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Uniqueness of the Fixed Points of Single-Step OperatorsDetermined by Belnap's� Four-Valued LogicyEleanor Cli�ord and Anthony Karel SedazDepartment of Mathematics, University College Cork, Ireland.E-mail: e.cli�ord@student.ucc.ie, aks@ucc.ieAbstractRecently, Hitzler and Seda showed how a domain-theoretic proof can be given of the factthat, for a locally hierarchical program, the single-step operator TP , de�ned in two-valuedlogic, has a unique �xed point. Their approach employed a construction which turned a Scott-Ershov domain into a generalized ultrametric space. Finally, a �xed-point theorem of Priess-Crampe and Ribenboim was applied to TP to establish the result. In this paper, we extendthese methods and results to the corresponding well-known single-step operators �P and 	Pdetermined by P and de�ned, respectively, in three-valued and four-valued logics.AMS Subject Classi�cation 2000: Primary 68N17, Secondary 03B70, 03G10.Keywords: Fixed point, operator, many-valued logic, Scott-Ershov domain, locally hierarchical pro-gram.1 IntroductionA common approach to giving meaning or \semantics" to programming language constructs is toassign an operator to the construct and look for its �xed points. In this approach, one often �ndsthat the operator in question is monotonic and de�ned on a complete lattice or complete partialorder (cpo), so that the well-known Knaster-Tarski theorem can be applied to obtain the required�xed points. However, in the case of logic programs P , see [9], the presence of negation (whichenhances syntax and expressibility) leads to non-monotonicity of the usual single-step operator TPassociated with P and hence to inapplicability of the Knaster-Tarski theorem.Various ways of overcoming this problem have been proposed in the literature, including the useof analytical and topological methods, see for example [12] and its references. Another approach,see [3, 4], is to consider other operators such as �P and 	P de�ned in three-valued and four-valuedlogics. In particular, Fitting in [3, 4] has drawn attention to an operator 	P de�ned on the spaceIP;4 of FOUR-valued interpretations, or valuations, of the underlying �rst order language L of P ,where FOUR denotes the four-valued logic due to Belnap [1] as employed by Fitting in [4]. Indeed,�In fact, we are working with a slight variant of Belnap's logic, due to Melvin Fitting.yTo appear in the Proceedings of the Slovakian Conference in Applied Mathematics 2000, Journal of ElectricalEngineering, Vol. 51, No. 10/s, 2000, Slovak Academy of Sciences.zBoth authors wish to extend their thanks to the conference organizers, and to the Slovak University of Technologyfor the hospitality and support they received in presenting the results of this paper. They also wish to thank ananonymous referee for making several suggestions which helped to improve the presentation of the paper. The �rst-named author also wishes to thank the School of Mathematics, Applied Mathematics and Statistics at UCC, andthe UCC Mathematical Society for their support. 1



FOUR includes conventional two-valued and Kleene's strong three-valued logic, and others, assublogics. In fact, IP;4 carries two natural orderings �k and �t. Under the �rst of these, 	P extendsthe operator �P de�ned over Kleene's strong three-valued logic and is monotonic; under the second,	P extends the operator TP de�ned over two-valued logic, and is only monotonic when P is de�nite(does not contain negation). Thus, any result about 	P pertains to TP and �P so that IP;4 and 	Pprovide a very convenient setting to study logic programming semantics in great generality.The foregoing remarks raise several questions concerning the �xed points of TP , �P , 	P andtheir interaction. Many of these questions have been pursued in [4], see also the references there,and they will be discussed brie
