P. gingivalis directly associates with platelets, possible 

mammalian site of interactions were investigated. 

The role and contribution of Toll-like receptor 2 (TLR2), Toll-like receptor 4 (TLR4) in 

platelet aggregation were determined. Isolated platelets were pre-incubated with 

either a TLR2 or TLR4 inhibitor or a combination of both before being bacterially 

challenged with P. gingivalis NCTC 11834 and aggregation was measured (Figure 6.16a-

c). A representative plot including the untreated and ADP treated platelets is shown in 

Figure 6.16a-b. No significant changes were observed in total percentage aggregation 

following pre-incubation with either TLR inhibitors or in combination when compared 

to PRP exposed to wildtype P. gingivalis NCTC 11834 (Figure 6.17a). In contrast 

however, all three of the TLR inhibitory treatments did cause a significantly quicker 

onset of aggregation (AG0) when compared to the wildtype control (p<0.05 or <0.001; 

Figure 6.17b)  
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Figure 6.16 The effect of Toll-like receptor inhibitors on P. gingivalis induced platelet aggregation. 
Isolated PRP was pre-incubated with either TLR2, TLR4 or both inhibitors for 15 minutes at room 
temperature before aggregation assays in the presence or absence of P. gingivalis NCTC 11834 were 
undertaken. (A) An example aggregation plot of the effects of TLR2 and TLR4 inhibitors on untreated 
PRP aggregation. (B) An example aggregation plot of the effects of TLR2 and TLR4 inhibitors on platelets 
stimulated with ADP (20 μM). (C) TLR2 and TLR4 inhibitors cause a faster onset of aggregation when 
compared to untreated PRP stimulated with P. gingivalis NCTC 11834. Unstimulated PRP and PRP 
stimulated with ADP (20 μM) was included as a negative and positive control. n=3. 
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Figure 6.17 The effects of Toll-like receptor inhibitors on P. gingivalis-platelet interactions. Isolated 
PRP was pre-incubated with TLR2 inhibitor, TLR4 inhibitor or both for 15 minutes at room temperature 
before aggregation experiments were undertaken. (A) No changes in total percentage aggregation were 
observed with TLR2, TLR4 or the combination of both TLR2+4 inhibitors. (B) Incubation with TLR2 and 4 
inhibitors resulted in a significantly quicker onset of platelet aggregation (AG0) when compared with 
PRP stimulated with wild type P. gingivalis NCTC 11834 only. PRP treated with ADP (20 μM) and 
untreated PRP were included as a positive and negative control respectively. Data is expressed as ±SEM, 
p= *<0.05, ***<0.001. n=4. 
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6.3.7.2 The effects of integrin α2β1 and β3 inhibitors on P. gingivalis-induced 

platelet aggregation 

The role of the integrins β3 and α2β1 in P. gingivalis-induced platelet aggregation was 

determined using integrin-specific inhibitors. Following pre-incubation of isolated 

platelets with β3 and α2β1 inhibitors, aggregation assays were conducted. To ascertain 

whether these integrin inhibitors affected normal platelet function, effect on 

untreated PRP and PRP treated with ADP (20 μM) were measured. Incubation with 

either inhibitor did not result in any changes in aggregatory response within 

unstimulated PRP or PRP stimulated with ADP (20 μM). Representative aggregation 

plots for both integrin β3 inhibitor (Figure 6.18) and α2β1 (Figure 6.19) are shown 

below. 

  



 

181 

 

Figure 6.18 Representative aggregation plots following incubation with integrin β3 inhibitor. Isolated 
PRP was incubated with the β3 inhibitor for 15 minutes at room temperature before routine aggregation 
experiments were undertaken. The effects of the inhibitor were determined on untreated PRP as 
negative control (A) and PRP treated with ADP (20 μM) as a positive control (B). No changes in 
aggregatory response were recorded in any of the experimental conditions. Representative aggregation 
plots from three independent observations. 
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Figure 6.19 Representative aggregation plots following incubation with integrin α2β1 inhibitor. Isolated 
PRP was incubated with the α2β1 inhibitor for 15 minutes at room temperature before routine 
aggregation experiments were undertaken. The effects of the inhibitor were determined against 
untreated PRP as negative control (A) and PRP treated with ADP (20 μM) as a positive control (B). No 
changes in aggregatory response were recorded in any of the experimental conditions. Representative 
aggregation plots from three independent observations. 
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Following incubation with the β3 integrin inhibitor, no changes were observed in either 

the total percentage aggregation or the onset of aggregation (AG0) when platelets 

were exposed to P. gingivalis NCTC 11834 at an MOI of 1:10 (Figure 6.20). In contrast, 

following incubation with the α2β1 inhibitor at a concentration of 20 μM resulted in a 

significant and complete inhibition of platelet aggregation following addition of P. 

gingivalis NCTC 11834 (p<0.001; Figure 6.21a-b). At a lower concentration of 10 μM, 

no significant changes in total percentage aggregation were observed. The α2β1 

inhibitor did not induce any alterations in the aggregatory response in either the 

negative (untreated PRP) or the positive (ADP treated) control at both 10 and 20 μM. 

