
Using Pirate Plunder to develop children’s abstraction 
skills in Scratch

ROSE, Simon, HABGOOD, Jacob <http://orcid.org/0000-0003-4531-0507> 
and JAY, Tim <http://orcid.org/0000-0003-4759-9543>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/24271/

This document is the Accepted Version [AM]

Citation:

ROSE, Simon, HABGOOD, Jacob and JAY, Tim (2019). Using Pirate Plunder to 
develop children’s abstraction skills in Scratch. In: CHI EA 19 extended abstracts of 
the 2019 CHI conference on human factors in computing systems. ACM. [Book 
Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


KEYWORDS
computational thinking; Scratch; Pirate
Plunder; visual programming; computer
science education; abstraction;

Using Pirate Plunder to Develop
Children’s Abstraction Skills
in Scratch

Simon P. Rose
Sheffield Hallam University
Sheffield, UK
simon.rose@shu.ac.uk

M. P. Jacob Habgood
Sheffield Hallam University
Sheffield, UK
j.habgood@shu.ac.uk

Tim Jay
Sheffield Hallam University
Sheffield, UK
t.jay@shu.ac.uk

ABSTRACT
Scratch users often struggle to detect and correct ‘code smells’ (bad programming practices) such
as duplicated blocks and large scripts, which can make programs difficult to understand and debug.
These ‘smells’ can be caused by a lack of abstraction, a skill that plays a key role in computer science
and computational thinking. We created Pirate Plunder, a novel educational block-based programming
game, that aims to teach children to reduce smells by reusing code in Scratch. This work describes an
experimental study designed to measure the efficacy of Pirate Plunder with children aged 10 and 11.
The findings were that children who played the game were then able to use custom blocks (procedures)
to reuse code in Scratch, compared to non-programming and programming control groups.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact
the owner/author(s).
CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5971-9/19/05.
https://doi.org/10.1145/3290607.3312871

https://doi.org/10.1145/3290607.3312871


INTRODUCTION
Computer science is becoming widespread in both primary and secondary education (ages 5 to 16)
worldwide [6]. It is being pushed by both policymakers [e.g. 14] and the technology industry [3] in
order to produce ‘digital citizens’ for an increasingly IT-based global economy. The lives of today’s
children will be greatly influenced by computing, both in the home and at work.

One of the main arguments behind teaching computer science to children is that the ‘computational
thinking’ skills developed through programming are useful in a wider context [16]. Current definitions
of computational thinking involve working at multiple levels of abstraction, writing algorithms,
understanding flow control, recognising patterns and decomposing problems [e.g. 12].
A variety of block-based programming tools have been created to help teach programming to

children. Scratch is one of the most widely-used of these tools. It is a block-based visual programming
environment that can be used to create stories, animations and games. We described the design of a
novel educational programming game, Pirate Plunder, in an earlier work [11]. The game aims to teach
players how to reuse code in Scratch using repeat blocks (loops), custom blocks (parametrised proce-
dures) and clones (instances of sprites). Using these blocks correctly involves abstracting duplicated
functionality into reusable program components.

This work describes an experimental study designed to measure the efficacy of Pirate Plunder. We
start with a summary of the background and rationale for the game, then explain the methodology
before moving on to the results and discussion.

BACKGROUND
Scratch
Block-based programming tools (e.g. Scratch) are now widely-used to teach programming, particularly
in primary education (5 to 11 years old). This is because they allow novices to program without
learning syntax or memorising commands, unlike text-based tools.
Scratch (Figure 1) is designed for children aged 8 and above. It encourages a constructionist [9]

bottom-up approach, where solutions are unplanned and created mostly through exploration. However,
this approach can result in bad programming practices (known as ‘code smells’) because software
engineering concepts like code reuse are not formally introduced. Examples of code smells in Scratch
include large scripts, dead blocks (not attached to an event block) and duplicated blocks [7]. These
problems are not helped by the limited computer science teaching expertise in primary education.