y here in Section 2. The tool usually employed to obtain �xed pointsis the Knaster-Tarski theorem or variants of it based on order-theoretic arguments. Such theoremsdo not provide conditions under which one has uniqueness of �xed points, and indeed �xed pointsneed not be unique in general. Nevertheless, this question of uniqueness is interesting because itis closely related to coincidence of various standard models of programs as shown in [8], and thispoint is also discussed in Section 2. In [6, 12], the issue of uniqueness was taken up and solvedin the case of the operator TP for the class of locally hierarchical programs, see [2], by methodsentirely di�erent from those employed in [2]. In fact, it was done by showing that Scott-Ershovdomains, familiar in programming language semantics, can be turned into generalized ultrametricspaces in the sense of [10] and by then applying a �xed-point theorem to be found in [10]. In thispaper, our main objective is to show how the approach of [6, 12] can be extended to the operators	P and �P in the context of the logic FOUR. Indeed, our approach extends very generally to anymany-valued logic whose associated space of valuations forms a domain under the construction wegive later, see Theorem 3.4. We will con�ne our attention here to 	P but we obtain, as a corollary,the fact that our results apply to �P also and to TP (trivially) in view of our earlier remarks.2 FOUR-Valued InterpretationsThe logic FOUR has the four truth values true (t), false (f), none (n), and both (b). The �rsttwo of these are the familiar truth values of two-valued logic. The third truth value none (orunderde�ned) is found in Kleene's strong (and weak) three-valued logic (as unde�ned), and is thetruth value given to something about which we have no information; it is also used in computationto represent non-termination. The fourth truth value both (or overde�ned) can be thought of asthe truth value given to something which we have been told is both true and false. Belnap in [1]o�ers some interesting motivation for this logic. He sees it as a means of dealing with a situationwhere a computer is relying on two di�erent human operators, which may contradict each other.Fitting in [4] argues that it is an appropriate logic for handling con
icting information in distributedcomputing systems. In [14], Visser shows how this logic can be used as a means of investigatingparadoxes such as that of the Liar.Following [4], we note that :t = f ; :f = t, :n = n and :b = b. Furthermore, we de�ne theoperations ^ and _ by means of the following truth tables:^ n f t bn n f n ff f f f ft n f t bb f f b b _ n f t bn n n t tf n f t bt t t t tb t b t bWe impose ordered structures on FOUR by de�ning the truth ordering �t and the knowledgeordering �k as in the Hasse diagram below. 2
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It is an interesting and important fact that FOUR is a complete lattice in each of theseorderings, and hence is a complete bilattice, see [4]. In the truth ordering, the bottom element isfalse and the top element is true. In the knowledge ordering, the bottom element is none and thetop element is both. We note that negation is the left-right inversion of the Hasse diagram above.Further details of this are to be found in [4].These orderings, and indeed any partial order on FOUR, immediately extend to the set I(X)of all functions I from any set X into FOUR when ordered pointwise by: I1 � I2 i� I1(A) � I2(A)for all A 2 X, where � denotes either of the orderings �k and �t, and we note that our usage ofthe symbol � to order both truth values and functions should not cause any confusion. Indeed, thebottom resp. top element of I(X) is simply the function identically equal to the bottom resp. topelement of FOUR in the ordering � on FOUR. Moreover, given any family M = fIk; k 2 Kg ofelements of I(X), whether directed or not, the supremum tM exists and is given by tM(A) =tk2KIk(A) for all A 2 X. Similarly, the in�mum uM of M is given by uM(A) = uk2KIk(A) forall A 2 X.Now let P denote a normal logic program whose underlying �rst order language is L; we referto [9] for notation and basic facts concerning logic programming. Thus, P consists of a �nite set ofclauses of the form A