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On the derivatives of composite functions

J.K. Langley and E.F. Lingham

Abstract

Let g be a non-constant polynomial and let f be transcendental and meromorphic of
sub-exponential growth in the plane. Then if k ≥ 2 and Q is a polynomial the function
(f ◦ g)(k) −Q has infinitely many zeros. The same conclusion holds for k ≥ 0 and with Q
a rational function if f has finitely many poles. We also show by example that this result
is sharp.

Mathematics Subject Classification 2000: 30D30, 30D35
Keywords: composite functions, Nevanlinna theory.

1 Introduction

This paper will use standard notation of value distribution theory [7], including ρ(f) for the order of
growth of a meromorphic function f in the plane. In [4], the second author proved the following result,
for application in a theorem concerning normal families.

Theorem A Let k ∈ N. Let f be a transcendental entire function with ρ(f) < 1/2. Let g and Q be
polynomials, with g non-constant. Let F and H be defined by

F = f ◦ g, H = F (k) − Q. (1)

Then H has infinitely many zeros.

The hypothesis ρ(f) < 1/2 was needed for the proof of Theorem A in [4], which made use of the
celebrated cosπρ minimum modulus theorem [8, Chapter 6]. In this paper, we show that Theorem A
can be extended to transcendental functions of sub-exponential growth, that is, functions of at most
order 1, minimal type. We state the result as follows.

Theorem 1.1 Let k be a non-negative integer. Let g be a non-constant polynomial and let f be a
transcendental meromorphic function in the plane with

lim
r→∞

T (r, f)

r
= 0. (2)

Let F and H be defined by (1), with Q a rational function. Then the following conclusions hold.
(a) If f has finitely many poles then the exponent of convergence of the zeros of H is equal to the order
ρ(F ) of F .
(b) If k ≥ 2 and Q is a polynomial, or if k = 1 and Q ≡ 0, then H has infinitely many zeros.
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Theorem 1.1 is sharp in the following sense. If f(w) = ew + P (w) and P and g are polynomials
with g non-constant, then F = f ◦ g satisfies F (k) = Reg + S with R and S polynomials so that the
equation F (k)(z) = S(z) has finitely many solutions in the plane.

The case k = 0 of Theorem 1.1 may be compared with results on the frequency of fixpoints of f ◦g.
Bergweiler proved that if g is a transcendental entire function and f is transcendental and meromorphic
in the plane then f(g) − Q has infinitely many zeros, for any non-constant rational function Q [3] (see
also [1, 2]). It seems plausible that if f is a transcendental entire function satisfying (2) and g is any
non-constant entire function then the function H defined by (1) has infinitely many zeros, for any k ≥ 1
and any rational function Q. Some partial results are proved in [4] and [11, Theorem 6].

2 Proof of Theorem 1.1

We need the following result by the first author [10].

Lemma 2.1 Suppose that G is meromorphic of finite order in the plane, and that G(k) has finitely
many zeros, for some k ≥ 2. Then G has finitely many poles.

We now prove Theorem 1.1. We first note that since f has finite order and g is a polynomial it
follows that

ρ(H) = ρ(F (k)) = ρ(F ) < ∞. (3)

Next, we observe that it suffices to prove part (a). To see this, note first that the case where k = 1 and
Q ≡ 0 is handled by the argument of [11, p.137], and is based on the fact that (2) implies that f ′ has
infinitely many zeros, by a result of Eremenko, Langley and Rossi [5], from which it follows since g is a
non-constant polynomial that so has F ′ = f ′(g)g′. Suppose next that k ≥ 2, that Q is a polynomial,

and that H has finitely many zeros. Choose a polynomial Q1 with Q
(k)
1 = Q and set G = F − Q1.

Then H = G(k) and it follows from Lemma 2.1 that G has finitely many poles and, again since g is a
polynomial, so has f . Hence H is a transcendental meromorphic function of finite order with finitely
many zeros and poles so that ρ(F ) = ρ(H) ≥ 1, using (3), and a contradiction arises from part (a).