Figure 1: A Scratch project that does not
use abstraction techniques.

Code Smells & Abstraction
A code smell is a surface indication in a program that usually corresponds to a deeper problem,
for example, duplicated code, long methods and long parameter lists [5]. These ‘smells’ can make



programs difficult to understand, debug and maintain, even in Scratch [7]. Furthermore, there are
suggestions that novice programmers “prone to introducing some smells do so even as they gain
experience” [13, p. 10], meaning that children should be taught to detect and correct code smells early.

Figure 2: A Scratch project that uses ab-
straction techniques.

The concept of abstraction is the main tenet of computational thinking [16] and is key in computer
science, yet it is difficult to teach to novices [2]. Abstractions are used by computer scientists to arrange
programs using reusable components, such as procedures and classes. These are often used when
refactoring (or restructuring) existing code, for example creating or editing procedures to generalise
duplicated functionality.

In Scratch, block and sprite duplication and script size can be reduced using repeat blocks (loops),
custom blocks (parameterised procedures) and clones (instances of sprites), yet the latter two are rarely
used [1]. An example of this is shown in Figure 2, which produces the same result as Figure 1 but uses a
custom block and cloning of the lamppost sprite. Dr. Scratch [8] is a tool for measuring computational
thinking in Scratch projects. It measures abstraction and decomposition skills through the use of
multiple scripts in multiple sprites (decomposition), custom blocks and clones (both abstraction).

Figure 3: A Pirate Plunder level that re-
quires a custom block with two inputs (pa-
rameters) and cannonball sprite cloning.

Pirate Plunder
Pirate Plunder (Figure 3) is a novel educational block-based programming game designed for children
aged 9 and above. It aims to teach code reuse using loops (repeat blocks), parameterised procedures
(custom blocks) and instances (clones) in a game-based Scratch-like setting. Players use Scratch blocks
to program a pirate ship to navigate around a grid, collect items and interact with obstacles. Players
progress through a difficulty progression that forces them to duplicate code before introducing a
strategy or block (loops, procedures or instances) to remove this duplication through code reuse in
future levels. This concept is introduced solely through the game, with researchers and teachers only
giving support to individual players when necessary. We discuss the design of Pirate Plunder and
how it supports teaching abstraction in more detail in earlier work [11].

METHODOLOGY
Participants
The participants were 91 children (45 male and 46 female) aged between 10 and 11 (M = 10.58, SD =
.32) from a large primary school in the north of England.

Figure 4: The step-by-step process of the
study procedure.

Procedure
In this work, we report the pre-to-mid-test results obtained as part of a larger study. The participants
were assigned to three conditions after the pre-test and each given a 6-hour teaching intervention over
4 weeks of either Pirate Plunder, spreadsheets (non-programming control) or Scratch (programming



control) (Figure 4). The control groups were active to make them more comparable in terms of
researcher contact during the training period and to reduce motivational differences between groups.

Materials
Other than the Pirate Plunder game, the study used three assessments to measure participants’ use
of custom blocks and clones in Scratch, a computational thinking test and two 6-lesson ICT curricula:

Figure 5: A starter project for the Scratch
baseline task.

Scratch Baseline Task. At pre-test, participants were asked to complete a programming task in Scratch
that involved animating an object around the sides of a rectangle and leaving another object on
each corner (Figure 5 shows one of the starter projects). This was designed to allow participants to
demonstrate their Scratch proficiency, but also to let them use custom blocks and clones if they were
able because the solutions often involved block and sprite duplication. Participants were given 40
minutes for both this and the Scratch challenge.

Scratch Challenge. At post-test, participants were asked to reduce the block count in an existing
Scratch project that contained both duplicated blocks and sprites (the project in Figure 1). The project
involved animating an object around a map and having it leave an item on each corner (the ideal
solution would use custom blocks and clones as seen in Figure 2). We then conducted artifact-based
interviews [4] for the Pirate Plunder group to see if participants had understood the rationale behind
their solutions and if they could explain this in contexts outside Pirate Plunder.