L1; : : : ; Ln, where A is an atomic formula, called the head of the clause,and L1; : : : ; Ln denotes a conjunction of literals Li (atoms or negated atoms) called the body ofthe clause. In other words, a typical clause in P is of the form A  A1; : : : ; An1;:B1; : : : ;:Bn2 .It will be convenient to add two atoms false and true to L. We let BP denote the Herbrandbase of P , that is, the set of all ground (or variable free) atoms formed from the symbols in L.Taking X = BP in the previous paragraph, the set I(BP ) is precisely the set of all FOUR-valuedvaluations or interpretations in the usual sense of mathematical logic, where we always assume thatI(false) = false and I(true) = true for any interpretation I. In future, we will denote the set I(BP )by IP;4 and we note that it is a complete bilattice under the operations de�ned earlier.In order to de�ne the operators we want, we need �rst to de�ne two sets P � and P �� associatedwith P . To de�ne P �: �rst, put in P � all ground instances of members of P ; second, if a clauseA  with empty body occurs in P �, replace it with A  true; �nally, if the ground atom A isnot yet the head of any member of P �, add A false to P �. To de�ne P ��: �rst, in P � replace eachground clause A  L1; : : : ; Ln with A  L1 ^ : : : ^ Ln. Next, if there are several clauses in theresulting set having the same head, A C1, A C2, : : : , replace them with A C1 _ C2 _ : : : .Since there could be in�nitely many members in P � with the same head, we may have a countabledisjunction at this point, but this is semantically unproblematic. We note that each ground atomA is the head of exactly one element A C1 _ C2 _ : : : of P ��.Following [4], we are now in a position to de�ne the operator 	P .3



2.1 De�nition Let P be a normal logic program. We de�ne the operator 	P : IP;4 ! IP;4 asfollows. For any I 2 IP;4 and A 2 BP , we set	P (I)(A) = I(C1 _ C2 _ : : : );where A C1 _ C2 _ : : : is the unique element of P �� whose head is A.If we restrict attention to the truth values true, false and none, we obtain the conventionalthree-valued operator �P , see [3, 4], from this de�nition. If we further restrict to the truth valuestrue and false, we obtain the two-valued operator TP . In fact, as noted in [4], the form of thede�nition of 	P just given suggests great generalization of such operators to any logic on anyset of interpretations, even to the context of uncertain reasoning systems. However, this point ofview combined with that of the current paper will be considered elsewhere. Indeed, by consideringdi�erent de�nitions of conjunction and disjunction, it was shown in [5] how one may characterizedi�erent classes of programs by means of the operator �P .Next, we note that 	P is monotonic for all programs P with respect to the �k ordering, andthis important fact led Fitting [3] to his well-known treatment of negation using �P . Moreover, 	Pis also monotonic with respect to the �t ordering for de�nite programs. Thus, using the Knaster-Tarski theorem, one always obtains least (vk) and greatest (Vk) �xed points of 	P relative to �k,and, for de�nite programs, least (vt) and greatest (Vt) �xed points of 	p (and hence of TP ) relativeto �t. All these �xed points are di�erent, in general. However, vk; vt and Vt are closely related,see [4, Proposition 15]. Indeed, as shown in [4], there are great advantages obtained by workingin the bilattice FOUR. Not only does one have a uni�ed framework in which to study the twostandard approaches to negation, but also, amongst other things, the interconnections between the�xed points can be stated in simple and elegant (algebraic) fashion. Furthermore, vt and Vt play afundamental role in logic programming semantics: the former being the least Herbrand model of ade�nite program; the latter, also a model of P , being fundamental in treatments of the completenessof SLDNF-resolution, see [2, 9]. Of course, if 	P has a unique �xed point, then all these �xedpoints coincide (with the well-known Clark-completion semantics) and this fact simpli�es much ofthe analysis. There is