To prove part (a), assume that f has finitely many poles but that the exponent of convergence of
the zeros of H is less than ρ(F ). It follows using (3) that there exist a positive integer n, a meromorphic
function Π with finitely many poles and a polynomial P , such that

H = F (k) − Q = ΠeP , ρ(Π) < n, deg P = ρ(H) = n. (4)

Then we may write

g(z) = amzm + . . . + a0, P (z) = bnzn + . . . + b0, bn ∈ (0,∞). (5)

Here the assumption that bn is real and positive involves no loss of generality, since otherwise we may
apply a rotation of the independent variable z.

Since f has finitely many poles and satisfies (2), a standard application of the Poisson-Jensen
formula [7, p.1] gives (compare [7, Theorem 1.6, p.18])

log M(r, f) ≤ 3m(2r, f) + O(log r) = o(r) as r → ∞. (6)

Denote positive constants by c,M , not necessarily the same at each occurrence. Combining (3), (4),
(5) and (6) and using the fact that f and F have finitely many poles, it follows that

crn ≤ T (r, eP )
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≤ (1 + o(1))T (r, F (k))

≤ (1 + o(1))T (r, F )

≤ (1 + o(1)) log M(r, F )

≤ (1 + o(1)) log M(M(r, g), f)

= o(M(r, g))

as r → ∞. Using (5) again we deduce at once that

m > n. (7)

Let δ and η be positive constants, with δ and η/δ small. If r1 is large then (4) and (5) give

F (k)(z) = O(|z|M ) for |z| ≥ r1,
π

2n
+ δ ≤ arg z ≤

3π

2n
− δ.

Hence repeated integration, starting from the point r1e
iπ/n, leads to

f(g(z)) = F (z) = O(|z|M+k) for |z| ≥ r1,
π

2n
+ δ ≤ arg z ≤

3π

2n
− δ. (8)

Let u1, u2, . . . be the zeros of Π, repeated according to multiplicity. Since ρ(Π) < n it follows that

∑

uj 6=0

|uj|
−n < ∞

and a standard application of the Poisson-Jensen formula [7, p.1] gives

log |Π(z)| = o(|z|n) as z → ∞, z 6∈ E =
⋃

uj 6=0

B(uj, |uj |
−n). (9)

Moreover, standard estimates based on the differentiated Poisson-Jensen formula [7, p.22] (see [6] and
[9, p.89]) give

F (k)(z)

F (z)
= O(|z|M ) (10)

for large z outside a union E ′ of discs, having finite sum of radii. Let r be large and positive, such that
the circle |z| = r does not meet the exceptional sets E,E ′ corresponding to (9) and (10). Then (4),
(5), (9) and (10) yield

log |f(g(z))| = log |F (z)| > crn for |z| = r, | arg z| ≤
π

2n
− δ. (11)

With this same value of r let

Ω1 =
{

reiθ : −
π

2n
+ 2δ ≤ θ ≤

π

2n
− 2δ

}

, Ω2 =

{

reiθ :
π

2n
+ 2δ ≤ θ ≤

3π

2n
− 2δ

}

. (12)

Then (12) implies that for j = 1, 2 the image of the arc Ωj under the mapping

ζ = h(z) = amzm (13)

is the set {ζ = |am|rmeiφ : φ ∈ Ij}, where Ij is an interval of length

m
(π

n
− 4δ

)

> π + δ,
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since δ is small by assumption and m > n by (7). Hence there exist

z1 ∈ Ω1, z2 ∈ Ω2 such that w = h(z1) = h(z2). (14)

For |z − z2| = ηr we have using (5), (13) and (14), since η is small and r is large,

|h(z) − h(z1)| = |h(z) − h(z2)| ≥ crm, g(z) − h(z) = o(rm), h(z1) − g(z1) = o(rm).

We then write
g(z) − g(z1) = h(z) − h(z1) + g(z) − h(z) + h(z1) − g(z1)

and apply Rouché’s theorem, which shows using (14) again that g takes the value g(z1) at some
z3 ∈ B(z2, ηr), provided r is large enough. Moreover,

π

2n
+ δ ≤ arg z3 ≤

3π

2n
− δ,

using (12) and (14), since η is small compared to δ.
But now (8) gives

|f(g(z1))| = |f(g(z3))| ≤ c|z3|
M+k ≤ c(|z2| + ηr)M+k = O(rM+k),

whereas (11), (12) and (14) give
log |f(g(z1))| > crn.

These estimates are obviously incompatible since r is large, and this contradiction completes the proof
of part (a) and of Theorem 1.1.
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