The α2β1 inhibitor also resulted in a significant increase in the onset of aggregation 

(AG0) at both 10 and 20 μM (p<0.001), with a significant increase in lag time also being 

observed between platelets exposed 20 μM compared with the lower concentration of 

10 μM (p<0.001; Figure 6.21c) 
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Figure 6.20 Effects of integrin β3 inhibitor on P. gingivalis NCTC 11834 induced platelet aggregation. 
Isolated PRP was incubated with the β3 inhibitor for 15 minutes at room temperature before routine 
aggregation experiments were undertaken. Representative aggregation plot (A). No significant 
differences were observed with either total percentage aggregation (B) or the onset time of aggregation 
(C) following exposer to P. gingivalis NCTC 11834. Untreated PRP and PRP treated with ADP (20 μM) 
were included as a negative and positive control. Data is expressed as ±SEM, n=3. 
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Figure 6.21 Effects of integrin α2β1 inhibitor on P. gingivalis NCTC 11834 induced platelet aggregation. 
Isolated PRP was pre-incubated with the α2β1 inhibitor for 15 minutes at room temperature before 
routine aggregation experiments were undertaken. (A) Representative aggregation plot. (B) Incubation 
with the α2β1 inhibitor at 20 μM completely inhibited platelet aggregation following stimulation by P. 
gingivalis NCTC 11834, with no significant differences observed with the lower concentration (10 μM). 
(C) The integrin α2β1 inhibitor significantly increases the lag-time of platelet aggregation following 
stimulation with P. gingivalis NCTC 11834 at both 10 and 20 μM. When incubated with 20 μM of 
inhibitor P. gingivalis NCTC 11834 stimulated aggregation is abolished. Untreated PRP, PRP treated with 
ADP (20 μM) and PRP treated with P. gingivalis NCTC 11834 only were included as comparative 
experimental controls. Data is expressed as ±SEM, p= ***<0.001. n=3.  
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6.3.8  Development of a recombinant protein-based ELISA for the 

detection of P. gingivalis-platelet integrin interactions 

Having demonstrated that integrin α2β1 inhibition prevented P. gingivalis from 

stimulating platelet aggregation, a recombinant protein-based ELISA was developed to 

investigate whether P. gingivalis NCTC 11834 or ATCC W50 could directly bind to either 

integrin α2β1 or αIIbβ3 using immobilised recombinant integrins. 

Successful immobilisation of recombinant integrins was confirmed with β1 and β3 

specific monoclonal antibodies which showed integrin specific binding (Figure 6.22a-b). 

P. gingivalis NCTC 11834 showed significant levels of binding to the recombinant 

integrin α2β1 (p<0.0001), whereas no significant binding was observed with either P. 

gingivalis NCTC 11834 treated or untreated controls (Figure 6.22c). In contrast no 

significant binding was observed with integrin αIIbβ3 (Figure 6.22d). 
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Figure 6.22 Detection of P-gingivalis-integrin binding by recombinant protein-based ELISA. 96-well 
plates were coated with either recombinant αIIbβ3 or α2β1 overnight at 4 °C. Plates were then either 
incubated with integrin specific antibodies (A-B) to determine successful protein coating or were 
challenged with P. gingivalis (NCTC 11834 or ATCC W50) and then incubated with PG specific antibodies 
to determine bacterial binding (C-D). Plates were successfully coated with α2β1 (A) and αIIbβ3 (B). P. 
gingivalis NCTC 11834 significantly binds to integrin α2β1, with no significant changes observed with 
either PG ATCC W50 treatment or untreated controls (C). No binding was observed in any of the 
experimental treatments with integrin αIIbβ3 (D).Data is presented as ±SEM, p=***<0.001. n=3. 
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6.4 Discussion 

Periodontitis and its associated bacterial pathogens have been historically linked to 

several systemic diseases (Kerr, 1951, 1962). In this study, the interactions of 

periodontal pathogens and platelets were further characterised. A growing body of 

research has also documented the importance of platelets within the innate and 

adaptive immunity in the defence against bacterial infections (Kerrigan, 2015).  

P. gingivalis induced platelet aggregates were analysed using both SEM and TEM. P. 

gingivalis (NCTC 1834 or ATCC W50) treated platelets resulted in aggregate formation 

as observed by SEM, whereby bacteria were found encapsulated within the aggregates 

and the platelets were phenotypically dissimilar to untreated or ADP stimulated 

controls. TEM analysis also revealed that incubation with P. gingivalis resulted in the 

complete loss of any defined platelet phenotypic structures. These observations are in 

agreement with those of Li and colleagues (2008) who demonstrated that NCTC 11834 

induced the formation of small bacteria-associated aggregates (Li et al., 2008). 

However as the later study used a lower MOI of .3 and was conducted under stirring 

conditions, it could explain why smaller aggregates were observed. Further 

confirmation of the pathogen encapsulated within the aggregates was obtained in TEM 

imaging. These findings are in agreement with those observed with both Escherichia 

coli and Staphylococcus aureus that show the formation of bacterial-platelet clusters 

(Kraemer et al., 2011; Vieira-de-Abreu et al., 2012).  