another reason, also, why this situation is important, as follows.One issue which is not addressed when applying the Knaster-Tarski theorem, and indeed cannotbe, is the uniqueness (or otherwise) of the �xed points it provides (the Knaster-Tarski theoremsays nothing about uniqueness). As already noted, classes of programs P for which TP and �Phave unique respectively unique total �xed points are interesting. Indeed, using the operator �P(and a variant of it) such classes were de�ned in [5, 7, 8] in a quite natural way. These classeswere shown in [5, 7, 8] not only to be computationally adequate (can compute all partial recursivefunctions), but to be semantically unambiguous as well in that for each program in them thestable, well-founded, and weakly perfect models all coincide. They therefore provide an interestingframework within which to do logic programming, since one has simultaneously available withinthem both full computational power and a well-de�ned semantics which is the same in a numberof the current, fashionable ways of viewing non-monotonic reasoning. Thus, �xed-point theoremswhich supply uniqueness criteria have an important role in logic programming. One such is thetheorem of Priess-Crampe and Ribenboim [10] which has found application in [10] to the operatorTP in discussing some speci�c examples considered in [11], see also [6] for applications of themultivalued version to disjunctive databases. Our intention here is to show how the Priess-Crampeand Ribenboim theorem can be applied, in conjunction with elementary domain theory, to theoperator 	P , and hence to �P , for certain programs, and we proceed to do this next.3 IP;4 as a Domain and as an Ultrametric SpaceLet (D;v) denote a partially ordered set, or poset.4



3.1 De�nition (1) A subset M of D is said to be directed if every �nite subset of M has an upperbound in M (equivalently, if every pair of elements of M has an upper bound in M).(2) We call (D;v) a complete partial order (cpo) if it has a bottom element ? and the supremumtM of M exists in D for all directed subsets M of D.(3) An element x 2 D is called compact i� whenever M is a directed subset of D and x v tM ,there exists y 2M such that x v y. We denote by DC the set of compact elements of D.(4) A subset A of D is called consistent if there exists x 2 D such that a v x for all a 2 A. Inparticular, the set fa; bg � D is consistent if there exists x 2 D such that a v x and b v x.3.2 De�nition Let (D;v) be a poset, and letDC denote its set of compact elements. Then (D;v)is called a Scott-Ershov domain or simply a domain, see [13], if the following conditions hold:(1) (D;v) is a cpo.(2) For each x 2 D, the set approx(x) = fa 2 DC ; a v xg is directed and x = t approx(x) (calledthe algebraicity of D).(3) If A � D is consistent, then tA exists in D (called the consistent completeness of D).3.3 De�nition Let � denote a partial order on FOUR in which FOUR is a complete latticewith bottom element ?. Then I 2 IP;4 is called �nite if the set fA 2 BP ; I(A) 6= ?g is �nite. Inparticular, we de�ne the �nite interpretation I? by I?(A) = ? for all A 2 BP .3.4 Theorem Let � denote a partial order on FOUR in which FOUR is a complete lattice withbottom element ?. Then (IP;4;�) is a domain whose bottom element is I? and whose compactelements are the �nite interpretations.Proof: First, because (IP;4;�) is a complete lattice, it is immediate that it is a cpo with bottomelement I? and also that it is consistently complete.Next, we show that any �nite interpretation is a compact element. Suppose that I is a �niteinterpretation and let I? = fA 2 BP ; I(A) 6= ?g. Then I? is a �nite set, I? = fA1; : : : ; Ang, say.Suppose M = fIk; k 2 Kg is a directed subset of IP;4 such that I � tM . Thus, I(A) � tk2KIk(A)for all A 2 BP . Then, using the directedness of M , there is, for each i = 1; : : : ; n, Iki 2 M suchthat I(Ai) � Iki(Ai). Since fIki; i = 1; : : : ; ng is �nite, and using again the fact that M is directed,there exists J 2M such that Iki � J for i = 1; : : : ; n. But then I � J as required and therefore