Figure 6: A sample question from the
Scratch abstraction test.

Scratch Abstraction Test. At post-test, participants were given a 10-questionmultiple-choice assessment
designed by the first author on correctly using custom blocks and clones in Scratch (Figure 6 shows a
sample question).

Computational Thinking Test. The CTt [10] was used at pre-and post-test to measure participant
computational thinking ability. It contains 28 multiple-choice questions that use visual arrows or
blocks common in educational programming tools.

Control Group Activities. The control activities were age-appropriate 6-week curricula produced by an
educational resources company [15]. These involved creating animations in Scratch (without custom
blocks or clones) and using spreadsheets for data entry, basic analysis, sorting and graphs.

Hypotheses
We hypothesised that the Pirate Plunder group would achieve better results on both the Scratch
challenge and the Scratch abstraction test in comparison to the control groups. Secondly, that the
Pirate Plunder group would improve on the CTt in comparison to the non-programming control group,
who were not doing explicit computational thinking (in line with the literature) during their activity.



RESULTS
Scratch Challenge
The finished Scratch projects were analysed using Dr. Scratch for use of abstraction and decomposition;
1 point for using multiple scripts in multiple sprites (the starter project achieved this), 2 points for using
custom blocks, and 3 points for using clones. Figure 7 shows the mean learning gains between the
Scratch baseline task (pre-test) and Scratch challenge projects (post-test) for each group. A one-way
ANOVA showed a significant difference in learning gains between the three groups (F (2, 79) = 12.9, p
< .001, η2p = .25), with the Pirate Plunder group (M = 0.76, SD = 0.88) improving significantly compared
to both controls (non-programming: M = 0.17, SD = 0.54 and programming: M = -0.11, SD = 0.42).

Figure 7: Dr. Scratch abstraction and de-
composition learning gains between pre-
and post-test.

Scratch Abstraction Test
There was a significant difference in the Scratch Abstraction Test scores between the three groups
(F (2, 80) = 11.64, p < .001, η2p = .23). The Pirate Plunder group scored significantly higher (M = 5.21, SD
= 1.4) than both the non-programming control (M = 3.58, SD = 1.86) and the programming control (M
= 3.45, SD = 1.3) (Figure 8).

Figure 8: ScratchAbstractionTest scores at
post-test.

Computational Thinking Test
There was a significant difference in the CTt learning gains between the three groups (F (2, 84) =
3.72, p = .028, η2p = .081) (Figure 9), with the only significant pairwise comparison between the Pirate
Plunder group (M = 3.07, SD = 3.22) and the non-programming control (M = .20, SD = 5.1); t(55) = -2.87,
p = .015, d = 0.67.

DISCUSSION
The results of both the Scratch Challenge and Scratch Abstraction Test indicate that Pirate Plunder
is effective in teaching children to reuse code using custom blocks and clones in Scratch, compared
to a programming (Scratch) and a non-programming (spreadsheet) activity. The mean Dr. Scratch
abstraction and decomposition score of 1.82 (SD = .61) for the Pirate Plunder group shows that most
participants used custom blocks in the Scratch challenge at post-test (20/28).
The artifact-based interviews suggested that higher-scoring participants could apply the concept

of code reuse to other situations in Scratch, but lower-scoring participants struggled to separate
the use of custom blocks and clones from the context of Pirate Plunder, even if they had used them
successfully in the Scratch challenge.

The CTt results suggest that Pirate Plunder improves computational thinking compared to a non-
programming curriculum, but not compared to the programming curriculum that involves some
computational thinking, as hypothesised.



CONCLUSION
In conclusion, the results of this study suggest that Pirate Plunder is effective in teaching children to
reduce code smells (duplication and long scripts) in Scratch using repeat blocks, custom blocks and
clones (to some extent). The next step is to analyse the data from the full study, both the assessment
tasks and Pirate Plunder itself, to provide a more detailed explanation of why and how it is effective.