Studies involving patients suffering from chronic periodontitis have shown the 

presence of an associated condition of heightened circulatory platelet activation and 

suggested that this is a direct consequence of the pathogenic bacteria present within 

the disease (Papapanagiotou et al., 2009). Additionally, an increase in expression level 

of the platelet activation marker CD62P by P. gingivalis has been demonstrated in both 
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a murine model, (Yu et al., 2011) and in vitro with isolated mammalian platelets 

exposed to the pathogen (Klarström Engström et al., 2015). In this study, levels of a 

panel of platelet specific proteins were quantified. Using an optimised in-house flow 

cytometry, a significant increase in expression of both CD62P (p<0.001) and PAC-1 

(CD41/61, GPIIbIIIa, αIIbβ3; p<0.05) was observed in platelet population which was 

positive for P. gingivalis (NCTC 11834 or W50; p<0.001). CD62P is a type1 

transmembrane glycoprotein, normally contained within the -granule but which 

becomes expressed on activated platelets (Ault et al., 1989). CD41/61, also known as 

the glycoprotein heterodimer complex GPIIbIIIa and as integrin IIbβ3 is normally 

expressed on platelets as a heterodimer in a resting form (Bennett, 2005). However, 

during platelet activation, CD41/61 undergoes a change in conformation and expresses 

activation-induced epitopes to which the CD41/61 antibody also known as PCA-1 can 

bind to (Shattil et al., 1985). The increase in PAC-1 suggest that the integrin CD41/61 

has move from its resting state to an activated state (Shattil et al., 1985) and confirms 

the activation status of platelets. 

 

Surprisingly, an increase in CD42b expression (p<0.01) was observed following 

bacterial exposure. This is in contrast with previous studies which have documented a 

decrease in CD42b expression following platelet activation due to ectodomain 

shedding (Tao et al., 2016) but supports the increase in CD42b expression induced on 

platelets by the Dengue virus (Núñez-Avellaneda et al., 2018). CD42b also known as 

glycoprotein Ibα (GPIbα) exists within a non-covalent complex of GPIb-IX-V on the 

platelet surface membrane (Modderman et al., 1992) and plays a role on platelet 

adhesion to subendothelial matrix, endothelial cells and leukocytes (Berndt et al., 

2001). It has also been suggested that in addition to its role in haemostasis, GP1bα 
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plays a fundamental role within platelet immune response and vascular inflammation 

(Pitchford, Pan and Welch, 2017) with the common structural motifs of leucine rich 

repeat regions within each subunit of the GPIb-IX-V complex mirroring those present in 

all 13 members of the TLR family and suggesting a common ancestry between platelet 

and leukocytes as well as an involvement with bacterial interaction (Corken et al., 

2014). Bacterial species including Streptococcus gordonii (Bensing, López and Sullam, 

2004) and Streptococcus sanguis (Plummer et al., 2005) have been shown to exploit 

the GP1bα ligand in order to bind to platelets and subsequently induce an aggregatory 

response. The consistent increase in GPIbα expression was observed following P. 

gingivalis exposure can also be partly attributed to the presentation of the receptor 

through alpha granule release however this would account for only ~10% of GPIbα 

expression (Berger, Massé and Cramer, 1996; Maynard et al., 2007).  

The increase in expression of both CD62P and CD41/61 and the observed platelet 

aggregation suggests platelet granule secretion, cytoskeletal rearrangements and 

further signal transduction (van Velzen et al., 2012). To probe alterations occurring 

within platelets granular secretion and alteration in calcium mobilisation were 

investigated. A significant increase in intracellular calcium mobilisation (p<0.001), 

serotonin release (p<0.05) as well as PF4 secretion (p<0.001) was observed following P. 

gingivalis stimulation. Intracellular calcium mobilisation is an essential cofactor that 

drives platelet signalling at a molecular level, resulting in platelet activation, secretion 

and aggregation (Gerrard, White and Peterson, 1978; Heemskerk et al., 1992, 2001). 

Our findings agree with earlier studies which demonstrated that P. gingivalis are able 

to induce calcium flux in vitro within both epithelial cells and washed platelet 

preparations (Lourbakos et al., 2001; Klarström Engström et al., 2015). The detection 

of both serotonin and platelet factor 4 release further confirms that P. gingivalis 
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stimulates the full signalling cascade of platelet aggregation, with granule release also 

being directly implicated within the role of platelets within the innate and adaptive 

immunity (Ali, Wuescher and Worth, 2015). Induction of platelet granular release have 

reported with several bacterial species with Streptococcus sanguinis, Staphylococcus 

aureus, Streptococcus oralis and Streptococcus pneumoniae stimulating both alpha and 

dense granule release as an adaptive immune response to bacterial 

stimulation(Erickson and Herzberg, 1993; Arman et al., 2014). Interestingly, despite 

previous reports stating that platelets release IL-1β following stimulation with ADP 

(Sedlmayr et al., 1995; Cha et al., 2000; Brown et al., 2013), both viable P. gingivalis 

and purified LPS failed to show secretion of IL-1β. The release of IL-1β by platelets is 

currently disputed as other studies (Pillitteri et al., 2007) have suggested that the 

detectable levels of IL-1β, is a direct consequence of leukocyte contaminants within 

the platelet isolation process (Pillitteri et al., 2007). Interestingly, P. gingivalis has also 

been shown to degrade several inflammatory chemokines and cytokines in vitro, for 

example; TNF, IL-6, CCL2, CCL5 (RANTES), CXCL1, CXCL8 (IL-8), CXCL10 and IL-2 

excreted by fibroblasts (Palm, Khalaf and Bengtsson, 2013), IL-2 produced by jukrat T-

cells (Khalaf and Bengtsson, 2012) and isolated mammalian IL-1β, IL-6 and IL-1 

receptor antagonist (Fletcher et al., 1998). Thus, further work is required to determine 

whether IL-1β is being degraded by the well documented protease activity of P. 

gingivalis (Tokuda et al., 1998; Holt, 1999; Lourbakos et al., 2001). 