Iis a compact element of IP;4.Conversely, we show that the compact elements of (IP;4;�) are the �nite interpretations. LetM be the set of all �nite interpretations. Then M is directed. To see this, let I1; I2 2 M . De�neI3 by I3(A) = tfI1(A); I2(A)g for all A 2 BP . Then I1 � I3 and I2 � I3 and clearly I3 is a �niteinterpretation. Thus, I3 2 M also. Hence, M is a directed subset of IP;4. Now suppose that I isa compact element of IP;4. Then trivially we have I � tM , since tM is the interpretation whosevalue on all elements of BP is equal to the top element of FOUR in the given ordering on FOUR.Thus, by directedness of M and the compactness of I, there exists J 2M such that I � J . Since Jis a �nite interpretation, it follows that I is �nite also. Therefore, the compact elements of (IP;4;�)are �nite interpretations and indeed we now see that the compact elements of (IP;4;�) are preciselythe �nite interpretations.We show next that for any I 2 IP;4, approx(I) is directed. Let I1; I2 2 approx(I). Then I1 andI2 are �nite interpretations with I1 � I and I2 � I. Again, de�ne I3 by I3(A) = tfI1(A); I2(A)g forall A 2 BP . Then by de�nition of supremum, we have I1 � I3 � I and I2 � I3 � I, and of courseI3 is �nite. Thus, I3 2 approx(I), and so approx(I) is directed. Therefore, approx(I) is directed forany I 2 IP;4.Finally, we show that for any I 2 IP;4, we have I = t approx(I). Clearly, by de�nition ofapprox(I) and of supremum, we have that t approx(I) � I. Let A 2 BP . De�ne IA 2 IP;4 byIA(A) = I(A), and IA(B) = ? for all B 6= A. Then clearly IA 2 approx(I). Also, for all A 2 BP we5



have I(A) = IA(A) � t approx(I)(A). Thus, I � t approx(I) and it follows that I = t approx(I),as required, and the proof is complete. �Of course we obtain, as corollaries of this result, that IP;4 is a domain in both of the two orderingswe have been considering on FOUR.We now turn our attention to generalized ultrametric spaces.3.5 De�nition Let X be a set and let � be a partially ordered set with least element 0. The pair(X; d) is called a generalized ultrametric space (gum) or simply an ultrametic space if d : X�X ! �is a function satisfying the following conditions for all x; y; z 2 X and 
 2 �:(1) d(x; y) = 0 if and only if x = y.(2) d(x; y) = d(y; x).(3) If d(x; y) � 
 and d(y; z) � 
, then d(x; z) � 
.3.6 De�nition For 0 6= 
 2 � and x 2 X, the set B
(x) = fy 2 X; d(x; y) � 
g is called a 
-ballor simply a ball in X with centre x and radius 
.3.7 De�nition An ultrametric space X is called spherically complete if \C 6= ; for any chain Cof balls in X (a chain of balls is a set of balls which is totally ordered by inclusion).This brings us to an important theorem of Priess-Crampe and Ribenboim, see [10], which westate in a reduced form su�cient for our present purposes.3.8 Theorem Let (X; d) be a spherically complete ultrametric space and let f : X ! X be strictlycontracting in the sense that d(f(x); f(y)) < d(x; y) for all x; y 2 X with x 6= y. Then f has aunique �xed-point.It is our intention to apply this theorem to 	P . To do this, we �rst give a general constructionwhich turns a domain, and IP;4 in particular, into a generalized ultrametric space.Let 
 denote an arbitrary countable ordinal, and let �
 denote the set f2��;� � 
g of symbols2�� ordered by 2�� < 2�� if and only if � < �, and denote 2�
 by 0. Thus, �
 is essentially 
 + 1endowed with the reverse order, but for historical reasons we prefer to work with the set �
 , see[6]. Now let (D;v) be a domain, with set DC of compact elements.3.9 De�nition Let r : DC ! 
 be a function, called a rank function, and form �
. We de�ne thedistance function dr : D �D ! �
 by dr(x; y) = inff2��; for every c 2 DC with r(c) < � we havec v x if and only if c v yg.It turns out that dr is an ultrametric which is said to be induced by r, see [6, 12]. In fact, thefollowing theorem was established in [6, 12].3.10 Theorem The ultrametric space (D; dr) is spherically complete.4 Unique Fixed Points of 	PSuppose now that P is a normal logic program. A level mapping for P is a mapping l : BP !