Figure 9: CTt learning gains between pre-
and post-test.

REFERENCES
[1] Efthimia Aivaloglou, Felienne Hermans, Jesús Moreno-León, and Gregorio Robles. 2017. A Dataset of Scratch Programs:

Scraped, Shaped and Scored. In Proceedings of the 14th International Conference on Mining Software Repositories. 511–514.
https://doi.org/10.1109/MSR.2017.45

[2] Michal Armoni. 2013. On Teaching Abstraction in Computer Science to Novices. Journal of Computers in Mathematics and
Science Teaching 32, 3 (2013), 265–284.

[3] Paulo Blikstein. 2018. Pre-College Computer Science Education: A Survey of the Field. Technical Report. Google. 45 pages.
[4] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and assessing the development of computational

thinking. In Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada.
1–25.

[5] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional. 1–337 pages. https://doi.org/10.1007/s10071-009-0219-y

[6] Fredrik Heintz, Linda Mannila, and Tommy Farnqvist. 2016. A Review of Models for Introducing Computational Thinking,
Computer Science and Computing in K-12 Education. In Proceedings of the 2016 IEEE Frontiers in Education Conference
(FIE). 1–9. https://doi.org/10.1109/FIE.2016.7757410

[7] Felienne Hermans and Efthimia Aivaloglou. 2016. Do Code Smells Hamper Novice Programming? A Controlled Experiment
on Scratch Programs. In Proceedings of the IEEE 24th International Conference on Program Comprehension (ICPC). 1–10.
https://doi.org/10.1109/icpc.2016.7503706

[8] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. 2015. Dr. Scratch: Automatic Analysis of Scratch
Projects to Assess and Foster Computational Thinking. Revista de Educación a Distancia (RED) 46 (2015). https://doi.org/
10.6018/red/46/10

[9] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
[10] Marcos Román-González, Juan-Carlos Pérez-González, and Carmen Jiménez-Fernández. 2016. Which cognitive abilities

underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior
72 (2016), 678–691. https://doi.org/10.1016/j.chb.2016.08.047

[11] Simon P. Rose, M. P. Jacob Habgood, and Tim Jay. 2018. Pirate Plunder: Game-Based Computational Thinking Using
Scratch Blocks. In Proceedings of the 12th European Conference for Game Based Learning. 556–564.

[12] Valerie J. Shute, Chen Sun, and Jodi Asbell-Clarke. 2017. Demystifying computational thinking. Educational Research
Review 22 (2017), 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

[13] Peeratham Techapalokul and Eli Tilevich. 2017. Understanding Recurring Software Quality Problems of Novice Program-
mers. In Proceedings of the 2017 IEEE Symposium on Visual Languages and Human-Centric Computing. 43–51.

[14] The Royal Society. 2012. Shut down or restart? The way forward for computing in UK schools. Technical Report. London.
122 pages.

[15] Twinkl Educational Publishing. 2018. Computing Year 6. https://twinkl.co.uk.
[16] JeannetteM.Wing. 2006. Computational Thinking. Commun. ACM 49, 3 (2006), 33. https://doi.org/10.1145/1118178.1118215

https://doi.org/10.1109/MSR.2017.45
https://doi.org/10.1007/s10071-009-0219-y
https://doi.org/10.1109/FIE.2016.7757410
https://doi.org/10.1109/icpc.2016.7503706
https://doi.org/10.6018/red/46/10
https://doi.org/10.6018/red/46/10
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.edurev.2017.09.003
https://twinkl.co.uk
https://doi.org/10.1145/1118178.1118215

	Abstract
	Introduction
	Background
	Scratch
	Code Smells & Abstraction
	Pirate Plunder

	Methodology
	Participants
	Procedure
	Materials
	Hypotheses

	Results
	Scratch Challenge
	Scratch Abstraction Test
	Computational Thinking Test

	Discussion
	Conclusion
	References