Studies investigating the interactions of P. gingivalis with oral epithelial cells identified 

the subunits of two major outer membrane proteins OMPA1 and OMPA2 of P. 

gingivalis NCTC 11834 as being essential for biofilm formation and a contributory 

factor to bacterial virulence (Suwannakul et al., 2010; Aruni et al., 2011; Naylor et al., 

2016) whilst the sialidase enzyme 0352 as being crucial within P. gingivalis virulence 
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through bacterial adherence and biofilm formation (Li et al., 2017; Yang et al., 2018). 

The role and importance of these proteins in platelet aggregation was determined and 

aggregation studies revealed that that not only do both OMPA deficient mutants 

induce a faster aggregatory response but they also induce significantly higher levels of 

platelet activation and intracellular calcium mobilisation when compared to the 

parental strain. A similar response was observed with the ΔSia0352 mutants 

suggesting that disrupting bacterial/cellular interactions, results in a heightened 

platelet response. As previously discussed (Chapter 4) it is hypothesised that these 

disruptions within key outer-membrane proteins such as OMPA and the sialidase 

enzyme possibly reduce the evasive characteristics of P. gingivalis resulting in a faster 

and more heightened combative platelet activation. 

Bacteria are known to bind to oral epithelial cells and platelets via glycoprotein 

receptors such as integrins. Interactions between bacterial species such as Escherichia 

coli (Vieira-de-Abreu et al., 2012) and Staphylococcus aureus (Kraemer et al., 2011) 

with platelets have been previously visualised by both fluorescence and electron 

microscopy. Using fluorescence microscopy, uniform expression of integrins β1 and β3, 

as well an F-actin probe was observed in the untreated samples showing a phenotypic 

discoid platelet shape. Additionally, an increase in clumping of platelets were seen 

when platelets were treated with P. gingivalis. Disruption in the expression of integrin 

β1 (Yilmaz, Watanabe and Lamont, 2002; Li et al., 2013), integrin β3 (Li et al., 2013; 

Boisvert, Lorand and Duncan, 2014) and in actin (Kinane et al., 2012) following P. 

gingivalis treatment have been documented within epithelial cells. However, reduction 

in expression of the integrins was not observed with platelets and this could reflect the 

fact that platelets aggregate within minutes and protein degradation is not possible in 
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such a small time frame, protein degradation in epithelial cells, usually occurring after 

two to four hours following bacterial challenge. 

The observed formation of platelet aggregates suggests that platelets must undergo 

cytoskeletal re-arrangements (Bearer, Prakash and Li, 2002). This was investigated by 

staining for the mammalian target of rapamycin (mTOR), a serine kinase that 

integrates with several key process including cell proliferation, protein synthesis and 

autophagy (Hay and Sonenberg, 2004) has been identified within previous research by 

Stafford and colleagues (2013) as a target for P. gingivalis host cell manipulation. 

Within platelets, mTOR has many reported functions including the regulation of mRNA 

translation and protein synthesis (Weyrich et al., 1998). In this study, following 

exposure to P. gingivalis NCTC 11834, platelets were observed to form large 

aggregates consisting of interconnected, fibrous-like structures which stained 

positively for mTOR, within which were embedded a combination of pathogen and 

discoid platelet structures that are positively stained for F-actin. This is in contrast with 

reports of P. gingivalis degrading mTOR following cellular invasion of oral epithelial 

cells (Stafford et al., 2013) and is likely to reflect the time taken for P. gingivalis to 

invade oral epithelial cells and degrade mTOR via its secreted gingipains (Stafford et 

al., 2013) whilst the response of platelets to P. gingivalis happens at much faster rate 

within minutes such that protein degradation might not be feasible. The presence of 

mTOR within the aggregates might also contribute to aggregate formation as studies 

by Aslan and colleagues (2012) have implicated mTOR in lamellipodia formation and 

thrombus stability (Aslan and McCarty, 2012). Further to this mToR is also known to be 

downstream of integrin/glycoprotein signalling (Watson et al., 2005; Z. Li et al., 2010), 

which as previously mentioned is a target for P. gingivalis cellular interactions  
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Proteases secreted by P. gingivalis known as gingipains (Curtis et al., 1993b; A 

Lourbakos et al., 2001; Naito et al., 2006) and lipopolysaccharide (Zhang et al., 2009) 

have been shown to induce platelet aggregation within washed platelet preparations. 