, where 
 is a countable ordinal (not necessarily the �rst in�nite ordinal). Fix an ordering �,such as �k or �t, in which FOUR is a complete lattice with bottom element ?; then IP;4 isalso a complete lattice. By Theorem 3.4, IP;4 is a domain whose compact elements are the �niteinterpretations. De�ne the rank function rl induced by l as follows: we put rl(I?) = 0 and, for every�nite interpretation I 6= I?, we set rl(I) = maxfl(A);A 2 BP and I(A) 6= ?g. We denote by dl theultrametric resulting from rl in accordance with De�nition 3.9. Indeed, it is easy to see that dl has6



a simpler, equivalent de�nition, as follows: if I1 = I2, then dl(I1; I2) = 0; otherwise dl(I1; I2) = 2��,where I1 and I2 di�er (i.e. I1(B) 6= I2(B)) on some ground atom B with l(B) = � � 
 but agree(i.e. I1(A) = I2(A)) on all ground atoms A of lower level.Level mappings have proved to be important in logic programming in a number of contextsincluding studies concerned with termination and completeness. One of their main uses is the pro-vision of syntactic conditions which identify tractable classes of programs by prohibiting \negationthrough recursion", that is, by preventing an atom occurring in the head of a clause and simul-taneously occurring negated in its body. This is illustrated by the following de�nition. SupposeA  A1; : : : ; An1;:B1; : : : ;:Bn2 is a typical ground instance of a clause in P , where n1; n2 � 0.We call P locally strati�ed (with respect to l) if the inequalities l(A) � l(Ai) and l(A) > l(Bj) holdfor all i and j for each clause, and we call P locally hierarchical (with respect to l) if the inequalitiesl(A) > l(Ai); l(Bj) hold for all i and j for each clause. Both of the classes de�ned here have turnedout to be important in logic programming.Our main theorem is the following result which is an extension to 	P of an earlier resultestablished in [2, 6, 12] for TP .4.1 Theorem Let P be a normal logic program which is locally hierarchical with respect to a levelmapping l. Then 	P is strictly contracting with respect to dl and hence has a unique �xed point.Proof: Let I1; I2 2 IP;4 be such that dl(I1; I2) = 2��. There are two cases to consider.Case 1: � = 0. In this case, I1 and I2 di�er on some ground atom of level 0. Let A 2 BP bearbitrary with l(A) = 0. Consider 	P (I1) and 	P (I2). By the hypothesis on P and the fact thatl(A) = 0, the element A  C1 _ C2 : : : in P �� with A in its head must either be of the formA true or A false. But I1(true) = I2(true) = t and I1(false) = I2(false) = f . Thus, we eitherhave 	P (I1)(A) = I1(true) = I2(true) = 	P (I2)(A) or we have 	P (I1)(A) = I1(false) = I2(false) =	P (I2)(A). Hence, 	P (I1) and 	P (I2) agree on all ground atoms of level 0, and it follows thatdl(	P (I1);	P (I2)) < 2�0 = dl(I1; I2).Case 2: � > 0. In this case, I1 and I2 di�er on some ground atom of level �, but agree on all groundatoms of lower level. Let A 2 BP with l(A) � �. Consider the unique elementA C1_C2 _ : : : inP �� with A as its head. Since P is locally hierarchical, each atom occurring in each clause body Cihas level strictly less than �. Therefore, I1(C1 _ C2 _ : : : ) = I2(C1 _ C2 _ : : : ), by our hypothesis.Hence, 	P (I1)(A) = I1(C1 _C2 _ : : : ) = I2(C1 _C2 _ : : : ) = 	P (I2)(A). Thus, 	P (I1) and 	P (I2)agree on all ground atoms of level � �. Hence, dl(	P (I1);	P (I2)) < 2�� = dl(I1; I2).Since cases 1 and 2 cover all possiblities, we see that 	P is strictly contracting with respect to dl.Finally, (IP;4; dl) is spherically complete by Theorem 3.10, and thus the required second conclusionfollows from Theorem 3.8. �It follows from our earlier remarks that under the hypothesis of the previous theorem, bothTP and �P are strictly contracting and hence also have unique �xed points. Indeed, the �rst ofthese comments was established in [6, 12], as already observed, and it was this fact that led to thepresent extension to �P and 	P . Finally, we note that certain of these ideas have been generalizedin another direction in [7].References[1] Belnap, Jr., N.D., A Useful Four-Valued Logic. In: Modern Uses of Multiple-Valued Logic,Dunn, J.M. and Epstein, G. (Eds.), D. Reidel, 1977, pp. 5{37.[2] Cavedon, L., Acyclic Logic Programs and the Completeness of SLDNF-Resolution, TheoreticalComputer Science 86 (1991), 81{92. 7
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