In this study, the effects of both gingipains and LPS on isolated but not washed 

platelets were investigated and it was observed that neither P. gingivalis culture 

supernatants containing gingipains nor isolated LPS initiated a platelet aggregatory 

response under the conditions used. This could reflect the different experimental 

conditions used i.e. isolated platelets contained within plasma as opposed to washed 

platelets. Despite both PRP and washed platelets being readily utilised within platelet 

research there are stark differences attached to each platelet preparation. Washed 

platelets are more resilient against spontaneous activation and allow analysis to be 

undertaken completely removed from any anticoagulant used within sample 

acquisition (Cazenave et al., 2004). However one of the major caveats to washed 

platelet suspensions is the removal of key plasma proteins and the formation of highly 

selective platelet subpopulations through the centrifugation stages and the use of a 

physiological buffer (Cazenave et al., 2004). The presence of plasma proteins has also 

been shown to have a direct impact on platelet function within immunity, with 

research by Damien and colleagues (2015) demonstrating that soluble CD14 present in 

plasma facilitates platelet TLR4 stimulation by bacterial LPS. 

Previous work has also demonstrated that bacterial species including group B 

Streptococcus (Ma et al., 2009) and Streptococcus pneumoniae (Keane et al., 2010) can 

induce platelet activation through interactions with toll-like receptor 2 (TLR2), whereas 

bacterial LPS derived from Escherichia coli stimulates platelet activation through 

interaction with toll-like receptor 4 (TLR4) (Andonegui et al., 2005; Ma et al., 2009). P. 

gingivalis has also been shown to activate endothelial and dendritic cells through TLR4, 
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while epithelial cells were activated through TLR2 (Darveau et al., 2004; Kocgozlu et 

al., 2009). It was therefore hypothesised as platelets express TLR receptors, inhibiting 

platelet TLR2 and TLR4 independently as well as in a combined treatment should 

impede platelet-P. gingivalis interaction and consequently reduced or fully inhibit the 

observed aggregatory responses if P. gingivalis interacted with platelets through TLRs. 

Surprisingly, addition of TLR antagonists resulted in no alteration in the total 

percentage aggregation induced by the pathogen but caused a significantly quicker 

onset of aggregation when compared to the untreated P. gingivalis control (p= NCTC 

11834 <0.05, ATCC W50 <0.001). Although strain variation has previously been 

reported to impact platelet aggregation lag time (Moriarty et al., 2016), the observed 

findings cannot be fully explained. One possible explanation could be that antagonising 

the TLR 2 and 4 receptors results in an upregulation or increased trafficking of further 

TLR receptors which has been previously reported in dendritic cells following LPS 

stimulation (Chamorro et al., 2009), however further work would be needed to further 

explore this premise  

Having demonstrated that P. gingivalis associated with and activated platelets inducing 

aggregation, which was not abrogated by TLR inhibitors, the interactions of P. 

gingivalis with platelet surface integrins were investigated. Studies using selective 

platelet inhibitors have led to the identification of potential binding sites for platelet-

bacterial interaction: the selective inhibition of GPIIbIIIa (integrin αIIbβ3) with 

Abciximab completely abolished Streptococcus gordonii binding to platelets (Petersen 

et al., 2010) and both Streptococcus sanguis (Kerrigan et al., 2002) and Helicobacter 

pylori (Byrne et al., 2003) interact with platelets through GPIbα. Using aggregation 

assays, the effect of selected integrin inhibitors on P. gingivalis induced aggregation 

was therefore determined. The addition of the selective β3 inhibitor did not affect the 
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total percentage aggregation or the initiation of aggregatory response, suggesting that 

P. gingivalis induced aggregation is not dependent on integrin β3 interaction.  

In contrast, the selective integrin α2β1 inhibitor, resulted in complete abolishment of 

any aggregatory response at 20 μM (p<0.001) and a significant increase in lag time 

when compared to the untreated P. gingivalis control at 10 μM (p<0.001). Previous 

research has shown that P. gingivalis can physically associate with α5β1 integrin 

expressed by endothelial cells via major fimbriae (FimA) proteins (Nakagawa et al., 

2002; Yilmaz et al., 2003; Kato et al., 2007; Al-Taweel, Douglas and Whawell, 2016) and 

could propose a common pathway by which P. gingivalis invades nucleated host cells 

(Olsen and Progulske-Fox, 2015) and interacts with platelets inducing platelet 

aggregation. This hypothesis is further supported by the ELISA based assays which 

revealed that findings that P. gingivalis NCTC 11834 but not ATCC W50 bound to 

recombinant integrin β1 (p<0.001) whilst both P. gingivalis strains did not bind to 

recombinant integrin β3. Within epithelial cells it is suggested that integrin β1 provides 

a functional receptor for fimbriae mediated adherence and invasion for P. gingivalis 

NCTC 11834 (Amano, 2003). 

Interestingly, P. gingivalis strains are known to express different types of the major 

fimbriae gene fimA, with NCTC 11834 expressing type I and ATCC W50 expressing type 

IV (Amano et al., 1999). When compared phenotypically, this varying fimA expression 

results in P. gingivalis ATCC W50 displaying much shorter, sparsely populated fimbriae 

as opposed to the much longer and widely presented fimbriae of P. gingivalis NCTC 

11834 (Sojar, Hamada and Genco, 1997). These inter-strain variances could therefore 

offer a possible explanation to the differential integrin β1 binding observed and 

account for the abrogation of the strain specific aggregation induced by P. gingivalis 

NCTC 11834 by integrin β1 inhibitors. Taken together, the data suggest that in the case 
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of by P. gingivalis ATCC W50 both platelet activation and calcium mobilisation occurs 

independently of integrin β1 and additional adhesins or receptors are likely to 

contribute to P. gingivalis ATCC W50-platelet interactions. 

Similar studies were conducted with T. forsythia, a well-documented periodonto-

pathogen shown to be epidemiologically relevant to the progression of periodontitis 

(Darveau, 2010) and capable of  invade epithelial cells (Sabet et al., 2003; Inagaki et al., 

2006; Kirschbaum et al., 2010a). Periodontitis patients who are positive for both P. 

gingivalis and T. forsythia also have a heightened level of platelet activity (Nicu et al., 

2009). However, T. forsythia does not associate with isolated platelets or initiate 

platelet activation via intracellular calcium mobilisation. Collectively, these findings 

suggest that T. forsythia does not interact with isolated mammalian platelets under 

the given conditions.  

Other bacterial species including Streptococcus sanguinis and Staphylococcus aureus 

have shown that bacterial interactions with platelets can occur directly as well as 

indirectly through the dependent synthesis of plasma bridging proteins (Fitzgerald, 

Foster and Cox, 2006). This could highlight further mechanisms in which T. forsythia 

could interact with platelets but further work would be needed to fully test this 

hypothesis. 
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6.5 Summary 

To conclude this chapter of work, this data demonstrate that P. gingivalis is able to 

directly associate with mammalian platelets, forming large fibrous aggregates, that 

stain highly for mToR and encapsulate bacterial cells. The expression of mToR may also 

be implemented in platelet cytoskeletal rearrangement and thrombus construction 

following P. gingivalis stimulation.  

P. gingivalis is able to initiate platelet activation though intracellular calcium 

mobilisation that leads to the release of both alpha and dense granules, independent 

of bacterial outer membrane protein OMPA. P. gingivalis NCTC 11834 but not ATCC 

W50 actively associates and interacts with integrin α2β1 inducing strain dependant 

platelet aggregation and could suggest a role for bacterial fimbriae within platelet 

interactions. 

Further work is required to determine the extent to which platelet-P. gingivalis 

interactions are dependent on inter-strain variations and could also provide novel 

pathways to fully characterise how these interactions take place and to identify 

pathways that could be developed as therapeutic targets. 
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Chapter 7: General discussion and future directions   
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7.1 Introduction 

The overall aim of this study was to increase current understanding of the mechanism 

by which periodontal pathogens interact with platelets. The main objectives were to 

(a) develop an in vitro platelet-like cell model and (b) to optimise and multicolour flow 

cytometry panel (c) to enable the interactions of two of the red complex oral 

pathogens P. gingivalis and T. forsythia with platelets to be further characterised. It is 

anticipated that these findings will contribute to current knowledge of how 

periopathogens-platelet interactions might contribute to cardio vascular disease, 

specifically atherosclerotic vascular disease. The findings of this study have been 

discussed in detail within each relevant chapter. Here a summary of the major findings 

are presented alongside implications and possible future directions for this work 

7.2 The use of CHRF-288-11 cells as an in vitro platelet model 

The CHRF-288-11 cell line originally characterised by Fugman and colleagues (1990) 

has been proposed as a lucrative model to study megakaryocyte/platelet behaviour 

(Lev-Lehman et al., 1997). In this study, it was observed that through differentiation, 

CHRF-288-11 cells adopt a platelet like phenotype that be utilised to study periodonto-

platelet pathogen interactions in vitro. PMA (50 ng/ml) over five days resulted in 

successful CHRF-288-11 differentiation as characterised by the formation of large 

multi-lobed nuclei and pseudopodia pro-platelet protrusions. Differentiated CHRF-288-

11 cells were shown to express the platelet specific glycoprotein CD41, the complex 

CD41/61, the platelet activation market CD62P (P-selectin) but not CD42b as 

quantified by flow cytometry.  

CHRF-288-11 cells were shown to associate with and were invaded by P. gingivalis 

strains NCTC 11834, ATCC W50 and T. forsythia ATCC 43037. Association of P. 
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gingivalis resulted in an increase in binding of integrin β1 and β3 specific antibodies 

which suggest either a change in integrin conformation or potential upregulation of 

the receptor as well as a reduction in binding of mToR antibodies, whereas association 

with T. forsythia did not.  

These characteristics detail the novel application of the CHRF-288-11 cell line as a 

platelet-like in vitro cell model through the expression and utilisation of phenotypic 

platelet markers. 

7.3 Development of a multiparameter flow cytometry panel 

Following previously published guidelines on flow cytometry panel development 

(Schmitz et al., 1998), a single step staining and analysis protocol for platelets was 

designed to simultaneously record platelet-pathogen association and the resulting 

changes in the expression of platelet activation markers. Using an advanced multi-

parameter gating strategy, a subset population of platelets associated with P. 

gingivalis were isolated from CD41+ platelet populations and the relative expression of 

CD41/61, CD62P and CD42b were determined. P. gingivalis association led to 

significant increases in CD41/61, CD62P and CD42b when compared to unassociated 

platelets. This optimised flow cytometry offers a new, practical analysis tool that can 

be used in settings where spontaneous platelets activation needs to be minimised, 

minimum sample volumes are available and where platelets cannot be stored on-site 

for extended period. 
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7.4 Periodontal pathogens and platelet interactions 

Periodontal pathogen-platelet interaction studies revealed that viable P. gingivalis 

directly interacts with mammalian platelets whereas T. forsythia does not. Exposure to 

P. gingivalis induced platelet activation via calcium mobilisation and granule release, 

suggesting an immunological role against P. gingivalis infection. 

Platelet activation, following platelet association with P. gingivalis, resulted in an 

increased expression of CD41/61, CD62P and CD42b as quantified by flow cytometry as 

well as the release of serotonin and platelet factor 4, quantified by ELISA. These 

investigations also revealed that platelet activation induced by P. gingivalis occurs 

independently of interactions with the major bacterial outer membrane subunits 

OMPA1 and OMPA2. 

Surprisingly, although all strains of P. gingivalis induced platelet activation, platelet 

aggregation was only observed in a strain dependant manner by P. gingivalis NCTC 

11834 and ATCC 381 but not by ATCC W50.  

Investigations into the underlying mechanisms of P. gingivalis induced platelet 

aggregation demonstrated that within the applied methodology, both P. gingivalis 

secreted proteome and isolated P. gingivalis lipopolysaccharide (LPS) were unable to 

stimulate platelet aggregation, under the experimental conditions used in this study, 

possibly further emphasising a dependency on direct platelet to pathogen interactions.  

Screening of P. gingivalis mutants deficient in either the major outer membrane 

protein subunits OMPA1/OMPA2 or the virulence associated sialidase 0352 resulted in 

no impact on the total percentage aggregation induced by P. gingivalis but did result in 

a faster onset of the aggregatory response. Similarly, screening of specific platelet 
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receptor inhibitors found that platelet aggregation occurred independently of 

interactions with toll-like receptor 2 and 4 as well as integrin β3 but all inhibitory 

experiments resulted in a faster onset of the aggregatory response. 

Interestingly, platelet aggregation induced by P. gingivalis NCTC 11834 was completely 

abolished following incubation with a specific integrin α2β1 inhibitor, with P. gingivalis 

also being shown to directly associate with recombinant integrin β1 within an ELISA. 

Collectively, these findings suggest that platelet aggregation induced by P. gingivalis 

NCTC 11834 is dependent on interactions with integrin α2β1, specifically the β1 

subunit and could reveal independent virulence mechanisms such as fimbriae 

exhibited by P. gingivalis. 

These findings provide novel data which demonstrate that P. gingivalis induces platelet 

aggregation and activation via granule release within platelet rich plasma, with the 

observed aggregatory response occurring in a strain dependant manner. 

7.5 Future Directions 

Within this body of work, it was postulated that through the associated localised 

bleeding and increased bacterial load found within chronic periodontitis, pathogenic 

bacterial species, specifically Porphyromonas gingivalis and Tannerella forsythia, 

opportunistically penetrate the vascular system. During this invasive process, these 

pathogenic bacteria would interact with platelets, giving rise to an altered platelet 

state, the formation of bacterial-platelet aggregates and ultimately contribute to the 

progression of atherosclerotic vascular disease.  

As detailed above, this study does not only demonstrate that periodontal pathogenic 

bacteria are able to interact with platelets and megakaryocytic-like cells but may also 
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provide novel pathways in which periodontitis is able to contribute to the progression 

of CVD's. 

The CHRF-288-11 cell line provides a unique niche in which to study bacterial-platelet 

interactions and with further expansion could reduce the need for regular blood 

acquisition for platelet studies. Although within this study, CHRF-288-11 cells have 

been shown to express a number of platelet markers, further analysis of protein 

expression could reveal a plethora of platelet markers expressed by the CHRF cells 

adding further benefit to the reported applications of these megakaryocytic like cells. 

It is also possible that through varied differentiation protocols such as those detailed 

by Lepage and colleagues (2000) that utilise cytokines as opposed to PMA could reveal 

varying phenotypes within the cell line further adding to its applications within a 

platelet-like cell model. Novel developments within the field of in vitro megakaryocyte 

culture and in vitro platelet production could abrogate the need for blood donations 

entirely (Moreau et al., 2016; Strassel, Gachet and Lanza, 2018),possibly replacing the 

CHRF-288-11 cells and allowing for platelet methodologies to become routine and high 

throughput. 

 Interestingly, it was found that although T. forsythia is able to interact with and invade 

the megakaryocytic cell line, it was not observed to interact with platelets within any 

investigations. However from the investigations undertaken within this body of work it 

cannot be concluded that T. forsythia is unable to interact with platelets and could 

suggest an alternative pathway in which periodontal-pathogens and platelets interact.  
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Further work could be used to highlight whether T. forsythia is able to interact with 

mammalian platelets, whether it actively evades platelet response or whether T. 

forsythia-platelet interactions are reliant on the synthesis of cofactors such as those 

observed with Staphylococcus aureus aggregation (Yeaman, 2010b). 

Similarly, it is well established that pathogenic bacterial species within the oral biofilm 

are able to coaggregate (Kolenbrander, Andersen, Blehert, et al., 2002), with 

suggestions that this may facilitate synergistic behaviour between the pathogens, 

increasing virulence activity (Kolenbrander, 2000; Kesavalu et al., 2007; Kirschbaum et 

al., 2010b). Exposing platelets to co-cultures of P. gingivalis and T. forsythia could 

expose mechanisms by which T. forsythia is able to interact with platelets and reveal 

further aspects of P. gingivalis-platelet interactions thereby providing a closer 

representation of the biofilm present with the periodontal pocket. 

In addition, the inter-strain variances of P. gingivalis induced platelet aggregation and 

activation suggest that bacterial genetics as well as their associated virulence factors 

such as fimbriae contribute to the combative platelet response.  

Interestingly, phylogenetic comparisons of the P. gingivalis strains utilised within this 

study reveal that NCTC 11834 and ATCC 381 are highly similar, whereas ATCC W50 is 

comparatively highly divergent (Griffen et al., 1999). This is further emphasised 

through full genome comparisons as illustrated by a circular genome representation 

(Figure 7.1). In order to expand on the initial findings within this thesis, full screening 

of the ATCC 381 strain as well as the introduction of further P. gingivalis strains such as 

ATCC W83 which is closely related to ATCC W50 would further explore the strain 

specific nature of platelet aggregation in response to P. gingivalis. This study also 

found strain specific interactions with integrin α2β1, with the full extent of P. 
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gingivalis-platelet interactions as well as the underlying mechanisms remaining 

inconclusive. It is hypothesised that through the application of pull-down assays, the 

specific mammalian protein targets for P. gingivalis could be identified and allow the 

proposal of a comprehensive mechanistic pathway.  

These pull-down assays could then be coupled with an extensive proteomic study of 

both the mammalian platelets and the bacterial pathogens. With regards to platelets, 

it could be used to identify specific pathways in which platelets respond to varying 

pathogenic bacterial species and could implicate further roles for platelets within both 

the innate and adaptive immune system. Further work could also highlight the exact 

proteinous nature of the fibrin-like structures which form following platelet exposure 

to P. gingivalis. These investigations could utilise fluorescently labelled fibrinogen to 

determine whether the formed matrix is similar to that of a haemostatic fibrin mesh 

(Holinstat, 2017) as well as being coupled with further immunofluorescent microscopy 

and western blotting to confirm the presence of further proteins such as mToR and 

actin which are known to stabilise thrombus formation (Aslan and McCarty, 2012). 

As a separate approach, analysing the bacterial strains could also reveal specific 

bacterial genetic features and proteomic differences, which not only contribute to the 

observed variances in platelet activation and aggregation but could also highlight 

highly virulent pathogenic strains in relation specifically to CVD. 
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Figure 7.1 Circular representation of the P. gingivalis NCTC 11834, ATCC 381 and ATCC W50 genomes. P. gingivalis NCTC 11834 (431947.7) and ATCC 381 (1403335.5) are 
genetically highly similar whereas comparatively ATCC W50 (1125722.3) is highly divergent. This representation was generated using the PATRIC online genome comparison tool. 
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In order to expand on the findings surrounding platelet-pathogen interactions, there 

are many potential investigative avenues that could be explored. Initially it would very 

interesting to investigate as to whether periodonto-pathogens influence platelet 

adhesion, which is a known contributor to atherosclerosis and atherothrombosis (Finn 

et al., 2010; Badimon, Padró and Vilahur, 2012; Anlamlert, Lenbury and Bell, 2015). At 

the principle level, this could be undertaken using platelet adhesion assays which 

quantitate platelet adhesion to either glass coverslips or a collagen coated surface. 

This methodology could then be applied to a microfluidics system, which would 

investigate whether platelets can interact with periodonto-pathogens under shear 

flow and whether these interactions interfere with platelet adhesion properties under 

physiological conditions. 

Further to this, platelet interactions with the vessel wall, specifically dysfunctional or 

activated endothelium are thought to be crucial in the role of platelets within the 

development of the atherosclerotic legion as well as the terminal thrombotic events 

(Sachais, 2001). Recent developments within microfluidic chambers allow the study of 

the platelet endothelium interface and could be utilised to investigate whether 

periodontal pathogens promote the adherence to the endothelium, resulting in 

atherosclerotic disease-like phenotypes (Zilberman-Rudenko et al., 2017). 

These future studies could be coupled with patient blood samples and clinical isolates 

of periodonto-pathogens to ascertain whether the presence of specific strains of P. 

gingivalis is directly associated with the progression of CVD or whether patients with 

periodontitis behave differently to the healthy blood samples applied within this study, 

specifically addressing whether patients with an increasing severity of periodontitis 
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also present with an increase in platelet activation and aggregation, as well as an 

increased risk of CVD. 

Used in combination, the findings within this thesis as well as further work could 

identify novel contributory factors to the development of CVD, aid in the identification 

of risk factors associated with periodontitis and help develop a personalised medical 

approach to the treatment of patients through the use of platelets as complex 

biomarkers. Here it is postulated that through the identification of specific 'at risk' 

patients as well as the application of preventative periodontal monitoring and 

treatments could hold substantial prognostic promise for the future treatment of CVD. 
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